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Introduction

The ASB formation process originates from the rapid increase of local temperature due to plastic work dissipation under high strain rate loading conditions. This, in turn, reduces the stress carrying capacity of the material and results in highly localized and unstable plastic deformation [START_REF] Gilman | Micromechanics of shear banding[END_REF][START_REF] Zhu | On the role of strain gradients in adiabatic shear banding[END_REF][START_REF] Dodd | Preface[END_REF]. The flow stress dependency on temperature is associated with thermal softening, causing the stress to drop from its maximum point, thus leading to intense shear band formation. The formation of shear bands may not be considered as failure of ductile material, but as a precursor to the catastrophic fracture [START_REF] Anand | Onset of shear localization in viscoplastic solids[END_REF][START_REF] Zhu | On the role of strain gradients in adiabatic shear banding[END_REF]. It influences the texture development and the material constitutive behavior [START_REF] Dève | The development of plastic failure modes in crystalline materials: Shear bands in FCC polycrystals[END_REF]. The phenomenon of ASB formation can be observed in many industrial processes, for instance, machining and highspeed shaping, shearing, metal forming [START_REF] Burns | On repeated adiabatic shear band formation during high-speed machining[END_REF][START_REF] Molinari | Adiabatic shear banding in high speed machining of ti-6al-4v: experiments and modeling[END_REF][START_REF] Dodd | Preface[END_REF], and so forth. A vast review on the adiabatic shear localization in metallic materials at high strain rates by using experimental and computational techniques can be found in [START_REF] Yan | Shear localization in metallic materials at high strain rates[END_REF].

In recent years, considerable experimental research has been conducted to investigate the ASB formation in FCC metallic materials. The experimental shear tests on hat-shaped specimens using Split-Hopkinson pressure bars in compression mode are often used to study the material resistance to shear localization, for instance, in [START_REF] Nemat-Nasser | Microstructure of high-strain, high-strain-rate deformed tantalum[END_REF][START_REF] Meyers | Microstructural evolution in adiabatic shear localization in stainless steel[END_REF][START_REF] Xue | Influence of shock prestraining on the formation of shear localization in 304 stainless steel[END_REF][START_REF] Xu | Shear localization in dynamic deformation: Microstructural evolution[END_REF]. [START_REF] Meyers | Microstructural evolution in adiabatic shear localization in stainless steel[END_REF] studied the microstructural evolution of adiabatic shear localization in stainless steel. Experimental investigations of the effect of strain rates, heat treatments, and grain size on the ASB formation in hat-shaped polycrystalline Inconel 718 specimens using Split-Hopkinson pressure bar test can be found in [START_REF] Johansson | Microstructural examination of shear localisation during high strain rate deformation of alloy 718[END_REF][START_REF] Johansson | Effect of microstructure on dynamic shear localisation in alloy 718[END_REF][START_REF] Song | Effects of different heat treatments on the dynamic shear response and shear localization in inconel 718 alloy[END_REF]. Furthermore, [START_REF] Song | Effects of different heat treatments on the dynamic shear response and shear localization in inconel 718 alloy[END_REF] observed that the aged top-hat sample with small grain size and fillet radius has the largest tendency to form a shear band compared to the solution treated Inconel 718 specimens. They observed shear bands of 10 µm width in aged Inconel 718 samples of average grain size 28 µm and 10 -13 µm in solution treated samples of average grain size 18 µm. [START_REF] Demange | Effects of material microstructure on blunt projectile penetration of a nickel-based super alloy[END_REF] found that the precipitation hardened material more readily exhibits shear localization than the solution treated material in the shear deformation of top-hat samples. Moreover, in metallic materials and alloys, it was believed that only the dislocation mobility due to a rise in temperature causes the strain-softening. However, the recent studies, e.g., [START_REF] Landau | The genesis of adiabatic shear bands[END_REF][START_REF] Mourad | Modeling and simulation framework for dynamic strain localization in elasto-viscoplastic metallic materials subject to large deformations[END_REF][START_REF] Longère | Respective/combined roles of thermal softening and dynamic recrystallization in adiabatic shear banding initiation[END_REF] showed that the dynamic recrystallization (DRX) is also playing an essential part in strain softening.

From the computational perspective, it is well-known that finite element simulations of strain localization phenomena exhibit spurious mesh dependency, and the classical plasticity models are inadequate to solve the strain localization problems [START_REF] Asaro | Strain localization in ductile single crystals[END_REF][START_REF] De Borst | Fundamental issues in finite element analyses of localization of deformation[END_REF][START_REF] Besson | Non-linear mechanics of materials[END_REF]. The possible loss of ellipticity of the partial differential equations in strain-softening materials results in an ill-posed boundary-value problem and classically displays dependency on mesh size or density and element orientation. The loss of ellipticity of the PDE is a local condition that concerns rate-independent constitutive equations in the static case. It implies the non-positive value of the determinant of the material's acoustic tensor [START_REF] Forest | Local approach to fracture. Les presses de l'ecole des mines de paris. Ecole d'été "Mécanique de l'endommagement et approche locale de la rupture[END_REF][START_REF] Wcis Lo | Numerical analysis of ellipticity condition for large strain plasticity[END_REF]. Rate-dependence of the material behavior can improve the situation but it is not sufficient to regularize the general localization problem [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF]. Numerical analyses of strain localization problems within the conventional continuum mechanics framework can be found in (Batra andKim, 1991, 1992;Duszek-Perzyna andPerzyna, 1993, 1996;[START_REF] Perzyna | Thermodynamical theory of inelastic single crystals[END_REF]Korbel, 1996, 1998). It has been shown very early that the combination of dynamics and viscosity provides sufficient regularization, see [START_REF] Loret | Dynamic strain localization in elasto-(visco-)plastic solids, Part 1. General formulation and one-dimensional examples[END_REF][START_REF] Harirêche | 3D dynamic strain-localization : shear band pattern transition in solids[END_REF]. However, this regularization method has anomalies compared to other ones, such as strain gradient models. For instance, it is more sensitive to the imperfections triggering the strain localization [START_REF] Molinari | Analytical Characterization of Shear Localization in Thermoviscoplastic Materials[END_REF]. In addition, there are necessary conditions of loading, viscosity, and numerical time discretization for the viscous terms to be effective in regularization, as demonstrated in [START_REF] Wang | Interaction between material length scale and imperfection size for localisation phenomena in viscoplastic media[END_REF][START_REF] Benallal | A note on ill-posedness for rate-dependent problems and its relation to the rateindependent case[END_REF].

The shear band width dependency on mesh size can be overcome by introducing a characteristic length scale in the classical plasticity models according to [START_REF] Aifantis | On the microstructural origin of certain inelastic models[END_REF][START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] Pamin | Gradient-dependent plasticity in numerical simulation of localization phenomena[END_REF][START_REF] Kuroda | Studies of scale dependent crystal viscoplasticity models[END_REF][START_REF] Voyiadjis | Gradient plasticity theory with a variable length scale parameter[END_REF][START_REF] Anand | A large-deformation gradient theory for elastic-plastic materials: Strain softening and regularization of shear bands[END_REF]Wcis lo and Pamin, 2017a;[START_REF] Vignjevic | Modelling of strain softening materials based on equivalent damage force[END_REF][START_REF] Kaiser | An incompatibility tensor-based gradient plasticity formulation-Theory and numerics[END_REF]. Strain gradient plasticity models, which include an intrinsic length scale in the constitutive framework, are often used to regularize strain localization problems, e.g., [START_REF] Aifantis | On the microstructural origin of certain inelastic models[END_REF][START_REF] Menzel | On the continuum formulation of higher gradient plasticity for single and polycrystals[END_REF][START_REF] Al-Rub | A physically based gradient plasticity theory[END_REF][START_REF] Anand | A large-deformation gradient theory for elastic-plastic materials: Strain softening and regularization of shear bands[END_REF]Ahad et al., 2014). [START_REF] Aifantis | On the microstructural origin of certain inelastic models[END_REF][START_REF] Aifantis | The physics of plastic deformation[END_REF] proposed a strain gradient theory by adding the Laplacian of a scalar measure of plastic strain in the yield function of the classical plasticity theory to solve the issues related to the width of shear bands. The characteristic length scale introduced in the gradient plasticity models can be associated with the width of the shear band as demonstrated in [START_REF] Zbib | On the structure and width of shear bands[END_REF][START_REF] Chambon | One-dimensional localisation studied with a second grade model[END_REF]. The effect of higher-order gradients on ASB formation was investigated by [START_REF] Zhu | On the role of strain gradients in adiabatic shear banding[END_REF] and more recently by [START_REF] Tsagrakis | On the effect of strain gradient on adiabatic shear banding[END_REF]; [START_REF] Liu | Size effect on onset and subsequent evolution of adiabatic shear band: Theoretical and numerical analysis[END_REF]. Two length scales, respectively associated with strain gradients and thermal conduction, were considered in the analysis. They showed that the width of the shear band scales with the square root of strain gradient coefficient in the absence of conduction and square root of the thermal conductivity in absence of strain gradient effects. The micromorphic theory proposed by [START_REF] Eringen | Microcontinuum field theories[END_REF] relies on the second-order microdeformation tensor as an additional degree of freedom. The application of micromorphic theory for the strain localization phenomenon can be found in [START_REF] Dillard | Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams[END_REF][START_REF] Anand | A large-deformation gradient theory for elastic-plastic materials: Strain softening and regularization of shear bands[END_REF][START_REF] Mazière | Strain gradient plasticity modeling and finite element simulation of Lüders band formation and propagation[END_REF]. In contrast to Eringen's full micromorphic theory, a reduced-order micromorphic crystal plasticity theory was proposed by [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals[END_REF] involving a scalar-valued variable as the additional degree of freedom. It was used to analyze strain localization phenomena at finite deformation by [START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF]. The mesh dependency issues in the shear localization problem can also be eliminated by the sub-grid method proposed in [START_REF] Mourad | Modeling and simulation framework for dynamic strain localization in elasto-viscoplastic metallic materials subject to large deformations[END_REF][START_REF] Jin | Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions[END_REF] in the case dynamic loading conditions are applied to hat-shaped specimens.

