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Abstract8

We consider two-player zero-sum games with winning objectives beyond regular languages, expressed9

as a parity condition in conjunction with a Boolean combination of boundedness conditions on10

a finite set of counters which can be incremented, reset to 0, but not tested. A boundedness11

condition requires that a given counter is bounded along the play. Such games are decidable, though12

with non-optimal complexity, by an encoding into the logic WMSO with the unbounded and path13

quantifiers, which is known to be decidable over infinite trees. Our objective is to give tight or tighter14

complexity results for particular classes of counter games with boundedness conditions, and study15

their strategy complexity. In particular, counter games with conjunction of boundedness conditions16

are easily seen to be equivalent to Streett games, so, they are CoNP-c. Moreover, finite-memory17

strategies suffice for Eve and memoryless strategies suffice for Adam. For counter games with a18

disjunction of boundedness conditions, we prove that they are in solvable in NP∩CoNP, and in19

PTime if the parity condition is fixed. In that case memoryless strategies suffice for Eve while20

infinite memory strategies might be necessary for Adam. Finally, we consider an extension of those21

games with a max operation. In that case, the complexity increases: for conjunctions of boundedness22

conditions, counter games are EXPTIME-c.23
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1 Introduction28

Games on graphs are a popular mathematical framework to reason on reactive synthesis29

problems [1, 8]: the system to synthesize is seen as a protagonist which must enforce a given30

specification (its winning objective) against any adversarial behaviour of its environment. In31

this framework, executions of reactive systems are modelled as infinite sequences alternating32

between actions of the systems and actions of its environment. In the ω-regular setting,33

the set of correct executions of reactive systems is modelled as an automaton, for example,34

a non-deterministic Büchi automaton, then determinized into a parity automaton. The35

synthesis problem then boils down to solving a game played on the graph of the parity36

automaton, where the goal of the protagonist (Eve) is to satisfy, in the long run, the parity37

condition whatever her opponent (Adam) does. Motivated by the synthesis of more complex38

systems, the literature is rich in extensions of this basic two-player zero-sum ω-regular setting:39

multiple players, imperfect information, quantitative objectives, infinite graphs ... (see [1, 8]40

for some references). In this paper, we follow this line of work and consider an extension of41

two-player games beyond ω-regularity: counter games with boundedness conditions.42

Counter games In this paper, a two-player counter game with boundedness objectives,43

only called counter game hereafter, is given by a finite arena, called counter arena, whose44

vertices are labelled by counter operations over a finite set of counters C. Those operations45
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can: increment a counter, reset it, or skip it (i.e. leave its value unchanged). We consider46

objectives given as Boolean combinations of counter boundedness conditions. For c ∈ C, the47

condition B(c) is satisfied by all infinite paths π = v0v1 . . . , called plays, such that for some48

N ∈ N, the value of c along π is bounded by N . Note that the bound N is not uniform, in49

the sense that it depends on π, and as a consequence, the set of plays satisfying B(c) is not50

ω-regular in general. In this paper, we consider particular classes of Boolean combinations of51

boundedness conditions. Since they do not necessarily capture all ω-regular objectives, we52

also, by default, equip counter games with a parity condition.53

Given an objective W as a Boolean formula Φ over atoms B(c) for all c ∈ C, the goal of54

the protagonist, Eve, is to enforce plays which satisfy W and the parity condition, whatever55

the adversary, Adam, does. If she has a strategy to meet this objective, she is said to win56

the game. Counter games are zero-sum, meaning that the goal of Adam is to enforce the57

complementary objective. The goal of this paper is to study the complexity of deciding,58

given a counter game G, if Eve wins G.59

Motivations On infinite words, classes of counter automata with boundedness conditions60

have appeared in various papers, e.g. in [5, 14, 2, 7]. The most relevant models in the61

context of counter games are the ωBS-automata of [5] and the max-automata of [7]. They62

are equipped with the same counter operations as the counter games of this paper, plus63

a max operation in the case of max-automata, and some boundedness conditions. As a64

consequence, winning objectives in counter games can naturally be expressed with these65

automata. However, while they are known to have decidable emptiness problem, not much is66

known when they are used to define objectives in two-player games. A motivation for this67

paper is to investigate this question, for games where the winning conditions is not given by68

such an automaton but where counter operations are explicitly given in the arena.69

In the same line of works, max-automata, which are deterministic, are known by [2] to70

correspond to the logic WMSO+U, which extends weak MSO on infinite words with the71

unbounded quantifier UX. A formula UX.φ(X) holds if there are arbitrarily large sets X72

satisfying φ. An important result by Bojańczyk states that the extension of WMSO+U to73

infinite binary trees and with a path quantifier which allows to quantify over infinite paths,74

has decidable satisfiability problem [6]. Since strategies are definable, modulo a tree encoding,75

in this latter logic, a direct consequence of this result is that two-player games with objectives76

given by max-automata are decidable (see also Example 2 of [6]). As a consequence, counter77

games with boundedness conditions are decidable, though with non-elementary complexity.78

Another motivation for our work is to obtain tight complexity results for particular classes of79

counter games with boundedness conditions, with the goal of providing conceptually simpler80

decidability proofs and insights for these particular instances, instead of using the general81

result of [6].82

Finally, counter games with boundedness objectives are closely related to synthesis83

problems over infinite alphabets of data. In particular, the problem of synthesising Mealy84

machines with registers satisfying specifications given as deterministic register automata85

over (N, <, 0), has recently been studied in [18]. It is shown that this problem is decidable,86

and, even though the decidability proof is not based on counter games, it is proved that87

the synthesis problem reduces to a game with winning conditions given as a (deterministic)88

max-automaton whose acceptance is a disjunction of a parity condition and a condition of89

the form "counter c is unbounded". Here, we also study the complexity of counter games90

with max operation, giving an alternative procedure to decide the former synthesis problem.91
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Contributions Our contributions are summarized in Fig. 1. We consider objectives given92

as a conjunction of a parity condition and a formula over atoms B(c) in the following classes:93

conjunctions, disjunctions, disjunctions of conjunctions, and negation-free formulas. We also94

