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Abstract

Finite element (FE) simulations are performed for hat-shaped specimens made of face-centered cubic

(FCC) metallic single and poly–crystals in order to investigate strain localization phenomena under

adiabatic conditions which are related to adiabatic shear band (ASB) formation process. A micro-

morphic crystal plasticity model is used to overcome the main limitation of classical plasticity models,

namely the mesh size dependency in strain localization problems. A thermodynamically consistent

formulation of the constitutive equations is proposed for micromorphic thermo-elasto-viscoplasticity of

single crystals. The temperature evolution under adiabatic conditions is derived from the competition

between plastic power and energy storage. The micromorphic crystal plasticity model is used first to

simulate strain localization induced by thermal softening in a metallic single crystal strip loaded in

simple shear undergoing single-slip. The FE solution of this boundary-value problem is validated using

an analytical solution. Regarding single crystal hat-shaped specimen simulations, five different crystal

orientations are considered to study the formation, intensity and orientation of shear bands. In par-

ticular, one special crystal orientation is found resistant to shear banding. In addition, the formation

of shear bands in hat-shaped polycrystalline aggregates is investigated. The specimens are polycrys-

talline aggregates with different grain sizes, namely the coarse-grained and fine-grained specimens with

random crystal orientation distribution. Furthermore, several realizations of the microstructures are

taken into account for statistical considerations. The micromorphic crystal plasticity model incorpo-

rates a characteristic length scale, which induces a grain size effect in the simulation of polycrystalline

specimens. The grain boundaries act as obstacles against shear band formation. A significant grain

size effect, namely the finer the grain size the higher the resulting load, is predicted by the simulations

under isothermal conditions. However, the fine-grained specimens are found to fail earlier by shear

banding than some coarse–grained samples, the latter being associated with significant dispersion of

the results depending on grain orientations. The effect of grain size on the width of the shear band is

also analyzed. The temperature-dependent material parameters and shear band widths considered in

the paper correspond to Nickel-based superalloy Inconel 718 in a large temperature range. No strain

hardening was considered in the hat–shaped specimen test to simplify the interpretation of the results.

Keywords: Adiabatic shear band; Single crystals; Polycrystals; Gradient crystal plasticity;

Micromorphic crystal plasticity; Strain localization; Grain size effect
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1. Introduction

The ASB formation process originates from the rapid increase of local temperature due to plastic

work dissipation under high strain rate loading conditions. This, in turn, reduces the stress carrying

capacity of the material and results in highly localized and unstable plastic deformation (Gilman, 1994;35

Zhu et al., 1995; Dodd and Bai, 2012). The flow stress dependency on temperature is associated with

thermal softening, causing the stress to drop from its maximum point, thus leading to intense shear

band formation. The formation of shear bands may not be considered as failure of ductile material,

but as a precursor to the catastrophic fracture (Anand et al., 1987; Zhu et al., 1995). It influences the

texture development and the material constitutive behavior (Dève and Asaro, 1989). The phenomenon40

of ASB formation can be observed in many industrial processes, for instance, machining and high-

speed shaping, shearing, metal forming (Burns and Davies, 2002; Molinari et al., 2002; Dodd and Bai,

2012), and so forth. A vast review on the adiabatic shear localization in metallic materials at high

strain rates by using experimental and computational techniques can be found in (Yan et al., 2021).

In recent years, considerable experimental research has been conducted to investigate the ASB45

formation in FCC metallic materials. The experimental shear tests on hat-shaped specimens using

Split-Hopkinson pressure bars in compression mode are often used to study the material resistance to

shear localization, for instance, in (Nemat-Nasser et al., 1998; Meyers et al., 2003; Xue et al., 2005; Xu

et al., 2008). Meyers et al. (2003) studied the microstructural evolution of adiabatic shear localization

in stainless steel. Experimental investigations of the effect of strain rates, heat treatments, and grain50

size on the ASB formation in hat-shaped polycrystalline Inconel 718 specimens using Split-Hopkinson

pressure bar test can be found in (Johansson et al., 2016, 2017; Song et al., 2018). Furthermore, Song

et al. (2018) observed that the aged top-hat sample with small grain size and fillet radius has the

largest tendency to form a shear band compared to the solution treated Inconel 718 specimens. They

observed shear bands of 10µm width in aged Inconel 718 samples of average grain size 28µm and55

10− 13µm in solution treated samples of average grain size 18µm. DeMange et al. (2009) found that

the precipitation hardened material more readily exhibits shear localization than the solution treated

material in the shear deformation of top-hat samples. Moreover, in metallic materials and alloys, it

was believed that only the dislocation mobility due to a rise in temperature causes the strain-softening.

However, the recent studies, e.g., (Landau et al., 2016; Mourad et al., 2017; Longère, 2018) showed60

that the dynamic recrystallization (DRX) is also playing an essential part in strain softening.

From the computational perspective, it is well–known that finite element simulations of strain

localization phenomena exhibit spurious mesh dependency, and the classical plasticity models are

inadequate to solve the strain localization problems (Asaro and Rice, 1977; de Borst et al., 1993; Besson

et al., 2009). The possible loss of ellipticity of the partial differential equations in strain-softening65

materials results in an ill-posed boundary-value problem and classically displays dependency on mesh

size or density and element orientation. The loss of ellipticity of the PDE is a local condition that

concerns rate-independent constitutive equations in the static case. It implies the non-positive value of

the determinant of the material’s acoustic tensor (Forest and Lorentz, 2004; Wcis lo et al., 2018). Rate-
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dependence of the material behavior can improve the situation but it is not sufficient to regularize the70

general localization problem (Needleman, 1988). Numerical analyses of strain localization problems

within the conventional continuum mechanics framework can be found in (Batra and Kim, 1991, 1992;

Duszek-Perzyna and Perzyna, 1993, 1996; Perzyna and Korbel, 1996, 1998). It has been shown very

early that the combination of dynamics and viscosity provides sufficient regularization, see (Loret

and Prevost, 1990; Harirêche and Loret, 1992). However, this regularization method has anomalies75

compared to other ones, such as strain gradient models. For instance, it is more sensitive to the

imperfections triggering the strain localization (Molinari and Clifton, 1987). In addition, there are

necessary conditions of loading, viscosity, and numerical time discretization for the viscous terms to

be effective in regularization, as demonstrated in (Wang et al., 1996; Benallal, 2008).

The shear band width dependency on mesh size can be overcome by introducing a characteristic80

length scale in the classical plasticity models according to (Aifantis, 1984; Needleman, 1988; Pamin,

1994; Kuroda and Tvergaard, 2006; Voyiadjis and Al-Rub, 2005; Anand et al., 2012; Wcis lo and

Pamin, 2017a; Vignjevic et al., 2018; Kaiser and Menzel, 2019). Strain gradient plasticity models,

which include an intrinsic length scale in the constitutive framework, are often used to regularize

strain localization problems, e.g., (Aifantis, 1984; Menzel and Steinmann, 2000; Abu Al-Rub and85

Voyiadjis, 2006; Anand et al., 2012; Ahad et al., 2014). Aifantis (1984, 1987) proposed a strain

gradient theory by adding the Laplacian of a scalar measure of plastic strain in the yield function of

the classical plasticity theory to solve the issues related to the width of shear bands. The characteristic

length scale introduced in the gradient plasticity models can be associated with the width of the shear

band as demonstrated in (Zbib and Aifantis, 1988; Chambon et al., 1998). The effect of higher-order90

gradients on ASB formation was investigated by Zhu et al. (1995) and more recently by Tsagrakis and

Aifantis (2015); Liu et al. (2019). Two length scales, respectively associated with strain gradients and

thermal conduction, were considered in the analysis. They showed that the width of the shear band

scales with the square root of strain gradient coefficient in the absence of conduction and square root

of the thermal conductivity in absence of strain gradient effects. The micromorphic theory proposed95

by Eringen (1999) relies on the second-order microdeformation tensor as an additional degree of

freedom. The application of micromorphic theory for the strain localization phenomenon can be

found in (Dillard et al., 2006; Anand et al., 2012; Mazière and Forest, 2015). In contrast to Eringen’s

full micromorphic theory, a reduced-order micromorphic crystal plasticity theory was proposed by

Ling et al. (2018) involving a scalar-valued variable as the additional degree of freedom. It was used100

to analyze strain localization phenomena at finite deformation by Scherer et al. (2019). The mesh

dependency issues in the shear localization problem can also be eliminated by the sub-grid method

proposed in (Mourad et al., 2017; Jin et al., 2018) in the case dynamic loading conditions are applied

to hat-shaped specimens.

The purpose of strain gradient plasticity is not solely related to its regularization properties but105

the aim is also to incorporate microstructural features in the crystal plasticity modeling, namely the

development of Geometrically Necessary Dislocations (GND) under high strain gradients, see (Phalke
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et al., 2021), and the effect of grain boundaries and grain size.

As the yielding starts in a metallic material, the work done by the stresses is partly transferred

to heat and partly to the reversible or irreversible microstructural changes in the material and leads110

to a rise in temperature locally affecting the elastic-plastic behavior of the material. Therefore,

it is necessary to introduce thermodynamics into the plasticity framework (Bertram and Krawietz,

2012). Thermodynamically consistent formulations of the constitutive equations in classical plasticity

models for the small strain strain can be found in (Bertram and Krawietz, 2012) and for finite strain

gradient plasticity in (Forest and Sievert, 2003; Bertram, 2015). The second law of thermodynamics115

in the form of Clausius-Duhem inequality is used to find the necessary conditions required for the

thermodynamically consistent formulation. A fully coupled thermo-plasticity model can also be found

in (Simo and Miehe, 1992; Duszek-Perzyna and Perzyna, 1993; Yang et al., 2006; Ristinmaa et al.,

2007). In many works in the literature (see, e.g., Osovski et al. (2013); Zhang et al. (2016); Lieou

et al. (2019)), use is made of the Taylor-Quinney coefficient (Taylor and Quinney, 1934), a constant120

parameter related to the amount of plastic work converted into heat. A more precise thermodynamic

description requires the definition of the stored energy function with appropriate internal variables

and of the dissipative mechanisms. Thermo-mechanical couplings can in that way be incorporated in

the heat equation.

The present work is limited to adiabatic conditions and therefore concentrates on the microstruc-125

ture effects, namely anisotropy of crystal plasticity, GND development and grain size effects, on shear

band path and width. In general, there is a competition between intrinsic length scales arising from

plasticity and heat conduction during shear band formation. The emerging characteristic length scale

due to the heat conduction has regularizing effects and contributes to the band structure, as demon-

strated in (Lemonds and Needleman, 1986; Medyanik et al., 2007; Mcauliffe and Waisman, 2013;130

Wcis lo and Pamin, 2017a,b). However, in the present work heat conduction effects are neglected. Un-

der the strict adiabatic condition, the effect of heat conduction on the band structure can be neglected,

as discussed in (Molinari and Clifton, 1987; Shawki and Clifton, 1989; Baucom and Zikry, 1999; Li

et al., 2001; Zhang et al., 2016). McVeigh and Liu (2010) recently showed that the unphysical nature

of strain localization could be observed in the classic continuum formulation, even under fully cou-135

pled thermal-mechanical formulation with heat conduction effects. Consideration of heat conduction

effects delays the shear instability; however, the post-instability deformation still localizes in a single

element. The explicit characteristic length scale due to microstructural features in strain gradient

plasticity models introduces the effect of, e.g., the GND development and grain size effect in addition

to the regularizing property. Regularization of ASB is not the only purpose of the present study but140

also the consideration of the effect of microstructural features.