The purpose of strain gradient plasticity is not solely related to its regularization properties but the aim is also to incorporate microstructural features in the crystal plasticity modeling, namely the development of Geometrically Necessary Dislocations (GND) under high strain gradients, see [START_REF] Phalke | Modeling size effects in microwire torsion: A comparison between a lagrange multiplier-based and a CurlF p gradient crystal plasticity model[END_REF], and the effect of grain boundaries and grain size.

As the yielding starts in a metallic material, the work done by the stresses is partly transferred to heat and partly to the reversible or irreversible microstructural changes in the material and leads to a rise in temperature locally affecting the elastic-plastic behavior of the material. Therefore, it is necessary to introduce thermodynamics into the plasticity framework [START_REF] Bertram | On the introduction of thermoplasticity[END_REF]. Thermodynamically consistent formulations of the constitutive equations in classical plasticity models for the small strain strain can be found in [START_REF] Bertram | On the introduction of thermoplasticity[END_REF] and for finite strain gradient plasticity in [START_REF] Forest | Elastoviscoplastic constitutive frameworks for generalized continua[END_REF][START_REF] Bertram | Finite gradient elasticity and plasticity: a constitutive thermodynamical framework[END_REF]. The second law of thermodynamics in the form of Clausius-Duhem inequality is used to find the necessary conditions required for the thermodynamically consistent formulation. A fully coupled thermo-plasticity model can also be found in [START_REF] Simo | Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation[END_REF][START_REF] Duszek-Perzyna | Adiabatic shear band localization in elastic-plastic single crystals[END_REF][START_REF] Yang | A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids[END_REF][START_REF] Ristinmaa | Thermodynamic format and heat generation of isotropic hardening plasticity[END_REF]. In many works in the literature (see, e.g., [START_REF] Osovski | The respective influence of microstructural and thermal softening on adiabatic shear localization[END_REF]; [START_REF] Zhang | On the formation of adiabatic shear bands in textured hcp polycrystals[END_REF][START_REF] Lieou | Strain localization and dynamic recrystallization in polycrystalline metals: Thermodynamic theory and simulation framework[END_REF]), use is made of the Taylor-Quinney coefficient [START_REF] Taylor | The Latent Energy Remaining in a Metal after Cold Working[END_REF], a constant parameter related to the amount of plastic work converted into heat. A more precise thermodynamic description requires the definition of the stored energy function with appropriate internal variables and of the dissipative mechanisms. Thermo-mechanical couplings can in that way be incorporated in the heat equation.

The present work is limited to adiabatic conditions and therefore concentrates on the microstructure effects, namely anisotropy of crystal plasticity, GND development and grain size effects, on shear band path and width. In general, there is a competition between intrinsic length scales arising from plasticity and heat conduction during shear band formation. The emerging characteristic length scale due to the heat conduction has regularizing effects and contributes to the band structure, as demonstrated in [START_REF] Lemonds | An analysis of shear band development incorporating heat conduction[END_REF][START_REF] Medyanik | On criteria for dynamic adiabatic shear band propagation[END_REF][START_REF] Mcauliffe | Mesh insensitive formulation for initiation and growth of shear bands using mixed finite elements[END_REF]Wcis lo and Pamin, 2017a,b). However, in the present work heat conduction effects are neglected. Under the strict adiabatic condition, the effect of heat conduction on the band structure can be neglected, as discussed in [START_REF] Molinari | Analytical Characterization of Shear Localization in Thermoviscoplastic Materials[END_REF][START_REF] Shawki | Shear band formation in thermal viscoplastic materials[END_REF][START_REF] Baucom | Perturbation analysis of high strain-rate shear localization in b.c.c. crystalline materials[END_REF][START_REF] Li | Dynamic shear band propagation and micro-structure of adiabatic shear band[END_REF][START_REF] Zhang | On the formation of adiabatic shear bands in textured hcp polycrystals[END_REF]. [START_REF] Mcveigh | Multiresolution continuum modeling of micro-void assisted dynamic adiabatic shear band propagation[END_REF] recently showed that the unphysical nature of strain localization could be observed in the classic continuum formulation, even under fully coupled thermal-mechanical formulation with heat conduction effects. Consideration of heat conduction effects delays the shear instability; however, the post-instability deformation still localizes in a single element. The explicit characteristic length scale due to microstructural features in strain gradient plasticity models introduces the effect of, e.g., the GND development and grain size effect in addition to the regularizing property. Regularization of ASB is not the only purpose of the present study but also the consideration of the effect of microstructural features.

Many numerical studies on adiabatic shear localization in metallic single crystals have been completed in recent years, for instance, in [START_REF] Baucom | Perturbation analysis of high strain-rate shear localization in b.c.c. crystalline materials[END_REF][START_REF] Perzyna | Thermodynamical theory of inelastic single crystals[END_REF][START_REF] Zhang | On the formation of adiabatic shear bands in textured hcp polycrystals[END_REF]. However, less attention has been given to the effect of crystal orientation on the shear band formation in single crystals. It is, therefore, one of the objectives of the present work to investigate the effect of various initial crystal orientations on the ASB formation in single crystals. In the present study, the ASB formation is only related to thermal softening, letting aside the effect of DRX. The applicability of the reduced-order micromorphic crystal plasticity model involving a single scalar-valued variable as a degree of freedom [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals[END_REF] is demonstrated for regularizing the ASB. A thermodynamically consistent formulation of the constitutive equations for the micromorphic crystal plasticity model is presented. At first, an analytical reference solution is developed in the case of a periodic strip loaded in simple shear undergoing single-slip with linear strain and thermal softening. The FE solution of the same boundary-value problem is validated using an analytical solution initially developed for the rate-independent isothermal case. The temperature-dependent material parameters and shear band widths considered in the paper correspond to Nickel-based super-alloy Inconel 718 in a large temperature range. Furthermore, simulations are performed with the single crystals hat-shaped specimens with different initial crystal orientations.

The second original objective of the present work is to study the transition of ASB formation from single to polycrystals. To this end, the micromorphic approach is applied to polycrystalline hat-shaped specimens simulations to predict the role of grain boundaries as obstacles to ASB, the orientation dependency, and the influence of grain size on the width of the ASB.

The outline of the paper is as follows: In section 2, the constitutive framework of thermo-elastoviscoplastic single crystal plasticity and the thermodynamically consistent formulation of micromorphic crystal plasticity model are presented. Section 3 is dedicated to the validation of the numerical solution for a periodic strip loaded in simple shear undergoing single-slip with linear thermal softening based on the analytical solution developed for the rate-independent case. Section 4 reports on the simulations of single crystals hat-shaped specimens under static loading conditions. In section 5, the micromorphic crystal plasticity model is used to investigate ASB formation in polycrystalline hat-shaped specimens. Concluding remarks follow in section 6.

The following notations are employed in this contribution: Underlined A and under-waved bold A ∼ characters are used to denote first-order and second-order tensors, respectively. The transpose, inverse and time derivative are represented as A ∼ T , A ∼ -1 and Ȧ ∼ . Simple and double contractions are understood in the sense a • b = a i b j and A ∼ :

B ∼ = A ij B ij . Moreover, following tensor products are used: a ⊗ b = a i b j e i ⊗ e j and A ∼ ⊗ B ∼ = A ij B kl e i ⊗ e j ⊗ e k ⊗ e l .
Nabla operators are defined with respect to Lagrange coordinates, ∇ X , and with respect to Euler coordinates, ∇.

Theoretical formulation

2.1. Thermo-elasto-viscoplasticity of single crystals at finite deformation

Kinematics and visco-plastic flow rule

In the present work, a large deformation framework of thermo-plasticity is adopted, based on the multiplicative decomposition of total deformation gradient F ∼ into a recoverable thermo-elastic part

F ∼
the and a plastic part F ∼ p combining concepts put forward by [START_REF] Bertram | Finite thermoplasticity based on isomorphisms[END_REF][START_REF] Ristinmaa | Thermodynamic format and heat generation of isotropic hardening plasticity[END_REF]:

F ∼ = F ∼ the • F ∼ p .
(1)

The spatial and the plastic velocity gradients are defined as

l ∼ = Ḟ ∼ • F ∼ -1 , L ∼ p = Ḟ ∼ p • F ∼ p-1 .
(2)

The volume mass densities with respect to the reference configuration, the intermediate configuration,

and the current configuration are ρ 0 , ρ # and ρ, respectively, given by

J = det(F ∼ ) = ρ 0 ρ , J the = det(F ∼ the ) = ρ # ρ , J p = det(F ∼ p ) = ρ 0 ρ # . (3) 
It is assumed that plastic flow is isochoric such that

J p = det F ∼ p = 1, J the = detF ∼ the = J = det F ∼ . (4) 
Crystal plasticity in dense metals is incompressible so that J p = 1. However, J p can be different from one in the case of compressible plasticity. This situation was studied for ductile fracture of porous single crystals in [START_REF] Ling | An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations[END_REF]. Moreover, the thermo-elastic strain tensor E ∼ the is introduced as follows:

E ∼ the = 1 2 [(F ∼ the ) T • (F ∼ the ) -1 ∼ ], (5) 
with 1 ∼ denoting the second order identity tensor.

The plastic shearing rate γr on each slip system r is given by the visco-plastic flow rule proposed by [START_REF] Méric | Single Crystal Modeling for Structural Calculations: Part 2-Finite Element Implementation[END_REF] in terms of viscosity parameters K and n,

γr = |τ r | -τ r c K n sign(τ r ), (6) 
where Macauley brackets < • > denote the positive part of •. The resolved shear stress τ r on slip system r in a single crystal is given by

τ r = Π ∼ M : (m r ⊗ n r ), (7) 
where m r is the slip direction and n r is the normal to the slip plane for the slip system number r.