consider the extension of counter games with a max operator which can assign a counter with95

the maximal value of several counters. The table also mentions the strategy complexity. For96

conditions in
∧
B, counter games are easily proved to be interreducible in polynomial time97

to Streett games, yielding CoNP-completeness [20]. More interestingly, we prove that when98

the number of counters is fixed, then, they are interreducible to parity games in polynomial99

time, using another reduction (Thm 6).100

We then prove, in it is our main contribution, that for conditions in
∨

B, counter games101

are solvable in NP∩CoNP and in polynomial time when the index of the parity function102

is fixed. To prove this result, we introduce the notion of finitely switching strategies which103

are, to the best of our knowledge new, and we believe, interesting on their own. This notion104

is specifically designed for disjunctions of prefix-independent objectives (which is the case105

of counter boundedness conditions): in a finitely switching strategy, Eve announces which106

objective from the disjunction she aims to satisfy, and she can change her mind along the107

play, but only a finite number of times. Eventually, she is bound to satisfy one the objectives.108

We give general conditions to decide whether Eve has a finitely switching strategy in a109

two-player game with a disjunction of prefix-independent objectives, and prove that such110

strategies are sufficient for Eve to win objectives in
∨
B and more generally in

∨∧
B.111

Related works Two-player games with boundedness conditions have been studied in the112

literature, first as finitary parity and Streett games [11], then generalized to cost-parity and113

cost-Streett games [19]. Finitary parity- and Streett-games are request-response games [12],114

with the additional constraint that the delay (number of edges) between a request and its115

response is bounded (by a bound which depends on the play). For cost-parity and cost-Streett,116

instead of the number of edges, costs (including 0) label edges and the delay is defined as117

the sum of the costs. Cost-parity and cost-Streett games can be encoded as counter games118

with conditions in
∧
B, though with an exponential blowup. The difference between those119

counter games and finitary- and cost-games can be seen in their complexity: counter games120

with conditions in
∧
B are CoNP-c, finitary parity games are in PTime, cost-parity in121

NP∩CoNP, and finitary Streett and cost-Streett are ExpTime-c.122

Delay games with objectives given by a max-automaton have been proved to be decidable123

in [24]. This result is orthogonal to ours: first, those games allow for some delay, here in124

the sense that Eve has some look-ahead on Adam’s future actions. Second, the decision125

procedure is non-elementary and rely on an encoding into WMSO+UP on infinite trees, some126

argument we avoid here, but for less expressive boundedness objectives.127

Finally, infinite-state games with boundedness conditions have been considered in [10],128

over pushdown arenas. Finitary games over these arenas are shown to be decidable, as well as129

(pushdown) counter games with conditions in
∧

B, without complexity results. Interestingly,130

it is shown that those games are equivalent to games where the objective of Eve is to uniformly131

bound all counters, for a bound which only depends on her strategy, and not on the plays.132

For counter games in
∧
B over a finite arena, this result can easily be seen as a consequence133

that finite-memory strategies suffice for Eve.134
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Winning objective Complexity Memory of Memory of Theorem
parity∧ Eve Adam∧

B coNP-c Finite none Th 4∨
B NP ∩CoNP Parity Index Infinite Th 13

PTime for fixed index∨∧
B coNP-c Finite Infinite Th 14

Bool+(B) PSPACE,CoNP-h Finite Infinite Th 15∧
B +max EXPTIME-c Finite Finite Th 16

Bool(B) +max Decidable Infinite Infinite from [4]

Figure 1 Complexity of deciding whether Eve has a winning strategy in a counter game for
various winning objectives, always taken in conjunction with a parity objective. Bool+(B) means
any negation-free Boolean combination of objectives of the form B(c). Hardness results hold for any
parity function of fixed constant index. The notation +max indicates that counter games are also
equipped with a max operation. Since counter games with boundedness objectives are determined,
this yields the complexity of deciding whether Eve wins for the complementary objectives: for
example, it is NP-c for objectives parity ∨

∨
U and memoryless strategies are sufficient for Eve, and

in PTIME for parity ∨
∧

U but infinite memory might be necessary for Eve.

2 Preliminaries135

In this paper, for any set Σ, we denote by Σ∗ (resp. Σω) the finite (resp. infinite) sequences136

of elements of Σ.137

Two-player arenas A two-player arena is a tuple A = (V,E, V∃, V∀, v0), where V is finite138

set, E ⊆ V × V , and V∃ and V∀ are two subsets of V such that {V∃, V∀} is a partition of139

V , and v0 is an initial vertex. In this paper, we assume that arenas are deadlock-free, i.e.140

that for any v ∈ V , there exists v′ ∈ V such that (v, v′) ∈ E. Given v ∈ V , we denote141

A[v] = (V,E, V∃, V∀, v) the arena A where v0 has been substituted by v. A play ρ of A is a142

mapping from N to V such that (ρ(i), ρ(i+ 1)) ∈ E, for all integer i ∈ N. The set of plays is143

denoted by Plays(A). Any play can also be seen as an element of V ω, and we call a history144

any finite prefix of a play, and denote by Hist(A) the set of histories of A.145

Strategies and finite-memory A strategy for Eve (resp. Adam) is a function σ from146

Hist(A) to V defined for all histories h = h0 · · ·hn with hn ∈ V∃ (resp. hn ∈ V∀), and147

such that (hn, σ(h)) ∈ E. A play ρ is consistent with a strategy for Eve (resp. Adam) if,148

for any integer n such that ρ(n) ∈ V∃ (resp. ρ(n) ∈ V∀), σ is defined on ρ(0) · · · ρ(n), and149

ρ(n+ 1) = σ(ρ(0) · · · ρ(n)). We let Plays(A, σ) (or just Plays(σ) when A is clear from the150

context) the set of plays consistent with σ.151

A strategy σ of Eve (resp. Adam) is said to be finite-memory if there exists a finite set152

