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Multi-view Separable Pyramid Network
for AD Prediction at MCI Stage
by '®F-FDG Brain PET Imaging

Xiaoxi Pan, Trong Le-Phan, Mouloud Adel, Caroline Fossati, Thierry Gaidon, Julien Wojak, and Eric Gued;,
for Alzheimer’s Disease Neuroimaging Initiative

Abstract—Alzheimer’s Disease (AD), one of the main causes
of death in elderly people, is characterize by Mild Cognitive
Impairment (MCI) at prodromal stage. Nevertheless, only part
of MCI subjects could progress to AD. The main objective of this
paper is thus to identify those who will develop a dementia of
AD type among MCI patients. 8F-FluoroDeoxyGlucose Positron
Emission Tomography (‘*F-FDG PET) serves as a neuroimaging
modality for early diagnosis as it can reflect neural activity via
measuring glucose consumption at resting-state. In this paper,
we design a deep network on °F-FDG PET modality to address
the problem of AD identification at early MCI stage. To this
end, a Multi-view Separable Pyramid Network (MiSePyNet)
is proposed, in which representations are learned from axial,
coronal and sagittal views of PET scans and then combined to
make a decision jointly. Different from the widely and naturally
used 3D convolution operations for 3D images, the proposed
architecture is deployed with separable convolution from slice-
wise to spatial-wise successively, which can retain the spatial
information and reduce training parameters compared to 2D and
3D networks, respectively. Experiments on ADNI dataset show
that the proposed method is comparable to other state-of-the-art
algorithms for classifying AD from Normal Control (NC). For
predicting the progression of Mild Cognitive Impairment, our
method can yield better performance than both traditional and
deep learning-based algorithms, with a classification accuracy of
83.05%.

Index Terms—Separable Convolution, Slice-wise CNN, Spatial-
wise CNN, '®F-FDG PET, Mild Cognitive Impairment

I. INTRODUCTION

LZHEIMER'’S Disease (AD) is a dominant degenerative
brain disease among elderly people, and it will get worse
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as time goes by. It is believed that at least 50 million people
worldwide suffer from AD or other dementias, and the number
will exceed 152 million by 2050 if this situation continues [1].
The main reason why AD dementia becomes the leading cause
of death is that no cure or treatment exists. It is expected to
identify those subjects who could develop AD dementia at
their early stage, i.e., Mild Cognitive Impairment (MCI), in
order to deliver a more reliable diagnosis and prognosis to
them. Then some interventions can be applied to delay the
onset and/or mitigate risks of converting to AD dementia.
However, the prediction of MCI transition to AD is quite
difficult and challenging since typical changes are subtle.
A variety of neuroimaging modalities, such as Magnetic
Resonance Imaging (MRI), Positron Emission Tomography
(PET), are able to identify early changes occurring in brain.
18E_FluoroDeoxyGlucose PET ('®F-FDG PET) is seen as a
powerful tool for early detection of AD since it is able to
capture cerebral glucose metabolic rate at resting-state and
reveal metabolic aberrations before structural brain changes
[2]-{4].

Computer-aided diagnosis (CAD) techniques based on ma-
chine learning approaches have been widely applied to tackle
AD detection and prediction problems at early stage [5]. These
techniques are typically structured into two steps: feature
extraction and classification. Feature reduction or selection
methods could be utilized prior to classification if extracted
features are redundant. Several methods have been dedicated
to either discriminating between AD subjects and Normal
Controls (NC) or identifying those who will develop AD
dementia among MCI subjects. Such methods include voxel-
based approaches where voxels are used as features [6]—[8]
and ROI (region of interest)-based methods where an atlas is
used to segment a subject into different anatomical regions
from which information is then extracted as regional features
[91-{16].

Deep learning methods, as a kind of emerging techniques,
have gained impressive performance in recognition and classi-
fication tasks [17]-[20]. Such techniques are also involved in
CAD methods and have been successfully applied to various
medical tasks [21]-[24]. Different from previous described
conventional CAD algorithms, deep learning methods manage
to integrate feature extraction and classification, which means
the typical feature engineering involved in classical machine
learning methods, including feature design, extraction, and
selection or reduction, is no longer required. Recently, an in-



creasing number of advanced deep learning-based CAD meth-
ods have been developed for neuroimaging data to address
the problem of AD prediction at early stage. Such methods
could be roughly categorized into three groups according to
different inputs, including ROI/patch value, 2D slice/patch,
and 3D subject/patch.

ROI/patch value This group of methods usually segments
subjects into different regions using either an existing pre-
defined atlas template or a customized one, and mean or voxel
values of such regions are then fed into a deep architecture.
Zhou et al. [25] deploy a novel three-stage deep feature
learning and fusion framework on MRI, PET and genetic data
to capture individual and joint distinct patterns at the same
time, where the average intensity of each ROI is taken as an
input. Lu et al. [26] design a multi-scale stacked-autoencoder
to learn latent representations for '*F-FDG PET modality in
order to diagnose AD from NC and predict the progression
of MCI subjects towards AD. PET images are segmented
into a variety of patches with different numbers of voxels
and these patches’ mean values are fed into the proposed
framework. Suk et al. [27] feed voxels within a candidate
patch to Deep Boltzmann Machine (DBM) [28] to find a latent
feature representation for such a patch.

