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Abstract
This work proposes a load allocation decision strategy based on deterioration prognostics
information for multi-stack fuel cell systems. The fuel cell deterioration is characterized by the overall
resistance value, as it carries the key aging information of a fuel cell. The fuel cell deterioration
dynamics is then modeled as an increasing stochastic process whose trend is a function of the
fuel cell output power. Combining system deterioration and fuel cell consumption, a multi-objective
optimization (MOO) based decision-making strategy is proposed to manage the operation of a multi-
stack fuel cell system. Based on this algorithm, the optimal operating power load is computed for
each stack. Finally, the performance of the proposed approach is compared to the case without
post-prognostics decision for a three-stack fuel cell system. The simulation results show that the
proposed post-prognostics decision-making strategy can manage fuel cell system operating in real
time by scheduling the optimal load allocation among stacks.
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Introduction
Around the world, actions are taken to fight against climate warming and air pollution. Furthermore, the
European ”Green Deal”1 set out a climate change action plan to reduce greenhouse gas emissions by at
least 55 % by 2030 to achieve climate neutrality by 2050. To achieve this goal, the wide application of
renewable and clean energy is recognized as one of the key solutions. Among solutions, Proton Exchange
Membrane (PEM) fuel cell, which uses hydrogen and oxygen as reactant gases and whose only product is
water, is regarded as a promising substitute for existing power devices. Nevertheless, the problem of fuel
cell durability remains one of the main obstacles to their widespread use2,3. To address this challenge,
Prognostic and Health Management (PHM) type approaches are proving to be effective4,5.

PHM is a combination of several processes to monitor, analyze, and diagnose fuel cell State of Health
(SoH). The main stages of PHM include: data acquisition and processing, SoH estimation, prognostics,
and decision-making. Prognostics is one of the key steps. Based on SoH estimation, the prognostic phase
predicts the system’s Remaining Useful Life (RUL)6. RUL carries vital information about a system and
the subsequent decision-making phase relies strongly on it. In summary, PHM deals with three main
issues: SoH estimation, RUL prediction, and decision-making strategy7.

Within these stages, the decision-making process is receiving increasing attention4. Indeed, its
development requires prior knowledge of the SoH and the RUL of the system under study. In the case of
fuel cells, the great complexity of fuel cell operation makes these steps difficult to carry out. This explains
why the development of a comprehensive PHM approach for fuel cell systems is challenging.

Fuel cells typically operate in multi-source power generation systems. Consequently, the decision-
making strategy consists in deciding the optimal energy distribution between the different devices. Li et
al.8 proposed an adaptive control strategy to prevent fuel cell from transient and rapid power changes.
In Wu et al.9, energy distribution is performed by solving a convex optimization problem minimizing
the overall energy costs of a hydrogen vehicle. However, the degradation of energy sources tends to
be neglected when designing an energy management strategy although it is very important to consider
it10. Yue et al.11 proposed a health-conscious energy management strategy based on prognostics-
enable decision-making for fuel cell hybrid electrical vehicle. The proposed approach focuses on energy
distribution based on post-prognostics decision-making strategy.

Currently, the application of multi-stack fuel cell systems has received growing research interest. In
fact, multi-stack configuration can help improving fuel cell system operation efficiency, extending system
lifetime as well as saving fuel costs12. Liu et al.13 have emphasized the importance of conducting
research work on multi-stack fuel systems. It has been shown in14 that multi-stack systems offer better
performance and reliability than single-stack ones due to higher flexibility. In15, a multi-stack structure
has been integrated into an energy microgrid and the simulation results of the model predictive controller
(MPC) proves the advantage of the multi-stack fuel cell configuration. On the other hand, optimal energy
management strategies have been developed to minimize fuel consumption in16,17. 18 proposed a post-
prognostic decision process to manage the energy distribution of a multi-stack system to improve their
lifetime.19 further use this model to build stacks allocation strategy on different application scenarios.
However, the estimation of the RUL is based on a deterministic deterioration model which limits the
interest of the proposed method, in the sense that it cannot capture all the randomness and variability of
the considered deterioration phenomena.

Overall, these research works show that multi-stack systems can improve the durability of fuel cells
by appropriately managing the distribution of energy in the system and that the decision process must
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be designed to allow optimal control actions. The decision-making strategy for energy distribution
in multi-stack systems can be formulated as a multi-factor optimization problem. Thus, Liu et al.20

developed a hierarchical multi-objective power management strategy to optimize both fuel cell life and
energy consumption. Indeed, since saving fuel consumption and decreasing system deterioration are
conflicting objectives, a multi-objective Optimization (MOO) technique is suitable for solving this kind
of problem21,22. An interest of this technique is that the final decision can change with time: at the
beginning, we can choose to minimize mainly fuel consumption, and after some time, the decision can
be changed to mitigate deterioration to achieve better performance.

The objective of this work is to improve the fuel cell system lifetime while considering the deterioration
and hydrogen consumption. This goal is achieved by building a load allocation-based decision strategy.
The main contribution of this work is to propose an original power distribution strategy based on post-
prognostics decision linking the control strategy with fuel cell deterioration. This work is the first step to
build a post-prognostics decision-making strategy to manage power distribution, fuel consumption, and
fuel cell deterioration. To do so, the approach used for describing the behavior of fuel cell deterioration
is based on stochastic modeling in order to take into account the uncertain phenomena related to this
complex process. More precisely, the load-dependent deterioration behavior is modeled using Gamma
stochastic process. The main problem consisting in minimizing both the consumption of hydrogen and
the effect of deterioration under the constraint of a load satisfaction is formulated as a multi-objective
problem with constraints. In order to solve this problem in a realistic amount of time, a methodology
based on artificial intelligence is used. The simulation results, based on the proposed strategy for post-
prognostic decision-making, show promising performances, which highlights the relevance of the global
approach.