The Mandel stress tensor Π ∼ M with respect to the intermediate configuration is related to the Cauchy

stress tensor σ ∼ by Π ∼ M = J the (F ∼ the ) T • σ ∼ • (F ∼ the ) -T .
In addition, the cumulative plastic strain γ cum is introduced as follows:

γ cum = t 0 N r=1 | γr |dt. (8) 
The plastic deformation rate is the result of slip processes with respect to all N slip systems and defined in the intermediate configuration as

L ∼ p = N r=1
γr (m r ⊗ n r ). ( 9)

2.1.2. Thermodynamic formulation 180

The general equations of continuum thermodynamics can be found in Appendix A. The stress power term in Clausius-Duhem inequality (Eq. A.5) is given by

Jσ ∼ : D ∼ = J p Π ∼ e : Ė ∼ the + J p Π ∼ M : L ∼ p , (10) 
with Π ∼ e the Piola stress tensor, also called second Piola-Kirchhoff stress tensor, defined with respect to the intermediate configuration by

Π ∼ e = J the (F ∼ the ) -1 • σ ∼ • (F ∼ the ) -T .
The dissipation rate in the Clausius-Duhem inequality consists of mechanical and thermal dissipation rates. The mechanical dissipation rate is given by

∆ m = Jσ ∼ : D ∼ -ρ 0 ( Ψ + η Ṫ ), (11) 
and the thermal dissipation by

∆ th = -Q • ∇ X T T . ( 12 
)
The quadratic form of the free energy familiar from the thermo-elasticity is assumed to be a function of the thermo-elastic strain tensor E ∼ the , the temperature T and the internal hardening variables ζ as follows:

ρ 0 Ψ(E ∼ the , T, ζ) = 1 2 J p E ∼ the : Λ ≈ : E ∼ the + ρ 0 C ε (T -T 0 ) -T log T T 0 + (T -T 0 )P ∼ : E ∼ the + ρ 0 Ψ ζ (ζ), (13) 
where Λ ≈ is the fourth-order tensor of elastic moduli, T 0 is a reference temperature, C ε is the specific heat of the material and P ∼ is a constant symmetric thermal stress tensor.

Expanding the time derivative of the free energy density function gives

J p Π ∼ e -ρ 0 ∂Ψ(E ∼ the , T ) ∂E ∼ the : Ė ∼ the + J p Π ∼ M : L ∼ p -ρ 0 η + ∂Ψ ∂T Ṫ -ρ 0 ∂Ψ ∂ζ ζ -Q • ∇ X T T ≥ 0, (14) 
The following state laws are adopted:

Π ∼ e = ρ # ∂Ψ(E ∼ the , T ) ∂E ∼ the , η = - ∂Ψ ∂T , X = ρ 0 ∂Ψ ∂ζ , ( 15 
)
where X is the thermodynamic force associated with the internal variable ζ. Based on the potential (13) the thermoelastic relation for the Piola stress tensor is obtained as

Π ∼ e = Λ ≈ : E ∼ the -P ∼ (T -T 0 ) = Λ ≈ : (E ∼ the -Λ ≈ -1 : P ∼ (T -T 0 )) = Λ ≈ : (E ∼ the -E ∼ th ), (16) 
and the thermal strain tensor E ∼ th is defined as

E ∼ th = (T -T 0 )Λ ≈ -1 : P ∼ = (T -T 0 )α1 ∼ , (17) 
which involves the thermal expansion coefficient α in the case of isotropic or cubic thermoelasticity.

185 2.2. Reduced-order micromorphic crystal plasticity model

In micromorphic approaches, the variables which perform the targeted strain gradient effects are selected from the available state variables, which can be a tensor of any rank [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF][START_REF] Forest | Nonlinear regularisation operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage[END_REF].

In this section, a reduced-order micromorphic approach involving a micromorphic scalar variable proposed by [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals[END_REF] is summarized. The coupled thermo-mechanical form of the free energy density function for the micromorphic crystal plasticity is inspired by the work of [START_REF] Russo | Thermomechanics of cosserat medium: Modeling adiabatic shear bands in metals[END_REF] introduced for the Cosserat medium.

Each material point is defined by its position vector X in the reference configuration Ω 0 and its position vector x in the current configuration Ω t . Two types of degrees of freedom, respectively, the displacement vector u and the scalar microslip variable γ χ , are applied to the material point. The scalar variable associated with the micromorphic variable γ χ is the cumulative plastic strain γ cum , cf.

Eq. ( 8). In the present reduced-order micromorphic crystal plasticity approach, the set of degrees of freedom (DOFs) is therefore

DOFs = {u , γ χ }. ( 18 
)
The gradients of the degrees of freedom with respect to the reference configuration are denoted by

H ∼ = ∂u ∂X = Grad u , K = ∂γ χ ∂X = Grad γ χ . (19) 
The balance equations and boundary conditions for the considered micromorphic continuum are expressed with respect to the reference configuration, in the absence of body and inertial forces, as Div P ∼ = 0 and Div M -S = 0, ∀ X ⊂ Ω 0 , (20)

T = P ∼ • n 0 and M = M • n 0 , ∀ X ⊂ ∂Ω 0 , (21) 
with P ∼ being the first Piola-Kirchhoff or Boussinesq stress tensor, T is the surface traction vector, S and M are the generalized stresses conjugate to the micromorphic variable and its gradient, defined with respect to the reference configuration and n 0 is the outer unit normal vector to the surface 195 element along the boundary ∂Ω 0 .

The cumulative plastic strain γ cum is related to the microslip variable γ χ via the relative plastic strain e p as follows:

e p := γ cum -γ χ . (22) 
Moreover, the material under consideration is assumed to be characterized by the coupled thermomechanical Helmholtz free energy density function defined in terms of the thermo-elastic strain tensor E ∼ the , the relative plastic strain e p , the gradient of the microslip variable K , temperature T and the internal hardening variable ζ as follows:

Ψ(E ∼ the , e p , K , T, ζ). ( 23 
)
It is assumed that the Helmholtz free energy density function takes the form:

ρ 0 Ψ(E ∼ the , e p , K , T, ζ) = 1 2 J p E ∼ the : Λ ≈ : E ∼ the + 1 2 H χ e 2 p + 1 2 K • A ∼ • K + ρ 0 C ε (T -T 0 ) -T log T T 0 + (T -T 0 )P ∼ : E ∼ the + ρ 0 Ψ ζ (T, ζ). (24) 
Expanding the time derivative of the free energy density function leads to the following form of the Clausius-Duhem inequality

J p Π ∼ e -ρ 0 ∂Ψ ∂E ∼ the : Ė ∼ the -S + ρ 0 ∂Ψ ∂e p ėp + M -ρ 0 ∂Ψ ∂K K + S γcum + J p Π ∼ M : L ∼ p (25) -ρ 0 η + ∂Ψ ∂T Ṫ -ρ 0 ∂Ψ ∂ζ ζ -Q • ∇ X T T ≥ 0.
The following state laws are adopted:

Π ∼ e = ρ # ∂Ψ ∂E ∼ the , S = -ρ 0 ∂Ψ ∂e p , M = ρ 0 ∂Ψ ∂K , η = - ∂Ψ ∂T , X = ρ 0 ∂Ψ ∂ζ . ( 26 
)
The residual dissipation rate, which restricts the material flow and hardening rules in connection with the yield condition, from Eq. ( 25) is given by

J p Π ∼ M : L ∼ p + S γcum -X ζ -Q • ∇ X T T ≥ 0. ( 27 
)
The thermodynamic forces associated with arguments of the Helmholtz free energy function are derived from the potential (24):

Π ∼ e = Λ ≈ : (E ∼ the -E ∼ th ), S = -H χ e p = -H χ (γ cum -γ χ ), M = A ∼ • K . ( 28 
)
The form of the dissipation rate gives an incentive to introduce the following yield function

f r = |τ r | + S -τ r c = |τ r | -(τ r c -S), (29) 
which can be put in the form

f r = |τ r | -(τ r c -S) = |τ r | -(τ r c -Div M ) ( 30 
)
where the balance law (20) connecting the generalized stresses has been taken into account. The generalized stress S in the previous equation is enhancing the hardening behavior and is regarded as a source of additional isotropic hardening. It is assumed that the second-order tensor A ∼ = A1 ∼ , A being the generalized modulus which is assumed to be constant in space. This is the case in isotropic and cubic elasticity. The additional partial differential equation connecting γ χ and γ cum then follows from the balance equation in (20) and the state laws in (26) as

γ χ - A H χ X γ χ = γ cum , ( 31 
)
where X is the Laplace operator with respect to the reference configuration. When inserted in the yield function, this gives

f r = |τ r | -(τ r c -A Div(Grad γ χ )) = |τ r | -(τ r c -A X γ χ ). ( 32 
)
which shows that the enhanced hardening is connected to the Laplacian of the microslip variable.

In the micromorphic crystal plasticity model, the coupling modulus H χ ensures that γ cum and γ χ take close values. When the coupling modulus H χ takes a high enough value, γ χ almost coincides with γ cum (γ χ γ cum ) so that the micromorphic model reduces to a strict strain gradient plasticity model.

200

The strict equality between γ cum and γ χ can be ensured by the introduction of a Lagrange multiplier instead of the penalty term H χ , which is treated as an additional degree of freedom as demonstrated in [START_REF] Scherer | Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modelling and simulation[END_REF]. In the present work, the penalized micromorphic model is used throughout.

Temperature evolution under adiabatic conditions

The energy balance for the micromorphic crystal plasticity model with respect to the reference configuration is written in the form

ρ 0 ė = Jσ ∼ : D ∼ + S γχ + M • K + Q. ( 33 
)
The Clausius-Duhem inequality then reads

Jσ ∼ : D ∼ + S γχ + M • K -ρ 0 ( Ψ + η Ṫ ) -Q • ∇ X T T ≥ 0. ( 34 
)
The previous equation consists of mechanical and thermal dissipation. The mechanical dissipation is given by

∆ m = Jσ ∼ : D ∼ + S γχ + M • K -ρ 0 ( Ψ + η Ṫ ), (35) 
and the thermal dissipation is still given by Eq. ( 12).

Substituting the free energy production rate obtained from Eq. ( 33) and (A.4) into the previous equation leads to

Jσ ∼ : D ∼ +S γχ +M • K -div q +r = ρ 0 ė = ρ 0 ∂Ψ ∂E ∼ the : Ė ∼ the + ∂Ψ ∂e p ėp + ∂Ψ ∂K • K + ∂Ψ ∂T Ṫ + ∂Ψ ∂ζ ζ+ Ṫ η+T η . (36) 
Simplification of the previous equation after taking the state laws from ( 26) into account provides

J p Π ∼ M : L ∼ p + S γcum -div q + r = ρ 0 ∂Ψ ∂ζ ζ + T η . ( 37 
)
The detailed derivation for the temperature evolution can be found in Appendix B. The following two 205 simplified cases are discussed for the temperature evolution.