2D slice/patch This kind of approach attempts to exploit
a 2D Convolutional Neural Network (CNN) to solve the
diagnosis and prediction problems. To this end, 3D neuroimag-
ing data is generally transformed into a 2D one through
decomposing into 2D slices [29], [30] or reconstructing a
2D image [31] so as to fit the CNN model. Benefiting from
the success of 2D CNN in natural scene images, this group
of methods can take advantage of the existing CNN models
which have been pre-trained in a large-scale dataset and
then fine-tuned with their local data [31]. It could save a
lot of computing resources with achieving good results and
moreover, this strategy could mitigate overfitting caused by
the limited number of medical data. However, since slices are
processed independently, spatial relation information existing
in 3D data might be lost.

3D subject/patch Methods belonging to this category usu-
ally apply 3D CNN as the basic architecture to diagnose AD.
Accordingly, the whole 3D brain image [32] or a sub-image,
a 3D patch [33], is taken as the input for a 3D model. Yee et
al. [32] propose a 3D CNN with residual connections for '8F-
FDG PET images, which follows the idea of ResNet [20],
and such a method can achieve an accuracy of 93.5% for
AD classification from NC and 74.7% for the prediction of
MCI conversion to AD. Huang et al. [33] input a sub-image
that covers the highly relevant region to AD, i.e. hippocampal
area, to a 3D VGG-based [18] architecture and obtain notable
performance. The main advantage of these methods is that
the spatial information is fully considered, therefore such
approaches have become a trend, especially for MRI [34]-
[36].

Considering 3D architectures specialized for '®F-FDG PET
are with a limited number at present, we propose a novel deep
method by using such a modality to predict AD at MCI stage
as well as classify AD from NC. To this end, a Multi-view
Separable Pyramid Network (MiSePyNet), which processes

axial, coronal and sagittal views via a factorized convolution
manner, is designed. The main contributions of our study are
summarized as three folds,

o The separable convolution, slice-wise CNN followed by
spatial-wise CNN, is applied for the first time for 3D
neuroimaging data, which enables the three views (axial,
coronal and sagittal) to be considered jointly without
losing spatial information.

o The architecture of each view is designed in a multi-scale
manner, from coarse to fine, to capture subtle differences
and obtain diversity in the receptive field.

« The developed model can achieve promising performance
and generalization ability with fewer parameters, partic-
ularly for the prediction of MCI conversion to AD.

The remaining of this paper is structured as follows. Next
section is devoted to the description of dataset used for
evaluation and the proposed method. Section III presents the
experimental results with comparisons to baseline and state-
of-the-art methods. A discussion is then given in Section IV
followed by a conclusion in Section V.

II. METHOD

In this paper, we present a novel CNN-based architec-
ture, Multi-view Separable Pyramid Network (MiSePyNet),
to tackle the problem of the prediction of MCI conversion
to AD along with AD diagnosis among NC subjects, in
which axial, coronal and sagittal views can be taken into
account jointly owing to the separable convolution strategy,
as shown in Fig. 1. Briefly, slice-wise CNN is first performed
on each view at the starting layer in a multi-scale manner to
learn representations among slices thereby combining them.
The outputs are then fed into spatial-wise CNN, which is
also with different scales of convolutional kernels, to yield
distinguishing spatial patterns for prediction tasks. Benefiting
from an accurate design of kernel sizes, the feature maps from
different scale streams within the same view have an identical
dimension, which makes it possible to combine feature maps
through element-wise addition. Afterwards, different views are
concatenated and then fed into fully-connected layers followed
by a softmax function to give a result.

A. Dataset

1) Data Selection: '8F-FDG PET data downloaded from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) is stud-
ied in this paper. Participants generally take several scans
at different time points so as to track their health states.
Since the main objective in the paper is to predict MCI
conversion to AD, therefore only the baseline subjects are
taken into consideration. Accordingly, data that meets the
following criteria is selected:

o AD: subjects diagnosed as AD dementia at the baseline
time point and do not change within the follow-up time'.

¢ NC: subjects diagnosed as NC at the baseline and do not
change within the follow-up time.

Diagnosis information is avaiable at https://ida.loni.usc.edu/login.jsp
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Fig. 1. Architecture of the proposed Multi-view Separable Pyramid Network (MiSePyNet).

o pMCI (progressive MCI): subjects diagnosed as MCI at
the baseline and progress to AD and stay with AD within
36 months.

o sMCI (stable MCI): subject diagnosed as MCI at the
baseline and stay in the phase of MCI or revert to NC
within the available scan time and the visit time is not
less than 24 months.