To sum up, the contributions of this work to the issue of multi-stack fuel cell system management are
the following:

1. Proposing a load-dependent deterioration model based on Gamma stochastic process for the fuel
cell, taking the fuel cell stack overall resistance as a health indicator;

2. Developing an original post-prognostics based power allocation strategy to improve the system
lifetime and to reduce the fuel consumption of a multi-stack fuel cell, formulated as a multi-
objective optimization problem in a uncertain environment;

3. Proposing an approach based on an evolution algorithm to solve the considered multi-objective
optimization problem.

The rest of the paper is organized as follow. The working assumptions and model development are
presented first and in a second part, a post-prognostics decision-making approach is proposed to resolve
the optimal decisions. Instead of developing a management strategy based on deterministic formula, a
stochastic deterioration model of a fuel cell stack is developed based on the proposed health indicator.
Finally, the simulation results are discussed. The simulation results prove that the proposed strategy can
help to extend the system lifetime by 25%.
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Working assumptions and model development

Fuel cell system
Fuel cell deterioration The fuel cell is an electrochemical device that converts hydrogen and oxygen into
water heat and electricity through the following chemical reactions:

Anode : H2 → 2H+ + 2e−

Cathode : 1/2O2 + 2H+ + 2e− → H2O
(1)

To characterize fuel cell electrical performance, the polarization curve is one of the most widely used
techniques. Theoretically, if the Gibbs free energy generated in the reaction could be converted directly
into electricity without any loss, the fuel cell would be an ideal voltage generator. In practice, several
irreversible losses lower the output voltage. Crossover, activation, ohmic, and concentration losses are
considered as the four major irreversible losses. A typical fuel cell polarization curve is shown as Fig. 1.
For low current density, fuel cell voltage drop is dominated by activation losses. Then, at the middle range
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Figure 1. Fuel cell polarization curve with voltage losses.

of current density, the ohmic voltage losses are predominant. And at high current density, concentration
losses become dominant. To calculate the fuel cell voltage, a semi-empirical equation derived from the
Bulter-Volmer equation and taken from23 is used:

V = ncell (E0 −RI −A ln(I)−m1 exp (m2I)) (2)

where V is the stack voltage, ncell is the number of cells in the stack, I is the fuel cell current density.
E0 is the constant related to reversible potential, A is the Tafel parameter for oxygen reduction, R is
the overall resistance, m1 and m2 are constant related to the mass transport overpotential. All these
parameters can be estimated by fitting this equation to measured fuel cell polarization curves. The power
density load of a fuel cell stack L is then calculated through:

L = V I (3)
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Figure 2. Polarization curves 24 measured for a) Fuel cell stack 1; b) Fuel cell stack 2.

where V is the stack voltage and I is the current density.
The polarization curve is not only representative of the current SoH of the fuel cell, but also reflects

its deterioration. This can be seen in Fig. 2, which shows typically measured polarization curves for two
tested stacks at different periods taken from the IEEE 2014 data challenge24. The fuel cell stack 1 was
operated under nominal current load (70 A), and fuel cell stack 2 was operated with a quasi-dynamic
condition (nominal current with 7 A oscillations at a frequency of 5 KHz). It can be seen that the output
voltage decreases as the fuel cell stacks ages with time.

By fitting the initial polarization curves of the fuel cell of stack 1 at time 0 hour to polarization equation
Eq. (2), the initial parameters are calculated and summarized in Table 1. Then the initial electrical
performances are further calculated and listed in Table 2.

Table 1. Initial parameters fitting results for Eq. (2).

Parameters Values

E0 (V) 0.7971
R0 (Ω cm2) 0.1803
m1 (V) 2.9× 10−5

m2 (cm A−1) 0.009
A (V dec−1) 0.0265

Fuel cell health indicator To develop a prognostic approach, a proper health indicator of the fuel cell
has to be defined first25. This health indicator should be able to reflect fuel cell deterioration state
and be easily obtained from measurements. In the work done by Bressel et al.26, the parameters of
the polarization equation (Eq. (2)) have been estimated during all the tested period. The results prove
that the overall resistance values of the tested fuel cell are increasing by more than 50% during this
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Table 2. Initial electrical performances for fuel cell stack 1.

Operating load level Min Nom Max

Current density (A cm−2) 0.2 0.7 1
Voltage for one cell (V) 0.8037 0.6803 0.6168
Stack power density (W cm−2) 0.8035 2.3811 3.084

experiment. The electrochemical impedance spectroscopy27 and online estimating algorithms28,29 ensure
that resistance can be measured or estimated.

Hence, the overall fuel cell resistance R can be taken as a global health indicator, and this is the choice
we made in this work. However, the degradation is not only driven by time, and the way the fuel cell is
operating contributes to make the deterioration rate varying, as shown in30. To link fuel cell deterioration
with operating conditions, an empirical function is proposed.

To build this function, the nominal power load is considered to lead to the best-operating conditions
that deteriorate the least the fuel cells. On the contrary, operating conditions due to lower or higher power
load cause higher deterioration rates. Experimental works in31,32 showed that a high power load will
cause irreversible degradation in many parts of the stack, as for example, the electrolyte or the carbon
support in the catalyst layer. Similarly,33,34 proved that a higher deterioration rate is occurring during
fuel cell operation at high power load demand. On the other hand, fuel cell damages are even worse
when the fuel cell operates at low power35. To handle these properties, a parabola deterioration function
which represents the different deterioration rates of the fuel cell with respect to power load demand is
built (Fig. 3). As can be seen in this figure, the three typical operating conditions are directly depicted.
The minimal power, for which the deterioration rate is the highest, the nominal power, which presents
the lowest deterioration rate, and the maximal power for which the deterioration rate is high but less than
the minimal power. The deterioration rate function, denoted as D(L), is thus expressed as a function of
the operating power density L.

Fuel consumption rate Fuel consumption of a fuel cell system is also an important issue from an
economic point of view. This consumption is directly linked to the operation of the fuel cell, and more
precisely to its operating power. According to the chemical reactions (Eq. 1), the amounts of hydrogen
and oxygen consumed by the fuel cell are described as a function of operating current. The expression
of the required hydrogen consumption rate fH2

with respect to the stack current can be qualified by
Faraday’s law36:

fH2
=
ncell ·MH2

z · F
· Istack · λ (4)

where Istack,MH2
, z are stack current in A, molar mass of hydrogen, and number of electrons acting

in the reaction (Eq. (1)), respectively. F is the Faraday’s constant with a unit of C mol−1. λ stands for
hydrogen excess ratio.

Thus, the hydrogen consumption rate is proportional to the stack current. Besides, hydrogen
consumption is also caused by the auxiliary components in fuel cell systems, such as air compressor,
humidifiers for example. Several experimental or simulation-based research works proved that a quadratic
polynomial equation can be applied to represent the hydrogen consumption rate with respect to the
operating power16,17,37. Based on these works, the hydrogen consumption rate of a fuel cell stack is
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Figure 3. Dependence of fuel cell deterioration rate (overall resistance) on power load demand

expressed as follows:
fH2(L) = aL2 + bL+ c (5)

where L is the power density load of a fuel cell, a, b, c are parameters to be fitted.