In this work, the thermodynamic processes are assumed to be adiabatic in nature, wherein there is no heat transfer to the surrounding and no external heat source present such that

q = 0, r = 0. ( 38 
)
Therefore, terms div q and r in (B.4) vanish.

Case 1: It is assumed that the contribution of the temperature dependence of the elastic constants and specific heat of the material can be neglected compared to plastic power. Also, the contributions of second order derivatives (variation of thermal stress with respect to the temperature) are considered very small compared to internal dissipation terms. Then (B.4) can be written as follows:

ρC ε Ṫ = Π ∼ M : L ∼ p + S γcum -X ζ with X = ρ 0 ∂Ψ ∂ζ . (39) 
In addition, in the present work, hat-shaped specimen simulations are performed in the absence of classical hardening, which means that τ r c = τ 0 is a constant in (29). Therefore, the contribution of internal hardening variable to the stored energy is not considered. The resulting form of temperature evolution is given in case 2.

Case 2: The two first terms in (39) denote the heat generated by the plastic power and represent the main contribution to thermo-mechanical phenomenon. It is assumed that all the plastic work done is converted into heat so that

ρC ε Ṫ = Π ∼ M : L ∼ p + S γcum . ( 40 
)
3. Simple shear test with strain or thermal softening An analytical reference solution initially developed for the rate-independent case with linear strain softening for a periodic strip loaded in simple shear undergoing single-slip in [START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF] is recalled in Appendix C. The introduction of softening induces strain localization in a band of finite width characterized by the parameters of the micromorphic model. This solution will be adapted to account for thermal softening and provide a validation test for the FE implementation of the thermomechanical micromorphic model in the code.

FE solution with linear strain softening

The implementation of the isothermal micromorphic single crystal plasticity model in the finite element code Zset1 is described in detail in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals[END_REF]. The interpolation of displacement and microslip degrees of freedom is respectively quadratic and linear. The use of quadratic shape functions for displacement degrees of freedom limits locking effects in large deformation incompressible plasticity.

However, linear shape functions are used for microslip degrees of freedom to limit the number of additional degrees of freedom. The argument is also that microslip degrees of freedom are strain-like variables that can be compared to actual strains, corresponding to first derivatives of the displacement field. In fact, the simultaneous use of quadratic interpolation for displacement and microslip is possible but remains to be investigated. The geometry considered in the FE simulations is shown in Fig

. C.28.
It is discretized into 400 C3D20R elements, which are 20 node reduced integration brick elements. A material defect is introduced at the center to trigger strain localization in the periodic strip, (see Fig.

C.28).

The defect is of one element size and assigned with an initial critical resolved shear stress 1%

smaller than the matrix. The material parameters used for the FE solution are summarized in Table (1991). Periodicity conditions are applied and the tensor F ∼ is prescribed according to Eq. (C.1). Fig. 1a displays the cumulative plastic strain field predicted by the micromorphic crystal plasticity 235 model. The FE solution is validated with respect to the variation of γ χ along X 2 direction at F12 = 0.01 with the analytical solution given by Eq. (C.13). This comparison is shown in Fig. 1b. Perfect agreement is observed for F12 = 0.01 and for all other values of F12 . The analytically calculated, refer Eq. (C.11), and numerically observed width of the localization zone is measured to be 2.6λ.

FE solution with linear thermal softening 240

In the studied simplified problem of single-slip periodic strip undergoing simple shear, the rate

of plastic work Π ∼ M : Ḟ ∼ p F ∼ p-1 + S γcum becomes 2 (τ + S)
γ, which gives the temperature evolution according to (40) as

Ṫ = (τ + S) γ ρC ε . (41) 
In the rate independent limit, the yield function ( 29) is equal to zero under plastic loading so that τ + S = τ 0 in the absence of classical hardening. The critical resolved shear stress (CRSS) τ 0 (T ) is a function of temperature. An affine dependence is chosen for this analytical example

τ 0 = τ RT + H T (T -T RT ), (42) 
where H T < 0 is the negative slope of the linear variation of τ 0 with temperature, T RT is the room temperature and τ RT is the CRSS value at room temperature. Then, Eq. ( 41) becomes

Ṫ = τ 0 γ ρC ε . ( 43 
)
In order to obtain a simple analytic solution for the temperature, τ 0 is approximated by the constant value: τ0 = τ RT + H T (T i -T RT ) where T i is some initial temperature value. In such conditions, the previous equation can be integrated, assuming monotonic loading, which leads to the following form of the temperature rise:

T = τ 0 γ ρC ε + T i (44)
The yield condition (29), which includes the temperature dependent softening can now be written as follows: Combining (C.8) and ( 45) leads to the same partial differential equation governing the microslip variable as (C.9) provided that τ 0 is replaced by τ0 and the hardening modulus H has the following definition

f = |τ | -(τ 0 (1 + H T γ ρC ε ) + H χ (γ -γ χ )) = 0. ( 45 
H ≡ H T τ 0 ρC ε . ( 46 
)
The solution of the PDE (C.9) still has the form (C.12) where the constants λ and κ are given by Eq.

(C.11) with the new definition of H and τ 0 ≡ τ0 .

This approximate solution is now compared to the FE prediction. For that purpose, the evolution of the temperature driven by the adiabatic condition ( 40) is numerically integrated in the code by means of a second order Runge-Kutta method with automatic time stepping [START_REF] Besson | Non-linear mechanics of materials[END_REF]. The material parameters used for the FE solution with the linear thermal softening are given in Table 2.

The value of H T has been chosen so that the associated modulus given by ( 46) takes the same value H = -45 MPa as in the example of linear strain softening, see Section 3.1.

In the FE analysis, no approximation is introduced and the CRSS has the temperature dependent expression (42). The cumulative plastic strain and temperature fields predicted by the micromorphic crystal plasticity model with linear thermal softening are shown in Fig. 2a and 2b, respectively. The temperature evolution due to adiabatic heating is considered as in the case 2 presented in section 2.2, cf. Eq. ( 40). The comparison of the FE solution for γ χ variation with the approximate analytical solution obtained from Eq. (C.12) is displayed in Fig. 2c at F12 = 0.01. The analytically calculated and numerically simulated width of the deformation zone is 2.6λ, which is equal to the value obtained with linear strain softening. This is due to the fact that the temperature softening modulus H T has been chosen so that the equivalent modulus H is the same as the softening modulus used in Section 3.1. The approximation of τ 0 by τ0 in the analytical solution does not lead to significant differences compared to the full FE solution, due to the fact that the temperature changes remain limited, see Fig. 2b. The limited heating was however sufficient to trigger plastic strain localization.

This study shows that the analytical solution initially developed for the rate-independent case for the linear strain softening can be used in the linear thermal softening case after establishing a relation between the slope of the linear variation of the CRSS with respect to temperature, H T , and an equivalent linear strain softening modulus H. Furthermore, the FE implementation with linear strain, and thermal softening has been validated by means of this analytical solution.

Application to single crystals hat-shaped specimens

This section presents the application of the proposed thermo-mechanical micromorphic constitutive framework to single crystal hat-shaped specimens. The aim is to investigate the effects of initial crystal orientation on the formation and orientation of adiabatic shear bands. The material behavior considered in the simulations is elastic-perfectly plastic, and the material parameters correspond to nickel-based super-alloy Inconel 718. Furthermore, the temperature evolution due to adiabatic heating is considered as in the case 2 presented in section 2.2 (Eq. ( 40)). 
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The outline of this section is as follows. The temperature-dependent material parameters of Inconel 718 are summarized in section 4.1. The criteria for the selection of gradient parameters (A and H χ ) are given in section 4.2. Then, the geometry, boundary conditions and considered crystal orientations are presented in section 4.3. In section 4.4, mesh sensitivity analysis is performed with the classical and micromorphic crystal plasticity models. Results and discussion follow in section 4.5.

Material properties of Inconel 718

The temperature-dependent material parameters considered in this paper correspond to Nickelbased superalloy Inconel 718 in a large temperature range. The characterization of high strain rate compressive loading behavior within a wide range of temperature for Inconel 718 was performed in [START_REF] Iturbe | Mechanical characterization and modelling of inconel 718 material behavior for machining process assessment[END_REF]. In this paper, the material properties investigated are in the temperature range of 294 -1323 K, close to those found in machining at high strain rates (1 -100 s -1 ). The stress-strain behavior of Inconel 718 in the temperature range of 294 -1323 K (strain rate = 1s -1 ) and variation of the yield strength (YS) and ultimate tensile strength (UTS) with respect to the temperature are shown in Fig. 3a and Fig. 3b, respectively. In general, the flow stress of Inconel 718 increases with increasing strain rate and decreasing temperature. It can be seen from Fig. 3b that the strength of the material decreases with increasing temperature at a specified strain rate. This thermal softening behavior is not very noticeable until the temperature of 923 K.

The material parameters τ 0 , K, and n are identified against the experimental stress-strain curves obtained from the work of [START_REF] Iturbe | Mechanical characterization and modelling of inconel 718 material behavior for machining process assessment[END_REF] with simple tension tests performed on a single Gauss point using the classical crystal plasticity model presented in section 2.1. The material constants used in the numerical simulations are presented in Table 3. Moreover, the material parameters τ 0 , K, and n are introduced as functions of temperature in the present simulations as given in Table 4.

Linear interpolation is used for temperature values other than those listed in the table. For simplicity, elasticity moduli are taken as temperature independent since their variation is not the main driving force for shear banding. A typical value of 1550 K is considered for the melting temperature.

The thermodynamically consistent framework of the constitutive equations for the micromorphic crystal plasticity model presented in this work can predict a more realistic temperature rise in line with the experimental measurements in the case of elasto-viscoplastic material behavior. With con- sideration of strain-hardening, the stored energy rate term will contribute to temperature evolution under adiabatic conditions, see Eq. (39). It is common practice to assume a constant value 0.9 of the Taylor-Quinney parameter. However, in reality, its value can be less than 0.9. This framework with work-hardening will allow for evolving Taylor-Quinney parameters predicted by suitable free energy density functions. The present simulations are however limited to no-hardening crystals for the sake 305 of simplicity. Evolution equations for dislocation densities were used in the micromorphic model by [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. application to strain localization and void growth in ductile metals[END_REF] and could also be considered in the hat-shaped specimen tests.