Many numerical studies on adiabatic shear localization in metallic single crystals have been com-

pleted in recent years, for instance, in (Baucom and Zikry, 1999; Perzyna, 2002; Zhang et al., 2016).

However, less attention has been given to the effect of crystal orientation on the shear band formation

in single crystals. It is, therefore, one of the objectives of the present work to investigate the effect of145
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various initial crystal orientations on the ASB formation in single crystals. In the present study, the

ASB formation is only related to thermal softening, letting aside the effect of DRX. The applicability

of the reduced-order micromorphic crystal plasticity model involving a single scalar-valued variable as

a degree of freedom (Ling et al., 2018) is demonstrated for regularizing the ASB. A thermodynamically

consistent formulation of the constitutive equations for the micromorphic crystal plasticity model is150

presented. At first, an analytical reference solution is developed in the case of a periodic strip loaded

in simple shear undergoing single-slip with linear strain and thermal softening. The FE solution of

the same boundary-value problem is validated using an analytical solution initially developed for the

rate-independent isothermal case. The temperature-dependent material parameters and shear band

widths considered in the paper correspond to Nickel-based super-alloy Inconel 718 in a large temper-155

ature range. Furthermore, simulations are performed with the single crystals hat-shaped specimens

with different initial crystal orientations.

The second original objective of the present work is to study the transition of ASB formation

from single to polycrystals. To this end, the micromorphic approach is applied to polycrystalline

hat-shaped specimens simulations to predict the role of grain boundaries as obstacles to ASB, the160

orientation dependency, and the influence of grain size on the width of the ASB.

The outline of the paper is as follows: In section 2, the constitutive framework of thermo-elasto-

viscoplastic single crystal plasticity and the thermodynamically consistent formulation of micromor-

phic crystal plasticity model are presented. Section 3 is dedicated to the validation of the numerical

solution for a periodic strip loaded in simple shear undergoing single-slip with linear thermal soften-165

ing based on the analytical solution developed for the rate-independent case. Section 4 reports on

the simulations of single crystals hat-shaped specimens under static loading conditions. In section

5, the micromorphic crystal plasticity model is used to investigate ASB formation in polycrystalline

hat-shaped specimens. Concluding remarks follow in section 6.

The following notations are employed in this contribution: Underlined A and under-waved bold170

A∼ characters are used to denote first-order and second-order tensors, respectively. The transpose,

inverse and time derivative are represented as A∼
T , A∼

−1 and Ȧ∼ . Simple and double contractions are

understood in the sense a · b = aibj and A∼ : B∼ = AijBij . Moreover, following tensor products are

used: a ⊗ b = aibje i ⊗ e j and A∼ ⊗B∼ = AijBkle i ⊗ e j ⊗ e k ⊗ e l. Nabla operators are defined with

respect to Lagrange coordinates, ∇X , and with respect to Euler coordinates, ∇.175

2. Theoretical formulation

2.1. Thermo-elasto-viscoplasticity of single crystals at finite deformation

2.1.1. Kinematics and visco-plastic flow rule

In the present work, a large deformation framework of thermo-plasticity is adopted, based on the

multiplicative decomposition of total deformation gradient F∼ into a recoverable thermo-elastic part

F∼
the and a plastic part F∼

p combining concepts put forward by (Bertram, 2003; Ristinmaa et al.,
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2007):

F∼ = F∼
the · F∼ p. (1)

The spatial and the plastic velocity gradients are defined as

l∼ = Ḟ∼ · F∼−1, L∼
p = Ḟ∼

p · F∼ p−1. (2)

The volume mass densities with respect to the reference configuration, the intermediate configuration,

and the current configuration are ρ0, ρ# and ρ, respectively, given by

J = det(F∼ ) =
ρ0
ρ
, J the = det(F∼

the) =
ρ#
ρ
, Jp = det(F∼

p) =
ρ0
ρ#

. (3)

It is assumed that plastic flow is isochoric such that

Jp = detF∼
p = 1, J the = detF∼

the = J = detF∼ . (4)

Crystal plasticity in dense metals is incompressible so that Jp = 1. However, Jp can be different from

one in the case of compressible plasticity. This situation was studied for ductile fracture of porous

single crystals in (Ling et al., 2016). Moreover, the thermo-elastic strain tensor E∼
the is introduced as

follows:

E∼
the =

1

2
[(F∼

the)T · (F∼ the)− 1∼], (5)

with 1∼ denoting the second order identity tensor.

The plastic shearing rate γ̇r on each slip system r is given by the visco-plastic flow rule proposed

by Méric et al. (1991) in terms of viscosity parameters K and n,

γ̇r =

〈
|τ r| − τ rc

K

〉n
sign(τ r), (6)

where Macauley brackets < • > denote the positive part of •. The resolved shear stress τ r on slip

system r in a single crystal is given by

τ r = Π∼
M : (m r ⊗ n r), (7)

where m r is the slip direction and n r is the normal to the slip plane for the slip system number r.

The Mandel stress tensor Π∼
M with respect to the intermediate configuration is related to the Cauchy

stress tensor σ∼ by Π∼
M = J the(F∼

the)T · σ∼ · (F∼ the)−T . In addition, the cumulative plastic strain γcum

is introduced as follows:

γcum =

∫ t

0

N∑
r=1

|γ̇r|dt. (8)

The plastic deformation rate is the result of slip processes with respect to all N slip systems and

defined in the intermediate configuration as

L∼
p =

N∑
r=1

γ̇r(m r ⊗ n r). (9)

7



2.1.2. Thermodynamic formulation180

The general equations of continuum thermodynamics can be found in Appendix A. The stress

power term in Clausius-Duhem inequality (Eq. A.5) is given by

Jσ∼ : D∼ = JpΠ∼
e : Ė∼

the + JpΠ∼
M : L∼

p, (10)

with Π∼
e the Piola stress tensor, also called second Piola–Kirchhoff stress tensor, defined with respect

to the intermediate configuration by Π∼
e = J the(F∼

the)−1 · σ∼ · (F∼ the)−T .

The dissipation rate in the Clausius-Duhem inequality consists of mechanical and thermal dissi-

pation rates. The mechanical dissipation rate is given by

∆m = Jσ∼ : D∼ − ρ0(Ψ̇ + ηṪ ), (11)

and the thermal dissipation by

∆th = −Q · ∇XT
T

. (12)

The quadratic form of the free energy familiar from the thermo-elasticity is assumed to be a function

of the thermo-elastic strain tensor E∼
the, the temperature T and the internal hardening variables ζ as

follows:

ρ0Ψ(E∼
the, T, ζ) =

1

2
JpE∼

the : Λ
≈

: E∼
the + ρ0Cε

[
(T − T0)− T log

( T
T0

)]
+ (T − T0)P∼ : E∼

the + ρ0Ψζ(ζ),

(13)

where Λ
≈

is the fourth-order tensor of elastic moduli, T0 is a reference temperature, Cε is the specific

heat of the material and P∼ is a constant symmetric thermal stress tensor.

Expanding the time derivative of the free energy density function gives(
JpΠ∼

e − ρ0
∂Ψ(E∼

the, T )

∂E∼
the

)
: Ė∼

the + JpΠ∼
M : L∼

p − ρ0
(
η +

∂Ψ

∂T

)
Ṫ − ρ0

∂Ψ

∂ζ
ζ̇ −Q · ∇XT

T
≥ 0, (14)

The following state laws are adopted:

Π∼
e = ρ#

∂Ψ(E∼
the, T )

∂E∼
the

, η = −∂Ψ

∂T
, X = ρ0

∂Ψ

∂ζ
, (15)

where X is the thermodynamic force associated with the internal variable ζ. Based on the potential

(13) the thermoelastic relation for the Piola stress tensor is obtained as

Π∼
e = Λ

≈
: E∼

the − P∼ (T − T0) = Λ
≈

: (E∼
the −Λ

≈

−1 : P∼ (T − T0)) = Λ
≈

: (E∼
the −E∼ th), (16)

and the thermal strain tensor E∼
th is defined as

E∼
th = (T − T0)Λ

≈

−1 : P∼ = (T − T0)α1∼, (17)

which involves the thermal expansion coefficient α in the case of isotropic or cubic thermoelasticity.185
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2.2. Reduced-order micromorphic crystal plasticity model

In micromorphic approaches, the variables which perform the targeted strain gradient effects are

selected from the available state variables, which can be a tensor of any rank (Forest, 2009, 2016).

In this section, a reduced-order micromorphic approach involving a micromorphic scalar variable

proposed by Ling et al. (2018) is summarized. The coupled thermo-mechanical form of the free energy190

density function for the micromorphic crystal plasticity is inspired by the work of (Russo et al., 2020)

introduced for the Cosserat medium.

Each material point is defined by its position vector X in the reference configuration Ω0 and its

position vector x in the current configuration Ωt. Two types of degrees of freedom, respectively, the

displacement vector u and the scalar microslip variable γχ, are applied to the material point. The

scalar variable associated with the micromorphic variable γχ is the cumulative plastic strain γcum, cf.

Eq. (8). In the present reduced-order micromorphic crystal plasticity approach, the set of degrees of

freedom (DOFs) is therefore

DOFs = {u , γχ}. (18)

The gradients of the degrees of freedom with respect to the reference configuration are denoted by

H∼ =
∂u

∂X
= Gradu , K =

∂γχ
∂X

= Grad γχ. (19)

The balance equations and boundary conditions for the considered micromorphic continuum are ex-

pressed with respect to the reference configuration, in the absence of body and inertial forces, as

DivP∼ = 0 and DivM − S = 0, ∀X ⊂ Ω0, (20)

T = P∼ · n 0 and M = M · n 0, ∀X ⊂ ∂Ω0, (21)

with P∼ being the first Piola-Kirchhoff or Boussinesq stress tensor, T is the surface traction vector, S

and M are the generalized stresses conjugate to the micromorphic variable and its gradient, defined

with respect to the reference configuration and n 0 is the outer unit normal vector to the surface195

element along the boundary ∂Ω0.

The cumulative plastic strain γcum is related to the microslip variable γχ via the relative plastic

strain ep as follows:

ep := γcum − γχ. (22)

Moreover, the material under consideration is assumed to be characterized by the coupled thermo-

mechanical Helmholtz free energy density function defined in terms of the thermo-elastic strain tensor

E∼
the, the relative plastic strain ep, the gradient of the microslip variable K , temperature T and the

internal hardening variable ζ as follows:

Ψ(E∼
the, ep,K , T, ζ). (23)
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It is assumed that the Helmholtz free energy density function takes the form:

ρ0Ψ(E∼
the, ep,K , T, ζ) =

1

2
JpE∼

the : Λ
≈

: E∼
the +

1

2
Hχe

2
p +

1

2
K ·A∼ ·K + ρ0Cε

[
(T − T0)− T log

( T
T0

)]
+ (T − T0)P∼ : E∼

the + ρ0Ψζ(T, ζ). (24)

Expanding the time derivative of the free energy density function leads to the following form of the

Clausius–Duhem inequality(
JpΠ∼

e − ρ0
∂Ψ

∂E∼
the

)
: Ė∼

the −
(
S + ρ0

∂Ψ

∂ep

)
ėp +

(
M − ρ0

∂Ψ

∂K

)
K̇ + Sγ̇cum + JpΠ∼

M : L∼
p (25)

− ρ0
(
η +

∂Ψ

∂T

)
Ṫ − ρ0

∂Ψ

∂ζ
ζ̇ −Q · ∇XT

T
≥ 0.

The following state laws are adopted:

Π∼
e = ρ#

∂Ψ

∂E∼
the

, S = −ρ0
∂Ψ

∂ep
, M = ρ0

∂Ψ

∂K
, η = −∂Ψ

∂T
, X = ρ0

∂Ψ

∂ζ
. (26)

The residual dissipation rate, which restricts the material flow and hardening rules in connection with

the yield condition, from Eq. (25) is given by

JpΠ∼
M : L∼

p + Sγ̇cum −Xζ̇ −Q ·
∇XT
T
≥ 0. (27)

The thermodynamic forces associated with arguments of the Helmholtz free energy function are derived

from the potential (24):

Π∼
e = Λ

≈
: (E∼

the −E∼ th), S = −Hχep = −Hχ(γcum − γχ), M = A∼ ·K . (28)

The form of the dissipation rate gives an incentive to introduce the following yield function

fr = |τ r|+ S − τ rc = |τ r| − (τ rc − S), (29)

which can be put in the form

fr = |τ r| − (τ rc − S) = |τ r| − (τ rc −DivM ) (30)

where the balance law (20) connecting the generalized stresses has been taken into account. The

generalized stress S in the previous equation is enhancing the hardening behavior and is regarded as

a source of additional isotropic hardening. It is assumed that the second-order tensor A∼ = A1∼, A

being the generalized modulus which is assumed to be constant in space. This is the case in isotropic

and cubic elasticity. The additional partial differential equation connecting γχ and γcum then follows

from the balance equation in (20) and the state laws in (26) as

γχ −
A

Hχ
4X γχ = γcum, (31)

where 4X is the Laplace operator with respect to the reference configuration. When inserted in the

yield function, this gives

fr = |τ r| − (τ rc −ADiv(Grad γχ)) = |τ r| − (τ rc −A4X γχ). (32)
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which shows that the enhanced hardening is connected to the Laplacian of the microslip variable.

In the micromorphic crystal plasticity model, the coupling modulus Hχ ensures that γcum and γχ

take close values. When the coupling modulus Hχ takes a high enough value, γχ almost coincides with

γcum (γχ ' γcum) so that the micromorphic model reduces to a strict strain gradient plasticity model.200

The strict equality between γcum and γχ can be ensured by the introduction of a Lagrange multiplier

instead of the penalty term Hχ, which is treated as an additional degree of freedom as demonstrated

in (Scherer et al., 2020). In the present work, the penalized micromorphic model is used throughout.

2.3. Temperature evolution under adiabatic conditions

The energy balance for the micromorphic crystal plasticity model with respect to the reference

configuration is written in the form

ρ0ė = Jσ∼ : D∼ + Sγ̇χ +M · K̇ +Q. (33)

The Clausius-Duhem inequality then reads

Jσ∼ : D∼ + Sγ̇χ +M · K̇ − ρ0(Ψ̇ + ηṪ )−Q · ∇XT
T
≥ 0. (34)

The previous equation consists of mechanical and thermal dissipation. The mechanical dissipation is

given by

∆m = Jσ∼ : D∼ + Sγ̇χ +M · K̇ − ρ0(Ψ̇ + ηṪ ), (35)

and the thermal dissipation is still given by Eq. (12).

Substituting the free energy production rate obtained from Eq. (33) and (A.4) into the previous

equation leads to

Jσ∼ : D∼ +Sγ̇χ+M ·K̇ −div q+r = ρ0ė = ρ0

[
∂Ψ

∂E∼
the

: Ė∼
the+

∂Ψ

∂ep
ėp+

∂Ψ

∂K
·K̇ +

∂Ψ

∂T
Ṫ+

∂Ψ

∂ζ
ζ̇+Ṫ η+T η̇

]
.

(36)

Simplification of the previous equation after taking the state laws from (26) into account provides

JpΠ∼
M : L∼

p + Sγ̇cum − div q + r = ρ0

[
∂Ψ

∂ζ
ζ̇ + T η̇

]
. (37)

The detailed derivation for the temperature evolution can be found in Appendix B. The following two205

simplified cases are discussed for the temperature evolution.

In this work, the thermodynamic processes are assumed to be adiabatic in nature, wherein there

is no heat transfer to the surrounding and no external heat source present such that

q = 0, r = 0. (38)

Therefore, terms div q and r in (B.4) vanish.

Case 1: It is assumed that the contribution of the temperature dependence of the elastic constants

and specific heat of the material can be neglected compared to plastic power. Also, the contributions

11



of second order derivatives (variation of thermal stress with respect to the temperature) are considered

very small compared to internal dissipation terms. Then (B.4) can be written as follows:

ρCεṪ = Π∼
M : L∼

p + Sγ̇cum −Xζ̇ with X = ρ0
∂Ψ

∂ζ
. (39)

In addition, in the present work, hat-shaped specimen simulations are performed in the absence

of classical hardening, which means that τ rc = τ0 is a constant in (29). Therefore, the contribution of

internal hardening variable to the stored energy is not considered. The resulting form of temperature210

evolution is given in case 2.

Case 2: The two first terms in (39) denote the heat generated by the plastic power and represent

the main contribution to thermo-mechanical phenomenon. It is assumed that all the plastic work

done is converted into heat so that

ρCεṪ = Π∼
M : L∼

p + Sγ̇cum. (40)

3. Simple shear test with strain or thermal softening

An analytical reference solution initially developed for the rate-independent case with linear strain

softening for a periodic strip loaded in simple shear undergoing single-slip in (Scherer et al., 2019) is

recalled in Appendix C. The introduction of softening induces strain localization in a band of finite215

width characterized by the parameters of the micromorphic model. This solution will be adapted

to account for thermal softening and provide a validation test for the FE implementation of the

thermomechanical micromorphic model in the code.

3.1. FE solution with linear strain softening

The implementation of the isothermal micromorphic single crystal plasticity model in the finite220

element code Zset1 is described in detail in Ling et al. (2018). The interpolation of displacement and

microslip degrees of freedom is respectively quadratic and linear. The use of quadratic shape functions

for displacement degrees of freedom limits locking effects in large deformation incompressible plasticity.

However, linear shape functions are used for microslip degrees of freedom to limit the number of

additional degrees of freedom. The argument is also that microslip degrees of freedom are strain-like225

variables that can be compared to actual strains, corresponding to first derivatives of the displacement

field. In fact, the simultaneous use of quadratic interpolation for displacement and microslip is possible

but remains to be investigated. The geometry considered in the FE simulations is shown in Fig. C.28.

It is discretized into 400 C3D20R elements, which are 20 node reduced integration brick elements. A

material defect is introduced at the center to trigger strain localization in the periodic strip, (see Fig.230

C.28). The defect is of one element size and assigned with an initial critical resolved shear stress 1%

smaller than the matrix. The material parameters used for the FE solution are summarized in Table

1http://www.zset-software.com/
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Table 1: Numerical values of material parameters used for the numerical simulation of simple shear test at the initial

temperature of 923K.

C11 C12 C44 τ0 H Hχ A λ L

208.1 GPa 144.7 GPa 97.6 GPa 303 MPa −45 MPa 103MPa 0.04N 0.073 mm 1.0 mm

1. The elasticity moduli correspond to a nickel–base superalloy at 923 K, see Abdul-Aziz and Kalluri

(1991). Periodicity conditions are applied and the tensor F̄∼ is prescribed according to Eq. (C.1).

Fig. 1a displays the cumulative plastic strain field predicted by the micromorphic crystal plasticity235

model. The FE solution is validated with respect to the variation of γχ alongX2 direction at F̄12 = 0.01

with the analytical solution given by Eq. (C.13). This comparison is shown in Fig. 1b. Perfect

agreement is observed for F̄12 = 0.01 and for all other values of F̄12. The analytically calculated, refer

Eq. (C.11), and numerically observed width of the localization zone is measured to be 2.6λ.

3.2. FE solution with linear thermal softening240

In the studied simplified problem of single-slip periodic strip undergoing simple shear, the rate

of plastic work Π∼
M : Ḟ∼

pF∼
p−1 + Sγ̇cum becomes2(τ + S)γ̇, which gives the temperature evolution

according to (40) as

Ṫ =
(τ + S)γ̇

ρCε
. (41)

In the rate independent limit, the yield function (29) is equal to zero under plastic loading so that

τ + S = τ0 in the absence of classical hardening. The critical resolved shear stress (CRSS) τ0(T ) is a

function of temperature. An affine dependence is chosen for this analytical example

τ0 = τRT +HT (T − TRT ), (42)

where HT < 0 is the negative slope of the linear variation of τ0 with temperature, TRT is the room

temperature and τRT is the CRSS value at room temperature. Then, Eq. (41) becomes

Ṫ =
τ0γ̇

ρCε
. (43)

In order to obtain a simple analytic solution for the temperature, τ0 is approximated by the constant

value: τ̂0 = τRT +HT (Ti − TRT ) where Ti is some initial temperature value. In such conditions, the

previous equation can be integrated, assuming monotonic loading, which leads to the following form

of the temperature rise:

T =
τ0γ

ρCε
+ Ti (44)

The yield condition (29), which includes the temperature dependent softening can now be written as

follows:

f = |τ | − (τ̂0(1 +
HT γ

ρCε
) +Hχ(γ − γχ)) = 0. (45)

2with appropriate choice of the orientation of slip direction vector m so that τ > 0.

13



0 0.0760.006 0.012 0.019 0.025 0.032 0.038 0.044 0.051 0.057 0.063 0.070

(a)

−0.4 −0.2 0.0 0.2 0.4

X2 (mm)

0.00

0.02

0.04

0.06

0.08

γ
χ

FE solution

Analytical solution

(b)

Fig. 1: (a) Contour plot of cumulative plastic strain γcum in a single-slip simple shear test with linear strain softening

using the micromorphic crystal plasticity model (H = −45MPa, A=0.04N). (b) Comparison of FE solution with the

analytical solution for the variation of γχ along X2 at F̄12 = 0.01.
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Combining (C.8) and (45) leads to the same partial differential equation governing the microslip

variable as (C.9) provided that τ0 is replaced by τ̂0 and the hardening modulus H has the following

definition

H ≡ HT τ0
ρCε

. (46)

The solution of the PDE (C.9) still has the form (C.12) where the constants λ and κ are given by Eq.

(C.11) with the new definition of H and τ0 ≡ τ̂0.

This approximate solution is now compared to the FE prediction. For that purpose, the evolution

of the temperature driven by the adiabatic condition (40) is numerically integrated in the code by

means of a second order Runge-Kutta method with automatic time stepping Besson et al. (2009). The245

material parameters used for the FE solution with the linear thermal softening are given in Table 2.

The value of HT has been chosen so that the associated modulus given by (46) takes the same value

H = −45 MPa as in the example of linear strain softening, see Section 3.1.

In the FE analysis, no approximation is introduced and the CRSS has the temperature dependent

expression (42). The cumulative plastic strain and temperature fields predicted by the micromorphic250

crystal plasticity model with linear thermal softening are shown in Fig. 2a and 2b, respectively. The

temperature evolution due to adiabatic heating is considered as in the case 2 presented in section 2.2,

cf. Eq. (40). The comparison of the FE solution for γχ variation with the approximate analytical

solution obtained from Eq. (C.12) is displayed in Fig. 2c at F̄12 = 0.01. The analytically calculated

and numerically simulated width of the deformation zone is 2.6λ, which is equal to the value obtained255

with linear strain softening. This is due to the fact that the temperature softening modulus HT has

been chosen so that the equivalent modulus H is the same as the softening modulus used in Section

3.1. The approximation of τ0 by τ̂0 in the analytical solution does not lead to significant differences

compared to the full FE solution, due to the fact that the temperature changes remain limited, see

Fig. 2b. The limited heating was however sufficient to trigger plastic strain localization.260

This study shows that the analytical solution initially developed for the rate-independent case

for the linear strain softening can be used in the linear thermal softening case after establishing a

relation between the slope of the linear variation of the CRSS with respect to temperature, HT , and

an equivalent linear strain softening modulus H. Furthermore, the FE implementation with linear

strain, and thermal softening has been validated by means of this analytical solution.265

4. Application to single crystals hat-shaped specimens

This section presents the application of the proposed thermo-mechanical micromorphic constitutive

framework to single crystal hat-shaped specimens. The aim is to investigate the effects of initial

crystal orientation on the formation and orientation of adiabatic shear bands. The material behavior

considered in the simulations is elastic-perfectly plastic, and the material parameters correspond to270

nickel-based super-alloy Inconel 718. Furthermore, the temperature evolution due to adiabatic heating

is considered as in the case 2 presented in section 2.2 (Eq. (40)).
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Fig. 2: Contour plots of (a) cumulative plastic strain γcum, and (b) temperature in the single-slip simple shear test with

thermal softening using the micromorphic crystal plasticity model (Ti=923K, A=0.04N) subjected to adiabatic heating.

(c) Comparison of the FE solution obtained using the micromorphic crystal plasticity model with the analytical solution

for the variation of microslip variable γχ along X2 at F̄12 = 0.01.
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Table 2: Numerical values of the material parameters used in the simulations of single-slip periodic strip undergoing

simple shear with thermal softening using the micromorphic crystal plasticity model.

C11 C12 C44 Hχ HT TRT

208.1 MPa 144.7 MPa 97.6 MPa 103MPa −0.48MPa/K 293K

τRT τ1523K A Ti ρ Cε

606MPa 10MPa 0.04N 923K 7.8× 10−6kg mm−3 412 Jkg−1K−1

The outline of this section is as follows. The temperature-dependent material parameters of Inconel

718 are summarized in section 4.1. The criteria for the selection of gradient parameters (A and Hχ)

are given in section 4.2. Then, the geometry, boundary conditions and considered crystal orientations275

are presented in section 4.3. In section 4.4, mesh sensitivity analysis is performed with the classical

and micromorphic crystal plasticity models. Results and discussion follow in section 4.5.

4.1. Material properties of Inconel 718

The temperature-dependent material parameters considered in this paper correspond to Nickel-

based superalloy Inconel 718 in a large temperature range. The characterization of high strain rate280

compressive loading behavior within a wide range of temperature for Inconel 718 was performed in

(Iturbe et al., 2017). In this paper, the material properties investigated are in the temperature range

of 294−1323 K, close to those found in machining at high strain rates (1−100 s−1). The stress-strain

behavior of Inconel 718 in the temperature range of 294− 1323 K (strain rate = 1s−1) and variation

of the yield strength (YS) and ultimate tensile strength (UTS) with respect to the temperature are285

shown in Fig. 3a and Fig. 3b, respectively. In general, the flow stress of Inconel 718 increases with

increasing strain rate and decreasing temperature. It can be seen from Fig. 3b that the strength of

the material decreases with increasing temperature at a specified strain rate. This thermal softening

behavior is not very noticeable until the temperature of 923 K.

The material parameters τ0, K, and n are identified against the experimental stress-strain curves290

obtained from the work of (Iturbe et al., 2017) with simple tension tests performed on a single Gauss

point using the classical crystal plasticity model presented in section 2.1. The material constants

used in the numerical simulations are presented in Table 3. Moreover, the material parameters τ0,

K, and n are introduced as functions of temperature in the present simulations as given in Table 4.

Linear interpolation is used for temperature values other than those listed in the table. For simplicity,295

elasticity moduli are taken as temperature independent since their variation is not the main driving

force for shear banding. A typical value of 1550 K is considered for the melting temperature.

The thermodynamically consistent framework of the constitutive equations for the micromorphic

crystal plasticity model presented in this work can predict a more realistic temperature rise in line

with the experimental measurements in the case of elasto-viscoplastic material behavior. With con-300
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Table 3: Values of the material parameters used in the single crystalline and polycrystalline hat-shaped specimen

simulations.

C11 C12 C44 Hχ A

208.1 MPa 144.7 MPa 97.6 MPa 103MPa 0.004 - 0.04 N

TRT Ti ρ Cε

293K 923K 7.8× 10−6kg mm−3 412 Jkg−1K−1
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Fig. 3: Influence of the temperature on (a) stress-strain behavior (b) yield strength and ultimate tensile strength of the

Inconel 718 when compressed at a strain rate of 1s−1 (Iturbe et al., 2017).

sideration of strain-hardening, the stored energy rate term will contribute to temperature evolution

under adiabatic conditions, see Eq. (39). It is common practice to assume a constant value 0.9 of the

Taylor-Quinney parameter. However, in reality, its value can be less than 0.9. This framework with

work-hardening will allow for evolving Taylor-Quinney parameters predicted by suitable free energy

density functions. The present simulations are however limited to no-hardening crystals for the sake305

of simplicity. Evolution equations for dislocation densities were used in the micromorphic model by

(Ling et al., 2018) and could also be considered in the hat-shaped specimen tests.

4.2. Selection of the gradient parameters A and Hχ

The characteristic length scale emerges in the development of shear bands and is related to their

width. The width of the shear band is finite and set by the material microstructure. In general,

this characteristic length scale differs depending on the specific localization pattern observed for the

particular boundary-value problem considered. The width of the shear band exhibited by the solution

of the multislip boundary-value problems is generally linked to the characteristic length scale `c defined

as

`c =

√
A(H +Hχ)

|H|Hχ
, (47)
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Table 4: Temperature dependent material parameters used in the single crystalline and polycrystalline hat-shaped

specimen simulations. These parameters are related to the strain rate range of 0.1 s−1 to 1 s−1.

Temperature (K) τ0 (MPa) K (MPa.s1/n) n

298 570 5 15

923 520 5 15

1073 340 8 10

1173 170 20 5.5

1323 61 35 4

1523 10 50 2

This definition is taken from the simple localization analysis of Appendix C and involves the coupling

modulus Hχ, the higher order modulus A, and the strain softening modulus H. Moreover, the size310

effects in crystal plasticity occur at a scale ranging from hundreds of nanometers to a few tens of

microns. This sets bounds for the values of the chosen characteristic length scale of the model.

Usually, the coupling modulus Hχ is chosen large enough so that the cumulative plastic strain γcum

and microslip variable γχ almost coincide. In that case, the micromorphic model can be regarded

as an actual strain gradient plasticity model. On the other hand, the micromorphic model response315

saturates for smaller sizes if the chosen value of Hχ is not large enough as demonstrated for single

crystal microwire torsion test simulations in (Scherer et al., 2020) and in polycrystal simulations when

davg is of the order of or smaller than `c (Cordero et al., 2012). When the average grain size davg � `c,

strain gradient effects vanish and the deformation field predicted by the micromorphic crystal plasticity

model is almost identical to that of the classical crystal plasticity model. The gradient parameter A320

controls the width of the shear band in strain localization problem. Based on these requirements, the

gradient parameters A and Hχ are chosen such that the width of formed shear band in the single

crystal simulations remains always smaller than horizontal shift of the corners which is 0.1 mm. On

the other hand, the gradient parameters are such that `c is of the order of the smallest grain size to

be considered in the shear region in polycrystalline simulations. Two values of the gradient parameter325

A, 0.004 N, and 0.04 N are chosen for the analysis which satisfy the aforementioned conditions.

Moreover, the selected value of Hχ is 103 MPa. It has been checked to be high enough to get values of

ep sufficiently close to zero, and in the mean time small enough to avoid numerical problems associated

with ill-conditioned matrices in the presence of penalty terms.

4.3. Simulation setup, slip systems, and initial crystal orientations330

In the first part of the study, shear tests of single crystal hat-shaped specimens are performed

to investigate the development of ASB in the post-localization regime. The shape and geometry of
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Table 5: Initial crystal orientations used in the single crystal hat-shaped specimen simulations.

Crystal orientations Short notation

[100]-[010]-[001] [100]-[010]

[110]-[001]-[11̄0] [110]-[001]

[001]-[110]-[11̄0] [001]-[110]

[1̄1̄2]-[111]-[11̄0] [1̄1̄2]-[111]

[111]-[1̄1̄2]-[11̄0] [111]-[1̄1̄2]

the hat-shaped specimen promote shear failure even in materials which are not sensitive to shear

localization (Peirs et al., 2008). A symmetric hat-shaped specimen under plane strain condition with

one element along the thickness of 0.025 mm is considered for the study. In practice, axi-symmetric335

geometries are often used but their analysis would require too large 3D simulations in the case of

polycrystals considered in the present work.

The geometry, dimensions, and the applied boundary conditions of the specimen are shown in Fig. 4.

The height of the shear zone is h = 1 mm. The corners of the shear region are rounded with a radius

of R = 0.05 mm. Rounded corners allow for the reduction of stress concentration and postpone strain340

localization (Peirs et al., 2008). Note that the geometry is such that there is an horizontal shift of

0.1 mm between the two corners, see Fig. 4. The FE mesh of this geometry is made of 20 node brick

elements with reduced integration (C3D20R). The macroscopic strain rate which the specimens are

subjected to in the numerical simulations is defined a ∆U/h∆t, where ∆U is the relative displacement

linearly applied during the test duration ∆t. It has the value 0.1 s−1.345

The five different initial crystal orientations investigated in the study are given in Table 5. The

crystal orientations are defined with respect to the basis frame e 1e 2e 3, with e 2 being in the direction

of applied load and e 3 in the direction normal to the plane. For instance, the single crystal orientation

[100]− [010]− [001] is such that the axes of the specimen are

e 1 = [100] e 2 = [010] e 3 = [001],

as shown in Fig. 4. For the sake of simplicity, crystal orientations are represented only by the basis

plane e 1 − e 2 (see Table 5) in the following sections. The definition of the octahedral slip systems in

FCC lattice structure is specified in Table 6.

4.4. Mesh sensitivity analysis

Three distinct mesh discretizations in the shear region with 66720, 88560, and 135540 nodes shown350

in Fig. 5 are used to investigate the effect of mesh density on the normalized load–displacement

curves and the shear band structure. The load and displacements are normalized by the height of
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Fig. 4: Hat-shaped specimen: (a) geometry, boundary conditions and FE mesh (all dimensions are in mm). (b) Zoom at

the shear region: mesh in the shear region; the black line on the figure denotes a line of nodes of the FE mesh crossing

the shear region along which the cumulative plastic strain and temperature fields will be plotted.

Table 6: Definition of the octahedral slip systems in the numerical model.

Normal vector n (111) (11̄1) (1̄11) (111̄)

Slip direction m [1̄01] [01̄1] [1̄10] [1̄01] [011] [110] [01̄1] [110] [101] [1̄10] [101] [011]

Slip system index B4 B2 B5 D4 D1 D6 A2 A6 A3 C5 C3 C1
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(a) (b) (c)

Fig. 5: Three discretizations in the shear region used for the mesh sensitivity analysis with (a) 66720, (b) 88560, and

(c) 135540 nodes.

the shear region h = 1 mm. The simulations are performed with the classical and micromorphic

crystal plasticity models with adiabatic heating for [001]− [110] initial crystal orientation. The initial

temperature, Ti, of the specimens is assumed to be 923 K. The limitation of the classical crystal355

plasticity model, namely the mesh size dependency in strain localization problems, is demonstrated

by Fig. 6a. The load-displacement curves with the classical crystal plasticity model are different

for the three discretizations and do not converge upon mesh refinement as demonstrated in Fig. 6a.

In contrast, the load-displacement curves with the micromorphic crystal plasticity model for three

discretizations are almost the same and converge upon mesh refinement as shown in Fig. 6b. The360

cumulative plastic strain fields and corresponding deformed geometries for the three discretizations

with the classical and the micromorphic crystal plasticity models are shown in Fig. 7a and 7b,

respectively. The formed shear bands width with the classical crystal plasticity model exhibits well-

known pathological mesh dependency, which always collapses to one element size irrespective of the

mesh size. In contrast, with the micromorphic crystal plasticity model, the width of the formed shear365

band is finite and independent of used spatial discretization. This suggests that the 88560 nodes in the

shear region are sufficient to produce mesh-independent results. However, discretization with 135540

nodes in the shear region is used for further investigations.

4.5. Results and discussion

4.5.1. Slip system activity370

The activated slip systems for different initially oriented crystals are listed in Table 7 as signif-

icant plastic deformation occurs on these slip systems. Numerically, the activated slip systems are
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Fig. 6: Load-displacement curves for [001] − [110] initially oriented crystal subjected to adiabatic heating (Ti =923K)

for three discretizations using the (a) classical crystal plasticity model (b) micromorphic crystal plasticity model (A =

0.004N).

identified when the shear band is fully formed and before the temperature within the band reaches

the melting temperature. The four activated slip systems (B4, D1, A2 andC3) for [100] − [010] ini-

tially oriented crystal are neither co-planar nor co-directional to each other and show identical ab-375

solute slip rates (|γ̇B4|=|γ̇D1|=|γ̇A2|=|γ̇C3|). For [110] − [001] initially oriented crystal, one pair

of co-directional (C3 andC1, |γ̇C3|=|γ̇C1|) and one pair of co-planar (D6 andA6, |γ̇D6|=|γ̇A6|) slip

systems are activated, while in [001] − [110] initially oriented crystal, one pair of co-directional

(D6, A6, |γ̇D6|=|γ̇A6|) and two pairs of co-planar (B4, B2 |γ̇B4|=|γ̇B2|andC3, C1, |γ̇C3|=|γ̇C1|) slip

systems are activated. On the other hand, for both asymmetric initially oriented crystals, [1̄1̄2]-380

[111] and [111]-[1̄1̄2] activated pairs of slip system are co-planar, (B4, B2, C3, C1, |γ̇B4|=|γ̇B2| =

|γ̇C3|=|γ̇C1|) and (B4, B2, |γ̇B4|=|γ̇B2|), respectively.

4.5.2. Influence of initial crystal orientation on the shear band formation

Fig. 8 shows the load-displacement curves for five different crystal orientations. The resulting load

on the hat-shaped specimen increases to its peak value, and then drops abruptly from its peak value as385

a consequence of thermal softening inside the bands. Furthermore, it is observed that the initiation of

shear band is orientation-dependent. The normalized displacement needed for the initiation of shear

band for the asymmetric crystal orientations [1̄1̄2]− [111] and [111]− [1̄1̄2] is lower than that for the

symmetric crystal orientations [100]− [010], [001]− [110] and [110]− [001] (see Fig. 8). The evolution

of the cumulative plastic strain within shear bands at various deformation stages is shown in Fig. 9390

for [001] − [110] crystal orientation at the normalized displacement values of 0.04, 0.045, 0.050 and

0.055. The onset of ASB is observed at the specimen’s corner at a normalized displacement of 0.04. It

propagates from the corners with further increase in deformation, and the shear band is fully formed

at a normalized displacement of 0.055.

The cumulative plastic strain and temperature fields in the single crystals hat-shaped specimens395
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Fig. 7: Contour plots of cumulative plastic strain γcum for [001]−[110] initially oriented crystal with three discretizations

(66720, 88560, and 135540 nodes in the shear region) subjected to adiabatic heating using the (a) classical crystal plastic-

ity model, and (b) micromorphic crystal plasticity model (A = 0.004N) at a normalized displacement of 0.041 mm/mm

and Ti =923K, with and without showing the mesh.
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Table 7: Slip systems activity inside the ASB in single crystal hat-shaped specimens.

Crystal orientations Activated slip systems

[100]-[010] B4,D1,A2,C3

[110]-[001] D6,A6,C3,C1

[001]-[110] B4,B2,D6,A6,C3,C1

[1̄1̄2]-[111] B4,B2,C3,C1

[111]-[1̄1̄2] B4,B2

Fig. 8: Load-displacement curves for five different crystal orientations subjected to adiabatic heating using the micro-

morphic crystal plasticity model (Ti = 923K, A = 0.004N). Circles on the plot are corresponding to the normalized

displacement at which cumulative plastic strain, temperature and lattice rotation fields shown next are plotted.
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for five different initial crystal orientations are shown in Fig. 10 and 11, respectively. High values

are observed at the corners of the specimens and lower ones at the center of the sheared region. The

simulation results show that the formation and orientation of the ASB with respect to the loading

axis significantly depends on the initial crystal orientation. The [100]− [010] initial crystal orientation

shows a stiffer response to the shear banding than the other ones. A remarkable feature is that no400

shear band forms connecting the corners. Instead, two parallel shear bands tend to form, oriented at

an angle of about 16◦ clockwise with respect to the loading axis. With further straining, only one

shear band remains. This band does not seem to have a crystallographic nature because the activated

slip systems are neither co-planar nor co-directional. This particular situation does not favor the shear

band formation. On the other hand, activated pairs of co-planar and co-directional slip systems in405

[001] − [110], [110] − [001] and [1̄1̄2] − [111] favor the shear band formation. The initially oriented

crystal [111] − [1̄1̄2], exhibits the lowest tendency to shear band formation, and no evident shear

banding is observed prior to melting temperature as it promotes less octahedral slip systems (only

two slip systems are activated). On the other hand, distinct shear banding patterns are observed for

the other four initially oriented crystals as it facilitates the activation of more numerous octahedral410

slip systems.

As the deformation becomes unstable and the shear band is fully formed, the plastic strain within

the shear band increases with further deformation, but the gradient parameter A limits the width of

the shear band. Fig. 12 show the γcum variation along the node line crossing the shear region of Fig.

4 when the shear band is fully formed for different initial crystal orientations. The band width w is415

defined as the width of the shear region surrounding the band center over which the cumulative plastic

strain remains larger than 10% of the its peak value (Batra and Chen, 2001). Moreover, the observed

width of the shear band is also orientation-dependent. The observed widths of the shear band from

Fig. 12a in symmetric crystal orientations [100]− [010], [110]− [001] and [001]− [110] using gradient

parameter A of 0.004N are 0.05 mm, 0.075 mm and 0.08 mm, respectively. On the other hand, for420

both asymmetric crystal orientations [1̄1̄2] − [111] and [111] − [1̄1̄2] the observed width is 0.075 mm

(see Fig. 12b). In addition, the predicted temperature fields and variation of temperature across the

node line crossing the shear region is shown in Fig. 11 and 13. The peak temperature is observed at

the center of the shear band.

4.5.3. Lattice rotation fields425

Non-homogeneous plastic strain fields are usually accompanied with significant lattice rotation.

The non-uniform lattice rotation in strain localization problems results in a local geometrical softening

of the slip plane with which the shear band is aligned according to (Chang and Asaro, 1980; Lisiecki

et al., 1982). Shear band formation is therefore possible even in work-hardening materials due to such

geometric softening (Dillamore et al., 1979). Strain softening and non-homogeneous lattice rotations

induce instabilities in the plastic deformation. The formation of deformation bands in crystalline

materials is very often associated with lattice rotations. The lattice rotation angle φ can be measured
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Fig. 9: Contour plots of cumulative plastic strain at different stages showing the shear band formation with adiabatic

heating using the micromorphic crystal plasticity model ([001] − [110] crystal orientation, Ti = 923K, A = 0.004N) at

normalized displacements of (a) 0.04 mm/mm, (b) 0.045 mm/mm, (c) 0.050 mm/mm, and (d) 0.055 mm/mm.
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Fig. 10: Contour plots of cumulative plastic strain γcum in the shear region with adiabatic heating using the micro-

morphic crystal plasticity model (Ti = 923K, A = 0.004N) for (a) [100] − [010], (b) [110] − [001], (c) [001] − [110], (d)

[1̄1̄2]− [111], and (e) [111]− [1̄1̄2] initially oriented crystals. The fields are shown at loading steps corresponding to the

circles in Fig. 8. Compensation of the loading direction by Burgers vector of the activated slip systems is also shown.
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Fig. 11: Contour plots of temperature using the micromorphic crystal plasticity model (Ti = 923K, A = 0.004N) in

the shear region for (a) [100] − [010], (b) [110] − [001], (c) [001] − [110], (d) [1̄1̄2] − [111], and (e) [111] − [1̄1̄2] initially

oriented crystals. The fields are shown at the loading steps corresponding to the circles in Fig. 8.
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Fig. 12: Cumulative plastic strain variation along the node line crossing the shear region (see Fig. 4) with adiabatic

heating using the micromorphic crystal plasticity model (Ti = 923K, A = 0.004N) for (a) symmetric, and (b) asymmetric

crystal orientations. The variation of cumulative plastic strain is plotted at loading steps corresponding to the circles

in Fig. 8.
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Fig. 13: Temperature variation along the node line crossing the shear region for (a) symmetric, and (b) asymmetric

crystal orientations. The variation of temperature across the shear band is plotted at loading steps corresponding to

the circles in Fig. 8.

using the polar decomposition of the elastic part of the deformation gradient F∼
e into elastic rotation

tensor R∼
e and the elastic right stretch tensor U∼

e as F∼
e = R∼

e ·U∼ e. For small elastic distortions usual

in metals, the elastic rotation tensor R∼
e is interpreted as the lattice rotation. The corresponding

lattice rotation angle φ is computed as

φ = arccos
[1

2

(
tr(R∼

e)− 1∼

)]
. (48)

The lattice rotation fields for the various initially oriented crystals are shown in Fig. 14. The rotation

of crystal lattice in the fully formed shear band is different for each considered initially oriented

crystal and increases with increase in deformation. The discontinuous lattice rotation field is observed

in [001] − [110] and [111] − [1̄1̄2] initially oriented crystals as a consequence of the complex plastic

strain fields observed in Fig. 10. In comparison, single lattice rotation bands with smaller magnitude430

are observed for the [100] − [010], [110] − [001] and [1̄1̄2] − [111] crystal orientations. Some lattice

rotation field patterns are reminiscent of kink banding structures studied in (Marano et al., 2021) but

the situation is more complicated in the shear bands due to the simultaneous activation of several slip

systems.

4.5.4. Effect of the gradient parameter A on shear band structure435

The cumulative plastic strain γcum fields and formed ASB for the three different values of the

gradient parameter A are shown in Fig. 15. With a decreasing value of A, the severity of plastic

strain localization within the shear band increases, and a significant thermal softening is observed in

the post-localization regime (see Fig. 16a). The effect of parameter A on the width of the shear bands

can be seen from Fig. 16b. As expected from the analytical expression of the characteristic length440

scale, Eq. (47), the width of the shear band decreases with decrease in A value. The observed widths

of the shear band with three different values of A, 0.04N, 0.02N, and 0.004N are found to be 0.085
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Fig. 14: Contour plots of lattice rotation fields in the shear region (Ti = 923K, A = 0.004N) for (a) [100] − [010], (b)

[110] − [001], (c) [001] − [110], (d) [1̄1̄2] − [111], and (e) [111] − [1̄1̄2] initially oriented crystals subjected to adiabatic

heating. Fields are shown at loading steps corresponding to the circles in Fig. 8.

mm, 0.07 mm, and 0.05 mm, respectively.

5. Application to polycrystalline hat-shaped specimens

In this section, the micromorphic crystal plasticity model is applied to study the ASB formation in445

polycrystalline hat-shaped specimens. The single crystal constitutive behavior used in the numerical

simulations is elastic-perfectly plastic and involves the same parameter values as in the previous

sections. The material parameters used in the simulations are given in Table 3 and 4. First, orientation

dependency of the shear band formation is investigated. Next, the grain size effect is predicted in

the isothermal case. Then, the effect of adiabatic heating on the resulting load is evaluated for the450

considered polycrystalline aggregates. The temperature evolution due to adiabatic heating is computed

using the expression in case 2 presented in section 2.2 (Eq. (40)). Finally, the grain size effect on

shear band width is predicted by the micromorphic model.

5.1. Polycrystal generation and finite element meshing

Polycrystalline aggregates generated by the Voronoi tessellation using the polycrystal generation455

package Neper (Quey and Renversade, 2018) are shown in Fig. 17 and 18. The application of

Voronoi tessellation to create an actual geometry with the grains is a powerful tool to predict grain

size effects, for example on the overall mechanical response of the material under deformation. Two

polycrystalline aggregates, namely the coarse-grained and fine-grained with an average grain size of

0.80 mm and 0.15 mm, respectively, are generated. The smallest grain size in the shear region of460

the generated polycrystalline aggregates is 0.38 mm and 0.10 mm, respectively. Moreover, the pole
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Fig. 15: Contour plots of cumulative plastic strain γcum using the micromorphic crystal plasticity model (Ti = 923K)
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Fig. 16: Effect of different values of the gradient parameter A on the (a) load-displacement curves, and (b) cumulative

plastic strain γcum variation along the node line crossing the shear region for [001] − [110] initially oriented crystal

plotted at a normalized displacement of 0.06 mm/mm.
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figure showing the crystallographic texture for each realization is plotted by means of the open-source

software toolbox MTEX (Bachmann et al., 2010).

Mesh independent numerical results are ensured using fine enough mesh size within the grains

of the shear region combined with the use of the micromorphic crystal plasticity model. Meshing is465

performed using an open-source package Gmsh (Geuzaine and Remacle, 2009). A bottom-up approach

is used for the meshing, i.e., in the order of 0D, 1D, and 2D entities (i.e., vertices, edges, and polygons)

for the 2D simulations under plane strain conditions (Quey et al., 2011).

The applied boundary conditions in the present polycrystalline simulations were described in sec-

tion 4.3. In addition, each realization of polycrystalline aggregate is assigned with different random470

crystal orientations. No special interface condition is applied to grain boundaries. The interface con-

ditions arise from balance equations in the continuum model: Continuity of the displacement vector

components, and continuity of the traction vector components at least in the weak form according to

the finite element method.

In the present work, the microslip γχ is assumed to be continuous at the interface. The surface475

traction (T ) and generalized surface traction (M) in Eq. (21) are also continuous. There are alterna-

tive interface conditions like the microhard conditions assuming vanishing microslip at the boundaries,

and microfree interface conditions enforcing vanishing generalized (higher order) tractions at the grain

boundaries. The former and latter grain boundary conditions respectively provide upper and lower

values of the overall response of the polycrystal (Gurtin and Needleman, 2005; Bargmann et al.,480

2010). However, these two interface conditions are not applicable to all sorts of interface behavior.

One approach to obtain interface behavior inbetween these two extreme conditions is by introducing

interface energy as in (Aifantis and Willis, 2005). The continuity requirements chosen in the present

work also provide intermediate values for the polycrystal response. More general interface conditions

have been proposed allowing for the transition from microhard conditions to microfree (or constant485

generalized tractions) once a threshold is reached at the grain boundary (Wulfinghoff et al., 2013). In

the case of a plastically deforming grain and an elastic neighboring grain, the micromorphic model

leads to a smooth transition of the microslip variable γχ to zero in a boundary layer in the elastic

phase. This means that the amounts of slip are zero in the elastic grain but it is not necessarily the

case for the micromorphic variable. This situation is more complicated to describe in a strict strain490

gradient crystal plasticity model. In contrast, in the micromorphic approach, the slip variables are

discontinuous whereas the microslip is continuous. This situation was discussed in (Cordero et al.,

2010).

5.2. Results and discussion

5.2.1. Grain orientation dependency of the shear band495

The effect of grain orientations on the shear band predicted by the numerical simulations is investi-

gated first for polycrystalline aggregates subjected to isothermal deformation using the micromorphic

crystal plasticity model. Two distinct crystal orientation distributions are assigned to the grains in
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Fig. 17: Different realizations of the coarse-grained polycrystalline aggregates and corresponding pole figures: (a)

Realization 1, (b) realization 2, and (3) realization 3. Colors represent individual grains and the red points in pole

figures denote the orientation assigned to the grains in the shear region.
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Fig. 18: Different realizations of the fine-grained polycrystalline aggregates and corresponding pole figures: (a) Real-

ization 1, and (b) realization 2. Colors represent individual grains and the red points in the pole figures denote the

orientation assigned to the grains in the shear region.
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the shear region, namely the orientation 1 and orientation 2. The realizations of the coarse-grained

and fine-grained polycrystalline aggregates with corresponding pole figures are shown in Fig. 19a500

and 19b, respectively. The predicted load-displacement curves for the coarse-grained and fine-grained

polycrystalline aggregates are given in Fig. 20a and 20b, respectively. As shown in these figures, the

resulting load required to deform the orientation 2 in both polycrystalline aggregates is greater than

the orientation 1, which indicates that the development and propagation of the shear band highly

depends on the orientation of the grains crossed by the bands, grain boundaries acting as obstacles505

to shear band propagation. In orientation 1 case, the orientations of the grains in the shear region

are such that they favor plastic flow and subsequent shear band formation compared to orientation

2. Furthermore, less orientation dependency is observed in the fine-grained polycrystalline aggregates

compared to the coarse-grained polycrystalline aggregates (see Fig. 20b). The formed shear bands

are shown in Fig. 21. More significant strain localization is observed in orientation 1 than in orien-510

tation 2. This indicates that some grains in orientation 1 represent stronger obstacles to shear band

transmission from grain to grain. This effect is reduced when a larger number of grains are available

along the shear band path.

5.2.2. Grain size effect in the polycrystalline hat-shaped specimens

There are mainly two types of size effects to be considered, which are responsible for the increased515

strength of polycrystalline aggregates compared to single crystals, namely the ‘specimen size’ effect

and ‘grain size’ effect (Armstrong, 1961). The specimen size effect occurs when there are few grains

in the specimen cross-section. It is mainly related to the orientation dependency of the crystal plastic

flow, as demonstrated in the previous subsection about the influence of number of grains along the

shear band path. On the other hand, the ‘grain size’ effect occurs when there are sufficiently many520

grains in the specimen cross-section. In addition to the orientation dependence of the plastic flow

within the grains, internal stress concentration takes place at the grain boundaries and causes yielding

and subsequent plastic flow (Armstrong, 1961). The well-known grain size effect in a polycrystalline

material is the Hall-Petch size effect, which indicates that the yield strength of material is inversely

proportional to the square root of grain size (Hall, 1951; Petch, 1953). Numerically, strain gradient525

plasticity models can be used to predict the grain size effects in polycrystalline materials, as done for

instance in (Acharya and Beaudoin, 2000; Evers et al., 2004; Aifantis and Willis, 2005; Borg, 2007).

In the present work, firstly, the grain size effect is studied in the isothermal case for polycrystalline

hat-shaped specimens. The realizations of polycrystalline aggregates investigated are shown in Fig.

17b and 18a for the coarse-grained and fine-grained polycrystalline aggregates, respectively. The shape530

and geometry of the hat-shaped specimen are such that it allows for the spontaneous formation of a

shear band even in the absence of thermal softening in the numerical simulations due to the perfectly

plastic crystal behavior. The cumulative plastic strain fields with the classical and micromorphic

crystal plasticity models are shown in Fig. 22. The classical crystal plasticity model, which does

not feature any characteristic length scale, exhibits a pathological mesh dependency and the width535
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Fig. 19: Polycrystalline aggregates with two distinct orientation distributions assigned to the grains in the shear region

(orientation 1 and orientation 2) for the (a) coarse-grained, and (b) fine-grained with corresponding pole figures. The

red points in the pole figure denote the orientations assigned to the grains in the shear region
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Fig. 20: Effect of the change in orientation of the grains in the shear region on the load-displacement curve using the

micromorphic crystal plasticity model (A = 0.04N) for the (a) coarse-grained polycrystal aggregate, and (b) fine-grained

polycrystal aggregates subjected to isothermal conditions.

of the formed shear band collapses to one element size (more precisely one Gauss point size, see

Fig. 22a and 22b). Therefore, the classical crystal plasticity models cannot be used to study strain

localization problems in polycrystals. In contrast, the width of the formed shear band predicted by the

micromorphic crystal plasticity model is finite, see Fig. 22c and 22d. The normalized load-normalized

displacement curves using the classical and micromorphic crystal plasticity models in the isothermal540

case are shown in Fig. 23. The predicted size effect is linked to the characteristic length scale `c

through the gradient parameters A and Hχ as in Eq. (47). The micromorphic crystal plasticity model

merely influences the hardening rate and does not affect the initial yield strength. This is because any

gradient plasticity formulation based on a quadratic potential with respect to the gradient of plastic

distortion cannot result in an increase in yield strength but only increases the hardening rate. The545

initial yield can be influenced by rank one potentials according to (Wulfinghoff et al., 2015) or using

the recent approach by (Steinmann et al., 2019). The grain size effect is associated with spatial strain

gradients inside the grains because of the heterogeneous plastic deformation resulting from grain-to-

grain plastic strain incompatibilities. The grain boundaries act as obstacles to dislocation motion,

and the strain gradient-induced GNDs pile up at grain boundaries. In addition, with the decrease in550

grain size, the area at the grain boundaries with GNDs density increases and leads to increased local

stresses and of the resulting load. The larger number of grain boundaries in the shear region of the

fine-grained polycrystalline aggregates obstructs the initiation and subsequent plastic flow and results

in a higher resulting load.