2) Data Pre-processing: The selected data is then pre-
processed by performing spatial normalization, intensity nor-
malization and smoothing. Specifically, the spatial normaliza-
tion is to warp the image into MNI space and make the image
have the same resolution, 91 x 109 x 91 with a voxel size of
2 x 2 x 2 mm?. The intensity normalization is then performed
through dividing each voxel intensity by the global average
value. Thereafter, images are further smoothed by a Gaussian
kernel with a full width at half maximum of 8 mm. All the
procedures are implemented with SPM12 [37]. These steps
can ensure images are in the same standard space, making
the subsequent analysis and comparison significant. After pre-
processing, PET scans are checked manually in order to
remove those subjects that failed in the processing procedure.
At last, 1005 baseline '*F-FDG PET images constitute the
experimental dataset, among which 237 subjects are with AD,
242 subjects are under NC and 526 subjects are with MCI,
including 166 pMCI and 360 sMCI cases. The demographic
and clinical information of subjects is provided in Table I, in
which MMSE stands for the Mini-Mental State Examination.

B. Architecture

In the following section, we introduce the proposed MiS-
ePyNet method in detail, mainly including slice- and spatial-
wise CNNs. Stacked convolutions with cuboid kernels are
firstly used for each view along the corresponding slice di-
rection to compress the input and theoretical 2D convolutions
(referred to 3D convolutions with a third dimension set to
1) are then performed spatially, rather than applying the
commonly used 3D convolutions for neuroimaging data, as the
work in [32], [34], [35]. The basic idea behind this method
follows the convolution factorization implemented in Inception
V3 [38] in which an n X n convolution is replaced by a 1 x n
convolution combined with an n x 1 convolution. Thus, the
proposed method that takes a 3D image as the input applies
a1 x 1 x n convolution? at first, namely, slice-wise CNN,
which is followed by an n x n X 1 convolution, referred to as
spatial-wise CNN.

1) Slice-wise CNN: The slice-wise CNN learns the repre-
sentation among slices by exploiting cuboid kernels whose size
is 1x1xn as shown in Fig. 2. The slice-CNN aims to compress
the 3D input into a 2D feature map (regardless of channels)
via slice-wise 1D convolution and such operations enable the
network to pay more attention to significant slices. For this
purpose, the first two dimensions of convolution kernels are
set to 1, and the third dimension, n, depends on the number
of times that convolutions are expected to be stacked before a

2Here n is decomposed into different scales, which will be discussed in
the following.



TABLE I
DEMOGRAPHIC AND CLINICAL INFORMATION OF SUBJECTS.

Characteristic AD NC pMCI sMCI
Number of subjects 237 242 166 360
Female/male 97/140 122/120 70/96 153/207
Age (Mean + Standard Deviation) 75.00 £ 791 73.66 £5.66 7391 +6.74 71.73 + 7.66
MMSE (Mean + Standard Deviation)  23.19 4+ 2.12  29.03 + 1.20 26.99 + 1.73  28.20 + 1.59
2D feature map can be derived,
D—-1 8@1x1x91 output
E "

where D indicates the third dimension of an input view, in
this paper, D € {91,109,91}, and ¢ stands for the times that
convolutions will be stacked. Accordingly, the kernel size of
slice-wise CNN is decided by the stacked convolution times
rather than being set empirically. It should be noted that the
corresponding stride involved in Eq. 1 is set to 1.

Taking the axial view (109 x 91 x 91) as an example, in
this case, D is 91. If ¢ is fixed to 1, which means after one
convolution, the 3D input can be compressed into a 2D feature
map (regardless of channels), consequently, n will equal 91. If
t is set to 2, two convolutions are stacked, the corresponding
n will be 46. Likewise, ¢ = 3 suggests three convolutions with
a kernel size of 1 x 1 x 31 are stacked, as displayed in the
block of slice-wise CNN-3 in Fig. 2. Accordingly, the slice-
wise CNN takes advantage of three scales of cuboid kernels
to capture different changes among slices, thereby delivering
several 2D outputs for each scale. Specifically, for the first
scale, slice-wise CNN-1, 8 kernels with a size of 1 x 1 x 91,
denoted 8@1 x 1 x 91 in Fig. 2, are applied, which is literally
a weighted sum of slices. The slice-wise CNN-2 utilizes two
stacked convolutions with 8 kernels each in which the kernel
size is set to 1 x 1 x 46. Three groups of 8 kernels are stacked
in the third scale, with a kernel size of 1 x 1 x 31. Each
convolution layer is followed by batch normalization (BN) [39]
and rectified linear unit (ReLu). The sagittal view has a similar
kernel setting with the axial view, while for the coronal view,
its kernel size is 1 x 1 x 109, 1 x 1 x 55 and 1 x 1 x 37
for three scales of slice-wise CNNs. The outputs of different
slice-wise CNNs within each view are with the same size,
specifically, 109 x 91 x 1 x 8 (heightx widthxslice x channels)
for the axial view, 91 x 91 x 1 x 8 for the coronal view and
91 x 109 x 1 x 8 for the sagittal view. The slice-wise CNN
compresses a 3D image into a 2D representation, consequently,
the parameters involved in the following spatial-wise CNN are
relatively reduced.