Selection of the gradient parameters A and H χ

The characteristic length scale emerges in the development of shear bands and is related to their width. The width of the shear band is finite and set by the material microstructure. In general, this characteristic length scale differs depending on the specific localization pattern observed for the particular boundary-value problem considered. The width of the shear band exhibited by the solution of the multislip boundary-value problems is generally linked to the characteristic length scale c defined as

c = A(H + H χ ) |H|H χ , (47) 
Table 4: Temperature dependent material parameters used in the single crystalline and polycrystalline hat-shaped specimen simulations. These parameters are related to the strain rate range of 0.1 s -1 to 1 s -1 .

Temperature (K) τ 0 (MPa) K (MPa.s This definition is taken from the simple localization analysis of Appendix C and involves the coupling modulus H χ , the higher order modulus A, and the strain softening modulus H. Moreover, the size effects in crystal plasticity occur at a scale ranging from hundreds of nanometers to a few tens of microns. This sets bounds for the values of the chosen characteristic length scale of the model.

Usually, the coupling modulus H χ is chosen large enough so that the cumulative plastic strain γ cum and microslip variable γ χ almost coincide. In that case, the micromorphic model can be regarded as an actual strain gradient plasticity model. On the other hand, the micromorphic model response saturates for smaller sizes if the chosen value of H χ is not large enough as demonstrated for single crystal microwire torsion test simulations in [START_REF] Scherer | Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modelling and simulation[END_REF] and in polycrystal simulations when d avg is of the order of or smaller than c [START_REF] Cordero | Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals[END_REF]. When the average grain size d avg c , strain gradient effects vanish and the deformation field predicted by the micromorphic crystal plasticity model is almost identical to that of the classical crystal plasticity model. The gradient parameter A controls the width of the shear band in strain localization problem. Based on these requirements, the gradient parameters A and H χ are chosen such that the width of formed shear band in the single crystal simulations remains always smaller than horizontal shift of the corners which is 0.1 mm. On the other hand, the gradient parameters are such that c is of the order of the smallest grain size to be considered in the shear region in polycrystalline simulations. Two values of the gradient parameter A, 0.004 N, and 0.04 N are chosen for the analysis which satisfy the aforementioned conditions. Moreover, the selected value of H χ is 10 3 MPa. It has been checked to be high enough to get values of e p sufficiently close to zero, and in the mean time small enough to avoid numerical problems associated with ill-conditioned matrices in the presence of penalty terms.

Simulation setup, slip systems, and initial crystal orientations

In the first part of the study, shear tests of single crystal hat-shaped specimens are performed to investigate the development of ASB in the post-localization regime. The shape and geometry of the hat-shaped specimen promote shear failure even in materials which are not sensitive to shear localization [START_REF] Peirs | The use of hat-shaped specimens for dynamic shear testing[END_REF]. A symmetric hat-shaped specimen under plane strain condition with one element along the thickness of 0.025 mm is considered for the study. In practice, axi-symmetric geometries are often used but their analysis would require too large 3D simulations in the case of polycrystals considered in the present work.

The geometry, dimensions, and the applied boundary conditions of the specimen are shown in Fig. 4.

The height of the shear zone is h = 1 mm. The corners of the shear region are rounded with a radius of R = 0.05 mm. Rounded corners allow for the reduction of stress concentration and postpone strain localization [START_REF] Peirs | The use of hat-shaped specimens for dynamic shear testing[END_REF]. Note that the geometry is such that there is an horizontal shift of 0.1 mm between the two corners, see Fig. 4. The FE mesh of this geometry is made of 20 node brick elements with reduced integration (C3D20R). The macroscopic strain rate which the specimens are subjected to in the numerical simulations is defined a ∆U/h∆t, where ∆U is the relative displacement linearly applied during the test duration ∆t. It has the value 0.1 s -1 .

The five different initial crystal orientations investigated in the study are given in Table 5. The crystal orientations are defined with respect to the basis frame e 1 e 2 e 3 , with e 2 being in the direction of applied load and e 3 in the direction normal to the plane. For instance, the single crystal orientation

[100] -[010] -[001] is such that the axes of the specimen are

e 1 = [100] e 2 = [010] e 3 = [001],
as shown in Fig. 4. For the sake of simplicity, crystal orientations are represented only by the basis plane e 1e 2 (see Table 5) in the following sections. The definition of the octahedral slip systems in FCC lattice structure is specified in Table 6.

Mesh sensitivity analysis

Three distinct mesh discretizations in the shear region with 66720, 88560, and 135540 nodes shown in In contrast, the load-displacement curves with the micromorphic crystal plasticity model for three discretizations are almost the same and converge upon mesh refinement as shown in Fig. 6b. The cumulative plastic strain fields and corresponding deformed geometries for the three discretizations with the classical and the micromorphic crystal plasticity models are shown in Fig. 7a and7b, respectively. The formed shear bands width with the classical crystal plasticity model exhibits wellknown pathological mesh dependency, which always collapses to one element size irrespective of the mesh size. In contrast, with the micromorphic crystal plasticity model, the width of the formed shear band is finite and independent of used spatial discretization. This suggests that the 88560 nodes in the shear region are sufficient to produce mesh-independent results. However, discretization with 135540 nodes in the shear region is used for further investigations.
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Results and discussion

Slip system activity

The activated slip systems for different initially oriented crystals are listed in As the deformation becomes unstable and the shear band is fully formed, the plastic strain within the shear band increases with further deformation, but the gradient parameter A limits the width of the shear band. Fig. 12 show the γ cum variation along the node line crossing the shear region of Fig. 4 when the shear band is fully formed for different initial crystal orientations. The band width w is defined as the width of the shear region surrounding the band center over which the cumulative plastic strain remains larger than 10% of the its peak value [START_REF] Batra | Effect of viscoplastic relations on the instability strain, shear band initiation strain, the strain corresponding to the minimum shear band spacing, and the band width in a thermoviscoplastic material[END_REF]). Moreover, the observed width of the shear band is also orientation-dependent. The observed widths of the shear band from 12b). In addition, the predicted temperature fields and variation of temperature across the node line crossing the shear region is shown in Fig. 11 and 13. The peak temperature is observed at the center of the shear band.

Lattice rotation fields

Non-homogeneous plastic strain fields are usually accompanied with significant lattice rotation.

The non-uniform lattice rotation in strain localization problems results in a local geometrical softening of the slip plane with which the shear band is aligned according to [START_REF] Chang | Lattice rotations and localized shearing in single crystals[END_REF][START_REF] Lisiecki | Lattice rotations, necking and localized deformation in fcc single crystals[END_REF]. Shear band formation is therefore possible even in work-hardening materials due to such geometric softening [START_REF] Dillamore | Occurrence of shear bands in heavily rolled cubic metals[END_REF]. Strain softening and non-homogeneous lattice rotations induce instabilities in the plastic deformation. The formation of deformation bands in crystalline materials is very often associated with lattice rotations. The lattice rotation angle φ can be measured mm, 0.07 mm, and 0.05 mm, respectively.

Application to polycrystalline hat-shaped specimens

In this section, the micromorphic crystal plasticity model is applied to study the ASB formation in polycrystalline hat-shaped specimens. The single crystal constitutive behavior used in the numerical simulations is elastic-perfectly plastic and involves the same parameter values as in the previous sections. The material parameters used in the simulations are given in Table 3 and4. First, orientation dependency of the shear band formation is investigated. Next, the grain size effect is predicted in the isothermal case. Then, the effect of adiabatic heating on the resulting load is evaluated for the considered polycrystalline aggregates. The temperature evolution due to adiabatic heating is computed using the expression in case 2 presented in section 2.2 (Eq. ( 40)). Finally, the grain size effect on shear band width is predicted by the micromorphic model.

Polycrystal generation and finite element meshing

Polycrystalline aggregates generated by the Voronoi tessellation using the polycrystal generation package Neper [START_REF] Quey | Optimal polyhedral description of 3D polycrystals: Method and application to statistical and synchrotron X-ray diffraction data[END_REF] are shown in Fig. 17 and 18. The application of Voronoi tessellation to create an actual geometry with the grains is a powerful tool to predict grain size effects, for example on the overall mechanical response of the material under deformation. Two polycrystalline aggregates, namely the coarse-grained and fine-grained with an average grain size of 0.80 mm and 0.15 mm, respectively, are generated. The smallest grain size in the shear region of the generated polycrystalline aggregates is 0.38 mm and 0.10 mm, respectively. Moreover, the pole [START_REF] Bachmann | Texture analysis with MTEX-Free and Open Source Software Toolbox[END_REF].

Mesh independent numerical results are ensured using fine enough mesh size within the grains of the shear region combined with the use of the micromorphic crystal plasticity model. Meshing is performed using an open-source package Gmsh [START_REF] Geuzaine | Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities[END_REF]. A bottom-up approach is used for the meshing, i.e., in the order of 0D, 1D, and 2D entities (i.e., vertices, edges, and polygons)

for the 2D simulations under plane strain conditions [START_REF] Quey | Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing[END_REF].

The applied boundary conditions in the present polycrystalline simulations were described in section 4.3. In addition, each realization of polycrystalline aggregate is assigned with different random crystal orientations. No special interface condition is applied to grain boundaries. The interface conditions arise from balance equations in the continuum model: Continuity of the displacement vector components, and continuity of the traction vector components at least in the weak form according to the finite element method.

In the present work, the microslip γ χ is assumed to be continuous at the interface. The surface traction (T ) and generalized surface traction (M ) in Eq. ( 21) are also continuous. There are alternative interface conditions like the microhard conditions assuming vanishing microslip at the boundaries, and microfree interface conditions enforcing vanishing generalized (higher order) tractions at the grain boundaries. The former and latter grain boundary conditions respectively provide upper and lower values of the overall response of the polycrystal [START_REF] Gurtin | Boundary conditions in small-deformation, single-crystal plasticity that account for the burgers vector[END_REF][START_REF] Bargmann | Modeling of polycrystals with gradient crystal plasticity: A comparison of strategies[END_REF]. However, these two interface conditions are not applicable to all sorts of interface behavior.