Deterioration and failure behavior modeling
Deterioration modeling The random evolution of the resistanceR as the fuel cell deteriorates is modeled
by a Gamma process. A Gamma process is a stochastic process with independent, positive increments
(on disjoint time intervals) that obeys a Gamma distribution. As reported in38, the Gamma process is
capable of describing gradual deterioration monotonically accumulating over time. Since the fuel cell
resistance deterioration with time corresponds to a monotonic increasing process, and since there is some
uncertainty in the aging process, the Gamma process is a relevant tool to model the fuel cell resistance
aging phenomenon.

Accordingly, the fuel cell resistance R is modeled by a Gamma process with shape parameter α and
scale parameter β, i.e. by definition, the resistance increment ∆R(t1, t2) , R(t2)−R(t1) between time
t1 and t2 (t2 > t1) is given by:

∆R(t1, t2) ∼ Ga((α(t2)− α(t1)), β) ∀t2 > t1 > 0 (6)

where Ga(α, β) represents the probability density function of the Gamma law with shape parameter
α and scale parameter β. The scale parameter β is assigned with a constant value. In this work, only
stationary Gamma processes are considered, whose shape and scale parameters do not vary with time
(under a constant load), i.e. α(t2)− α(t1) = α(t2 − t1)

On a unit time interval ∆t = 1 h, the mean and variance of the resistance increment ∆R are given by:

Mean(∆R) = α · β ·∆t = αβ
Var(∆R) = α · β2 ·∆t = αβ2 (7)
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In this work, in order to make the degradation load-dependent, the shape parameter α is modeled as
a function of the load L. The mean of the resistance increment over a time unit interval, which is also
the average deterioration rate (denoted D(L)), can thus be expressed as a function of the fuel cell output
power L:

D(L) = α(L)β (8)

First hitting-time failure modeling A fuel cell stack is said to fail when the defined health indicator R(t)
exceeds a fixed threshold, which is called the failure threshold FT , considered as given. The failure time
corresponds to the first hitting-time of level FT by the stochastic process R(t), and it defines the fuel
cell stack lifetime denoted TR, which writes:

TR = min
t

(R(t) > FT ) (9)

Assuming that the initial resistance R0 and the failure threshold FT are known for the studied stack, the
lifetime distribution can then be written as:

F (t) = P (TR ≤ t) = P (R(t) > FT )

=
Γ (α(L) · t, (FT −R0) · β)

Γ(α(L) · t)
(10)

where Γ(a, x)=
∫∞
x
za−1e−z dz is the incomplete Gamma function for x ≥ 0 and a > 0. This work

applies P to denote the cumulative probability.
Since the actual aging of the fuel cell depends on the operating conditions, the residual life, i.e. the

difference between the expected life and the actual age, needs to be updated regularly. This can be carried
out by using the measured resistance value Robs at time tobs, indicator of the actual deterioration level
of the fuel cell. Therefore a conditional failure probability Pd(t) at time t after tobs can be defined as the
probability for R(t) to exceed a predefined failure threshold before time t, given an observed level Robs

at tobs. Thus, based on the previous equation Eq. (10), Pd(t) is written as follows38:

Pd(t) = F (t|Robs(tobs))

= P (TR ≤ t|Robs(tobs))

= P (R(t) > FT |Robs(tobs))

=
Γ (α(L) · (t− tobs), (FT −Robs(tobs))β)

Γ (α(L) · (t− tobs))

(11)

where TR is the first hitting-time of level FT , L is fuel cell operating power load, α(L) is the
corresponding shape parameter and Robs represents the observed resistance deterioration value at the
current time step. This conditional failure probability expression will be used at the post-prognostic
decision stage in order to integrate the prognostics of the deterioration evolution in the load allocation
decision process.

Post-prognostics decision-making
The proposed post-prognostics decision-making strategy for the load allocation for a n-stack fuel cell
system is sketched in Fig. 4.
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Figure 4. Proposed post-prognostics decision-making strategy for a multi-stack fuel cell system.

A periodical (with period τ ) decision-making strategy is considered, under the following assumptions
for the multi-stack fuel cell system:

• The fuel cell stacks are physically connected in parallel, but are in series from the reliability point
of view, i.e. the system is considered as failed as soon as one stack is failed;

• The fuel cell stacks in the network system are identical, and the output power density of each stack
ranges from the minimal output power density Lmin to the maximum output power density Lmax;

• The values of the fuel cell overall resistances are considered to be measurable whenever necessary,
in the sense that a monitoring system and algorithm (e.g. a Kalman filter26,39) are assumed to be
available to deliver the estimated values of the resistances.

The following sub-sections describe in detail the different features of the load allocation decision-
making strategy.

Decision-making principle and policy structure

In order to decide and to adapt the load dynamically to the state of health of the different stacks, a
sequential decision policy is carried out. A periodic policy in which the decision is made every time
interval of τ hours is considered. At each periodic decision time kτ , the information on the deterioration
level, i.e. the overall resistance of each stack is assumed to be available, and the power load allocation
is made according both to the deterioration of each stack and to the overall fuel consumption of the
multi-stack system.

At each decision time kτ , based on the measured resistance level for each stack R(k)
i,obs, the conditional

probability P (k)
i,d (Li) for this stack to reach a given deterioration level threshold DT (k) at the end of the

next period, under a given load Li), is computed as (similar to Eq. (11), see also Fig. 5):
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P
(k)
i,d (Li) = P

(
TDT (k) ≤ (k + 1)τ

∣∣∣R(k)
i,obs

)
= P

(
Ri(kτ) > DT (k)

∣∣∣R(k)
i,obs

)
=

Γ
(
α(Li)τ,

(
DT (k) −R(k)

i,obs

)
· β
)

Γ(α(Li)τ)

(12)

Note that DT in Eq. (12) is not a failure threshold for the stack (contrary to Eq.(11)), but rather a
decision threshold used in the decision-making procedure to assess the future deterioration evolution of
the considered stack under a given power load Li, based on its actual deterioration level at the decision
time kτ . In order to follow the deterioration evolution of the stack, the value of this decision threshold
DT is updated at each decision time step, using the following empirical updating formula:

DT (k) = max
(
R

(k)
1,obs, R

(k)
2,obs, · · · , R

(k)
n,obs

)
+ αβτ (13)

with α is taken in minimal conditions:
α = α(Lmin)

Using this heuristic formula, the threshold DT is computed as the sum of the maximum of the
current deterioration values and the average deterioration increment over the next period (for the more
degrading power load, here Lmin), which guarantees a value for DT allowing a sensible comparison of
the quantities P (k)

i,d (Li).
The decision variables for this decision-making policy are the loads allocated at each stack

L1, L2, · · · , Ln, adapted at each decision period. We now have to build the objective functions to
optimize these decision variables. Based on these deterioration measurementsR(k)

i,obs and on the estimated

P
(k)
i,d (Li), two objective functions, function of the decision variables Li, are evaluated and eventually

optimized:

• The first Fdeterioration is related to the objective of controlling the deterioration by a proper choice
of the load allocation among the stacks;

• The second one FH2 corresponds to the objective of controlling the fuel consumption.

