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Abstract: Digital Twins (DT) is an extremely promising framework developed in the context of
Industry 4.0 to facilitate the convergence of the physical and digital spaces. Numerous challenges
remain, however, in terms of development, deployment, and self-adaptability of the DT faced
with changes from its physical twin. Concerning this last point in particular, the set of Machine
Learning (ML) methods known as Active Learning appears promising. This framework allows
the DT to play an active role in the selection of the data samples used to train supervised
ML models. This paper proposes a use-case inspired from the sawmill industry to illustrate the
interest of these method in the presence of various changes in the flow of data gathered by the
DT.

Keywords: Digital Twins, Active Learning, Artificial Intelligence, Sawmill Industry, Industry
4.0

1. INTRODUCTION

Since its introduction at the 2011 Hanover fair, Industry
4.0 has mobilized a tremendous amount of resources and
attention from academics and industries alike, eager to
benefit from its perceived advantages. Centered around
the concept of connectivity, Industry 4.0 is based on a
set of technologies and frameworks, such as the Inter-
net of Things or Cyber Physical Production Systems.
The advantages generated by these technologies include
increased flexibility, reactivity, predictability and so on,
allowing mass customization of production. Among this
set of technologies and frameworks, the concept of Digital
Twin (DT) raises important expectations. As presented
in figure 1, it is sometimes introduced as a new trend in
simulation technologies.

Fig. 1. New trends in simulation

The term ”Digital Twin” was introduced to the public by
the NASA’s integrated technology roadmap under Tech-
nology Area 11: Modelling, Simulation, Information Tech-
nology and Processing (Shafto et al., 2012). No definitive

definition, however, has yet been fully accepted, as many
are field specific. Semeraro et al. (2021), however, propose
a systematic literature review on DT and gathered up to
thirty definitions that they summarize as such: A set of
adaptive models that emulate the behavior of a physical
system in a virtual system getting real time data to
update itself along its life cycle. The DT replicates the
physical system to predict failures and opportunities for
changing, to prescribe real time actions for optimizing
and/or mitigating unexpected events observing and eval-
uating the operating profile system.

Several points are, in particular, important in this defini-
tion. A DT gather data in real time to build a faithful,
precise, and evolving representation of the physical twin.
This is linked to the concept of digital shadow (Kritzinger
et al., 2018) which differs from the DT in the fact that
a digital shadow data flow is only automatized from the
physical world toward the digital world. The DT is, there-
fore, completed by a set of adaptive models endowing the
twin with predictive and analytic capabilities. These capa-
bilities allow the DT to partially control the physical twin,
or provide necessary decision support to human operators
and managers.

Figure 2 proposes a summary outline of what may consti-
tute a DT. It is composed of both databases and analytical
or predictive models, as well as coordination mechanisms
and interfaces, coordinating the different DT elements and
managing both models and databases, as well as inter-
actions with the Physical twin. Interestingly, while many
authors consider the DT as a repository of all data and
models related to the physical twins, Boschert and Rosen
(2016) consider it as only a repository of the useful data
and models. Indeed, to store unnecessary data, never used



Fig. 2. Summary outline of a DT and its interactions with
the real world.

by any model or process may unnecessarily monopolize
storage or computational resource.

The analytical and predictive models included in the
DT can be of various nature, be it advanced simulation,
machine learning algorithm, or mathematical optimiza-
tion models. They can, additionally, interact with each
others. A simulation model could, for example, generate
additional inputs for a ML predictor. Shahhosseini et al.
(2021), for example, use a crop simulation model to gen-
erate additional features for a ML model predicting yield.
The adaptive characteristic of these models is, however,
crucial. The DT is, indeed, destined to follow its physical
twin along its whole life cycle, from conception to end of
life. During this time, the environment, usage, physical
properties, etc, of the physical twin will change, in ways
difficult to predict during the DT set-up phase. These
models should, therefore, be updated, both manually and
automatically, to ensure a continuously satisfactory per-
formance level. A desirable property is, additionally, to
detect and alert operators, manager, and maintenance
experts when models performance risk to drop and may
be inaccurate.

Among the scientific fields enabling self-updating models,
ML appear of particular interest. This fields focus, indeed,
on the development of models able to automatically learn
from historical datasets how to generate prediction for new
data samples. Use-case of ML models include, for example,
predictive maintenance, where the model monitor a system
state to predict future potential breakdown, or prediction
about the yield of a crop or production process. A potential
inconvenient of these models, is however, their requirement
for a mass of labeled historical data. A labeled data point
can be represented as a couple (X,Y ) ∈ X × Y, where
X is, traditionally, a set of descriptive features. Y , called
the label, is the quantity one want to predict. While the

set of features X is, in general, fairly easy to obtain,
generating Y may require the intervention of a costly
oracle, for example a human expert or computationally
intensive simulation.