One approach to obtain interface behavior inbetween these two extreme conditions is by introducing interface energy as in [START_REF] Aifantis | The role of interfaces in enhancing the yield strength of composites and polycrystals[END_REF]. The continuity requirements chosen in the present work also provide intermediate values for the polycrystal response. More general interface conditions have been proposed allowing for the transition from microhard conditions to microfree (or constant generalized tractions) once a threshold is reached at the grain boundary [START_REF] Wulfinghoff | A gradient plasticity grain boundary yield theory[END_REF]. In the case of a plastically deforming grain and an elastic neighboring grain, the micromorphic model leads to a smooth transition of the microslip variable γ χ to zero in a boundary layer in the elastic phase. This means that the amounts of slip are zero in the elastic grain but it is not necessarily the case for the micromorphic variable. This situation is more complicated to describe in a strict strain gradient crystal plasticity model. In contrast, in the micromorphic approach, the slip variables are discontinuous whereas the microslip is continuous. This situation was discussed in [START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF].

Results and discussion

Grain orientation dependency of the shear band

The effect of grain orientations on the shear band predicted by the numerical simulations is investigated first for polycrystalline aggregates subjected to isothermal deformation using the micromorphic crystal plasticity model. Two distinct crystal orientation distributions are assigned to the grains in the shear region, namely the orientation 1 and orientation 2. The realizations of the coarse-grained and fine-grained polycrystalline aggregates with corresponding pole figures are shown in Fig. 19a and 19b, respectively. The predicted load-displacement curves for the coarse-grained and fine-grained polycrystalline aggregates are given in Fig. 20a and20b, respectively. As shown in these figures, the resulting load required to deform the orientation 2 in both polycrystalline aggregates is greater than the orientation 1, which indicates that the development and propagation of the shear band highly depends on the orientation of the grains crossed by the bands, grain boundaries acting as obstacles to shear band propagation. In orientation 1 case, the orientations of the grains in the shear region are such that they favor plastic flow and subsequent shear band formation compared to orientation 2. Furthermore, less orientation dependency is observed in the fine-grained polycrystalline aggregates compared to the coarse-grained polycrystalline aggregates (see Fig. 20b). The formed shear bands are shown in Fig. 21. More significant strain localization is observed in orientation 1 than in orientation 2. This indicates that some grains in orientation 1 represent stronger obstacles to shear band transmission from grain to grain. This effect is reduced when a larger number of grains are available along the shear band path.

Grain size effect in the polycrystalline hat-shaped specimens

There are mainly two types of size effects to be considered, which are responsible for the increased strength of polycrystalline aggregates compared to single crystals, namely the 'specimen size' effect and 'grain size' effect [START_REF] Armstrong | On size effects in polycrystal plasticity[END_REF]. The specimen size effect occurs when there are few grains in the specimen cross-section. It is mainly related to the orientation dependency of the crystal plastic flow, as demonstrated in the previous subsection about the influence of number of grains along the shear band path. On the other hand, the 'grain size' effect occurs when there are sufficiently many grains in the specimen cross-section. In addition to the orientation dependence of the plastic flow within the grains, internal stress concentration takes place at the grain boundaries and causes yielding and subsequent plastic flow [START_REF] Armstrong | On size effects in polycrystal plasticity[END_REF]. The well-known grain size effect in a polycrystalline material is the Hall-Petch size effect, which indicates that the yield strength of material is inversely proportional to the square root of grain size [START_REF] Hall | The deformation and ageing of mild steel: III discussion of results[END_REF][START_REF] Petch | The cleavage strength of polycrystals[END_REF]. Numerically, strain gradient plasticity models can be used to predict the grain size effects in polycrystalline materials, as done for instance in (Acharya and Beaudoin, 2000;[START_REF] Evers | Scale dependent crystal plasticity framework with dislocation density and grain boundary effects[END_REF][START_REF] Aifantis | The role of interfaces in enhancing the yield strength of composites and polycrystals[END_REF][START_REF] Borg | A strain gradient crystal plasticity analysis of grain size effects in polycrystals[END_REF].

In the present work, firstly, the grain size effect is studied in the isothermal case for polycrystalline hat-shaped specimens. The realizations of polycrystalline aggregates investigated are shown in Fig. of the formed shear band collapses to one element size (more precisely one Gauss point size, see Fig. 22a and22b). Therefore, the classical crystal plasticity models cannot be used to study strain localization problems in polycrystals. In contrast, the width of the formed shear band predicted by the micromorphic crystal plasticity model is finite, see Fig. 22c and22d. The normalized load-normalized displacement curves using the classical and micromorphic crystal plasticity models in the isothermal case are shown in Fig. 23. The predicted size effect is linked to the characteristic length scale c through the gradient parameters A and H χ as in Eq. ( 47). The micromorphic crystal plasticity model merely influences the hardening rate and does not affect the initial yield strength. This is because any gradient plasticity formulation based on a quadratic potential with respect to the gradient of plastic distortion cannot result in an increase in yield strength but only increases the hardening rate. The initial yield can be influenced by rank one potentials according to [START_REF] Wulfinghoff | Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures[END_REF] or using the recent approach by [START_REF] Steinmann | A novel continuum approach to gradient plasticity based on the complementing concepts of dislocation and disequilibrium densities[END_REF]. The grain size effect is associated with spatial strain gradients inside the grains because of the heterogeneous plastic deformation resulting from grain-tograin plastic strain incompatibilities. The grain boundaries act as obstacles to dislocation motion, and the strain gradient-induced GNDs pile up at grain boundaries. In addition, with the decrease in grain size, the area at the grain boundaries with GNDs density increases and leads to increased local stresses and of the resulting load. The larger number of grain boundaries in the shear region of the fine-grained polycrystalline aggregates obstructs the initiation and subsequent plastic flow and results in a higher resulting load.

Moreover, the effect of grain size on the load-carrying capacity subjected to adiabatic heating condition is now studied. Simulations are performed with two different values of the gradient parameter A, namely 0.004N, and 0.04N. The corresponding load-displacement curves for the realizations of the coarse-grained and fine-grained polycrystalline aggregates are given in Fig. 24a, 24b and Fig. The measurement of the shear band width along one single node line may not be sufficient in polycrystalline simulations. Therefore, the surface of the elements satisfying a specific criterion is calculated using the post-processing technique. The surface of the elements having cumulative plastic strain more than 10% of the peak value is measured. Finally, the width of the shear band w is calculated by dividing the surface of the band by the shear zone height h (see section 4.3 for specimen dimensions). The obtained values of the shear band widths are given in Table 8. The two definitions of shear band with provide similar results. Typical values of 50 micron (resp. 100 micron) are found for A = 0.004 N (resp. A = 0.04 N) irrespective of the grain size.

The present simulations are limited to adiabatic conditions although it is well-known that heat conduction can also contribute to the band structure [START_REF] Lemonds | An analysis of shear band development incorporating heat conduction[END_REF][START_REF] Medyanik | On criteria for dynamic adiabatic shear band propagation[END_REF][START_REF] Mcauliffe | Mesh insensitive formulation for initiation and growth of shear bands using mixed finite elements[END_REF]Wcis lo and Pamin, 2017a,b). It is worth checking the typical lengths associated with heat conduction under the strain rate conditions of the simulations. The characteristic length of heat diffusion during a time interval t can be estimated as kt/ρC p . The parameter values considered in the work and time interval of one second result in diffusion distances of the order of 1 mm. This shows that heat conduction induced length scale is in competition with the microstructure related one. Adiabatic conditions are therefore a strong assumption in the present simulations. This pleads for coupling the present model to heat conditions in future work. This also strongly depends on the strain rate and grain size ranges in the simulations. The diffusion term in heat equation has a regularizing effect even though the involved length scales are sometimes too small for efficient FE modeling, as discussed in (Wcis lo and Pamin, 2017a). However, the strain gradient plasticity model should not be solely seen as a regularization method. It also introduces in the modeling microstructure aspects related to dislocation activity like pile-up formation and ensuing grain size effects, as studied in the present work. As mentioned in the introduction, [START_REF] Zhu | On the role of strain gradients in adiabatic shear banding[END_REF]; [START_REF] Tsagrakis | On the effect of strain gradient on adiabatic shear banding[END_REF] analytically derived two characteristic lengths emerging from the coupling of strain gradient plasticity. The first one is related to the ratio of the strain gradient plasticity parameter and the hardening modulus. The second one involves the heat conductivity and strain gradient plasticity parameters. We have evaluated these length scales for the parameter values used in the present work. The second length scale is found to be close to 100 micron which confirms the importance of heat conduction and the competition with the microstructural length.

Conclusions

The numerical simulation work presented here was intended to provide an insight into the mechanism of strain localization in single and polycrystalline FCC metallic materials under adiabatic conditions. The main findings obtained in this contribution can be summarized as follows:

1. A thermodynamically consistent constitutive framework for the micromorphic crystal plasticity model was used to derive temperature evolution under adiabatic conditions.

2. The micromorphic crystal plasticity model pursues the objective of regularization of the adiabatic shear band formation. 4. The grain size effect, namely the finer the grain size the higher the stress, was illustrated in the response of polycrystalline FCC metallic materials using the micromorphic crystal plasticity model subjected to isothermal deformation. It is shown that the micromorphic crystal plasticity model merely influences the hardening rate but does not affect the initial yield strength.

A = 0.004N ( 
5. The resulting load and the formation of shear band is highly orientation dependent in polycrystalline simulations in the case of coarse grained polycrystal. The favorable orientation of the grains in the shear region results in decreased resulting load and ease of shear band formation.

Furthermore, wide dispersion of the resultant load and width of the shear band is observed in different realizations of the coarse grained polycrystalline aggregates. The purpose of the present work was not the analysis of the full ASB formation process which includes multiscale shear banding, heat conduction and dynamic effects. The objective is the analysis of anisotropic effects induced by crystal plasticity on strain localization phenomena under adiabatic conditions. It contains effects relevant to ASB formation but surely not all of them. Significant physical aspects of strain localization in crystalline solids under adiabatic conditions were highlighted, namely the anisotropic character of crystal plasticity, the associated microstructure effects and their consequence on shear band path and width. These specific aspects have not been studied in the previous literature and can give ideas for the design of shear banding resistant crystallographic textures by appropriate grain boundary engineering. Especially the shear band path and width were carefully described in single and polycrystals with proper account of hardening induced by GNDs and grain boundary and grain size effects. It is possible to predict stronger grain size effects in the polycrystalline simulations by considering larger number of grains in the shear region of the hat-shaped specimen.