At each decision time kτ , the load allocation {Li}i=1,··· ,n is decided by the optimization of these
two objective functions that are detailed in the following sub-section. The periodic decision process is
repeated until the system failure. Recall that the multi-stack system is said to be failed as soon as one of
the stacks failed (or several stacks failed at the same time). In other words, if the greatest resistance of
the system stacks exceeds the failure threshold FT , the whole system failed, which can be written as:

max(R
(k)
1,obs, R

(k)
2,obs, · · · , R

(k)
n,obs) > FT (14)

MOO objective function formulation
At each decision time kτ , the problem is stated as a multi-objective optimization problem which
consists of the simultaneous optimization of several objective functions, subject to several constraints
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Figure 5. Principle of the determination of the conditional probability distribution for the decision threshold
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that determine the feasible set of solutions. Ultimately, the goal is to find a solution on which the decision
can evolve with time, as for instance to give priority to one objective function and after some time to give
priority to another objective function.

In this work, the objective is to design a decision-making strategy to minimize the life-cycle operation
cost of the multi-stack fuel cell system, by acting on two cost key drivers, i.e. prolonging its lifetime (or
reducing its degradation) and minimizing its fuel consumption. Two criteria are thus jointly considered
- fuel consumption minimization and resistance deterioration minimization -, and the MOO problem
consists of two conflict objective functions, namely, Fdeterioration and FH2 . At each decision time, the
two objective functions are evaluated for all the combinations of load allocation that are explored by the
optimization algorithm and that fits the power load demand (Ldemand).The fuel cell system deterioration
objective functionFdeterioration is calculated so as to avoid high failure probability and high deterioration
level altogether. Additionally, as shown in a previous work40, it is interesting to maintain the deterioration
trajectories grouped so as to avoid early failures. The multi-optimization algorithm returns a set of
non-dominated solutions, and the power load allocation to be applied is chosen thanks to a weighted
scalarizing function. Thus, one of the objective functions, that is consumption or deterioration, can be
favoured over the other.
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Thus, the MOO problem of an n-stack fuel cell system can be formulated as:

minimize (Fdeterioration, FH2
)

subject to
n∑

i=1

Li ≥ Ldemand

Lmin ≤ Li ≤ Lmax , (i = 1, · · · , n)

(15)

where Ldemand is the system power load demand, Lmin and Lmax are fuel cell stack minimal and
maximal output power density loads.

According to Eq. (5), the overall system fuel consumption FH2
is a function of the considered load

allocation {Li}i=1,··· ,n (i.e., the policy decision variables) and is calculated by:

FH2
=

n∑
i=1

∫
fH2

(Li) dt (16)

The fuel cell system deterioration objective function Fdeterioration is formulated as a weighted sum
of two terms. The first term is a weighted summation of the conditional probabilities Pi,d(Li), see Eq.
(12). The weights are given by the ratio of the resistance deterioration Ri,obs on the total resistance,
which allows to put a strong weight to the stacks that have a high deterioration level, and thus avoid
failure as much as possible. The second term is the variance of the resistance deterioration levels, so as
to avoid early failure of a stack that would deteriorates much faster than the others. The fuel cell system
deterioration objective function Fdeterioration is a function of the considered load power allocation
{Li}i=1,··· ,n (i.e. the policy decision variables) and of the measured resistance levels {Ri,obs}i=1,··· ,n
(i.e. the deterioration monitoring information) and it is expressed as:

Fdeterioration = ω1

n∑
i=1

(Ri,obs · Pi,d(Li))

n∑
i=1

Ri,obs

+ ω2

√√√√ 1

n− 1

n∑
i=1

(
Ri,est − R̄est

)2
(17)

where Ri,obs represents the measured resistance deterioration level for the fuel cell stack i, the
corresponding conditional probability is denoted as Pi,d(Li). ω1 accounts for the weight of fuel cell
failure probability, ω2 determines the weight of variance of the expected deterioration levels of the
different stacks. Ri,est is the expected deterioration at next decision time step (k + 1)τ :

Ri,est = Ri,obs + α(Li)β · τ (18)

The average expected deterioration for n stacks is:

R̄est =
1

n

n∑
i=1

Ri,est (19)

Now that the objective functions of the defined MOO problem are defined, the next step is to search
for a resolution algorithm to solve the optimization problem.
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Evolution algorithm-based MOO

To solve the multi-objective problem defined in Eq. (15), a traditional optimization approach, in which
a single objective is optimized subject to a given set of constraints, might not be the most appropriate
choice. Instead of finding a solution that optimizes all the objectives at the same time, a Pareto optimal
set of solutions can be established, in which an improvement of one objective leads to a deterioration
in at least one of the others. The framework of MOO allows handling the trade-off among several
conflicting objectives, even with different units. One of the most popular Pareto-based EMO algorithms,
a non-dominated sorting-based multi-objective evolution algorithm (MOEA) called non-dominated
sorting genetic algorithm (NSGA-II), has been successfully applied to many real-life multi-objective
optimization problems41. The detailed calculation steps of the NSGA-II algorithm are given in Appendix
Calculation steps of NSGA-II algorithm and its convergence is studied in Appendix Convergence of
NSGA-II algorithm.

An achievement scalarizing function (ASF) based decomposition method is used to choose the
final optimal decision within the obtained Pareto Front42. According to the principle of ASF, the
minimum ASF values calculated from all solutions are chosen as the final optimal decision. The final
implementation of ASF-based decision-making is based on the pymoo library43. The ASF function is
defined by44:

ASF (f(x),Ω, ẑ∗) =
M=2
max
j=1

fj(x)− ẑj∗

Ωj
(20)

where j is either 1 (for Fdeterioration) or 2 (for FH2
); f(x) is the objective function values; ẑj∗ stands for

the utopia (“ideal”) point of objective j and Ωj is the assigned (by the user) weight factor for objective j.
Fig. 6 shows the Pareto front, i.e. a set of non-dominated solutions is obtained thanks to the NSGA-II

algorithm. The values have been normalized between 0 and 1 for two objective functions, Fdeterioration

and FH2 . Finally, the ASF function-based decomposition approach is applied to find the final optimal
decision with respect to defined ASF weights Ω. The weights Ω are chosen by the user, according to
his preferences and priorities, so that the preferred objective function has the smallest weight. For fuel
cells, usually the main preference is to prioritize the control of the system deterioration (ie a smaller Ω1),
but two weights vectors representing different preferences among the defined objectives are considered
in this study. In Fig. 6, two different weights are shown. For Ω = (0.5, 0.5), an equal importance of
Fdeterioration and FH2 is applied to perform decision-making process. To improve fuel cell durability,
Ω = (0.2, 0.8) will be preferred.