Considering this fact, Active Learning (AL) has been stud-
ied during the past few decades as a framework limiting
the requirement for such labeled data when training ML
models, and appear extremely promising for the devel-
opment of DT. This raise, however, various questions,
including the behavior of AL strategies faced with changes
in the Physical twin environment. The objective of the
present paper is to study the behavior of an ML classifier
trained following an adapted AL strategy, in the presence
of abrupt and continuous changes in the nature of input
data.

The remaining of this paper is structured as follows. Sec-
tion 2 overviews Active Learning methods. Their interest
for DT is discussed in section 3. Section 4 presents the
use case, inspired from the sawmill industry. Section 5
concludes this paper.

2. ACTIVE LEARNING

The main objective of AL methods is the guided selection
of a small subset of unlabeled data samples X. These
unlabeled samples are then sent to an Oracle to be labeled.
This labeling come generally at a cost, both in time and
money, justifying the fact that the Oracle cannot be used
to make each and every prediction. The labeled samples
are then used to update and improve a ML predictor.

A first requirement of AL methods is to perform at least
better than a random selection method. More particularly,
given a predictor hal trained over a dataset selected by
an AL strategy, Dal, and a predictor hrd trained over a
randomly selected dataset Drd, one should expect to have:

EDal
[EX,Y [s(hal(X), Y )]] > EDrd

[EX,Y [s(hrd(X), Y )]](1)

ED represent the expected value taken over a training
dataset, EX,Y the expected value taken over new data
samples (X,Y ), and s a score allowing the comparison
of the prediction h.(X) given by a classifier with the real
sample label Y .

Three important points, stemming from the AL strategy
intended use should, in general, be considered when de-
signing it:

• The first point to consider is the nature of the learning
problem itself, i.e, what does one want to predict,
and with what data. Classically, supervised learning
problems are divided between classification problems
and regression problems.
• The second point to consider is the AL scenario, or

data access scenario. This scenario refers to the way
AL selection procedure gain access to the unlabeled
data samples. Three main scenarios can be identified
in the literature (Kumar and Gupta, 2020). Pool-
based AL refers to the case where the model has, from
the start, access to the whole unlabeled database.
Stream-based AL, on the other hand, refers to the
case where the model has only access to data gener-
ated by a stream. The objective is to select samples
without knowledge of what future samples will be



generated by the stream. Finally, membership query
synthesis-based AL scenario do not have access from
the start to any real dataset, but create iteratively
synthetic samples labeled by the oracle. Membership
query synthesis based scenario have, however, been
less studied in the literature, due to the difficulty
encountered by humans experts when labeling arti-
ficially generated samples (Kumar and Gupta, 2020).
• Lastly, the third point to consider is the notion of

budget. This refers to the ratio, or maximal amount,
of unlabeled samples which can be labeled by the
Oracle. This stems from the observation that labeling
is costly, in time or resource, and that a control over
this cost is required.

These three points will direct the selection of both the
ML predictor being trained, and AL strategy. Numerous
AL strategies have been proposed over the years. A lot
of them, interestingly, consider a measure of perceived
certainty over the prediction yielded by the predictor in
its current state. In a pool based-scenario, these samples
are selected which are the most uncertain. Similarly, in a
stream based scenario, this measured uncertainty over a
sample can be compared to a fixed or adaptive threshold.

3. ACTIVE LEARNING FOR DT

While the problems requiring the use of such ML pre-
dictors may be varied and lead to either classification
or regression problems, to discuss the choice of the data
access scenario is of great interest. A model integrated
to a DT will be faced with, on the one hand, new data
samples being continuously gathered, and, on the other
hand, changes in the physical properties or behavior of
the physical twin. These changes will impact the nature
of the data gathered from the physical twin sensors, and,
ultimately, lower the accuracy of the model predictions.
These changes in the stream of data are referred to as
concepts drift in the stream-based ML literature (Webb
et al., 2016) and are of various nature. In manufacturing,
they may have multiple causes, from tool wear to changes
in the raw material being processed. For these reason,
stream-based scenario is very adapted to the case of ML
models contained in a DT (Gardner et al., 2020).

Samples artificially generated by membership query syn-
thesis based AL strategy could be seen as an interesting
complement in a very specific case: when the DT contains
a second model, for example a complex simulation, able
to answer the same prediction task as the ML model
and process artificial samples, but too computationally
intensive to be used in real time. In such a case, however,
strong guaranties would have to be given over the accuracy
of this second model. If it were to continuously generate
wrongly labeled data samples, the performances of a ML
model learning from these would be impacted greatly.
Some authors, indeed, argue that noise on the labels is
potentially even more harmful than noise on the input
features (Zhu and Wu, 2004).

The fact that many AL strategies rely on a measure
of perceived certainty on the prediction of an input is,
additionally, of particular interest. It may alert a decision
maker, human or not, about a risk of taking decision
based on these data only. Different such measures will

focus on different sources of uncertainty. A first source of
uncertainty is, for example, caused by data being sampled
from an area of the feature space difficult to classify for
an ML classification model, due, for example to classes
overlap. A second important sources of uncertainty is the
emergence of novelty content due to concept drift.

The literature dealing with novelty content and outliers
detection has proposed numerous novelty scores to detect
”abnormal” samples, different from samples in a ”normal”
dataset. Pimentel et al. (2014) classify novelty detection
methods in six categories, including probabilistic and dis-
tance based. In this paper, novelty content will be consid-
ered using a distance based strategy. Such a method has,
indeed, the advantage of being computable on relatively
small datasets and no additional model as to be fitted to
the data. Additionally, no assumption has to be made on
the data distribution. This appears of particular interest,
due to the challenge created by the so called sampling
bias in AL applications. The statistical distribution of the
AL selected training set is dependent on the AL strategy
implemented, and not representative of the real data dis-
tribution.

4. USE-CASE

This section presents a simplified use case inspired from
the sawmilling industry. Sawmills process raw wood logs
into lumbers and other co-products. This process is di-
vergent with co-production. In particular, several lumbers
with potentially different dimensions and grades are pro-
cessed from the same log. For this reason, the sawing
process is more similar to a disassembly process than to
an assembly process. Several factors, including the hetero-
geneity of the raw material, make it difficult to know in
advance the set of lumbers (called in this paper a basket
of products) that can be obtained from a specific log.
Several numeric simulators have, however, been developed
for this task. Examples of such simulator include SAWSIM,
Optitek or Autosaw. Authors have, additionally, proposed
the use of ML predictors trained to make this prediction
(Morin et al., 2015; Martineau et al., 2021; Chabanet
et al., 2021). All these models are, in fine, steps toward
the construction of a sawmill DT.

4.1 Dataset

The dataset used in this section is a proprietary dataset
originating from Canadian wood industry. This dataset
contains data for 1207 wood logs. Each log is represented
by six know-how features, based on expert knowledge from
this industry. These features are, respectively, the diame-
ters at both extremities of the log, its length, volume, cur-
vature, and taper (a measure of its decrease in diameter).
Additionally, 3D scans of the exterior shape of each log
are available. These scans are point cloud, with arbitrary
number of points, that span a log exterior surface.

In the absence of data from a real sawmill representing
the physical twin, the 3D scans of each log had been fed
to the sawing simulator Optitek to generate the baskets of
products associated with each log. The simulated sawmill
is able to process 19 type of lumbers which, in our
dataset, are organized into 105 baskets of products. Each



basket corresponds to a class in the classification problem
considered by the ML predictors. The high number of
baskets w.r.t the size of the dataset makes it so that
new, previously unknown classes regularly appear in the
streams generated in this paper.

4.2 Stream generation

The dataset was used to generate streams containing two
types of drift w.r.t the log features. A stream is, in this
context, an ordering of the dataset. During experiments,
samples are then considered iteratively in that order.
Decision is immediately taken to add them or not to a
classifier training dataset.

To simulate drift, the dataset was divided into two parts
using the log length feature. One part, named cluster 1 in
the following, contains 600 of the shorter logs. The second
part, named cluster 2, contains the 607 remaining logs.

Abrupt drift was simulated by first iteratively selecting at
random and without replacement all elements from cluster
1, to form the beginning of the stream. Then, the same
procedure was done using cluster 2 to complete the stream.

Similarly, streams containing continuous drift were gen-
erated as follows: at time step i along the stream and
until one of the cluster is exhausted, draw at random a
Bernoulli variable U , with parameter p = 0.2 + i

736 ∗ 0.7
the values 0.2 and 0.7 are introduced here to not exhaust
the first cluster too early in the stream. If U = 0, select
a sample at random from cluster 1. Similarly, if U = 1,
select a sample at random from cluster 2. When one of the
clusters is exhausted, add all remaining elements from the
other cluster at the end of the stream, ordered at random.

4.3 Evaluation scores

As usual with ML predictors, evaluation scores have to be
defined to compare several models. This paper considers
a variant of the F1 score, specifically introduced by Mar-
tineau et al. (2021) to evaluate and compare ML predictors
trained to predict wood logs baskets of products. This
score is built on adaptations of the definitions of the
number of True Positive (TP), False Positive (FP) and
False Negative (FN):

• The number of True Positive is defined as the number
of predicted lumbers that are effectively produced,
i.e, TP =

∑19
i=1 min (p̂i, pi), with p̂i the number of

lumbers of type i predicted for a specific log, and pi
the number of lumbers of type i effectively sawed from
the same log.
• The number of False Positive is the number of

lumbers predicted but not produced, i.e, FP =∑19
i=1 min (p̂i − pi, 0).

• Similarly, the number of False negative is the number
of lumbers produced but not predicted, i.e, FP =∑19

i=1 min (pi − p̂i, 0).

The F1 score of a predicted basket of products p̂ is then
defined as F1 = 2×TP

2×TP+FP+FN × 100

It has to be stressed that a F1 is computed for one pre-
diction made for one single log, and is, here, expressed in
percents. To follow the evolution of this score w.r.t the

stream progress during this paper experiments, the accu-
mulated F1 is introduced as well. This score is initialized
at 0 at the beginning of the stream. Then, each time a
prediction p̂t is made for the tth log in the stream, its F1

score is computed and noted F t
1 . The accumulated score

is then updated as accF t
1 =

(i−1)×accF t−1
1 +F t

1

i

4.4 AL sampling strategy

AL strategies based on uncertainty or novelty measures
often compare the measure of the current sample generated
by a stream with a threshold, and select these samples
whose measure is below this threshold. This threshold may
be fixed or variable (Lughofer, 2017). One inconvenient
of fixed threshold is that they can be difficult to set a
priory, and give little insurance in the presence of drift.
Kottke et al. (2015), however, propose to use as threshold
the b-quantile of the measure theoretical probabilistic
distribution, estimated from past value of the stream.
This ensure, in particular, that as long as the stream
remains stationary, i.e, without drift, the AL strategy will
select approximately b% of the stream samples, respecting
a predefined budget. In fact, as the certainty measure
may be expected to have a tendency to take higher
values with time, as more samples are added to the
training dataset, such a strategy could even be expected
to slightly under-sample the stream. What is interesting
with this method is it’s behavior in case of abrupt drift.
Indeed, in such a case, samples will suddenly arrive with
small values of the certainty measure. This will lead to
a temporary high sampling rate, allowing the training
dataset to be automatically and quickly updated with
these new concepts. In the following, b was fixed to 0.4, to
sample slightly less than half the samples from the stream.
In general, this budget is not easy to decide. Especially, to
fix it too low might lead to poor performances from the AL
selection strategy which might select too many outliers,
polluting the training dataset. Overall, to fix it as high
as computationally possible might appear a good rule of
thumb.

The selection of a certainty measure is, often, task spe-
cific, as many of these measures are not guaranteed to
perform better than random selection on every dataset.
The measure proposed in this study is as follows. Let L
be the current training dataset used to train the classifier
h. Let x be a new log generated from the stream, and
p = (p1, ..., pc), with pi the probability that x belong to
class i, as estimated by the classifier h. Let d be the so
called ICP dissimilarity introduced by Selma et al. (2018)
to compare 3D log scans. This dissimilarity is a measure
of how different a log x is from a second log y, and is
used in this paper to detect novelty. This article propose,
therefore, to use the following certainty measure m :

m(x) =
max(p1, ..., pc)

miny∈L(d(x, y) + d(y, x))
(2)

This measure is, therefore, the ratio of the uncertainty
sampling measure, which is a classic measure from the AL
field, over a measure of how different the log x is from logs
in L, estimated with the ICP dissimilarity.

The classifier used in this study is the Extremely Random-
ized Tree classifier (Geurts et al., 2006). This classifier is a



variant of the classic Random Forest Classifier, relatively
fast to train as cuts are decided at random. The exact
implementation used is the class ExtraTreesClassifier from
the python library sklearn.

4.5 Experimental results

Experiments are designed as follows. First, a stream is
generated as described above. The first 50 elements of the
stream are used to train two classifiers. The first one will be
subsequently upgraded using a training dataset gathered
from an AL strategy, while the second one will be used for
comparison purpose, and trained on a dataset gathered at
random. The remaining logs are then considered one by
one, in the order dictated by the stream. Their basket
of products is predicted by both classifier. The exact
variation of the score associated with this prediction is
difficult to interpret, in particular because the baskets of
products of short logs are easier to predict than the baskets
of long logs. Therefore, the drift introduced in the stream
makes the classification problem easier at the beginning of
the stream than at the end. The difference in F1 between
the prediction made by the classifier trained on the AL
dataset and the prediction made by the classifier trained
on the random dataset, ∆F1 = FAL

1 − F rd
1 , with FAL

1
the score of the AL model and FAL

1 the score of the
model trained on the randomly selected dataset appears,
therefore, more interesting.

The certainty measure associated with the log x is then
evaluated and the log is added or not to the AL dataset
depending on its value. Similarly, a Bernoulli random
variable with parameter p = 0.4 is generated, and the
sample added to the random dataset if the value of this
Bernoulli is 1.

A classifier is trained again every time 30 new samples
have been selected from the stream by the AL or random
method respectively.

To take the influence of the stream order into consideration
as well as the randomness introduced by the training of the
Extremely randomized tree classifier, the experiment was
repeated a hundred time for both abrupt and continuous
drift cases, with different random seeds.

Fig. 3. Evolution of the average ∆F1 over 100 runs of the
experiment, as a function of the stream progress. The
streams contain abrupt drift

Abrupt drift: Figure 3 presents the evolution of the
average ∆F1 over 100 runs of the experiment, as a function
of the stream progress. A first element to notice is that

this quantity is positive, even if slightly, demonstrating
the advantage of the AL sampling strategy over a random
sampling strategy. The last value of ∆F1 at the end of
each of the hundred streams were gathered, and a Student
test was performed to test the positivity of their average.
The randomness considered here is induced by the stream
order and classifier training. The p-value of this test was
1.6 × 10−10. The gain of this AL strategy is, therefore,
statistically significant given our dataset.

Of particular interest is the behavior of ∆F1 after the
600th stream time step, i.e, the abrupt concept drift. A
sharp increase is, indeed, observed. The AL strategy is,
therefore, able to react faster than the random strategy to
this drift. ∆F1 then slowly decreases, as more samples are
gathered by both strategies.

Fig. 4. Evolution of the average number of samples selected
from the stream by either an AL or random strategies,
over 100 runs of the experiment. The streams contain
abrupt drift

The explanation for this faster adaptability of the AL
strategy can be found in figure 4. This figure presents
the number of samples having been gathered by either
the AL or random strategy, after each stream time step.
During the first half of the stream, The AL strategy
selects slightly less samples than the random strategy, as
may be expected for a stationary stream. just after time
step 600, however, the selection speed suddenly increases,
allowing the classifier trained on the AL training dataset
to be quickly updated with new samples. The selection
rate, then, slow down again as the stream is, once again,
stationary.

Fig. 5. Evolution of the average ∆F1 over 100 runs of the
experiment, as a function of the stream progress. The
streams contain continuous drift

Continuous drift: Similarly, figure 5 presents the evolu-
tion of ∆F1 under continuous drift. Once again, ∆F1 is, in



average, positive. A student test was performed, yielding
a p-value of 2.8×10−7. By the end of the stream, however,
a decreasing tendency can be observed, as both classifiers
are trained on vast enough dataset that the advantage of
the AL strategy decreases.

Fig. 6. Evolution of the average number of samples selected
from the stream by either an AL or random strategy,
over 100 runs of the experiment. The streams contain
continuous drift

Figure 6 presents the evolution of the number of samples
selected by either the AL or random strategy. This time,
the AL strategy reacts to the constant drift by gathering a
slightly larger training dataset than the random selection
strategy. This difference, however, slightly decreases with
the progress of the stream, with the increase in confidence
of both classifiers over both sample clusters.

5. CONCLUSION

Stream based AL appear promising for the development
of self-adaptive DT. As shown by this study experiments,
it allows the DT to react to two types of drift on the
set of features gathered from the physical twin and used
as input by a ML classifier. In particular, They allow to
automatically increase momentarily the number of samples
being selected from the stream to update the classifier.
Additionally, such a method outputs a confidence measure
on the classifier prediction, which could be used to alert a
manager using these to take decisions.

This work, however, only considers concept drift on the
features space, also called covariate drift. Future works
will, therefore, have to consider other families of drifts,
such as class drift. This type of drift occurs when the
class probabilities for a same set of feature change with
time. Such a drift can, for example, be caused by setting
changes on a production line. finally, an inconvenient of
AL is that it give little theoretical that equation 1. It
appear, therefore, indispensable to develop methods to
switch sampling strategy when necessary.
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