However, due to high computational costs, only two grain sizes were considered in the present work.

Moreover, work-hardening was not included in the simulations to clearly isolate the micromorphic and grain size effects from classical hardening. The consideration of dislocation-based hardening in the future will require the evaluation of stored energy in order to evaluate temperature evolution under adiabatic conditions. It is common practice to consider a constant value 0.9 of the Taylor-Quinney parameter. However, the experimental evidence, for instance, [START_REF] Kapoor | Determination of temperature rise during high strain rate deformation[END_REF][START_REF] Rittel | On the dynamically stored energy of cold work in pure single crystal and polycrystalline copper[END_REF], showed that, in reality, its value can be much less than 0.9. The thermodynamically consistent framework of the constitutive equations for the gradient crystal plasticity (reduced-order micromorphic) model presented in this work must be extended to allow for evolving Taylor-Quinney parameters predicted by suitable free energy density functions. It is hoped that the predictions made in the present work will serve as incentives to perform experimental tests on single and oligo-crystalline hat-shaped specimens to precisely determine the relation between ASB width and grain size. The analysis of such tests may require the extension of the present computational approach to more realistic 3D computations.

Heat conduction was neglected in the present work although it plays a significant role at the grain scale for the strain rates and grain sizes considered in this work. Extension of the work considering the coupling of gradient crystal plasticity and heat conduction is therefore necessary in the future to highlight the competition between lengths emerging from microstructure and thermal effects. In addition, grain boundary sliding and decohesion are additional important deformation and damage mechanisms at high temperatures. They are not included in the present work but this is possible as demonstrated in [START_REF] Musienko | Damage, opening and sliding of grain boundaries[END_REF]. Coupling strain gradient crystal plasticity and grain boundary sliding/opening remains a challenging task.
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Furthermore, the variation of entropy with respect to time is computed as
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Then the right hand side of (37) becomes Furthermore, equilibrium requires the shear stress component to be uniform which implies that the resolved shear stress τ is also invariant along X 1 , X 2 and X 3 .
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The quasi-equality between the microslip variable γ χ and the accumulated plastic strain γ is ensured by the coupling modulus H χ . The yield condition including the linear strain softening can be written 

A ∂ 2 γ χ ∂X 2 2 - HH χ H + H χ γ χ + H χ H + H χ (|τ | -τ 0 ) = 0. (C.9)
In the case of linear strain softening, it can be shown that (C.9) takes the form

∂ 2 γ χ ∂X 2 2 - 2π λ 2 γ χ = - 2π λ 2 κ, (C.10)
where λ is a characteristic length and κ a constant. They are defined as follows:

λ = 2π A(H + H χ ) |H|H χ , κ = λ 2π 2 H χ A(H + H χ ) (|τ | -τ 0 ). (C.11)
The differential equation in (C.10) governing γ χ is only valid in the region where plastic loading takes place which can be identified with the interval X 2 ∈ [ -λ 2 , λ 2 ]. This interval is the strain localization zone and outside elastic unloading takes place. The solution is of the form γ χ (X 2 ) = a 1 cos 2π X 2 λ + a 2 sin 2π X 2 λ κ.

(C.12)

where a 1 , a 2 are integration constants. For symmetry reasons, γ χ (X 2 ) = γ χ (-X 2 ) which requires that a 2 = 0. At the elastic/plastic interfaces, i.e at X 2 = ± λ 2 , continuity of microslip γ χ and of the generalized stress normal to the interface M • X 2 must hold, therefore (C.17)

γ χ ± λ 2 γ ± λ 2 = 0, (C.13) M ± λ 2 • X 2 = A dγ χ dX 2 

Fig. 1 :

 1 Fig. 1: (a) Contour plot of cumulative plastic strain γcum in a single-slip simple shear test with linear strain softening using the micromorphic crystal plasticity model (H = -45MPa, A=0.04N). (b) Comparison of FE solution with the analytical solution for the variation of γχ along X 2 at F12 = 0.01.

Fig. 2 :

 2 Fig. 2: Contour plots of (a) cumulative plastic strain γcum, and (b) temperature in the single-slip simple shear test with thermal softening using the micromorphic crystal plasticity model (T i =923K, A=0.04N) subjected to adiabatic heating. (c) Comparison of the FE solution obtained using the micromorphic crystal plasticity model with the analytical solution for the variation of microslip variable γχ along X 2 at F12 = 0.01.

Fig. 3 :

 3 Fig.3: Influence of the temperature on (a) stress-strain behavior (b) yield strength and ultimate tensile strength of the Inconel 718 when compressed at a strain rate of 1s -1[START_REF] Iturbe | Mechanical characterization and modelling of inconel 718 material behavior for machining process assessment[END_REF].

Fig. 4 :

 4 Fig. 4: Hat-shaped specimen: (a) geometry, boundary conditions and FE mesh (all dimensions are in mm). (b) Zoom at the shear region: mesh in the shear region; the black line on the figure denotes a line of nodes of the FE mesh crossing the shear region along which the cumulative plastic strain and temperature fields will be plotted.

Fig. 5 :

 5 Fig. 5: Three discretizations in the shear region used for the mesh sensitivity analysis with (a) 66720, (b) 88560, and (c) 135540 nodes.

Fig. 6 :Fig. 7 :

 67 Fig. 6: Load-displacement curves for [001] -[110] initially oriented crystal subjected to adiabatic heating (T i =923K) for three discretizations using the (a) classical crystal plasticity model (b) micromorphic crystal plasticity model (A = 0.004N).

Fig. 8 :

 8 Fig. 8: Load-displacement curves for five different crystal orientations subjected to adiabatic heating using the micromorphic crystal plasticity model (T i = 923K, A = 0.004N). Circles on the plot are corresponding to the normalized displacement at which cumulative plastic strain, temperature and lattice rotation fields shown next are plotted.

Fig. 12a in

  Fig. 12a in symmetric crystal orientations [100] -[010], [110] -[001] and [001] -[110] using gradient parameter A of 0.004N are 0.05 mm, 0.075 mm and 0.08 mm, respectively. On the other hand, for both asymmetric crystal orientations [ 11 2] -[111] and [111] -[ 11 2] the observed width is 0.075 mm (see Fig.12b). In addition, the predicted temperature fields and variation of temperature across the

Fig. 9 :

 9 Fig. 9: Contour plots of cumulative plastic strain at different stages showing the shear band formation with adiabatic heating using the micromorphic crystal plasticity model ([001] -[110] crystal orientation, T i = 923K, A = 0.004N) at normalized displacements of (a) 0.04 mm/mm, (b) 0.045 mm/mm, (c) 0.050 mm/mm, and (d) 0.055 mm/mm.

  Fig. 10: Contour plots of cumulative plastic strain γcum in the shear region with adiabatic heating using the micromorphic crystal plasticity model (T i = 923K, A = 0.004N) for (a) [100] -[010], (b) [110] -[001], (c) [001] -[110], (d) [ 11 2] -[111], and (e) [111] -[ 11 2] initially oriented crystals. The fields are shown at loading steps corresponding to the circles in Fig. 8. Compensation of the loading direction by Burgers vector of the activated slip systems is also shown.

Fig. 11 :Fig. 12 :

 1112 Fig. 11: Contour plots of temperature using the micromorphic crystal plasticity model (T i = 923K, A = 0.004N) in the shear region for (a) [100] -[010], (b) [110] -[001], (c) [001] -[110], (d) [ 11 2] -[111], and (e) [111] -[ 11 2] initially oriented crystals. The fields are shown at the loading steps corresponding to the circles in Fig. 8.

Fig. 13 :Fig. 14 :

 1314 Fig. 13: Temperature variation along the node line crossing the shear region for (a) symmetric, and (b) asymmetric crystal orientations. The variation of temperature across the shear band is plotted at loading steps corresponding to the circles in Fig. 8.

Fig. 15 :Fig. 16 :

 1516 Fig. 15: Contour plots of cumulative plastic strain γcum using the micromorphic crystal plasticity model (T i = 923K) with three different values of (a) A = 0.04N, (b) A = 0.02N, and (c) A = 0.004N. Fields are shown for the [001] -[110] initially oriented crystal subjected to adiabatic heating. Fields are shown at a normalized displacement of 0.06 mm/mm

Fig. 17 :

 17 Fig. 17: Different realizations of the coarse-grained polycrystalline aggregates and corresponding pole figures: (a) Realization 1, (b) realization 2, and (3) realization 3. Colors represent individual grains and the red points in pole figures denote the orientation assigned to the grains in the shear region.

Fig. 18 :

 18 Fig. 18: Different realizations of the fine-grained polycrystalline aggregates and corresponding pole figures: (a) Realization 1, and (b) realization 2. Colors represent individual grains and the red points in the pole figures denote the orientation assigned to the grains in the shear region.

Fig. 19 :Fig. 20 :

 1920 Fig. 19: Polycrystalline aggregates with two distinct orientation distributions assigned to the grains in the shear region (orientation 1 and orientation 2) for the (a) coarse-grained, and (b) fine-grained with corresponding pole figures. The red points in the pole figure denote the orientations assigned to the grains in the shear region

  24c

Fig. 21 :Fig. 22 :

 2122 Fig. 21: Contour plots of cumulative plastic strain γcum using the micromorphic crystal plasticity model (A = 0.04N) for the (a) coarse-grained polycrystalline aggregates assigned with orientation 1, and (b) orientation 2. (c) The finegrained polycrystalline aggregates assigned with orientation 1, and (d) orientation 2. Fields are shown at the normalized imposed displacement of 0.06 mm/mm under isothermal conditions (T i =923K). For clarity the fields are shown with and without the finite element mesh.

Fig. 24 :

 24 Fig. 24: Load-displacement curves using the micromorphic crystal plasticity model for various realizations of the polycrystalline aggregates subjected to adiabatic heating conditions: (a) the coarse-grained polycrystalline aggregates with A = 0.004N, and (b) A = 0.04N, (c) the fine-grained polycrystalline aggregates with A = 0.004N, and (d) A = 0.04N, (e) Average load-displacement curves with A = 0.004N, and (f) A = 0.004N.