Post-prognostics decision-making algorithm implementation

The algorithm of the post-prognostics decision-making strategy is presented in Algorithm 1. An internal
loop estimates the power load allocation for each stack until the failure threshold is reached for one of the
stacks. The sequential decision policy adapts the load dynamically to the state of health of the different
stacks.

Algorithm 2 shows the evaluation of multi-objective optimization objective function. All values that
are needed to calculate Fdeterioration and FH2

are presented with their calculation equations. Algorithm
2 is called by Algorithm 1 to solve the optimal load allocation decision.
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Figure 6. Principle of Pareto front and of final decision-making

Algorithm 1: Main decision-making loop
Data: FT , DT0, τ , α, β

1 Initialization k = 0, DT = DT0;
2 repeat
3 % At each decision time kτ ;

4 Measure the resistance deterioration levels
(
R

(k)
1,obs, R

(k)
2,obs, · · · , R

(k)
n,obs

)
;

5 Solve the MOO problem through NSGA-II algorithm to return the optimal load allocation(
L

(k)
1 , L

(k)
2 , · · · , L(k)

n

)
;

6 % This optimization step include calls to the evaluation procedure of the objective functions

(Algorithm 2) to obtain (F (k)
deterioration, F

(k)
H2

) for all the combinations of load allocations
that are explored by the optimization algorithm;

7 k = k + 1 ;

8 % The system is operated with
(
L

(k)
1 , L

(k)
2 , · · · , L(k)

n

)
until next decision step;

9 until max
(
R

(k)
1,obs, R

(k)
2,obs, · · · , R

(k)
n,obs

)
> FT % System failure;

Performance evaluation

Once the proposed power distribution strategy is implemented, its performance should be evaluated
through proper estimation indexes. One performance index is the system lifetime. For a n-stack fuel
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Algorithm 2: Evaluation of the objective functions for multi-objective optimization
Input: Measured deterioration levels {Ri,obs}i=1,··· ,n; Candidate loads per stack {Li}i=1,··· ,n
Output: Fdeterioration({Ri,obs}i=1,··· ,n , {Li}i=1,··· ,n), FH2({Li}i=1,··· ,n)

1 Calculate system fuel consumption objective function: FH2({Li}i=1,··· ,n)←− Eq. (16);
2 Using {Ri,obs}i=1,··· ,n, calculate the expected deterioration resistances and the average expected

deterioration: Ri,est ←− Eq. (18), R̄est←− Eq. (19) ;
3 Update decision threshold DT ←− Eq. (13);
4 Using {Ri,obs}i=1,··· ,n and {Li}i=1,··· ,n, calculate the conditional probabilities Pi,d(Li)i=1,··· ,n
←− Eq. (12);

5 Calculate system deterioration objective function Fdeterioration({Ri,obs}i=1,··· ,n , {Li}i=1,··· ,n)
←− Eq. (16);

6 Return (Fdeterioration, FH2
)

cell system, the system lifetime for one run simulation (EoL) is calculated by:

EoL = min(T1,R, T2,R, · · · , Tn,R) (21)

where Ti,R is the end of lifetime of stack i as defined in Eq. (9). The mean system lifetime (EoL) can
then be estimated by averaging the results over the N-run simulations:

EoL =
1

N

N∑
i=1

(EoLi) (22)

Additionally, a second performance index with respect to fuel consumption should be proposed.
However fuel consumption alone is not suitable, as when the system life is extended, it automatically
consumes more fuel. Therefore a ratio representing the operating time per unit quantity of consumed fuel
is used. Thus, the greater is the index, the lower is fuel consumption. The mean value of the index is
determined with :

Ratio =
1

N

N∑
i=1

(EoLi)/FH2,i (23)

where the unit is h kg−1. The same calculation approach is applied for the median system lifetime
(EoLmed) and Median Ratio (Ratiomed).

Results and discussion

Simulation conditions
The simulations are performed with a 3-stack fuel cell system. To be as realistic as possible, the
simulation parameters have been tuned with real data provided by the IEEE PHM 2014 data challenge,
realized with two 5-cell stacks24.
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The simulations are carried out for two constant power load values. Even if in practice the power load
is not perfectly constant, we make this assumption considering that the small fluctuations in the demand
are handled by using an energy storage buffer and that their effect on the load allocation strategy can be
ignored. The first value, Ldemand = 7.8 W cm−2 is relatively high and constrains the system to operate
with a power greater than the nominal one. A lower value, Ldemand = 6.6 W cm−2, is also investigated
in the simulations. This value is relatively low and the fuel cell operates at a power lower than the nominal
one.

The value of decision time interval τ has to be neither too big nor too small so that the effect of the
control strategy is visible. Therefore, the decision time interval τ is set to 100 h. The value of failure
threshold FT is chosen thanks to the experimental dataset, with a lifetime TR of 1000 h. Therefore,
the value of FT is taken as 0.453 Ω cm2. To estimate the Pareto optimal set of solutions, the NSGA-
II algorithm, presented in section Calculation steps of NSGA-II algorithm, is configured with an initial
population size of 300, and the number of offspring created through the mating of 160. At each decision
step, an optimal set of solutions is determined for the two objective functions Fdeterioration and FH2

.
Then, two final decisions are selected thanks to the weights of the scalarizing function. The first one with
both weights of 0.5 to each objective function (Ω = (0.5, 0.5)), means that no objective is preferred, and
the other one with a preference for limiting the degradation, so the weight of 0.2 to degradation objective
function and thus 0.8 to the fuel consumption objective function (Ω = (0.2, 0.8)).

The results are compared with two well-known existing strategies :

a) The Daisy chain strategy, which distributes the system load demand sequentially to the fuel cell
stacks. Here, two fuel cell stacks operate at the nominal power condition, and the third one supplies
the remaining power.

b) The Average load strategy, which distributes the overall system load demand evenly among all
stacks.