2) Spatial-wise CNN: The spatial-wise CNN also utilizes
multiple scales of kernels, from coarse to fine, to characterize
the inputs in order to retain distinctive patterns, as presented
in Fig. 3 which shows architecture details for the axial view.
The first scale, spatial-wise CNN-1, begins with an 11 x11x 1
convolution with a stride of 2, and followed by a 3 x 3 x 1
max pooling layer as well as another group of convolution-max
pooling operations but with a stride of 1 for the convolution.
Afterwords, a 1 X 1 x 1 convolution is applied at the end to
increase the output dimension so that the number of channels
is identical with the other two scales. The number of kernels

8@1x1x46| |8@1x1x46 , output
se: 1 sc |l s01 1 uc] 109x91

Axial
109%x91x91

output
109x91

|8@1x1x31| |8@1x1x31| |8@1x1x31

Fig. 2. Details of slice-wise CNN involved in MiSePyNet, taking the axial
view as an instance.

for the three convolution layers (indicated by green color in the
block) is set to 16, 32 and 64. For the second scale of spatial-
wise CNN, it can be seen from Fig. 3 that the convolutional
kernel size is uniformly fixed to 7 x 7 x 1 together with a
2 x 2 x 1 max pooling operation. Likewise, the spatial-wise
CNN-3 also exploits a uniform kernel size, 3 x 3 x 1, and is
deployed with four convolution layers whose kernel number is
16, 32, 64 and 64, respectively. Moreover, max pooling layers
involved in the second and third scales of spatial-wise CNNs
are with padding. Similar to slice-wise CNN, convolution
layers in spatial-wise CNN are also followed by BN and ReLu.
As a result, different scales of networks within each view can
yield outputs with the same dimension, 2 X 1 x 1 x 64 for the
axial view, 1 x 1 x 1 x 64 for the coronal view and 1 X2 x 1 x 64
for the sagittal view, which is attributed to the accurately
designed architecture and enables the subsequent cross-scale
combination. It is worth noting that the third dimension, i.e.,
slice, in each view is fixed to 1 among all the operations
involved in spatial-wise CNN.

3) Combination and Fully-connected Layers: As can be
seen from Fig. 1, the feature maps obtained from different
scales within the same view are merged via the element-wise
addition to strengthen distinctive patterns,

y' =F" (x, AW 1)@ F" (x, {Wi},) & F" (x,{Wi};) (2

where x € R"*"*# stands for the input scan, y¥ € RF>wx1xe
is the output of each view after addition over multiple scales
and v €{axial, coronal, sagittal}. 7(x,{W},) represents a
function to be learned in an effort to transform the input, x, to
various feature maps, in which j € {1, 2, 3} indicates different
scales. Such an operation yields cross-scale combined feature
maps, which can accumulate the distinctiveness derived from
each scale and enhance the classification performance. Three
views, i.e., axial, coronal and sagittal, are then concatenated
after a flatten operation and fed into three fully-connected (FC)
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Fig. 3. Details of spatial-wise CNN involved in MiSePyNet, taking the axial
view as an instance.

layers specified with 512, 64 and 2 neurons, respectively. In
addition, the first two FC layers are followed by BN and ReLu,
as well as a dropout strategy [40] with a rate of 0.5 to reduce
the potential overfitting risk. The final result is delivered by a
softmax function.

C. Implementations

All experiments are conducted by using Python 3.6 on a
Linux machine equipped with an Nvidia Quadro P5000 graph-
ics card with 16 GB of memory. The proposed architecture is
implemented with Keras library [41] using TensorFlow [42] as
the backend. The initialization method for all the convolution
and dense layers follows ’he_uniform’ [43]. The networks
are trained for 40 epochs and the batch size is set to 8.
The cross-entropy loss is applied as the objective function,
which is minimized by a stochastic gradient descent (SGD)
algorithm [44] with a step-wise learning rate, specifically,
1073 is set as the initialization rate for epoch 1 to epoch 5, then
it is decreased by 10 times, 10~%, for epoch 6-20, followed
by another 10 times decreasing, 10>, for the remaining 20
epochs, and the momentum coefficient is empirically set to 0.9.
Each epoch takes about 80s, and the training of the proposed
network takes less than 1 hour.

The dataset is randomly split into training, validation and
testing sets with a percent of 60%, 20% and 20%, respectively.
The model with the best performance on the validation set
is then tested on the testing set. The prediction of MCI
conversion to AD task is more challenging than classifying
AD from NC as changes in MCI subjects could be quite
subtle. According to [26], [36], information learned from AD
classification can enrich the feature pool of MCI subjects
thereby boosting the performance since AD is characterized
by MCI at the prodromal phase. Consequently, the model for
the prediction of MCI conversion to AD task is trained on
MCI data as well as AD and NC data, and naturally, AD and
pMCI are with the same label, while the other two groups,
i.e., NC and sMCI, share the same one.

III. EXPERIMENTS
A. Setup

The proposed MiSePyNet method is mainly tested on the
prediction of MCI conversion to AD (pMCI vs. sMCI), as
well as AD diagnosis among MC subjects (AD vs. NC). The
performance evaluation is achieved by four metrics, namely,
ACCuracy, the percent of correctly predicted samples, SENsi-
tivity, the proportion of correctly classified positive (diseased)
subjects, SPEcificity, the proportion of correctly identified NC
or sMCI samples, and Area Under Curve (receiver operating
characteristic curve determined by SEN and 1-SPE). Each of
them is computed as,

TP+ TN

TP+TN +FP+FN

TP TN
SEN=—"__ SPE=-———
TP+ FN TN + FP

ACC =
3

where TP, TN, FP and FN stands for true positive, true
negative, false positive and true negative, respectively. A
higher value indicates better performance.

B. Performance of Single View Pyramid Network

In the proposed MiSePyNet architecture, convolutions are
performed along the axial, coronal and sagittal views, and
results are given by considering three views jointly. In order
to compare each view’s performance and meanwhile, validate
the effectiveness of the integration strategy, the classification
results (under the same data partition) obtained from a single
view and multi-view networks are reported in Table II and
Table III for AD vs. NC and pMCI vs. sMCI, respectively. It
should be noted that multi-scale convolutions are retained in
this group of experiments.

It can be seen from Table II that axial view can give
relatively better overall performance than the other two views
in AD classification, while coronal view is inferior, with
differences of 2.09%, 4.25%, 0 and 1.47% regarding ACC,
SEN, SPE and AUC to the best view. Moreover, the pro-
posed multi-view network can further improve the diagnostic
accuracy, with an increase of 2.08%, and also achieve a
notable improvement concerning SEN, 4.26%. Surprisingly,
axial, coronal and sagittal views, as well as their combination
MiSePyNet, have the same SPE value, which implies that
they have an identical ability in recognizing healthy subjects.
Therefore, view integration can enhance the ability of a model
to diagnose AD from NC since multiple views could offer
complementary information, which also suggests that applying
a multi-view strategy in the network is reasonable.

TABLE I
PERFORMANCE OF DIFFERENT VIEWS OF NETWORKS FOR AD vs. NC(%)

Vies ACC SEN SPE AUC

Axial view network 91.67 87.23 9592 96.61
Coronal view network 89.58 82.98 95.92 95.14
Sagittal view network ~ 90.63 85.11 9592  96.57
MiSePyNet 93.75 91.49 9592 96.87

The results of the prediction of MCI conversion to AD
are shown in Table III, which are with different observations



in contrast to AD vs. NC. In general, among the three
views, axial view has slightly better performance in terms of
ACC and AUC, with differences of 0.95% and 0.62% to the
corresponding slightly inferior metric (80.95% and 86.45%),
respectively. However, coronal and sagittal views yield com-
parable performance, specifically, sagittal view network has
advantages regarding SEN and AUC, whereas coronal view
could give better ACC and SPE results. So it is uneasy to rank
single view performance in this task. Nevertheless, axial view
network outperforms the other two views, which is consistent
with the fact that physicians take the brain scan in axial view
as a reference to diagnose in practice. Furthermore, the multi-
view network can still achieve satisfactory improvements,
especially for pMCI prediction indicated by SEN, which has
been increased by 6.06%. Similar to AD diagnosis among NC
subjects, benefiting from multiple view combination, pMCI
subjects are particularly concerned by the developed model,
thereby resulting in performance enhancement.

TABLE III
PERFORMANCE OF DIFFERENT VIEWS OF NETWORKS FOR PMCI vs.
SMCI(%)
Views ACC SEN SPE AUC
Axial view network 81.90 69.70 87.50 87.07
Coronal view network  80.95 66.67 87.50 86.32
Sagittal view network ~ 80.00 69.70  84.72 86.45
MiSePyNet 83.81 75.76 87.50 88.89

C. Performance of Multi-scale Networks

Convolutions involved in the MiSePyNet are implemented
in a multi-scale manner and kernel sizes are designed in
an inverted pyramid fashion, from coarse to fine, along the
scales. Feature maps within the same view are then inte-
grated through element-wise addition across scale. In order
to analyze the effects of multi-scale strategy, we conduct
experiments on different scales of networks for both tasks and
still under the same data partition. The multi-view operation
is kept unchanged in such experiments. As can be seen from
Fig. 4(a), i.e., AD vs. NC, the classification performance is
monotonically increasing as the scale changes, from a single
to three scales, in terms of ACC, SEN, AUC, while the
value of SPE, 95.92%, is not affected by different scales
of networks. Significant improvements lie in ACC and SEN,
especially for SEN which is increased by 8.51%. For the
case of pMCI vs. sMCI illustrated in Fig. 4(b), we can also
observe that the performance is clearly enhanced concerning
ACC, SEN and AUC, while SPE remains unchanged in single
scale network, indicated by ’s1’, and MiSePyNet, indicated by
’s1+s2+s3’. SEN is largely increased from 66.67% to 75.75%
and nearly achieves an improvement of 10%. It implies that the
MiSePyNet model is dedicated to positive samples (AD and
pMCI) thereby enabling overall performance enhancement,
which is potentially attributed to the multi-scale operation
since it can gain various receptive fields and obtain diverse
feature maps.
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Fig. 4. Performance of multi-scale networks, ’s1” indicates a model incorpo-
rating only slice- and spatial-wise CNN-1 along each view, ’s1+s2’ is a model
with the first two scales, slice- and spatial-wise CNN-1,2, while ’s1+s2+s3’
represents the proposed architecture, MiSePyNet. (a) AD vs. NC. (b) pMCI
vs. sMCI

D. Effectiveness of Cross-task Guidance

The trained model for pMCI vs. sMCI task is guided by AD
classification for promoting its performance. In order to access
the effects of cross-task guidance, we compare the results
obtained without guidance with those given by a model trained
with guidance (under the same data partition), as displayed in
Fig. 5. With the assistance of AD and NC data, the accuracy
has been increased nearly by 2% and the metric AUC also
achieves an improvement of 1%. In spite of a decrease of
4.17% regarding SPE, SEN is drastically increased with an
improvement of 15.15%, which appears that the model with
guidance also has a stronger ability to identify diseased or
positive subjects. It is reasonable since subjects with MCI
could develop AD dementia, thus scans with relatively severe
disease (AD) are able to contribute to the training. In summary,
features learned from AD classification could yield a positive
influence on the prediction of MCI conversion to AD.
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Fig. 5. Performance comparison between models without and with guidance.



Moreover, loss curves of training and validation sets, with-
out and with guidance from AD vs. NC task, are presented
in Fig. 6. It can be seen that, for both cases, the proposed
MiSePyNet converges quickly within 10 epochs, in particular
for the case with cross-task guidance (Fig. 6(b)). In addition,
its loss differences between training and validation sets are
very slight, and it is a little bit smaller than those derived from
the model without guided information shown in Fig. 6(a). It
implies the potential overfitting has been mitigated. Therefore,
the cross-task data guidance could be seen as an alternative
way of data augmentation that is dedicated to easing overfit-
ting.
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Fig. 6. Changes of losses for training and validation sets. (a) Without

guidance. (b) With guidance.

E. Influence of Data Partition

In the above experiments, the model performance is val-
idated on fixed testing set for the sake of fair comparison.
However, due to a limited number of samples, different data
partitions could lead to differences in performance. Thus we
evaluate the MiSePyNet model on different data splits to test
its generalization ability. For this purpose, the classification of
each task is repeated 10 times and the average results are used
to evaluate the corresponding overall performance.

Figure 7(a) presents the results of AD diagnosis among NC
subjects, which are 93.13%, 90.32%, 95.49% and 97.11%
in terms of ACC, SEN, SPE and AUC, and the associated
standard deviation indicated by the error band in the fig-
ure is 1.57, 3.69, 2.86 and 1.74, for each metric. While
for the prediction of MCI conversion to AD, as shown in
Fig. 7(b), the average results and standard deviation indicated
in brackets are 83.05%(3.56), 72.12%(9.01), 88.06%(2.80)
and 86.80%(3.49) regarding the four metrics. It implies the
MiSePyNet method still achieves notable performance in the
prediction of MCI conversion to AD despite its standard
deviation is higher than that of AD classification, in particular
for SEN. This is mainly due to the more challenging task
of identifying pMCI. In summary, the proposed MiSePyNet
method is with a good generalization ability in classifying
AD from NC subjects. In order to reduce the possible effects
caused by data partition and meanwhile show the overall
performance in AD vs. NC and pMCI vs. sMCI, we use
average results for the comparison with other methods in the
remaining parts.
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Fig. 7. Overall performance evaluation in which the error band upon each
bar indicates the corresponding standard deviation. (a) AD vs. NC. (b) pMCI
vs. sMCIL.

F. Comparison with Baseline Methods

We then compare the proposed network with baseline
methods on the same experimental dataset. For the traditional
baseline methods, two types of commonly used features are
included in this paper, voxel- and ROI-wise features, as well
as the classifier, Support Vector Machine (SVM) [45] with a
linear kernel. Voxel-wise method takes intensities of all the
voxels in cortical as the features, while ROI-wise method
utilizes the mean value within each anatomical region as a
feature. As to the comparison with deep learning baseline
methods, we adopt VGG-16 as the backbone, specifically, 2D
CNN model takes the third dimension of a 3D PET image
as the channel and the corresponding number of convolution
kernels are decreased by 4 times due to a limited number of
samples, which is set to 16, 16, 32, 32, 64, 64, 64, 128, 128,
128, 256, 256, 256. Likewise, the baseline 3D CNN method
also follows VGG-16 architecture only by extending the kernel
size to a 3D shape, and the kernel number is kept the same with
2D CNN but only the first 10 convolution layers are considered
according to experiments. The dense layers for both 2D and 3D
CNNs remain identical with the proposed MiSePyNet method.

The comparison results are reported in Table IV and Table V
for AD vs. NC and pMCI vs. sMCI, respectively. It can be
seen from Table IV that the developed MiSePyNet method
outperforms the traditional method which applies regional
features, and the performance has been increased by 4.57%,
3.24%, 5.49 and 2.2% in terms of ACC, SEN, SPE and
AUC. However, compared to the voxel-wise method, the
improvements achieved by the MiSePyNet are not that notable,
which is probably caused by a limited number of training data.
Due to the same reason, baseline CNN-based methods (2D and
3D CNNs) do not perform as well as the voxel-wise method
either. Nevertheless, the proposed MiSePyNet architecture can
outperform the two baseline CNN methods with obvious
advantages, specifically, compared to the 3D CNN model (the
better baseline network), the metrics are improved by 6.57%,
9.91%, 2.91% and 3.03%. The considerable performance
difference between 2D and 3D CNN models indicates that the
spatial relationship information is so crucial that it cannot be
neglected. Moreover, the parameters involved in the proposed
network is dramatically reduced compared to both baseline
CNN models. For the prediction of MCI conversion to AD,
the improvement is more significant, as can be seen from
Table V. The MiSePyNet model has dominant performance



among comparison methods, with an accuracy of 83.05% and
a metric AUC of 86.80%, which are 8.05% and 8.43% higher
than ROI-wise method (the better one in traditional methods),
and 4.38% and 4.89% than the 3D CNN (the better one in
CNN-based approaches). It implies that the proposed method
is more capable to handle a quite challenging task. Therefore,
the proposed lightweight model has its superiority on AD
diagnosis among NC and particularly the prediction of MCI
conversion to AD compared to baseline methods.

TABLE IV
COMPARISON WITH BASELINE METHODS FOR AD vs. NC(%)

Methods ACC SEN SPE AUC Parameters
Voxel-wise 92.83 91.90 93.71 97.17 -
ROI-wise 88.56 87.08 90.00 94.91 -
2D CNN 80.31 70.41 90.07 87.30 279 M
3D CNN 86.56 80.41 92.58 94.08 11.30 M
MiSePyNet 93.13 90.32 9549 97.11 1.05 M
TABLE V

COMPARISON WITH BASELINE METHODS FOR FOR PMCI vSs. SMCI(%)

Methods ACC SEN SPE AUC Parameters
Voxel-wise 74.38 54.59 83.67 78.11 -
ROI-wise 75.00 55.83 83.77 78.37 -

2D CNN 72.29 48.79 83.06 76.37 279 M
3D CNN 78.67 55.45 89.31 81.91 11.30 M
MiSePyNet 83.05 72.12 88.06 86.80 1.5 M

G. Comparison with State-of-the-art Methods

We also compare the proposed MiSePyNet method with
state-of-the-art approaches, including methods that follow the
conventional classification pipeline, such as work have been
investigated by Hinrichs et al. [6], Padilla et al. [7], Li et
al. [10], Gray et al. [9], Zhu et al. [11], [12], Cheng et al.
[14] and Pan et al. [15], [16], as well as emerging techniques
that employ deep learning methods, like Suk’s [27], Lu’s
[26], Liu’s [29] and Yee’s methods [32]. Some of them focus
on multiple modalities, e.g. MRI and '8F-FDG PET, but we
only compare with those results achieved on '®F-FDG PET
modality for a fair comparison. The comparison results are
briefly summarized in Table VI and Table VII for AD vs. NC
and pMCI vs. sMCI, respectively.

As can be seen, deep learning-based methods are superior
to the traditional methods applying hand-crafted features for
both tasks, especially for the challenging one, pMCI vs.
sMCI, which is also the reason why deep learning has gained
more attention in medical image analysis. In addition, our
proposed method is comparable to the other methods in the
task of AD vs. NC and has better overall performance in
the prediction of MCI conversion to AD, which indicates the
designed architecture considering axial, coronal and sagittal
views jointly is effective and reasonable. It is worth noting that
due to the potential differences involved in data selection, pre-
processing and even dataset partition, results obtained from
different methods are actually incomparable. The comparison
just aims to provide an overview of other results and show the
baseline of existing methods.

IV. DISCUSSION

The prediction of AD at MCI stage is of more clinical
significance than identifying AD from NC subjects since it
could not only delay the onset but also provide insights into
such a disease. However, the acquisition of pMCI and sMCI
subjects is not as easy as the way of getting AD and NC
data, since they are labeled on the basis of longitudinal data,
while such data usually takes tens of months, e.g. 24, 36 or
even more, to be obtained. Considering we have incorporated
AD and NC subjects into MCI training and validated the
effectiveness of such a strategy in performance improvement,
an extra experiment is conducted in which only AD and NC
data are used as training set, while all the MCI subjects, totally
526, are for testing in order to further verify the effects of the
proposed MiSePyNet method on an independent dataset. The
comparison results are shown in Table VIII, it can be seen
that despite the testing set is larger and more challenging, the
proposed method, denoted 'MiSePyNet-ad’, can still obtain
favorable results with an accuracy of 80.16% and an AUC of
86.46%, which is superior to the baseline CNN methods, indi-
cated *2/3D CNN-ad’. It suggests that the MiSePyNet is able
to work even without direct information and its generalization
ability is further verified on an independent testing set.

Although the MiSePyNet is able to largely enhance the
performance of prediction of MCI conversion to AD, there
are still some limitations, which cannot be ignored. First, our
proposed network is not absolutely end-to-end since some pre-
processing operations have to be applied. In fact, such an
issue, whether pre-processing steps are necessary, still remains
unclear [46]. On one hand, a standard space resulted from
the pre-processing procedure could make a model focus on
the problem-specific patterns, which is beneficial for training.
On the other hand, diversity is reduced at the same time,
which could hinder the generalization ability of a model. This
issue should be investigated and considered carefully in our
future work. Second, our method can achieve a notable overall
accuracy, but the sensitivity is not that satisfactory in contrast
to SPE, which could be addressed by Focal Loss [47]. Third,
the developed model can give a prediction of the future state
for MCI subjects, but it cannot decide when is the future. So
it could be interesting to include longitudinal data to grade the
severity of the baseline scan in our following work.

V. CONCLUSION

In this paper, we have proposed a novel CNN model,
MiSePyNet, for 'F-FDG PET modality in an effort to cope
with the task of AD prediction at MCI stage as well as AD
classification among NC subjects. The MiSePyNet follows the
idea of factorized convolution and is deployed with separable
CNN:s, slice- and spatial-wise CNNss, for each view. Benefiting
from such a design, MiSePyNet is able to consider axial,
coronal and sagittal views jointly without losing spatial infor-
mation. Furthermore, each view is characterized by multi-scale
networks in order to capture different changes and expand the
range of receptive field, thereby enhancing the discriminative
feature maps. Experiments on ADNI data show that the pro-
posed architecture can achieve satisfactory diagnosis results,



TABLE VI

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS FOR AD VS. NC(%)

Category Method Data type Subjects ACC SEN SPE AUC
Hinrichs et al. [6] MR, 8F-FDG PET 89AD + 94NC 84 84 82 87.16
Padilla et al. [7) I8F.FDG PET 53AD + 52NC 86.59  87.50  85.36 ——
Gray et al. [9] 18F-FDG PET 50AD + 54NC 88.4 83.2 93.6 ——
. Li et al. [10] 18F_FDG PET 25AD + 30NC 89.1 92 86 97
Conventional methods
Zhu et al. 2014 [11]  MRI, 8F-FDG PET, CSF* 51AD + 52NC 92.3 92.3 93.9 96.6
Zhu et al. 2016 [12] MRI, 8F-FDG PET 51AD + 52NC 93.3 —— — —
Pan et al. 2019a [15] 18F.FDG PET 237AD + 242NC  92.57 90.89 9442  96.83
Pan et al. 2019b [16] I8F_FDG PET 237AD + 242NC  94.20 91.45 96.76 97.42
Lu et al. [26] I18F.FDG PET 226AD + 304NC  93.58 91.54  95.06 —_
Suk et al. [27] MR, 8F-FDG PET 93AD + 10INC  92.20 88.04 96.33 97.98
Emerging methods Liu er al. [29] I8F.FDG PET 93AD + 100NC 91.2 91.4 91.0 95.3
Yee et al. [32] 18F-FDG PET 237AD + 359NC  93.5 92.3 94.2 97.6
Huang et al. [33] MR, 8F-FDG PET 465AD + 480NC  89.11  90.24  87.77  92.69
MiSePyNet (Ours) I8F_FDG PET 237AD + 242NC  93.13  90.32 9549  97.11
*CSF = Cerebrospinal fluid
TABLE VII
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS FOR PMCI Vs. SMCI(%)
Category Method Data type Subjects ACC SEN SPE AUC
Gray et al. [9] 18F_FDG PET 53pMCI + 64sMCI 63.1 52.2 73.2 —
Zhu et al. 2014 [11] MR, 8F-FDG PET, CSF  43pMCI + 56sMCI 70.9 42.7 94.1 77.4
. Zhu et al. 2016 [12] MRI, '8F-FDG PET 43pMCI + 56sMCI 69.9 —_ —_ —_
Conventional methods
Cheng et al. [14] MRI, '8F-FDG PET, CSF  43pMCI + 56sMCI 71.6 76.4 67.9 74.1
Pan et al. 2019a [15] 18F-FDG PET 166pMCI + 360sMCI ~ 79.43  69.14  84.16  83.88
Pan et al. 2019b [16] 18E.FDG PET 166pMCI + 360sMCI  80.48 65.04 87.95 85.67
Lu et al. [26] 18F-FDG PET 112pMCI + 409sMCI ~ 82.51 81.36 82.85 —
. Suk et al. [27] MRI, 8F-FDG PET 76pMCI + 128sMCI  70.75  25.45 96.55 72.15
Emerging methods
Yee et al. [32] 18F-FDG PET 210pMCI + 427sMCI  74.7 74.0 75.0 81.1
MiSePyNet (Ours) 18F_FDG PET 166pMCI + 360sMCI ~ 83.05 72.12  88.06 86.80

TABLE VIII

[4]

PERFORMANCE EVALUATION ON INDEPENDENT DATASET (%)

Methods ACC SEN SPE AUC 5
2D CNN-ad 73.00 50.60 83.33 76.24 5]
3D CNN-ad 76.81 59.64 84.72  81.98

MiSePyNet-ad 80.61 71.69 84.72 86.46

[6]

particularly for pMCI vs. sSMCI, with an average accuracy

of 83.05% and an average AUC of 86.80%. We also test

[7]

MiSePyNet on a more challenging testing set, the results reveal
that the proposed method is with a strong generalization ability

as well as good performance in predicting the conversion of
MCI to AD even without direct information.
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