Fig. 25 :Fig. 26 :Fig. 27 :

 252627 Fig. 25: Contour plots of cumulative plastic strain γcum in the coarse-grained polycrystalline aggregates subjected to adiabatic heating using the micromorphic crystal plasticity model (A = 0.004N and A = 0.04N) for three different realizations (a) realization 1, (b) realization 2, and (c) realization 3. Fields are shown at a normalized displacement of 0.052 mm/mm.

6.

  The relation between observed shear band widths, intrinsic length scale of the micromorphic model and grain size was analyzed. It shows that the intrinsic length scale mainly controls the shear band width and that grain boundaries serve as obstacles to ASB propagation thus controlling the intensity of strain localization.

  rate of temperature change is obtained by substituting previous equation into (37)Ṫ = Π ∼ M : L ∼ p + S γcumdiv q + rρ 0 ∂Ψ ∂ζ ζ -T -E ∼ the :

  Fig. C.28: Single crystal trip with a central defect (red line).

  where thermal expansion is set to zero in the present isothermal example. Moreover, the Piola stressΠ ∼e in this instance is given byΠ ∼ e = Λ ≈ : E ∼ the Π e 12 (m ⊗ n + n ⊗ m ). (C.5)For small elastic deformations, the Piola and Mandel stresses coincide:Π ∼ M Π ∼ e .The resolved shear stress τ r on the single slip system is given byτ = Π ∼ M : (m ⊗ n ). (C.6)

2 =

 2 as follows:f = |τ | -(τ 0 + Hγ + H χ (γγ χ )) = 0 with H < 0.(C.7)A partial differential equation governing the microslip is given byA ∂ 2 γ χ ∂X 2 H χ (γ χγ). (C.8)Substituting (C.7) for γ into (C.8) leads to another form of the partial differential equation

  13), we have assumed that the penalty parameter H χ is high enough for γ χ and γ almost to coincide, i.e. e p 0. Combining (C.13) and (C.14) with (C.12) gives being the elastic shear modulus. From the yield condition given in (C.7), γ can be replaced by |τ |-τ0+Hχγχ H+Hχ in (C.16) and integration gives an expression for τ as a function of applied

Table 1 :

 1 Numerical values of material parameters used for the numerical simulation of simple shear test at the initial temperature of 923K. GPa 144.7 GPa 97.6 GPa 303 MPa -45 MPa 10 3 MPa 0.04N 0.073 mm 1.0 mm 1. The elasticity moduli correspond to a nickel-base superalloy at 923 K, see Abdul-Aziz and Kalluri

	C 11	C 12	C 44	τ 0	H	H χ	A	λ	L
	208.1								

  )

	0	0.006	0.012	0.019	0.025	0.032	0.038	0.044	0.051	0.057	0.063	0.070	0.076

Table 2 :

 2 Numerical values of the material parameters used in the simulations of single-slip periodic strip undergoing simple shear with thermal softening using the micromorphic crystal plasticity model.

	C 11	C 12	C 44	H χ	H T	T RT
	208.1 MPa 144.7 MPa 97.6 MPa 10 3		

Table 3 :

 3 Values of the material parameters used in the single crystalline and polycrystalline hat-shaped specimen simulations.

			C 11		C 12		C 44	H χ	A
			208.1 MPa 144.7 MPa		97.6 MPa	10 3 MPa	0.004 -0.04 N
			T RT		T i		ρ	C ε
			293K		923K		7.8 × 10 -6 kg mm -3 412 Jkg -1 K -1
		2000					
		1500					
	Stress (MPa)	1000					294K 673K 873K
							923K
		500					973K
							1073K
							1173K
							1323K
		0					
		0.0	0.1	0.2	0.3	0.4	0.5	0.6
					Strain		

Table 5 :

 5 Initial crystal orientations used in the single crystal hat-shaped specimen simulations.

Table 6 :

 6 Definition of the octahedral slip systems in the numerical model.

	Normal vector n	(111)	(1 11)	( 111)	(11 1)
	Slip direction m	[ 101] [0 11] [ 110] [ 101] [011] [110] [0 11] [110] [101] [ 110] [101] [011]

Table 7 :

 7 Slip systems activity inside the ASB in single crystal hat-shaped specimens.

	Crystal orientations	Activated slip systems
	[100]-[010]	B4,D1,A2,C3
	[110]-[001]	D6,A6,C3,C1
	[001]-[110]	B4,B2,D6,A6,C3,C1
	[ 11 2]-[111]	B4,B2,C3,C1
	[111]-[ 11 2]	B4,B2

Table 8 :

 8 Shear band width w measured along the node line crossing the shear region and using a post-processing method. The orientation of the formed ASB with respect to the loading axis is affected by the crystal initial orientation. [100] -[010] crystal orientation shows the stiffest response to ASB formation.

	coarse-grained	w (mm) (A = 0.004N)	w (mm) Post-processing (A = 0.004N)	w (mm) (A = 0.04N)	w (mm) Post-processing (A = 0.04N)
	Realization 1	0.05	0.042	0.12	0.12
	Realization 2	0.03	0.049	0.13	0.072
	Realization 3	0.12	0.065	0.15	0.11
	fine-grained				
	Realization 1	0.03	0.036	0.05	0.12
	Realization 2	0.03	0.033	0.05	0.098
	3.				

On the other hand, crystals initially oriented at [111] -[ 11 2] show the lowest tendency to shear band formation, and no evident shear banding is observed. Moreover, it is observed that the formed shear band width depends on the initial crystal orientation.

http://www.zset-software.com/

with appropriate choice of the orientation of slip direction vector m so that τ > 0.
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and 24d, respectively. The load-displacement curves exhibited by the different realizations of each polycrystalline aggregate with the same gradient parameter A are distinct from each other because of the assigned different random orientations and distinct shape of the grains in the shear region. A broader dispersion of the resulting loads is observed in realizations of the coarse-grained polycrystal aggregates (see Fig. 24a and24b) compared to fine-grained polycrystal aggregates (see Fig. 24c and24d). It is found that the average resulting load in fine-grained polycrystal aggregate remain below the coarse-grained polycrystal aggregate as seen from the average curves in Fig. 24e and24f. This is probably due to the insufficient number of realizations which does not allow for statistical representativity. The results also show that higher values of A parameters lead to a reduced softening of the overall curves.

Effect of grain size on the shear band width

In this section the grain size effect on the width of shear bands is studied under adiabatic heating conditions. In the present polycrystalline simulations, deformation is highly localized within the grains of the shear region. Moreover, the grain size in the shear region plays a crucial role in the shear band formation. The shear band is triggered at the corners of the specimen, and strongly heterogeneous plastic deformation takes place between the corners. Furthermore, it is observed that some grains exhibit a larger amount of shear, while other grains remain almost undeformed. The formation of the shear band in coarse-grained polycrystalline aggregates for the realizations 1 and 3 (Fig. 25a and25c) is restricted probably due to the unfavorable orientations of the grains in the shear region. In contrast, the shear band is easily formed in the realization 2 as seen from Fig. 25b.

The orientation dependency in the shear band formation is the main reason for the wide dispersion of the resulting loads observed in coarse-grained polycrystalline aggregates. In contrast, in fine-grained polycrystalline aggregates, plastic flow in some grains is limited because of their grain boundaries and the orientation of the neighboring grains, causing subsequent plastic flow in more favorable grains as seen from Fig. 26a. However, less orientation dependency of the grains in the shear region is observed in the fine-grained polycrystalline aggregates compared to coarse-grained (see Fig. 26a and26b). Fig. 27a and27b show the cumulative plastic strain γ cum variation along a node line crossing the shear region for the coarse-grained polycrystalline aggregates using gradient parameters A = 0.004 N and A = 0.04 N, respectively. Significant strain localization is observed for lower values of A, i.e., 0.004N compared to 0.04N. Fig. 27c and27d show the cumulative plastic strain variation along the node line crossing the shear region for fine-grained polycrystalline aggregates with A = 0.004N and A = 0.04N, respectively. The shear band width is defined by the following criterion: The region in which the cumulative plastic strain is larger than 10% of the peak value. The measured widths of the shear band for the coarse-grained and fine-grained polycrystalline aggregates with the gradient parameter A of 0.004N, and 0.04N are given in Table 8. A larger dispersion of the shear band width is observed in the coarse-grained polycrystal realizations compared to the fine-grained, in a way similar to the predicted resulting loads.

Appendix A. General equations of thermodynamics

The energy balance (first law of thermodynamics) with respect to the current configuration is written in the local form:

with D ∼ = (l ∼ +l ∼ T )/2 as the strain rate tensor, e the internal energy per unit mass and Q the heat supply per unit volume and unit time, which results from an external heat source r and heat conduction q

The second law of thermodynamics in the form of the local dissipation rate inequality with respect to the current configuration can be written as

where η is the entropy per unit mass and T is the absolute temperature. The Helmholtz free energy density function is introduced as

The Clausius-Duhem inequality is now expressed with respect to the reference configuration as

where Q is the heat conduction with respect to the reference configuration and given by

and ∇ X T is the Lagrangian gradient of temperature.

Appendix B. Expression for the temperature evolution

The expression for the temperature evolution can be derived by assuming Helmholtz free energy function as in Eq. ( 24):

Appendix C. Analytical reference solution for linear strain softening 695 Consider a periodic strip made of a thick rectangular plate of width W along the X 1 direction, length L along the X 2 direction, and thickness T along the X 3 direction (Fig. C.28). It is made of a single crystal material possessing a single slip system under simple shear conditions. The slip direction m and the normal to the slip plane n are respectively parallel to X 1 and X 2 . The strain rate sensitivity parameters n, K in Eq. ( 6) are chosen in such a way that the material response is almost rate-independent. A macroscopic deformation gradient F ∼ is applied such that

where ν is a periodic fluctuation of the displacement. The origin O of the strip is constrained such that

It is assumed that elastic deformations remain small in the absence of lattice rotation in the considered slip configuration, i.e., |F e 12 | 1 with

and therefore, the elastic Green-Lagrange strain tensor can be expressed as follows: