La transformation digitale des entreprises et plus largement celle de la société, entraine une évolution des bases de données vers le Big Data. Nos travaux s'inscrivent dans cette mutation et concernent plus particulièrement les mécanismes d'implantation d'une base de données sur une plateforme NoSQL. Pour automatiser ce processus, nous avons spécifié des algorithmes pour traduire un schéma conceptuel en un schéma logique NoSQL. A partir d'un diagramme de classes d'UML décrivant une base d'objets complexes, nous proposons des procédures de correspondance pour générer un schéma d'implantation destiné à une plateforme NoSQL orientée colonnes. Nous introduisons un schéma intermédiaire de niveau logique afin de limiter les impacts liés aux évolutions techniques des plateformes NoSQL. Une expérimentation du processus de correspondance a été réalisée sur une application médicale.

L'implantation de sources de données dans un système NoSQL : formalisation des règles de passage conceptuel/logique Fatma Abdelhedi * , * * , Amal Ait Brahim * et Gilles Zurfluh *

Introduction

Les applications Big Data, [START_REF] Chen | Data-intensive applications, challenges, techniques and technologies : A survey on big data[END_REF], développées dans les domaines tels que le spatial, la santé ou la gestion commerciale, répondent à un double objectif : (1) assurer le passage à l'échelle (ou scalabilité), c'est-à-dire répartir les données et distribuer les traitements sur un nombre important de machines afin d'être en mesure de stocker de très grands volumes de données et d'absorber des charges très importantes ; (2) manipuler les données complexes avec des outils qui prennent en compte la répartition logique de ces données.

Notre problématique générale est de proposer des modèles et des outils décisionnels capables de localiser des sources de données pertinentes, d'alimenter des entrepôts et d'exploiter ces derniers à des fins d'analyse. Les présents travaux se situent en amont dans ce processus décisionnel, au niveau des sources de données utilisées pour alimenter les entrepôts. Avant l'avènement du Big Data, ces sources de données étaient principalement constituées de bases de données relationnelles, de fichiers informatiques et de documents formatés en HTML ou XML. Avec la diffusion des plateformes NoSQL, les systèmes de décision doivent intégrer de nouvelles sources de données pour alimenter les entrepôts. Ainsi, des systèmes d'alimentation d'entrepôts comme Talend1 offrent des fonctionnalités pour charger, extraire et améliorer (nettoyer et enrichir) des données disparates, tout en tirant parti de la puissance de traitement massivement parallèle des technologies de Big Data, comme Hadoop, [START_REF] Grover | Transforming relational database into hbase[END_REF] et les bases de données NoSQL, [START_REF] Abhinay | Growth of new databases analysis of nosql datastores[END_REF]. Nos travaux visent donc à intégrer des sources Big Data dans un processus décisionnel. Le présent article consiste à proposer des règles de passage d'un schéma conceptuel décrivant une source Big Data, en un modèle NoSQL orienté colonnes. Une expérimentation est effectuée pour une application d'informatique médicale qui doit être implantée sur la plateforme Hadoop.

Motivation

Étude de cas

Pour illustrer nos travaux, nous utilisons un cas extrait d'une application médicale dont la base de données est représentée avec le formalisme UML. Cet exemple nous permettra de montrer comment passer d'un diagramme de classes (DCL) d'UML (vers un schéma NoSQL, [START_REF] Gajendran | A survey on nosql databases[END_REF]. Il s'agit de la mise en place de programmes nationaux ou internationaux pour le suivi de cohortes de patients atteints de pathologies graves. L'objectif majeur d'un tel programme est de collecter des données sur l'évolution temporelle d'une pathologie particulière, d'étudier les interactions de la pathologie avec des maladies opportunes et d'évaluer l'influence des traitements et médications à court et moyen termes. La durée d'un programme est décidée lors de son lancement et peut atteindre trois ans. Les données collectées par plusieurs établissements dans le cadre d'un programme pluriannuel, présentent les caractéristiques généralement admises pour le Big Data (les 3 V), [START_REF] Doug | 3d data management : Controlling data volume, velocity, and variety[END_REF]. En effet, le volume des données médicales recueillies quotidiennement auprès des patients, peut atteindre, pour l'ensemble des établissements et sur trois années, plusieurs téraoctets. D'autre part, la nature des données saisies (mesures, radiographie, scintigraphies, etc.) est diversifiée et peut varier d'un patient à un autre selon son état de santé. Enfin, certaines données sont produites en flux continu par des capteurs ; elles doivent être traitées quasiment en temps réel car elles peuvent s'intégrer dans des processus sensibles au temps (mesures franchissant un seuil qui impliqueraient l'intervention d'un praticien en urgence par exemple). Le suivi des patients exige le stockage de données variées telles que l'enregistrement des consultations effectuées par les praticiens, des résultats d'examens, des prescriptions de médicaments et de traitements spécifiques. L'extrait du diagramme UML de la figure 1

État de l'art

Une base de données de type Big Data contient des données variées, c'est-à-dire des données de types non standard qualifiés généralement d'objets complexes : textes, graphiques, documents, séquences vidéo, etc. Pour implanter de telles bases de données, des études ont porté sur la modélisation conceptuelle des objets complexes et ont montré que l'on pouvait appliquer ces modèles au Big data. D'autres travaux ont proposé des processus de transformation d'un schéma de bases de données vers un schéma NoSQL.

Modélisation des données complexes

La modélisation des données complexes, [START_REF] Darmont | An architecture framework for complex data warehouses[END_REF], a fait l'objet de nombreux travaux de recherche ; nous allons nous focaliser sur trois d'entre eux : Pedersen et Jensen (1998), [START_REF] Tanasescu | Preparing complex data for warehousing[END_REF], [START_REF] Midouni | Approche de modélisation multidimensionnelle des données complexes : Application aux données médicales[END_REF] que nous avons considérés comme les travaux les plus marquants dans ce contexte. L'approche de Tanasescu et al. (2005) consiste à concevoir un diagramme UML pour identifier et représenter conceptuellement les données complexes afin de les préparer au processus de modélisation multidimensionnelle. Dans le domaine médical, [START_REF] Pedersen | Multidimensional data modeling for complex data[END_REF] ont proposé un modèle multidimensionnel pour les données complexes qui modélise les données temporelles et imprécises respectivement par l'ajout du temps de validité et des probabilités au modèle. Nous pouvons citer aussi le travail de Midouni et al. (2009) qui s'intéresse au traitement de la complexité des données médicales ; ils ont étendu un modèle en constellation en introduisant de nouveaux concepts permettant la présentation des données biomédicales. Dans le même article, les auteurs ont proposé une approche de modélisation et d'implantation d'un entrepôt médical en se basant sur le modèle étendu.

Aujourd'hui, le modèle de données UML représente une sorte de référence en matière de représentation de schémas de bases de données complexes. Ce modèle conceptuel, permettant de décrire la sémantique des objets métiers dans une application, peut donc être appliqué à la description des bases de données de type Big Data.

Transformation des modèles

Dans le contexte des entrepôts de données, les travaux de Chevalier et al. (2015) ont défini des règles pour traduire un modèle multidimensionnel en étoile, en deux modèles physiques NoSQL, un modèle orienté colonnes et un modèle orienté documents. Les liens entre faits et dimensions ont été traduits sous la forme d'imbrications.

Dans Li (2010), ont été étudiés les mécanismes d'implantation d'une base de données relationnelle dans le système HBase. La méthode proposée est basée sur des règles permettant la correspondance d'un schéma relationnel en un schéma HBase ; les relations entre les tables (clés étrangères) sont traduites par l'ajout des familles de colonnes contenant des références. D'autres travaux, [START_REF] Yan | Transforming uml class diagrams into hbase based on metamodel[END_REF], ont étudié la transformation d'un DCL en un schéma de données HBase avec l'approche MDA. L'idée de base est de construire des méta-modèles correspondant au diagramme de classes UML et au modèle de données orienté colonnes HBase puis de proposer des règles de transformation entre les éléments des deux méta-modèles construits. Ces règles permettent de transformer un DCL directement en un schéma d'implantation spécifique au système HBase.

Cet état de l'art montre que peu de travaux antérieurs ont étudié la correspondance d'un modèle conceptuel de données complexes avec un modèle Big Data. Dans le travail le plus proche de notre problématique, [START_REF] Yan | Transforming uml class diagrams into hbase based on metamodel[END_REF], les règles de transformation de schémas proposées ne sont pas compatibles avec d'autres systèmes NoSQL orienté colonnes, tels que Cassandra et BigTable, le modèle de transformation proposé ne considére pas un niveau logique indépendant de toute plateforme technique.

Contribution

Nous reprenons l'architecture classique de la modélisation des données qui distingue les niveaux conceptuel et interne, [START_REF] Fankam | Enrichissement de l'architecture ansi/sparc pour expliciter la sémantique des données : une approche fondée sur les ontologies[END_REF] ; au niveau interne (ou technique), nous considérons les niveaux logique et physique. A partir de cette architecture, nous proposons un processus de correspondance entre un diagramme de classes conceptuel et un modèle logique NoSQL orienté colonnes. Quant à la correspondance entre les niveaux logique et physique (modèle d'implantation propre à un système propriétaire), il ne fera pas l'objet d'une présentation détaillée dans cet article. L'étude de ces principes de correspondance sont à la base des travaux que nous menons sur les mécanismes ETL dédiés à l'alimentation d'un entrepôt à partir de sources Big Data. Ces mécanismes, tenant compte de la sémantique des données, nécessitent de connaître les descriptions conceptuelles des sources. La figure 2 illustre notre approche qui consiste à passer d'un DCL à un modèle de type orienté colonnes puis, dans un second temps, à un modèle physique (schéma HBase ou Cassandra). Le passage du niveau conceptuel au niveau logique est assuré par des procédures de correspondance entre les éléments des modèles correspondants.

Niveau conceptuel

Niveau logique

Dans le niveau logique de description d'une base de données, les choix d'implantation ne sont pas complètement spécifiés. Les principes d'organisation des données sont précisés mais il est fait abstraction du SGBD utilisé pour implanter la base (ce choix se fait au niveau physique) ; seul le type de SGBD est pris en compte. Nous avons retenu un système NoSQL de type orienté colonnes. Ce choix a été dicté par les besoins de nos applications basés sur des requêtes multicritères faisant intervenir simultanément plusieurs attributs. Or les systèmes orientés colonnes offrent des techniques de stockage qui sérialisent les valeurs des colonnes et permettent ainsi d'accélérer l'accès aux données.

Le problème consiste donc à passer d'un schéma conceptuel de base de données (DCL) vers un schéma physique NoSQL qui fera l'objet d'une implantation. Mais plusieurs systèmes NoSQL orientés colonnes coexistent ; les plus connus sont BigTable, [START_REF] Chang | Bigtable : a distributed storage system for structured data[END_REF] Selon le modèle orienté colonnes, une base de données (BD) est constituée d'un ensemble de tables. Une table permet de regrouper des objets de taille variable sous forme de lignes ; chacune d'elles est identifiée par un identificateur unique (Id) dont le type est noté « clé-ligne » . Généralement, on regroupe dans une table les objets fortement liés ; par exemple les employés, les services auxquels ils appartiennent et les projets auxquels ils participent. Par défaut, nous stockerons la base de données dans une table unique notée T ; mais ce paramètre peut être modifié par l'administrateur des données. La table T est associée à un ensemble de familles de colonnes {f 1 ,...,f p }. Le schéma d'une famille f est un triplet (N, COL, Id) où :

-f.N est le nom de la famille.

-f.COL = {col 1 ,...,col q } est un ensemble de q colonnes présentes dans chaque ligne de T décrite par f. Le

Règles de correspondance Conceptuel/Logique

Nous proposons un processus permettant de décrire la correspondance entre les éléments du modèle conceptuel (diagramme de classes) et du modèle logique (orienté colonnes). Cette correspondance est réalisée par trois procédures notés CP (pour Correspondence Procedure) appliquées dans l'ordre suivant : CP class , CP classasso , CP asso , CP composition et CP heritage .

Transformation de classe

CP class (C; f) est une procédure de transformation de classe en famille de colonnes. Elle comporte les paramètres suivants :

-C : (N, {a 1 ,...,a q }, Ident) est une classe du DCL désignée par un nom N, q attributs et un identificateur Ident.

-f : (N, {col 1 ,...,col q }, Id) est une famille de q colonnes ayant Id pour identificateur de type « clé-ligne » .

Cette procédure correspond à l'algorithme ci-dessous qui élabore la famille de colonnes correspondante à une classe : le regroupement des attributs d'une classe permet de constituer une famille de colonnes distincte.

Transformation de lien d'association

CP asso (Asso; f) est une procédure de transformation d'un lien d'association. Elle comporte les paramètres suivants :

-Asso : (N, {a 1 ,...,a n }, Ident) est une association n-aire de n attributs références.

-f : (N, {col 1 ,...,col n }, Id) est une famille de n colonnes.

Cette procédure correspond à l'algorithme ci-dessous qui élabore la famille de colonnes correspondante à une association n-aire : les attributs correspondent à des colonnes de type « clé-ligne » qui référencent des familles cibles (classes liées).

Algorithm 3 CP asso Input : Asso , Output : f Begin f=∅ f.N = Ass.N f.Id = C.ident For i=1 to n do 6 -Exemple de résultat de la procédure CP asso .

col i .N = a i .N col i .type = clé-ligne f = f ∪ col i EndFor End FIG.

Transformation de lien composition/agrégation

CP composition (a, f composite ; col) est une procédure de transformation de lien de composition/agrégation. Elle comporte les paramètres suivants :

-a : est l'attribut référençant la classe composante.

-f composite : est la famille correspondante à la classe composite.

-col : est une colonne de type « ensemble clé-ligne » . L'algorithme ci-dessous transforme l'attribut référence en une colonne de type « ensemble clé-ligne » puis ajoute cette dernière dans la famille correspondante à la classe composite.

Algorithm 4 CP composite Input : a, f composite , Output : col Begin col.N = a.N col.type = set< clé-ligne > f composite = f composite ∪ col End

HBase

HBase est un système NoSQL orienté colonnes qui a été développé au-dessus du système de fichiers HDFS (Hadoop Distributed File System) de la plateforme Hadoop, [START_REF] Vora | Hadoop -hbase for large-scale data[END_REF]. Une base de données HBase est par défaut composée d'une seule table notée HTable (l'administrateur peut modifier ce paramètre pour créer plusieurs tables). Lors de la création d'une HTable, on peut lui associer un nombre fixe de familles de colonnes ; seul le nom de la famille est précisé sans mention des noms de colonnes. Une famille est un regroupement logique de colonnes qui seront ajoutées au moment de l'insertion des données. Chaque ligne (ou enregistrement) au sein d'une HTable est identifiée par une clé notée RowKey et choisie par l'utilisateur. Au triplet (RowKey, famille de colonnes,colonne) correspond une cellule unique qui contiendra une valeur.