Deterioration parameters fitting
The parameters to calculate of the objectives functions FH2

and Fdeterioration formulated in Eq. (16) and
Eq. (17) are estimated with the IEEE 2014 data challenge data.

On one hand, the calculation of the overall fuel consumption FH2 is based on the fuel consumption
rate fH2

(L) (Eq. (5)). The parameters of this polynomial equation are estimated by using non-linear least
squares algorithm to fit this function to fuel consumption data. The values are a=0.00023, b=0.001, and
c=0.00018.

On the other hand, the calculation of system deterioration Fdeterioration with Eq. (17) needs the
estimation of the α(L) and β parameters for the conditional failure probability Pd calculation and the
weights ω1 and ω2. First, the α(L) and β parameters are estimated for operation in nominal power. The
estimation process is presented in Appendix Gamma process - scale and shape parameters estimation. The
estimated values are αnom=0.01125 and β=0.02424. In addition, the expected lifetime for the nominal
condition is set as 1000 hours based on the data reported in the IEEE 2014 data challenge.

Then, to estimate the equation of the resistance deterioration rate D(L) with respect to power load
(Fig. 3), three points have to be determined for respectively minimal, nominal and maximal power
conditions from available data. To that end, we assume that the minimal and maximal expected lifetimes
are 400 and 450 hours respectively. Then, the shape parameter range is calculated as αmin=0.02805 and
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αmax=0.02505. Thus, the resistance deterioration rate is calculated as:

D(L) = (C × (L− 2.3811)
2

+ 2.727)× 10−4 (24)

with

C =

{
1.6364 Lmin ≤ L < Lnom

6.77 Lnom ≤ L ≤ Lmax

where D(L) represents the deterioration rate of R, L is fuel cell operating power load. Lmin, Lnom, and
Lmax are fuel cell operating power density load for minimal, nominal, and maximal conditions, with
their values reported in Table 2.

With the above simulation parameters, the weights introduced in Eq. (17) (section MOO objective
function formulation) are investigated based on actual simulation effects. It is proved that ω1 = 12, and
ω2 = 1.2 can capture fuel cell deterioration well, enable the decision-making strategy to control the
system efficiently. Therefore, these values are used in the post-prognostics decision-making strategy.

Table 3 summarizes the key parameter fitting results.

Table 3. Key parameters used in this work.

Parameters R0 αmin αnom αmax β

Values 0.1803 0.0281 0.0113 0.0251 0.0242

Number of simulation runs determination
Due to the randomness of the gamma process, the number of simulation runs must be sufficient to
make the results statistically stable. However, a too large number of simulation runs will lead to undue
computational cost. Therefore, this number has to be adjusted.

By the law of large numbers, the sequence of simulated average lifetimes converges to the expected
value. For each value of power load demand considered, L = 6.6 W cm−2 and L = 7.8 W cm−2, 8000
independent simulations were performed. Based on these runs, an accumulated average system lifetime
is calculated. The simulation results show that when the number of simulation runs increased to 1500,
the average system lifetime converges to a single value. Therefore, the following simulation results are
analyzed based on 1500 independent simulation runs.

Simulation results for Ldemand = 7.8 W cm−2

Fig. 7 presents the detailed one-run simulation results for Ldemand = 7.8 W cm−2. Fig. 7(a) shows
the evolution of the overall resistance of each stack and the power load allocation for Ω = (0.5, 0.5).
At time 0 h, the overall resistances of the three stacks are initialized at R0 = 0.1803, and a first post-
prognostic decision making is performed, giving the power load allocation (L1, L2, L3) = (2.6, 2.6, 2.6)
W cm−2 to be applied. After τ = 100 h of operation, another post-prognostics decision is performed.
It can be found out that, though the stacks are assumed to be identical and have the same initial
deterioration, their states of health vary. FC2 has the highest deterioration level, followed by FC3 and
FC1. The optimal power loads calculated by proposed post-prognostics decision-making strategy are
(L1, L2, L3) = (2.695, 2.539, 2.565). FC1 is assigned to the highest power density to balance the system
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deterioration and fuel consumption. The third post-prognostic decision is performed at 200 hours. FC3
reaches the highest resistance value. Thanks to decision-making control, the deterioration rate of FC2 is
much slower compared to the previous decision step. In this case, the measured resistance of FC2 puts
a heavy weight on the objective function Fdeterioration of Eq. (17), so as to avoid FC2 to deteriorate
more. Thus, FC3, which had a lower deterioration at the previous decision step, deteriorates is slightly
more than FC2. By doing this, the stacks that are more deteriorated can be assigned to a power density
load closer to the nominal value, and thus slow down their deterioration. Similar results can be observed
for the following decisions. The one-run simulation terminates at 714 h when FC3 reaches FT . From
the data in Fig. 7(b), the control effects are more obviously seen. It is observed that it is not always the
same fuel cell that is the most deteriorated though the lifetime is shorter in this case. A bigger weight is
assigned to control fuel cell deterioration, thereby preventing the most deteriorated fuel cell from further
fast deteriorating. This result is consistent with the design of Fdeterioration as shown in Eq. (17), and the
ASF function.
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Figure 7. One-run optimal load allocation and system deterioration for Ldemand = 7.8 W cm−2.

Fig. 8 presents histograms of the system lifetime obtained with 1500 runs, for different load allocation
strategies. The post-prognostics decision-making with no preference (Ω = (0.5, 0.5)) and with preference
for limiting the degradation (Ω = (0.2, 0.8)) are compared with the daisy chain and the average load
strategies. The histograms obtained with the post-prognostics decision-making and the average load
strategies are mostly distributed in the range (400; 1000) h, whereas the lifetimes for the Daisy chain
algorithm are mainly distributed in (300; 900) h. For the Daisy chain, the worst results can be explained
by the fact that, as two stacks operate at their nominal power density load, the third one adapts to the
power load demand and thus operates with conditions that will damage the stack. In addition, one can see
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in this figure that the distribution for the Daisy chain case is more grouped with a peak at 600 h, which is
not the case for the other strategies.
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Figure 8. Histograms (and fitted Gaussian pdf) of the system lifetime for Ldemand = 7.8 W cm−2, under
different load allocation strategies.

Fig. 9 shows the simulated deterioration trajectories of Ω = (0.2, 0.8) and of the average load split
strategy. 50-run trajectories are plotted among the 1500 simulated trajectories. This figure shows that
the trajectories simulated with the proposed decision-making strategy tend to be more grouped together
and with a lower variance than the one simulated with the average load split strategy. This is the result
that was expected with the second term of Eq. (17), that is the sum of the variance of the resistance
deterioration. This helps to avoid situations where one stack in the system deteriorates too fast leading to
the failure of the overall system. This effect is also visible in the previous lifetime histogram.

Further results are given in Table 4 which summarizes statistical results for Ldemand = 7.8 W cm−2.
In this table, it can be seen that the mean lifetime and the medium lifetime are better for the proposed
strategy, and it confirms that the Daisy chain strategy has the worst results. For the proposed strategy, a
slight difference can be noticed between the two weights distributions, showing that the Ω = (0.2, 0.8)
allocation leads to a mean lifetime of 735 hours, which is the highest among all simulation cases. The
results for the Ratio index, whether it be mean or median, are very close together. The Ratio of the
Average load split is the highest, that is the largest operating time per quantity of consumed fuel, with
both Mean and Median ratio of 21.3603 h kg−1. Then followed by Ω = (0.5, 0.5), with Mean and Median
ratio of 21.3525 h kg−1 and 21.3545 h kg−1. These results show that increasing the fuel cell lifetime
does not mean that the fuel consumption is exploding accordingly.

Simulations were also conducted for a relatively lower system demand case, Ldemand = 6.6 W cm−2,
to check the control effects of the proposed strategy.
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Figure 9. System resistance deterioration trajectories (50-run) for Ldemand = 7.8 W cm−2.

Table 4. 1500 runs simulation statistic results for Ldemand = 7.8 W cm−2.

Simulations EoL EoLmed Ratio Ratiomed

Daisy chain 587 588 21.2522 21.2522
Average load 704 703 21.3603 21.3603
Ω = (0.5, 0.5) 727 727 21.3525 21.3545
Ω = (0.2, 0.8) 735 731 21.3450 21.3501

Simulation results for Ldemand = 6.6 W cm−2

Fig. 10 provides the detailed one-run results forLdemand = 6.6 W cm−2. Similarly toLdemand = 7.8 W
cm−2, the overall resistances of the stacks are initialized to R0 at time 0 h. At that time, a post-prognosis
decision is carried out, giving the allocation of (L1, L2, L3) = (2.268, 2.271, 2.269) W cm−2. Then
at τ = 100 h, a second decision is performed. The most deteriorated fuel cell, FC2, with R = 0.2746 Ω
cm2, is assigned to a power load close to the nominal value so as to mitigate its deterioration. The optimal
allocation is then (L1, L2, L3) = (2.218, 2.353, 2.197) W cm−2. As shown in Fig. 10(a), FC2 tends to
have the highest deterioration during all the operation period. The decision-making strategy lets FC2
operates at a near nominal condition to mitigate its deterioration. While for the stacks with a relatively
lower deterioration, the decision-making strategy will assign less desirable operating loads to satisfy the
system power demand. However, it can be seen from the deterioration path of FC2 that even though a
favorable power is provided, it still deteriorates more rapidly than others because of the randomness.
Fig. 10(b) shows the simulation results when the priority is assigned to deterioration mitigation with
Ω = (0.2, 0.8). It is observed that from 0 to 200 h, the deterioration levels of the three stacks are closed
to each other. At 300 h, FC3 has the highest deterioration level, followed by FC1 and FC2. However, from
300 to 600 h, the deterioration rate of FC3 is gradually decreasing and tends to be the lowest. And the
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Figure 10. One-run optimal load allocation and system deterioration for Ldemand = 6.6 W cm−2.

deterioration rate of FC2, initially less deteriorated, is increasing. By comparing the results of different
Ω values, it is observed that it is not always the same fuel cell that is the most deteriorated though the
lifetime is shorter with Ω = (0.2, 0.8). These results are consistent with those that have been reported in
section Simulation results for Ldemand = 7.8 W cm−2.

Fig. 11 shows the histogram of the system lifetime for different strategies both with post-prognostics
decision-making or not. This time the histogram allocation of the Daisy chain is similar to the other
ones, and the lifetimes are mostly distributed in the range (400; 1100) h. However, the average load
split strategy achieves a slightly longer lifetime than the Daisy chain, and the proposed decision-making
strategy is even better. Indeed, for Ω = (0.2, 0.8) and Ω = (0.5, 0.5), their system lifetimes are more
frequently in the range (800; 1400) h than the Daisy chain and average load strategies.

Fig. 12 presents 50-run deterioration trajectories for Ω = (0.2, 0.8) and average load split strategies.
Similar to the results reported in Fig. 9, the deterioration trajectories with decision-making control appear
to be more grouped together than the comparison strategy. The statistical results for Ldemand = 6.6 W
cm−2 are summarized in Table 5. As can be seen, a longer lifetime is achieved for simulations with the
decision-making strategy. In addition, the decision strategy that prioritize lifetime with Ω = (0.2, 0.8)
obtains the highest lifetime among the four simulation cases. The Ratio index results are similar to those
in section Simulation results for Ldemand = 7.8 W cm−2, with very close values. These results show
that the proposed decision-making strategy can be applied in practice to improve fuel cell system lifetime
without consuming far more fuel.
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Figure 11. Histograms (and fitted Gaussian pdf) of the system lifetime for Ldemand = 6.6 W cm−2, under
different load allocation strategies.
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Figure 12. System resistance deterioration trajectories comparison for Ldemand = 6.6 W cm−2.

Conclusion

This work proposed a post-prognostics decision-making strategy for a multi-stack fuel cell system.
The system lifetime is managed through the post-decision control of distributing system power
demand among stacks. Both fuel cell deterioration and system fuel consumption are considered in the
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Table 5. 1500 runs simulation statistic results for Ldemand = 6.6 W cm−2.

Simulations EoL EoLmed Ratio Ratiomed

Daisy chain 759 760 26.3925 26.3925
Average load 774 768 26.5065 26.5065
Ω = (0.5, 0.5) 785 784 25.8183 25.8322
Ω = (0.2, 0.8) 800 804 23.7155 23.8972

management strategy. Fuel cell stack resistance is chosen as a health index and modeled through a
stochastic Gamma process. A deterioration function is then built to access system deterioration during
operation, together with fuel consumption function. Then, a MOO problem is formulated to take the post-
prognostic decisions. The simulation results are obtained and analyzed through a 1500-run simulation on
a 3-stack fuel cell system. The simulation results of our approach are compared with the results of the
Daisy chain and average load to validate the control efficiency. The main conclusions of this work include:

1) The stochastic gamma process is a relevant tool for modeling fuel cell resistance deterioration. The
shape and scale parameters can be estimated from a real-life experiment dataset.

2) MOO proves to be an efficient approach for building a decision-making strategy. A trade-off for
conflicting objectives, that are system deterioration and fuel consumption, can be handled through
a weighted vector.

3) The proposed approach has been applied for two typical load demands and compared with Daisy
chain and average load strategies.

4) For the high power load demand case, the proposed decision-making strategy can help to extend
the system lifetime by 25% compared with the Daisy chain strategy.

The next step will be to extend the method to varying power loads. In a broader perspective,
improvement work will be to extend the results to more than three stacks. The influence of the number
of stacks on control effects will be studied to obtain an optimal system configuration. Implementation
in a real case will be also considered. From the methodology point of view, Reinforcement Learning
(RL)-based energy management will be considered. RL is suitable to solve sequential decision-
making problem, either in model-based or model-free manner. Moreover, the recently developed deep
reinforcement learning techniques leverage the powerful representation advantage of neural network,
which makes RL a promising technique in various applications, including the energy management of
fuel cell systems.
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Appendix

Gamma process - scale and shape parameters estimation

The identification of the scale and shape parameters of the gamma process, representing the deterioration
modeling are based on the IEEE PHM 2014 data challenge, which provides two typical durability test
datasets on two fuel cell stacks24. These fuel cell stacks consist of 5 single cells with an active area of
100 cm2.

The resistance values were fitted based on the measured polarization curves with the aging data, as
shown in Fig. 13. The parameters are estimated by using the non-linear least square approach to fit the
polarization equation to all measured polarization curves.

The resistance estimations as shown in Fig. (13) are used to estimate the shape and the scale parameters
(α and β) of the stochastic deterioration gamma process (section Deterioration and failure behavior
modeling). To that aim, the Method of moments (MoM) is applied45. From the data, the resistance and
time increments are defined as:

∆ti = ti − ti−1,
∆Ri = Ri −Ri−1

(25)

where i = 1, 2, · · ·n ; n is the number of data.
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Figure 13. Overall resistance estimated from measured polarization curves, see Fig. 2.

According to Cinlar et al.45, the estimated values of α and β, written α0 and β0, can be determined
from the solution of the equations:

α0β0 =

n∑
i=1

∆Ri

n∑
i=1

∆ti

= Rn−R1

tn−t1

Rnβ0

1−
n∑

i=1
∆t2i[

n∑
i=1

∆ti

]2
 =

n∑
i=1

(
∆Ri − ∆ti(Rn−R1)

tn−t1

)2
(26)

The estimated parameter values for both FC stack 1 and FC stack 2 are: α0 = 0.0075 and β0 = 1/27.5.
However, since the values of these parameters are directly linked to the variance of the simulated
trajectories, it must be checked that these values are suitable for this application. Indeed, the variance
of the trajectories has to be neither too large, because the lifetime would not be controllable, nor too
small, because the system would not be stochastic. The trajectories obtained with the estimated values
are shown in Fig. 14, and it can been seen that the variance is too high. As the variance of the trajectories
is linked with the the scale parameter β, new simulations are carried out with smaller β values (β0/1.5
and β0/3). To keep the average deterioration level the same, the shape parameter α is also multiplied
with the same constant values. The trajectory results in Fig. 14 show that the variance is too small for the
value divided by 3. Thus, the proper values are:

β = β0/1.5
α = 1.5 · α0

(27)
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Figure 14. Deterioration trajectories with different scale parameters.

Calculation steps of NSGA-II algorithm
Originally inspired by nature selection, the NSGA-II algorithm can be summarised by the following
steps:

(1) Generate the initial population of individuals randomly.
(2) Evaluate the fitness of each individual generated in the population.
(3) Repeat the following operations until the termination condition is satisfied.

a) Select the best-fit individuals for reproduction;
b) Create new individuals through selection, crossover, and mutation operations;
c) Reevaluate the individual fitness of new individuals, replace least-fit population with new

individuals.

As depicted in Fig. 15, the algorithm skeleton of NSGA-II stems from classic Genetic algorithm (GA).
NSGA-II proposed a modified version of mating and survival selection. A non-dominated sorting and
crowding distance are used to determine fitness of individuals, the individuals with better fitness should
be retained after selection. Fig. 15 actually describes the t-th generation of NSGA-II. First, a hybrid
population of parent population Pt and offspring population Qt is formed. Then, the population of Rt

is sorted according to non-domination, with a size of 2N . During the the selection process, the elitism
is ensured. F1 collects the solutions of best non-dominated set, emphasized as the best solution. Keep
filling the parent population Pt+1 with sorted best solutions until it reaches population size N . During
this process, the crowding distance of non-dominated set F is calculated as criterion to select the best
solutions for Pt+1. The newly selected parent population Pt+1 is used to create a new population Qt+1

through selection, crossover, and mutation operations. The optimization procedure is stopped when the
termination condition is satisfied.
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Figure 15. Schematic diagram of NSGA-II.

Convergence of NSGA-II algorithm

The convergence of the NSGA-II algorithm is analyzed for the designed parameters. A newly proposed
running performance metric based on the calculation of Inverted Generational Distance (IGD) is used
to estimate the convergence of the NSGA-II algorithm43,46. This running metric shows the difference
in the objective space from the initial generation to the current generation. It is suitable for analyzing
the optimization process when the true Pareto Front is not known. This running metric is calculated by
accumulating the non-dominated (ND) solutions from initial generation to generation (x):

∆fx = IGD(P̄ x(t), P̄ x(x))

=
1

|P̄ x(x)|

|P̄x(x)|∑
i=1

(
|P̄x(t)|
min
j=1
‖P̄ x

i (x)− P̄ x
j (t)‖)

(28)

where x is the accumulated current generation number (here x increment interval is set as 10); P̄ x(t)
is the evolving ND set (0 ≤ t ≤ x) and P̄ x(x) is the ND set of current generation x (normalized). This
metric is computed for all past generations.

Figure 16 shows the running metric accumulated by a generation step of 10 during one optimization
(Ldemand = 7.8 W cm−2, R1,obs = 0.1903, R2,obs = 0.3103, R3,obs = 0.2403 Ω cm2). A bigger drop
in ∆f means better improvement for ND solutions. Figure 16(a) shows the algorithm gradually improves
for past 60 generation. From Figure 16(c), it can be seen that the algorithm terminates at the 170-th



30 Journal of Risk and Reliability XX

generation and the Pareto fronts and final decision are plotted in Fig. 16(d) (the black marked point). The
final decisions for weight vector Ω = (0.2, 0.8) are (L1, L2, L3) = (2.749, 2.430, 2.621) W cm−2.
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Figure 16. Convergence of NSGA-II algorithm.