Moreover, the effect of grain size on the load-carrying capacity subjected to adiabatic heating555

condition is now studied. Simulations are performed with two different values of the gradient parameter

A, namely 0.004N, and 0.04N. The corresponding load-displacement curves for the realizations of the

coarse-grained and fine-grained polycrystalline aggregates are given in Fig. 24a, 24b and Fig. 24c
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(a) (b)

(c) (d)

Fig. 21: Contour plots of cumulative plastic strain γcum using the micromorphic crystal plasticity model (A = 0.04N)

for the (a) coarse-grained polycrystalline aggregates assigned with orientation 1, and (b) orientation 2. (c) The fine-

grained polycrystalline aggregates assigned with orientation 1, and (d) orientation 2. Fields are shown at the normalized

imposed displacement of 0.06 mm/mm under isothermal conditions (Ti=923K). For clarity the fields are shown with

and without the finite element mesh.
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(a) (b)

(c) (d)

Fig. 22: Contour plots of cumulative plastic strain γcum using (a) the classical crystal plasticity model in coarse-grained

(orientation 1), and (b) fine-grained (orientation 1) polycrystalline aggregates, (c) using the micromorphic crystal

plasticity model (A=0.04 N) in coarse-grained (orientation 1), and (d) fine-grained (orientation 1) polycrystalline

aggregates. Fields are shown at a normalized displacement of 0.06 mm/mm and under isothermal conditions.
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Fig. 23: Load-displacement curves obtained using the classical and micromorphic crystal plasticity models for the

coarse-grained (realization 2), and fine-grained (realization 1) polycrystalline aggregates (hat–shaped specimens under

isothermal conditions).
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and 24d, respectively. The load-displacement curves exhibited by the different realizations of each

polycrystalline aggregate with the same gradient parameter A are distinct from each other because560

of the assigned different random orientations and distinct shape of the grains in the shear region. A

broader dispersion of the resulting loads is observed in realizations of the coarse-grained polycrystal

aggregates (see Fig. 24a and 24b) compared to fine-grained polycrystal aggregates (see Fig. 24c

and 24d). It is found that the average resulting load in fine-grained polycrystal aggregate remain

below the coarse-grained polycrystal aggregate as seen from the average curves in Fig. 24e and 24f.565

This is probably due to the insufficient number of realizations which does not allow for statistical

representativity. The results also show that higher values of A parameters lead to a reduced softening

of the overall curves.

5.2.3. Effect of grain size on the shear band width

In this section the grain size effect on the width of shear bands is studied under adiabatic heating570

conditions. In the present polycrystalline simulations, deformation is highly localized within the

grains of the shear region. Moreover, the grain size in the shear region plays a crucial role in the

shear band formation. The shear band is triggered at the corners of the specimen, and strongly

heterogeneous plastic deformation takes place between the corners. Furthermore, it is observed that

some grains exhibit a larger amount of shear, while other grains remain almost undeformed. The575

formation of the shear band in coarse-grained polycrystalline aggregates for the realizations 1 and

3 (Fig. 25a and 25c) is restricted probably due to the unfavorable orientations of the grains in the

shear region. In contrast, the shear band is easily formed in the realization 2 as seen from Fig. 25b.

The orientation dependency in the shear band formation is the main reason for the wide dispersion of

the resulting loads observed in coarse-grained polycrystalline aggregates. In contrast, in fine-grained580

polycrystalline aggregates, plastic flow in some grains is limited because of their grain boundaries and

the orientation of the neighboring grains, causing subsequent plastic flow in more favorable grains as

seen from Fig. 26a. However, less orientation dependency of the grains in the shear region is observed

in the fine-grained polycrystalline aggregates compared to coarse-grained (see Fig. 26a and 26b). Fig.

27a and 27b show the cumulative plastic strain γcum variation along a node line crossing the shear585

region for the coarse-grained polycrystalline aggregates using gradient parameters A = 0.004 N and

A = 0.04 N, respectively. Significant strain localization is observed for lower values of A, i.e., 0.004N

compared to 0.04N. Fig. 27c and 27d show the cumulative plastic strain variation along the node line

crossing the shear region for fine-grained polycrystalline aggregates with A = 0.004N and A = 0.04N,

respectively. The shear band width is defined by the following criterion: The region in which the590

cumulative plastic strain is larger than 10% of the peak value. The measured widths of the shear

band for the coarse-grained and fine-grained polycrystalline aggregates with the gradient parameter

A of 0.004N, and 0.04N are given in Table 8. A larger dispersion of the shear band width is observed

in the coarse-grained polycrystal realizations compared to the fine-grained, in a way similar to the

predicted resulting loads.595
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Fig. 24: Load-displacement curves using the micromorphic crystal plasticity model for various realizations of the poly-

crystalline aggregates subjected to adiabatic heating conditions: (a) the coarse-grained polycrystalline aggregates with

A = 0.004N, and (b) A = 0.04N, (c) the fine-grained polycrystalline aggregates with A = 0.004N, and (d) A = 0.04N,

(e) Average load-displacement curves with A = 0.004N, and (f) A = 0.004N.
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The measurement of the shear band width along one single node line may not be sufficient in

polycrystalline simulations. Therefore, the surface of the elements satisfying a specific criterion is

calculated using the post-processing technique. The surface of the elements having cumulative plastic

strain more than 10% of the peak value is measured. Finally, the width of the shear band w is

calculated by dividing the surface of the band by the shear zone height h (see section 4.3 for specimen600

dimensions). The obtained values of the shear band widths are given in Table 8. The two definitions

of shear band with provide similar results. Typical values of 50 micron (resp. 100 micron) are found

for A = 0.004 N (resp. A = 0.04 N) irrespective of the grain size.

The present simulations are limited to adiabatic conditions although it is well–known that heat

conduction can also contribute to the band structure (Lemonds and Needleman, 1986; Medyanik et al.,605

2007; Mcauliffe and Waisman, 2013; Wcis lo and Pamin, 2017a,b). It is worth checking the typical

lengths associated with heat conduction under the strain rate conditions of the simulations. The

characteristic length of heat diffusion during a time interval t can be estimated as
√
kt/ρCp. The

parameter values considered in the work and time interval of one second result in diffusion distances

of the order of 1 mm. This shows that heat conduction induced length scale is in competition with610

the microstructure related one. Adiabatic conditions are therefore a strong assumption in the present

simulations. This pleads for coupling the present model to heat conditions in future work. This

also strongly depends on the strain rate and grain size ranges in the simulations. The diffusion term

in heat equation has a regularizing effect even though the involved length scales are sometimes too

small for efficient FE modeling, as discussed in (Wcis lo and Pamin, 2017a). However, the strain615

gradient plasticity model should not be solely seen as a regularization method. It also introduces in

the modeling microstructure aspects related to dislocation activity like pile-up formation and ensuing

grain size effects, as studied in the present work. As mentioned in the introduction, Zhu et al.

(1995); Tsagrakis and Aifantis (2015) analytically derived two characteristic lengths emerging from

the coupling of strain gradient plasticity. The first one is related to the ratio of the strain gradient620

plasticity parameter and the hardening modulus. The second one involves the heat conductivity and

strain gradient plasticity parameters. We have evaluated these length scales for the parameter values

used in the present work. The second length scale is found to be close to 100 micron which confirms

the importance of heat conduction and the competition with the microstructural length.

6. Conclusions625

The numerical simulation work presented here was intended to provide an insight into the mech-

anism of strain localization in single and polycrystalline FCC metallic materials under adiabatic

conditions. The main findings obtained in this contribution can be summarized as follows:

1. A thermodynamically consistent constitutive framework for the micromorphic crystal plasticity

model was used to derive temperature evolution under adiabatic conditions.630

2. The micromorphic crystal plasticity model pursues the objective of regularization of the adiabatic

shear band formation.
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A = 0.004N (a) A = 0.04N

A = 0.004N (b) A = 0.04N

A = 0.004N (c) A = 0.04N

Fig. 25: Contour plots of cumulative plastic strain γcum in the coarse-grained polycrystalline aggregates subjected to

adiabatic heating using the micromorphic crystal plasticity model (A = 0.004N and A = 0.04N) for three different

realizations (a) realization 1, (b) realization 2, and (c) realization 3. Fields are shown at a normalized displacement of

0.052 mm/mm.
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A = 0.004N (a) A = 0.04N

A = 0.004N (b) A = 0.04N

Fig. 26: Contour plots of cumulative plastic strain γcum in the fine-grained polycrystalline aggregates subjected to

adiabatic heating using the micromorphic crystal plasticity model (A = 0.004N and A = 0.04N) for two different

realizations (a) realization 1, and (b) realization 2. Fields are shown at a normalized displacement of 0.052 mm/mm.
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Fig. 27: Cumulative plastic strain variation along the node line crossing shear region using the micromorphic crystal

plasticity model subjected to adiabatic heating in (a) coarse-grained polycrystalline aggregates with A = 0.004N, and

(b) A = 0.04N. (c) The fine-grained polycrystalline aggregates with A = 0.004N, and (d) A = 0.04N. All the variations

are plotted for the normalized displacement of 0.052 mm/mm.
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Table 8: Shear band width w measured along the node line crossing the shear region and using a post-processing method.

coarse-grained
w (mm)

(A = 0.004N)

w (mm)

Post-processing

(A = 0.004N)

w (mm)

(A = 0.04N)

w (mm)

Post-processing

(A = 0.04N)

Realization 1 0.05 0.042 0.12 0.12

Realization 2 0.03 0.049 0.13 0.072

Realization 3 0.12 0.065 0.15 0.11

fine-grained

Realization 1 0.03 0.036 0.05 0.12

Realization 2 0.03 0.033 0.05 0.098

3. The orientation of the formed ASB with respect to the loading axis is affected by the crystal

initial orientation. [100]− [010] crystal orientation shows the stiffest response to ASB formation.

On the other hand, crystals initially oriented at [111]− [1̄1̄2] show the lowest tendency to shear635

band formation, and no evident shear banding is observed. Moreover, it is observed that the

formed shear band width depends on the initial crystal orientation.

4. The grain size effect, namely the finer the grain size the higher the stress, was illustrated in

the response of polycrystalline FCC metallic materials using the micromorphic crystal plasticity

model subjected to isothermal deformation. It is shown that the micromorphic crystal plasticity640

model merely influences the hardening rate but does not affect the initial yield strength.

5. The resulting load and the formation of shear band is highly orientation dependent in polycrys-

talline simulations in the case of coarse grained polycrystal. The favorable orientation of the

grains in the shear region results in decreased resulting load and ease of shear band formation.

Furthermore, wide dispersion of the resultant load and width of the shear band is observed in645

different realizations of the coarse grained polycrystalline aggregates.

6. The relation between observed shear band widths, intrinsic length scale of the micromorphic

model and grain size was analyzed. It shows that the intrinsic length scale mainly controls

the shear band width and that grain boundaries serve as obstacles to ASB propagation thus

controlling the intensity of strain localization.650

The purpose of the present work was not the analysis of the full ASB formation process which

includes multiscale shear banding, heat conduction and dynamic effects. The objective is the analysis

of anisotropic effects induced by crystal plasticity on strain localization phenomena under adiabatic

conditions. It contains effects relevant to ASB formation but surely not all of them. Significant

physical aspects of strain localization in crystalline solids under adiabatic conditions were highlighted,655

namely the anisotropic character of crystal plasticity, the associated microstructure effects and their
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consequence on shear band path and width. These specific aspects have not been studied in the

previous literature and can give ideas for the design of shear banding resistant crystallographic textures

by appropriate grain boundary engineering. Especially the shear band path and width were carefully

described in single and polycrystals with proper account of hardening induced by GNDs and grain660

boundary and grain size effects. It is possible to predict stronger grain size effects in the polycrystalline

simulations by considering larger number of grains in the shear region of the hat-shaped specimen.

However, due to high computational costs, only two grain sizes were considered in the present work.

Moreover, work-hardening was not included in the simulations to clearly isolate the micromorphic and

grain size effects from classical hardening. The consideration of dislocation–based hardening in the665

future will require the evaluation of stored energy in order to evaluate temperature evolution under

adiabatic conditions. It is common practice to consider a constant value 0.9 of the Taylor-Quinney

parameter. However, the experimental evidence, for instance, (Kapoor and Nemat-Nasser, 1998; Rittel

et al., 2012), showed that, in reality, its value can be much less than 0.9. The thermodynamically

consistent framework of the constitutive equations for the gradient crystal plasticity (reduced-order670

micromorphic) model presented in this work must be extended to allow for evolving Taylor-Quinney

parameters predicted by suitable free energy density functions. It is hoped that the predictions made

in the present work will serve as incentives to perform experimental tests on single and oligo-crystalline

hat–shaped specimens to precisely determine the relation between ASB width and grain size. The

analysis of such tests may require the extension of the present computational approach to more realistic675

3D computations.

Heat conduction was neglected in the present work although it plays a significant role at the grain

scale for the strain rates and grain sizes considered in this work. Extension of the work considering

the coupling of gradient crystal plasticity and heat conduction is therefore necessary in the future

to highlight the competition between lengths emerging from microstructure and thermal effects. In680

addition, grain boundary sliding and decohesion are additional important deformation and damage

mechanisms at high temperatures. They are not included in the present work but this is possible

as demonstrated in (Musienko et al., 2004). Coupling strain gradient crystal plasticity and grain

boundary sliding/opening remains a challenging task.
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Appendix A. General equations of thermodynamics

The energy balance (first law of thermodynamics) with respect to the current configuration is

written in the local form:

ρė = σ∼ : D∼ +Q, (A.1)

withD∼ = (l∼+l∼
T )/2 as the strain rate tensor, e the internal energy per unit mass andQ the heat supply

per unit volume and unit time, which results from an external heat source r and heat conduction q

such that

Q = r − div q . (A.2)

The second law of thermodynamics in the form of the local dissipation rate inequality with respect to

the current configuration can be written as

ρη̇ + div
q

T
− r

T
≥ 0, (A.3)

where η is the entropy per unit mass and T is the absolute temperature. The Helmholtz free energy

density function is introduced as

Ψ := e− Tη. (A.4)

The Clausius-Duhem inequality is now expressed with respect to the reference configuration as

Jσ∼ : D∼ − ρ0(Ψ̇ + ηṪ )−Q · ∇XT
T
≥ 0, (A.5)

where Q is the heat conduction with respect to the reference configuration and given by

Q = J theF∼
−1 · q , (A.6)

and ∇XT is the Lagrangian gradient of temperature.

Appendix B. Expression for the temperature evolution

The expression for the temperature evolution can be derived by assuming Helmholtz free energy

function as in Eq. (24):

ρ0η = −ρ0
∂Ψ

∂T
= −1

2
E∼
the :

∂Λ
≈

∂T
: E∼

the + ρ0Cε log
( T
T0

)
− ρ0

∂Cε
∂T

[
(T − T0)− T log

( T
T0

)]
(B.1)

+ (T − T0)
∂P∼
∂T

: E∼
the + P∼ : E∼

the − ρ0
∂Ψζ

∂T
.

Furthermore, the variation of entropy with respect to time is computed as

ρ0η̇ = −E∼ the :
∂Λ

≈

∂T
: Ė∼

the − Ṫ 1

2
E∼
the :

∂2Λ
≈

∂T 2
: E∼

the + ρ0CεṪ + ρ0
∂Cε
∂T

[
log
( T
T0

)]
Ṫ

− ρ0
∂2Cε
∂T 2

[
(T − T0)− T log

( T
T0

)]
Ṫ + Ṫ

∂P∼
∂T

: E∼
the + Ṫ (T − T0)

∂2P∼
∂T 2

: E∼
the (B.2)

+ (T − T0)
∂P∼
∂T

: Ė∼
the + Ṫ

∂P∼
∂T

: E∼
the + P∼ : Ė∼

the − ρ0
(
∂2Ψζ

∂T 2
Ṫ +

∂2Ψζ

∂T∂ζ
ζ̇

)
.
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Then the right hand side of (37) becomes

ρ0

[
∂Ψ

∂ζ
ζ̇ + T η̇

]
= ρ0

∂Ψ

∂ζ
ζ̇ + T

[
−E∼ the :

∂Λ
≈

∂T
: Ė∼

the − Ṫ 1

2
E∼
the :

∂2Λ
≈

∂T 2
: E∼

the + ρ0CεṪ

+ ρ0
∂Cε
∂T

[
log
( T
T0

)]
Ṫ − ρ0

∂2Cε
∂T 2

[
(T − T0)− T log

( T
T0

)]
Ṫ + Ṫ

∂P∼
∂T

: E∼
the

+ Ṫ (T − T0)
∂2P∼
∂T 2

: E∼
the + (T − T0)

∂P∼
∂T

: Ė∼
the + Ṫ

∂P∼
∂T

: Ė∼
the + P∼ : Ė∼

the

− ρ0
(
∂2Ψζ

∂T 2
Ṫ +

∂2Ψζ

∂T∂ζ
ζ̇

)]
, (B.3)

Finally, the rate of temperature change is obtained by substituting previous equation into (37)

Ṫ =

[
Π∼
M : L∼

p + Sγ̇cum − div q + r − ρ0
∂Ψ

∂ζ
ζ̇ − T

(
−E∼ the :

∂Λ
≈

∂T
: Ė∼

the + (T − T0)
∂P∼
∂T

: Ė∼
th

+ P∼ : Ė∼
the − ρ0

∂2Ψζ

∂T∂ζ
ζ̇

)][
− T 1

2
E∼
the :

∂2Λ
≈

∂T 2
: E∼

the + ρ0Cε + ρ0
∂Cε
∂T

[
log
( T
T0

)]
T

− ρ0
∂2Cε
∂T 2

[
(T − T0)− T log

( T
T0

)]
T + T

∂P∼
∂T

: E∼
the + T (T − T0)

∂2P∼
∂T 2

: E∼
the

+ T
∂P∼
∂T

: E∼
the − ρ0

∂2Ψζ

∂T 2
T

]−1
, (B.4)

up to T = Tmelt, where Tmelt is the melting temperature of the material.

Appendix C. Analytical reference solution for linear strain softening695

Consider a periodic strip made of a thick rectangular plate of width W along the X 1 direction,

length L along the X 2 direction, and thickness T along the X 3 direction (Fig. C.28). It is made

of a single crystal material possessing a single slip system under simple shear conditions. The slip

direction m and the normal to the slip plane n are respectively parallel to X 1 and X 2. The strain

rate sensitivity parameters n,K in Eq. (6) are chosen in such a way that the material response is

almost rate-independent. A macroscopic deformation gradient F̄∼ is applied such that

u = (F̄∼ − 1∼) ·X + ν (X ), with F̄∼ = 1∼ + F̄12(m ⊗ n ), (C.1)

where ν is a periodic fluctuation of the displacement. The origin O of the strip is constrained such

that

u (X = 0, Y = 0, Z = 0) = 0. (C.2)

It is assumed that elastic deformations remain small in the absence of lattice rotation in the considered

slip configuration, i.e., |F e12| � 1 with

F∼
e = F∼ · F∼ p−1 = 1∼ + F e12(m ⊗ n ), (C.3)

and therefore, the elastic Green-Lagrange strain tensor can be expressed as follows:

E∼
the ' F e12

2
(m ⊗ n + n ⊗m ). (C.4)
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Fig. C.28: Single crystal trip with a central defect (red line).

where thermal expansion is set to zero in the present isothermal example. Moreover, the Piola stress

Π∼
e in this instance is given by

Π∼
e = Λ

≈
: E∼

the ' Πe
12(m ⊗ n + n ⊗m ). (C.5)

For small elastic deformations, the Piola and Mandel stresses coincide: Π∼
M ' Π∼

e. The resolved shear

stress τ r on the single slip system is given by

τ = Π∼
M : (m ⊗ n ). (C.6)

Furthermore, equilibrium requires the shear stress component to be uniform which implies that the

resolved shear stress τ is also invariant along X 1, X 2 and X 3.

The quasi-equality between the microslip variable γχ and the accumulated plastic strain γ is ensured

by the coupling modulus Hχ. The yield condition including the linear strain softening can be written

as follows:

f = |τ | − (τ0 +Hγ +Hχ(γ − γχ)) = 0 with H < 0. (C.7)

A partial differential equation governing the microslip is given by

A
∂2γχ
∂X2

2

= Hχ(γχ − γ). (C.8)

Substituting (C.7) for γ into (C.8) leads to another form of the partial differential equation

A
∂2γχ
∂X2

2

− HHχ

H +Hχ
γχ +

Hχ

H +Hχ
(|τ | − τ0) = 0. (C.9)

In the case of linear strain softening, it can be shown that (C.9) takes the form

∂2γχ
∂X2

2

−
(

2π

λ

)2

γχ = −
(

2π

λ

)2

κ, (C.10)

where λ is a characteristic length and κ a constant. They are defined as follows:

λ = 2π

√
A(H +Hχ)

|H|Hχ
, κ =

(
λ

2π

)2
Hχ

A(H +Hχ)
(|τ | − τ0). (C.11)

The differential equation in (C.10) governing γχ is only valid in the region where plastic loading takes

place which can be identified with the interval X2 ∈ [−λ2 ,
λ
2 ]. This interval is the strain localization
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zone and outside elastic unloading takes place. The solution is of the form

γχ(X2) = a1 cos

(
2π
X2

λ

)
+ a2 sin

(
2π
X2

λ

)
− κ. (C.12)

where a1, a2 are integration constants. For symmetry reasons, γχ(X2) = γχ(−X2) which requires

that a2 = 0. At the elastic/plastic interfaces, i.e at X2 = ±λ2 , continuity of microslip γχ and of the

generalized stress normal to the interface M ·X 2 must hold, therefore

γχ

(
± λ

2

)
' γ

(
± λ

2

)
= 0, (C.13)

M

(
± λ

2

)
·X 2 = A

dγχ
dX2

∣∣∣∣
X2=±λ2

= 0. (C.14)

In (C.13), we have assumed that the penalty parameter Hχ is high enough for γχ and γ almost to

coincide, i.e. ep ' 0. Combining (C.13) and (C.14) with (C.12) gives

a1 =
|τ | − τ0
H

. (C.15)

Moreover, the resolved shear stress is expressed as

τ = Πe
12 = 2C44E

the
12 =

2C44

L

∫ L
2

−L
2

(
F12 − γ

2

)
dX2, (C.16)

with C44 being the elastic shear modulus. From the yield condition given in (C.7), γ can be replaced

by
|τ |−τ0+Hχγχ

H+Hχ
in (C.16) and integration gives an expression for τ as a function of applied macroscopic

shear F̄12:

τ =
F̄12 + τ0

Ze
1
C44

+ 1
Ze

, with
1

Ze
=

λ

HL
. (C.17)
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Marano, A., Gélébart, L., Forest, S., 2021. FFT-based simulations of slip and kink bands formation

in 3D polycrystals: influence of strain gradient crystal plasticity. Journal of the Mechanics and

Physics of Solids 149, 104295. doi:10.1016/j.jmps.2021.104295.860

Mazière, M., Forest, S., 2015. Strain gradient plasticity modeling and finite element simulation of
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