Cassandra

Cassandra est un SGBD NoSQL orienté colonnes, initialement basé sur le modèle BigTable de Google, mais qui emprunte également des caractéristiques au système Dynamo d'Amazon 5 . Une base de données Cassandra est par défaut composée d'un seul conteneur de données noté KeySpace. Ce dernier est associé à une ou plusieurs familles de colonnes, chacune d'elles est un regroupement logique de lignes. Une ligne est composée d'un ensemble de colonnes et est identifiée par une clé notée PrimaryKey. Chaque colonne est représentée par un triplet correspondant à un nom, un type et un timestamp. L'article de Li (2010) traite de la transformation d'un schéma relationnel en un schéma orienté colonnes HBase. Ces travaux répondent bien aux attentes concrètes des entreprises qui, face aux évolutions récentes de l'informatique, souhaitent stocker leurs bases de données actuelles dans des systèmes NoSQL. Mais la source du processus de transformation, ici un schéma relationnel, ne présente pas la richesse sémantique que l'on peut exprimer dans un 7. Impala. http ://www.cloudera.com/documentation/enterprise/latest/topics/impala.html DCL (notamment grâce aux différents types de liens entre classes : agrégation, composition, héritage,...).

Notons que les concepts «

Implantation

Les travaux présentés dans [START_REF] Yan | Transforming uml class diagrams into hbase based on metamodel[END_REF] ont pour objet de spécifier un processus de transformation MDA d'un schéma conceptuel (DCL) vers un schéma physique HBase. Ce processus ne propose pas un niveau intermédiaire (le niveau logique) qui permettrait de rendre le résultat du processus indépendant d'une plateforme système particulière. D'autre part, la transformation des liens du DCL ne tiennent pas compte des contraintes d'organisation de données qui ont été dictées par les exigences de notre contexte d'application.

Conclusion

Nos travaux s'inscrivent dans le cadre de l'évolution des bases de données vers les Big Data, ceci pour prendre en compte le volume, la variété et la vélocité des données présents dans les nouvelles applications liées à la transformation digitale des entreprises. Nos études portent actuellement sur les mécanismes de stockage des données dans des systèmes NoSQL.

Dans cet article, nous avons traité le processus de transformation d'un schéma conceptuel représenté par un DCL d'UML en un schéma physique NoSQL orienté colonnes. Pour automatiser ce processus, nous avons spécifié des algorithmes pour traduire un DCL en un schéma logique NoSQL. Selon notre approche, le schéma logique constitue un niveau intermédiaire qui fait abstraction des considérations techniques propres aux plateformes d'implantation et qui apparaîtront uniquement dans le schéma physique ; ce principe permet de rendre le niveau logique indépendant des évolutions technologiques des plateformes.

Nous avons expérimenté notre démarche et nos modèles sur une application du domaine médical qui porte sur des programmes pluriannuels de suivi de pathologies. Nous avons automatisé le processus de transformation d'un DCL décrivant une base de données en un schéma NoSQL orienté colonnes. Ce schéma a été implanté sur les systèmes HBase et Cassandra.

 FIG. 1 -Extrait d'un schéma des données.

FIG. 2 -

 2 FIG. 2 -Implantation d'une base de données : les niveaux de description.

 Dans un systéme décisionnel, les données à analyser sont extraites de sources multiples. De nombreux projets reposent sur des sources de type Big Data comme le suggère l'exemple de la section 2.1. UML étant le modèle reconnu par la communauté des bases de données pour représenter des objets complexes 2 , nous décrivons le schéma d'une source Big Data sous la forme d'un DCL d'UML.Un DCL contient un ensemble de classes {C 1 ,...,C p }. Chaque classe regroupe des objets ayant une sémantique et des propriétés communes ; elle est définie par son nom, ses attributs et ses opérations (dans cet article, nous ne prenons pas en compte les opérations).Le schéma d'une classe C ∈ DCL est un triplet (N, A, Ident) où : -C.N est le nom de la classe.-C.A = {a 1 ,...,a q } est un ensemble de q attributs. Le schéma d'un attribut a ∈ A est un couple (N : C) où « a.N » représente le nom de l'attribut et « a.C » la classe qui le définit ; C peut être une classe prédéfinie, c'est-à-dire un type de données standard (String, Integer, Date,...) ou une classe définie explicitement par l'utilisateur appelée classe-utilisateur. -C.Ident est un identificateur d'objet de type Oid (Object Identifier des systèmes objet) géré automatiquement par le système pour chaque classe du DCL. Par exemple, la classe Patients de la Figure 1 est définie comme suit : (Patients , {(nom-pat : String), (prénom-pat : String), (adresse : Adr), (date-naiss : Date), (profession :String)}, (ident : Oid)) (Adr , {(cp : Integer, ville : String)}). --Classe définie par l'utilisateur et jouant le rôle de type. Une association n-aire dans un DCL est exprimée sous la forme d'une classe de n attributs. Chacun d'eux est associé à une classe utilisateur ; ces attributs références permettent d'établir des liens lors de la valorisation des données. Par exemple dans la figure 1, le lien Pathologie entre Patients et Maladies se traduit par une classe définie comme suit : (Pathologies, {(pat : Patients), (patho : Maladies)},(ident : Oid)) Lors de l'instanciation de Pathologies, les attributs pat et patho prendront respectivement la référence d'un objet de la classe Patients et de la classe Maladies. Un lien peut être multivalué ; c'est le cas du lien AutresMaladies entre les classes Patients et Médecins dans la figure 1. Le lien s'exprime alors comme suit : (AutresMaladies , {(pat : Patients), (patho : set(Maladies)}, (ident :OID)). --l'attribut patho peut prendre plusieurs valeurs. Dans le cas où un lien présente des propriétés dans une classe d'associations, c'est celle-ci qui contiendra les attributs références. La classe d'associations Consultations s'exprime alors comme suit : (Consultations , {(pat : Patients), (med : Medecins), (dte : Dates), (motif :String), (taille :Float), (Poids : Float)}, (ident :Oid)) Un lien d'agrégation ou de composition dans un DCL s'exprime par l'ajout, dans la classe composite, d'un attribut référençant la classe composante. Cet attribut prendra un ensemble de références d'objets de la classe composante. Par exemple dans la figure 1, le lien de composition entre ProgrammesMédicaux et Etablissements se traduit comme suit : ProgrammesMédicaux : {..., (etab : set(Etablissements)) ,...} Un lien d'héritage entre deux classes s'exprime par l'ajout, dans la sous-classe, d'un attribut référençant la super-classe. Ainsi le lien d'héritage de la figure 1 qui relie les classes Médecins et Médecins-Hospitalier, se traduit par l'attribut (médec : Médecins) dans la classe Médecins-Hospitalier.

 , HBase, Carstoiu et al. (2010), Cassandra 3 et Accumulo 4 . Ils présentent des spécificités techniques propres qui relèvent essentiellement des techniques d'implantation. Pour faire abstrac-tion de ces spécificités, nous intègrerons le niveau logique dans le processus de correspondance entre les schémas. Autrement dit, nous considérerons les passages successifs : Conceptuel -> Logique puis Logique -> Physique. Au niveau logique, le schéma décrit l'implantation des données en faisant abstractions de considérations techniques propres à tel ou tel système NoSQL.

 FIG. 3 -Modèle logique orienté colonnes.

Algorithm 1

 1 FIG. 4 -Exemple de résultat de la procédure CP class .

FIG. 7 -

 7 FIG. 7 -Résultat de la procédure CP composition .

 FIG. 9 -Extrait des modéles physiques HBase (a) et Cassandra (b).

 Table » et « clé-ligne » seront remplacés respectivement par les concepts HTable et RowKey sous HBase et par KeySpace et PrimaryKey sous Cassandra.

Talend.https ://fr.talend.com/products/big-data

http ://www.omg.org/spec/UML/2.5/

http ://cassandra.apache.org/

https ://accumulo.apache.org/