M , an element mI ∈ M , a mapping δ from V ×M to V , and a mapping g from V ×M153

to M such that the following is true. When h = v0v1 · · · vl is a prefix of a play consistent154

with σ such that vl ∈ V∃ (resp. vl ∈ V∀), and the sequence m0,m1, ...,ml is determined by155

m0 = mI and mi+1 = g(vi,mi), then σ(w) = δ(vl,ml). In that case, we say that (δ, g) is a156

memory mapping pair of σ, and that ml is the memory state of g at move l. We also say157

that σ is of memory |M |, and memoryless if it is of memory 1. Note that a memoryless158
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strategy can just be identified with a mapping from V to V .159

Two-player games A winning condition for A is a subset W ⊆ V ω. A strategy σ of Eve or160

Adam is said to be winning for objective W if Plays(σ) ⊆W . A two-player game is a pair161

G = (A,W ) where A is an arena and W is a winning condition. We say that a strategy (of162

Eve or Adam) is winning in G if it is winning for W . A game G = (A,W ) is determined if163

either Eve wins G or Adam wins (A, V ω\W ).164

In this paper, we consider the problem of deciding, given a game G with a finitely165

represented winning condition, whether Eve wins G. For a complexity class C and a class of166

games G, we say that games in G are in C (resp. C-hard, C-complete) if the latter problem167

for games G ∈ G is in C (resp. C-hard, C-complete).168

We also consider the complexity of strategies sufficient or necessary for Eve and Adam to169

win a game. We say that finite-memory strategies are sufficient for Eve (resp. Adam) to win170

G if for all G ∈ G, whenever Eve (resp. Adam) wins G, she has (resp. he has) a finite-memory171

winning strategy in G. We say that finite-memory is necessary for Eve (resp. Adam) to win172

G if memoryless strategies do not suffice for Eve (resp. Adam) to win G. Finally, we say that173

infinite-memory is necessary for Eve (resp. Adam) to win G if finite-memory strategies do174

not suffice for Eve (resp. Adam) to win G.175

Parity games Let A be an arena with set of vertices V . Let Q ⊆ N be a finite set of176

elements called colours and κ : V → Q a mapping from vertices to colours called parity177

function or priority function. The size |Q| of Q is called the index of κ. The mapping κ178

defines a winning condition denoted Parity(κ), called a parity condition, as follows: Parity(κ)179

is the set of all infinite words w = w0w1 · · · ∈ V ω such that the greatest colour occurring an180

infinitely often in κ(w0)κ(w1) · · · is even. A parity game is a game whose winning condition is181

a parity condition. We refer to A′ = (A, Q, κ) as a coloured arena, and also denote Parity(κ)182

as Parity(A′) to avoid an explicit mention of the colouring κ. Note that a coloured arena183

A′ = (A, Q, κ) uniquely defines a parity game G = (A,Parity(A′)). It is well-known that184

parity games are in NP ∩CoNP [16], and even solvable in quasi-polynomial time [9].185

Counter operations Our goal is now to define counter games. First, we introduce counter186

operations and their semantics. In the rest of the paper, we fix a countable set C whose187

elements are called counters. A counter operation is a mapping from a finite subset C of188

C to {i, r, skip}. We let Op(C) denote the set of counter operations over C ⊆ C. A counter189

valuation is a mapping ν from C to N. For any infinite word w ∈ Op(C)ω, we define λ(w)190

as the infinite sequence of counter valuations ν0, ν1, ν2, . . . such that for any counter c ∈ C,191

ν0(c) = 0 and for any non-negative integer n, νn+1(c) = νn(c) + 1 if wn(c) = i, νn+1(c) = 0192

if wn(c) = r and νn+1(c) = νn(c) if wn(c) = skip. We define λ(w) for w ∈ Op(C)∗. To ease193

notations, we write λ(w, c)i instead of λ(w)i(c). We say that λ is the evaluation of w.194

Counter games with boundedness objectives Let A′ be an arena with set of vertices V ,195

C ⊆ C a finite set of counters, and ζ : V → Op(C) a mapping from vertices to counter196

operations, called vertex labeling. Let Q be a set of colours and κ : V → Q be a colouring of197

V . To avoid cumbersome notations, for any vertex v ∈ V and counter c ∈ C, we let ζc(v)198

denote (ζ(v))(c). We refer to A = (A′, C, ζ,Q, κ) as a counter arena, to A′ as its underlying199

arena and to (A, Q, κ) as its underlying coloured arena. We let Parity(A) = Parity(κ).200

We consider a particular type of winning objective for counter games, called boundedness
conditions, always together with a parity condition. Let c ∈ C. We let B(c) be an atomic
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3
(skip, i)

4
(skip, i)

1
(i, skip)

2
(i, skip)

Figure 2 Counter arena A = (V,E, V∃, V∀, v) with V = {1, 2, 3, 4}, V∃ = {1, 3}, V∀ = {2, 4},
v = 1. There are two counters (c, d) whose updates are represented on the figure as pairs. We assume
no parity condition and a counter condition B(c) ∨ B(d). From vertex 3, Eve has a memoryless
winning strategy σ: always move to 4. However, she does not have a strategy from 1 to bound
counter c, neither does she have a strategy from 1 to bound d. However, she has a memoryless
strategy β winning for B(c) ∨ B(d): from 1, she moves to 2, and from 3 she moves to 4. If the play
stays in {1, 2}, then d is bounded, and if the play eventually moves to 3, then c is bounded.

formula which intuitively requires that counter c is bounded along a play, by some constant.
Formally, B(c) is interpreted in A by the set of plays ρ of A, denoted Plays (A,B(c)), such
that the sequence λ(ζ(ρ), c) is bounded, i.e.

Plays (A,B(c)) = {ρ ∈ Plays(A) | ∃N ∈ N,∀n ∈ N, λ(ζ(ρ), c)n ≤ N}

The set Plays (A,B(c)) is called a boundedness condition. We let U(c) as a shortcut for ¬B(c).201

A counter condition for A is a Boolean formula φ over the set of propositions {B(c) | c ∈ C}.202

Its interpretation Plays (A, φ) ⊆ Plays(A) over A is defined naturally.203

Given a counter condition φ, the pair G = (A, φ) is called a counter game. The game204

induced by G = (A, φ) is the game Gφ = (A′, P lays (A, φ) ∩ Parity(A)). Note that in a205

counter game, both the counter condition and the parity condition must be satisfied. The206

notion of strategies and winning strategies carry over to counter games by considering the207

games they induce. In particular, Eve wins G if she wins Gφ, i.e., she has a strategy winning208

for the objective Plays (A, φ) ∩ Parity(A).209

In this paper, we consider several classes of counter conditions. The class of counter210

conditions of the form
∧
c∈C B(c) for some finite set C ⊆ C is denoted

∧
B. Similarly, we211

denote by
∨
B,
∨∧

B and Bool+(B) the classes of counter conditions which are respectively,212

disjunctions of atoms B(c), disjunction of conjunctions of atoms B(c) (DNF), any negation-free213

Boolean formula.214

I Example 1. First, Fig. 2 illustrates an example with a disjunction of boundedness objectives.215

Our second example is given by an arena with two counters and a single state controlled216

by Adam. At each step, Adam can either increment c1 and leave c2 unchanged (called217

transitions t1), or increment c2 and leave c1 unchanged (called transition t2). Clearly, Eve218

has a strategy to win the objective
∨
i=1,2 U(ci). Indeed, in any play, there exists i such that219

ti is taken infinitely many times, and therefore ci is unbounded. Suppose now that Adam220

wants to win objectives
∧
i=1,2 U(ci). He can do so by playing longer and longer sequences of221

transition t1 in alternation with longer and longer sequences of transition t2, which requires222

infinite memory.223

I Lemma 2. Counter games (with Boolean combinations of boundedness objectives) are224

determined and decidable.225

Proof. Given a counter arena A and a counter c of A, the set Plays (A,B(c)) is a Borel set.
© Emmanuel Filiot and Edwin Hamel-de le Court;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


Indeed, it is equal to the countable union for all N ≥ 0 of the sets

PlaysN (A,B(c)) = {ρ ∈ Plays(A) | ∀n ∈ N, λ(ζ(ρ), c)n ≤ N}

which are ω-regular. Indeed, a Büchi automaton needs |V | × N × |C| states to recognize226

PlaysN (A,B(c)). Since ω-regular sets are Borel, so is Plays (A,B(c)), as well as any Boolean227

combination of the latter. By Martin’s determinacy theorem [22], the result follows.228

To prove decidability, it suffices to notice that winning strategies in counter games are229

infinite trees such that all of their branches are accepted by a deterministic max-automaton as230

defined in [2]: such automata have a finite set of counters which can be incremented, reset to 0,231

and take the maximal value of several counters and put it in another one. Such automata are232

closed under intersection and can recognize any regular language, so, we can encode the parity233

condition as well as the counter operations. Deterministic max-automata corresponds exactly234

to the logic WMSO+U over infinite words (weak MSO with the unbounding quantifier).235

WMSO+U has been extended to WMSO+UP on infinite trees with an additional quantifier236

over infinite paths (P). Therefore, winning strategies of two-player games with winning237

conditions definable in WMSO+U over infinite words are definable in WMSO+UP (see238

Example 2 of [4]). The result follows since WMSO+UP has decidable satisfiability problem,239

again by [4]. J240

3 Counter games with conjunctions of boundedness conditions241

In this section, we study games with counter conditions in the class
∧

B. Such games242

are easily shown to be decidable using known results. Indeed, we prove that they are243

equivalent in polynomial time to Streett games, known to be CoNP-complete [17]. Let244

us define Streett games. Given an arena A with set of vertices V , and a set of k pairs245

S = {(Ei, Fi) | 1 ≤ i ≤ k,Ei, Fi ⊆ V }, we let Streett(S) be the set of words w ∈ V ω such246

that for all i = 1, . . . , k, if w contains infinitely many occurrences of some e ∈ Ei, then it must247

contain infinitely many occurrences of some f ∈ Fi. A Streett game is a pair G = (A,W )248

where W is given as set of k Streett pairs S, i.e., W = Streett(S). We prove that
∧
B-counter249

games are interreducible to Streett games in polynomial time.250

I Lemma 3. There is a bijection Ψ from counter games with condition in
∧

B to Streett251

games such that Ψ is computable in PTime, such that for all counter games G, Eve wins G252

iff she wins the Streett game Ψ(G), and such that for all Streett game G′, Ψ−1(G′) has a253

trivial parity function (with color 0 only).254

Proof. Let G be a counter game over an underlying arena A and a set of counters C, with255

winning condition of the form
∧
c∈C′ B(c) for some C ′ ⊆ C. To simplify our explanations,256

we first assume that G does not contain any parity condition. To construct a Streett game257

G′, we keep the same arena A and construct, for all c ∈ C ′, a Streett pair (Ec, Fc) which258

is satisfied by all sequences of counter operations such that if c is incremented infinitely259

often, then c is also reset infinitely often. So, Ec is the set of vertices where c is incremented,260

while Fc are those where c is reset. Let σ be a winning strategy for Eve in G and suppose261

it is not winning in G′, then it means that there exists some play ρ ∈ Plays(A, σ) and a262

counter c ∈ C ′ which is incremented infinitely often but reset finitely often. So, its value is263

not bounded along ρ, contradicting that σ is winning.264

The converse uses the fact that finite-memory strategies suffice to win Streett games: let265

σ be a finite-memory strategy winning for Eve in G′. Suppose it is not winning in G. Then,266

there is some play ρ ∈ Plays(A, σ) and a counter c ∈ C ′ whose value is unbounded along ρ.267
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Therefore, ρ increases c infinitely many times. Since σ is winning for G′, ρ resets c infinitely268

many times. So, it can be decomposed into infinitely many fragments ending with a reset of269

c: ρ = ρ1v1ρ2v2 . . . such that each ρi does not contain a reset of c and vi resets c. Since the270

value of c is unbounded, the ρi contains an arbitrarily large number of increments of c: for271

all n ∈ N, there exists i such that ρi increments c at least n times. By taking n large enough,272

there is necessarily some ρi which can be decomposed into π1π2π3 such that π2 increments c273

at least once, and the strategy σ cycles on π2, i.e., has the same memory state and vertex274

before and after π2. This can be seen using standard pumping arguments. Indeed, if k is275

the number of memory states of σ, there are at most k|V | positions of ρi which are not on a276

cycle. So, if the number of increments is bigger than k|V |, there is a cycle π2 which contains277

an increment. Therefore, ρ1v1 . . . ρi−1vi−1π1π
ω
2 ∈ Plays(A, σ), it increments infinitely many278

times c, and resets c finitely many times, contradicting that σ is winning in G′.279

If now G also has a parity condition with x colors, we add x Streett pairs to the latter280

game G′, using a standard parity-to-Streett conversion: those Streett pairs enforce that if an281

odd color α is seen infinitely often, then some even color β > α is seen infinitely often.282

Conversely, let us explain how to convert any Streett game into a
∧

B-counter game. As283

a matter of fact, the latter reduction is a bijection, so, it suffices to apply its inverse, which284

we explicit here. If there are k Streett pairs, then we introduce k counters C = {c1, . . . , ck}.285

No parity condition is needed in the resulting counter game (formally, we introduce a trivial286

colouring which colors all vertices by 0). If (Ei, Fi) is a Streett pair, we assume wlog that287

Ei ∩ Fi = ∅, and for any vertex v, we add the following operation on ci to v: increments ci288

if v ∈ Ei, reset it if v ∈ Fi, and skip otherwise. The counter condition is
∧k
i=1 B(ci). J289

As a corollary of the latter Lemma, by applying Ψ−1 ◦Ψ to a counter game in
∧

B, we290

get in polynomial time an equivalent counter game in
∧

B with a trivial parity condition.291

Streett games are known to be coNP-complete and in PTIME for a fixed number of Streett292

pairs [23], and finite-memory strategies suffice for Eve while memoryless strategies suffice for293

Adam. Therefore, Lemma 3 immediately yields the following result:294

I Theorem 4. Counter games with winning conditions in
∧
B are coNP-complete, and295

in PTIME if both the index of the priority function and the number of counters are fixed296

constants. Finite memory suffice for Eve and memoryless strategies suffice for Adam. coNP-297

hardness holds even if the index of the parity function is any fixed constant.298

The latter theorem does not cover the case where only the number of counters is fixed.299

We prove that in this case, the complexity is at most NP ∩ coNP. The proof of Theorem 4300

is based on Lemma 3 which explicits a bijection between counter games in
∧
B and Streett301

games. In particular, it constructs a game whose winning condition is a conjunction of |C|302

Streett conditions and a parity condition (which is then itself converted as Streett pairs).303

Each Streett pair can be seen as a parity condition over colors {0, 1, 2}. Therefore, when the304

number of counters is fixed, the reduction of Lemma 3 yields a game with a winning condition305

which is a conjunction of a fixed number ` of parity conditions over colors {0, 1, 2} and a306

single arbitrary parity condition. We prove that such games are reducible in polynomial time307

to parity games for ` = 1 in the following lemma, later on applied recursively to show the308

result the result for any fixed ` (Theorem 6).309

I Lemma 5. Games of the form G = (A,W ) where W = Parity(κ) ∩ Parity(κ3) for κ an310

arbitrary colouring of index k and κ3 a colouring in {0, 1, 2}, reduce in polynomial time to311

parity games of index 2k + 1. Moreover, finite-memory strategies of memory size equal to k312

are sufficient for Eve to win G.313
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Proof. Let V be the set of vertices of A, Q the set of colours of κ and m the minimal314

even number greater than or equal to every element of Q. We construct in polynomial315

time a parity game G′ over a coloured arena A′ = (V ′, E′, V ′∃, V ′∀, Q′, κ′, v′0) such that Eve316

wins G iff she wins G′, and such that the index of κ′ is equal to 2k + 1. To prove that317

finite-memory strategies of memory size equal to k suffice to win G′, we use the known318

result that memoryless strategies suffice to win parity games, and prove that any memoryless319

winning strategy in G′ can be translated back to a finite-memory winning strategy in G with320

memory size equal to k.321

The construction of G′ is as follows. We let V ′ = V ×Q and Q′ = {0, . . . , 2m+ 2} with
the following parity function κ′: any vertex (u, q) ∈ V ′ is coloured by

κ′(u, q) =


κ(u) if κ3(u) = 0
m+ 1 if κ3(u) = 1

m+ 2 + max{κ(u), q} if κ3(u) = 2

Before defining the transitions, let us prove some property (called P) about the colouring322

κ′. Let π = v0v1 · · · ∈ Plays(A). For all i ≥ 0, we let qi be the color by κ seen since the323

last vertex vj , j < i, such that κ3(vj) = 2. Formally, j is the largest integer such that j < i324

and κ3(vj) = 2, and we let qi = max{κ(vk) | j ≤ k < i}. If j does not exist, then qi = 0.325

Let π′ = (v0, q0)(v1, q1) . . . . We prove that π ∈W iff π′ ∈ Parity(κ′). Let x be the maximal326

priority occurring infinitely often in κ3(π) (κ3 here, is extended morphically to sequences in327

V ω). We consider three cases:328

If x = 0, then κ′(π′) = κ(π), so, π ∈W iff π ∈ Parity(κ) iff π′ ∈ Parity(κ′).329

If x = 1, then κ′(π′) seesm+1 (which is odd) infinitely often, and therefore π′ 6∈ Parity(κ′)330

and π 6∈W .331

If x = 2, this is the most interesting case. In that case, π can be decomposed into332

fragments π = f1f2f3 . . . such that each fi contains exactly one node v, at its end, such333

that κ3(v) = 2. Let αi be the maximal color of fragment fi. Then, the maximal colour334

seen infinitely often in κ′(π′) is the same as in the sequence (m+ 2 +α1)(m+ 2 +α2) . . . ,335

which is equal to m+ 2 + α, where α is the maximal color occurring infinitely often in336

κ(π). As m is even, π′ ∈ Parity(κ′) iff π ∈ Parity(κ) iff π ∈W .337

The transitions of A′ are constructed so that any play π ∈ Plays(A) bijectively corresponds338

to the play π′ defined above. In particular, when a vertex (v, q) such that κ3(v) = 2 is339

visited and there is a transition (v, v′) in A, q is reset to 0 (we add a transition to (v′, 0) in340

A′), and if κ3(v) 6= 2, we add a transition to (v′,max(κ(v), q)). Such a construction ensures341

that there is a bijection Ψ between Plays(A) and Plays(A′) such that, by property P above,342

π ∈ Parity(κ) ∩ Parity(κ3) iff Ψ(π) ∈ Parity(κ′), so, correctness follows. Moreover, any343

memoryless strategy in G′ is translated into a finite-memory strategy in G with a memory344

size equal to the index of κ, concluding the proof. J345

Note that Lemma 5 entails that games with a conjunction of a parity condition of index346

k and a fixed number N of parity conditions over colors {0, 1, 2} are solvable in NP∩CoNP.347

Indeed, by iterating Lemma 5 N times, the latter games reduce to parity games of index348

2N (k + 1) − 1. Games with Boolean combinations of parity objectives have been studied349

in [13]. However, the former complexity result is not covered by [13]. As explained before,350

Lemma 5 together with the bijection of Lemma 3 imply the following theorem:351

I Theorem 6. For any fixed positive integer N , counter games of parity index k with winning352

conditions in
∧
B and at most N counters, are in NP ∩ CoNP (and parity-hard). Finite353

memory strategies with memory size 2N−1(k + 1)− 1 suffice for Eve and Adam.354
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4 Finitely switching strategies for games with disjunction of355

prefix-independent objectives356

Let A be an arena, let V be its set of vertices, and letW be a finite set of prefix-independent1357

winning conditions for A, i.e., W ⊆ 2V . We let
∨
W =

⋃
{W |W ∈ W}. In this section, we358

consider a class of strategies for Eve, called finitely switching, whose existence entail that359

she wins (A,
∨
W). We characterize the existence of finitely switching strategies via a least360

fixpoint and, for some particular classes of winning objectives
∨
W of interest in this paper,361

prove that such strategies suffice for Eve to win (A,
∨
W). The complexity of computing the362

fixpoint for those particular classes of objectives is deferred to Section 5.363

Let us first give intuition on the notion of finitely switching strategies. In such a strategy,
Eve announces an initial goal W ∈ W she wants to satisfy, but she may switch her mind
during the play, i.e., announce another goal W ′ ∈ W, depending on what Adam does. She
can do this only a finite number of times and eventually keep the same goal forever and
satisfy it. Formally, for k ≥ 0, a k-switching strategy for Eve is a strategy σ such that there
exists a mapping goal from finite histories of σ toW such that for all π = v1v2 · · · ∈ Plays(σ),
there exists W1, . . . ,Wk+1 ∈ W such that π ∈Wk+1 and

goal(v0)goal(v0v1)goal(v0v1v2) · · · ∈W ∗1W ∗2 . . .W ∗kWω
k+1

The goal Wk+1 is called the ultimate goal of π. We say that σ is finitely switching if it is364

k-switching for some k ≥ 0.365

I Example 7. Consider the example of Fig. 2. The described strategy β is 1-switching for366

W = {B(c),B(d)}: initially, her goal is B(d). If Adam ever tries to make it so that counter d367

becomes unbounded, by going to vertex 3 from vertex 2, Eve can now set her new goal to368

B(c).369

Consider now the single-state arena of Example 1 in which Eve wants to satisfy
∨
c=1,2 U(c).370

She has no finitely switching strategy: whenever she announces she wants to satisfy U(ci)371

for some i, Adam loops on transition t3−i until Eve switches her mind. If her ultimate goal372

is U(ci) for some i, then Adam will loop forever on t3−i and ci will be bounded, so that373

Eve does not meet the ultimate goal she announced. By seeing operations on c1 and c2 as374

priority functions, this example also shows that finitely switching strategies are not sufficient375

to win disjunctions of parity objectives in general. More precisely, for i = 1, 2, we can define376

the priority functions pi, here on transitions, which colors transition ti by 0 and transition377

t3−i by 1. If she ultimately announces her goal is to satisfy priority pi, then Adam takes378

transition t3−i forever and pi sees infinitely many times color 1.379

Since in a finitely switching strategy, any play consistent with that strategy must satisfy380

its ultimate goal, the following result is immediate:381

I Lemma 8 (Soundness). Any finitely switching strategy for Eve in A is winning for (A,
∨
W).382

We will see later on that the converse holds for some particular classes of boundedness383

objectives, but for now, let us characterize the existence of finitely switching strategies384

via some least fixpoint. For a set X ⊆ V , we denote the objective of reaching X by385

Reach(X) = V ∗XV ω. We let f be the function which associates any X ⊆ V to the set of386

vertices u from which Eve can win the objective W ∪ Reach(X) for some W ∈ W. Formally,387

1 A winning condition W is prefix-independent if, for all (w, u) ∈ (V ω, V ?), w ∈W iff uw ∈W .
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f(X) = {u ∈ V | ∃W ∈ W, Eve wins (A[u],W ∪ Reach(X))}. Note that X ⊆ f(X) for388

all X ⊆ V . Indeed, if u ∈ X, then Eve has a trivial strategy from u to reach X, and so389

u ∈ f(X). Since (2V ,⊆) is a complete lattice, by Knaster–Tarski theorem, f has a unique390

least fixpoint denoted SW . To compute SW , it suffices to compute the following sequence of391

sets until it stabilizes:392

SW0 = ∅,393

for i ≥ 0, SWi+1 = {u ∈ V | ∃W ∈ W, Eve wins (A[u],W ∪ Reach(SWi ))}.394

For all i ≥ 1 and u ∈ SWi (if it exists), we denote by σu,i a strategy for Eve winning in the395

game (A[u],W ∪ Reach(SWi−1)) for some W ∈ W. It exists by definition of SWi .396

We now prove the following characterization.397

I Lemma 9 (Fixpoint characterization of finitely switching strategies). Let A be an arena with398

set of vertices V and W a finite set of prefix-independent winning conditions for A. For all399

u ∈ V , the following are equivalent:400

1. Eve has a finitely switching strategy from u401

2. Eve has a |V |-switching strategy from u402

3. u ∈ SW403

Proof. Clearly 2⇒ 1. We first prove 1⇒ 3 and then 3⇒ 2.404

Let σ be a k-switching strategy for some k ≥ 0. By induction on k, we prove that405

u ∈ SWk+1. This implies the claim as SWk+1 ⊆ SW .406

If k = 0, then Eve never changes her mind and therefore all plays of (σ) are in goal(u)407

(the history with only the vertex u), so, u ∈ SW1 . Suppose that k > 0. We take W = goal(u).408

Let π ∈ Playsσ. We prove that π ∈W ∪ Reach(SWk ). If Eve never switches her mind during409

π, then π ∈W . Otherwise, let h the smallest prefix of π such that goal(h) 6= W . Let v be410

the last vertex of h. Note that the strategy2 σ|h is a (k − 1)-switching strategy from v. By411

IH, v ∈ Reach(SWk ), which means that π ∈ Reach(SWk ) and we are done.412

We now prove 3⇒ 2. Let u ∈ SW . Let i be smallest index such that u ∈ SWi . Note that413

i ≤ |V |. We prove by induction on i that Eve has an (i− 1)-switching strategy βu,i witnessed414

by a goal function goalu,i. If u ∈ SW1 , then σu,1 wins (A[u],W ) for some W ∈ W and so we415

let goalu,1(h) = W for any history h of σu,1.416

Suppose that i > 1 and u ∈ SWi . Remind that the strategy σu,i wins (A[u],W ∪417

Reach(SWi−1)). We modify σu,i into a strategy βu,i as follows: βu,i is the same as σu,i as long418

as SWi−1 has not been reached. If eventually SWi−1 is reached, say at a vertex v, then βu,i plays419

according to βv,i−1 (which exists by IH).420

We prove that βu,i is (i− 1)-switching. We let goalu,i(h) = W for any history h which421

does not visit SWi−1. For any history h = h1vh2 such that |h1| is minimal and v ∈ SWi−1, we422

let goalu,i(h) = goalv,i−1(vh2). Let π ∈ Plays(βu,i). If π = v0v1 . . . never visits SWi−1, then423

goal(v0)goal(v0v1) · · · ∈ Wω, and π ∈ Wω. If there exists j minimal such that vj ∈ SWi−1,424

then, by HI, there exists W1, . . . ,Wi ∈ W such that goalvj ,i−1(vj)goalvj ,i−1(vjvj+1) · · · ∈425

W ∗1 . . .W
∗
i−1W

ω
i . By definition of goalu,i, we obtain that goalu,i(v0)goalu,i(v0v1) · · · ∈426

W ∗W ∗1 . . .W
∗
i−1W

ω
i . Finally, it remains to prove that π ∈Wi: by IH, its suffix vjvj+1 . . . is427

in Wi, and since Wi is prefix-independent, so is π, concluding the proof. J428

2 The restriction σ|h is defined by σ|h(h′) = σ(hh′) for all h′.
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According to Lemma 9, when Eve has a finitely switching strategy, then she has a429

|V |-switching strategy. Interestingly, observe that the number of times she possibly needs to430

switch her mind does not depend on the number of winning objectives in W.431

The proof of Lemma 9 constructs, for all 1 ≤ i ≤ |V | and u ∈ SWi , a finitely switching432

strategy βu,i, which either mimics σu,i or switch to a strategy βv,i−1. So, Eve needs to433

remember the current vertex u and index i, in order to know whether she must play according434

to σu,i or to switch to a strategy βv,i−1. So, even if for some N , all the strategies σu,i are435

finite-memory of size at most N , βu,i needs memory O(N.|V |2) in general. We now prove436

that Eve can do better.437

I Lemma 10 (Memory transfer). Let A be a counter arena, V be its set of vertices, and W438

a finite set of prefix-independent winning conditions for A. Let N ∈ N and suppose that for439

all X ⊆ V , u ∈ V and W ∈ W, strategies of memory size at most N suffice for Eve to win440

(A[u],W ∪ Reach(X)). Then for all u ∈ SW , Eve wins (A[u],
∨
W) with memory at most N .441

Proof. For all 1 ≤ i ≤ |V | and u ∈ SWi , we assume the existence of a strategy σu,i winning442

in (A[u],W ∪Reach(SWi )) for some W ∈ W , of memory states {1, . . . , N}. Note that the σu,i443

share the same memory states. The main idea of the proof is to provide a way for Eve, given444

a current vertex v ∈ SW and a memory state m, to uniquely identify the (finite memory)445

strategy σu,i according to she must play in vertex v and state m. Given v, we take i to446

be the smallest integer such that v ∈ SWi \S
W
i−1. To identify u, we take the smallest vertex447

u according to an arbitrary linear order on V such that u ∈ SWi \S
W
i−1 and v is reachable448

from u by a finite path p consistent with σu,i, such that if σu,i is in its initial memory state449

m0 at u, then after p, it is in memory state m. Then, Eve moves to vertex g(v,m), for450

(δ, g) the memory mapping of σu,i. Intuitively, if Eve stays forever in SWi \S
W
i−1, she will by451

monotonicity eventually always play according to the same strategy σu,i, and so satisfy some452

W , as conditions in W are prefix-independent. Otherwise, she will reach another SWj \S
W
j−1453

for some j < i and we make the same reasoning inductively. See Appendix for details. J454

The converse of Lemma 8 does not hold in general, as illustrated in Example 1 for455

disjunction of unboundedness objectives. However, we show here that it holds for disjunctions456

of conjunctions of boundedness objectives.457

I Lemma 11 (Completeness for boundedness conditions in DNF). Let A be a counter arena and458

C its set of counters. Let W be a finite subset of counter conditions for A in Parity(A)∧
∧

B.459

If Eve wins (A,
∨
W), then she has a finitely switching strategy.460

Proof. Let C1, . . . , Cp be subsets of C such that W is the set of all counter conditions461 ∧
c∈Ci

B(c), for i ∈ {1, . . . , p}. Suppose that Eve does not have a finitely switching strategy462

from the initial vertex v0. This means, by Lemma 9, that v0 6∈ SW . We construct a463

winning strategy for Adam for the complementary objective Comp =
⋂
i∈{1,...,p}

⋃
c∈Ci

U(c)∪464

Parity(A). By definition of SW , f(SW) = SW . Therefore, for any v ∈ V \SW and465

i ∈ {1, . . . , p}, Eve does not win the counter game (A[v], (Parity(A[v]) ∩
⋂
c∈Ci

B(c)) ∪466

Reach(SW))). Thus, by determinacy (Lemma 2), Adam has a winning strategy σv,i in A[v]467

for the complementary objective (
⋃
c∈Ci

U(c) ∪ Parity(A[v])) ∩ Reach(SW).468

Intuitively, a strategy for Adam winning for Comp could be defined by breaking it down469

into the following steps:470

Adam begins by step (1, 1): he follows strategy σv0,1 until the play of the game reaches471

a vertex where the value of a counter of C1 is 1. If that is never the case, then Adam472
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follows σv0,1 ad. infinitum. Notice that, if the value of every counter of C1 is bounded by473

a certain integer, Adam wins, since the play does not belong to Parity(A).474

After completing step (i, j) in a vertex v, two cases arise:475

If j < p, then Adam carries out step (i, j + 1) by following σv,j+1 until the play of the476

game reaches a vertex where the value of a counter of Cj+1 is i. If that is never the477

case, Adam follows σv,j+1 ad. infinitum.478

If j = p, then Adam carries out step (i+ 1, 1) by following σv,1 until the play of the479

game reaches a vertex where the value of a counter of C1 is i+ 1. If that is never the480

case, Adam follows σv,1 ad. infinitum.481

See the Appendix for a complete proof. J482

5 Complexity of games with disjunctions of boundedness conditions483

The next result gives sufficient conditions on a class of games G, to guarantee decidability of484

the problem of deciding if Eve has a finitely switching strategy for a disjunction of objectives485

in the class. In this result, we assume that the winning objectives of G are finitely represented486

in some way. This is the case of all classes to which we apply this lemma in the paper.487

I Lemma 12. Let C ∈ {PTIME,NP,coNP,EXPTIME}. Let G be a class of games with488

prefix-independent objectives, such that deciding whether, given (A,W ) ∈ G, a vertex v of A,489

and a subset X of vertices of A, Eve wins (A[v],W∪Reach(X)), is in C. Then, deciding, given490

an arena A and a finite subset of winning conditions W such that {(A,W ) |W ∈ W} ⊆ G,491

whether Eve has a winning finitely switching strategy for (A,
∨
W), is in C.492

Proof. Suppose first that C = PTIME. From Lemma 9, Eve has a winning finitely switching493

strategy for (A,
∨
W) if and only if the initial vertex v0 of A is in SW . Thus, we can decide494

whether Eve has a finitely switching strategy by recursively computing the SWi , one after495

the other, until SWi = SWi+1 = SW . In order to compute SWi+1 from SWi , we check for every496

vertex v of A whether Eve wins the game (A[v],W ∪ Reach(SWi )). Thus, since SW|V | = SW ,497

in order to compute SW , we only need to check, in ptime, whether Eve wins a game of the498

form (A[v],W ∪Reach(X)) at most |V | × |V | × |W| times. As a consequence, the problem of499

deciding whether Eve has a winning finitely switching strategy for (A,
∨
W) is in PTIME.500

We present this generic fixpoint algorithm in Fig. 3, as it is useful to treat the case501

C = NP. In that figure, slv is an algorithm that terminates in polynomial time, and such502

that slv(A, v,W,H) returns true if and only if Eve wins (A[v],W ∪ Reach(H)). The case503

where C = EXPTIME is similar. In the case where C = NP, we transform the algorithm504

SOLVE into an ptime algorithm VERIF (given in Appendix), which is defined as the505

algorithm SOLVE, except that line 7 is replaced by a call to a ptime verifier that Eve wins506

(A[vi],Wj ∪ Reach(Hα)) given a certificate. All the certificates needed for each call at line507

7 are taken as input of the algorithm VERIF. This approach works because the algorithm508

VERIF returns True if and only if the answers to some well-chosen questions of the type509

"Does Eve win (A[v],W ∪ Reach(X))?" are true. The case where C = CoNP is done in a510

similar way, but this time by guessing the complement of SW . See Appendix for details. J511

SOLVE(A,W)
//v is the initial vertex of A
//V = {v1, . . . , vn}
//W = {W1, . . . ,Wp}

1. N ← n2 × p
2. α← 0
3. H0, H1, . . . ,HN ← ∅
4. While α < n

5. For i = 1, . . . , n
6. For j = 1, . . . , p
7. If slv(A, vi,Wj , Hα)
8. Hα+1 ← {vi} ∪Hα+1
9. α← α+ 1

10. Return (v ∈ Hα)

Figure 3 Generic algorithm to
check v ∈ SW

We are now ready to prove complexity results for solving512

counter games with disjunction of boundedness objectives.513

We start with the case of
∨

B.514
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I Theorem 13. Counter games with counter conditions in515 ∨
B are in NP∩coNP, and are in PTIME if the index of516

the colouring is fixed. A memory of size equal to the index517

of the colouring suffices for Eve, and infinite memory is518

required for Adam.519

Proof. Let G be a game over counter arena A with set520

of counters C, initial vertex v and objective
∨
W where521

W = {Parity(A) ∩ B(c) | c ∈ C ′} for some C ′ ⊆ C. It522

should be clear that those conditions are prefix-independent,523

therefore, by Lemma 9 and Lemma 11, Eve wins G iff she524

has a finitely switching strategy iff v ∈ SW . So, to check525

whether Eve wins G, it suffices to compute the fixpoint526

SW . We prove that each step of the fixpoint computation527

(line 7 in algorithm SOLVE) is done in NP ∩ coNP, and in PTIME if the index of the528

colouring is fixed. By Lemma 12, the complexity statement of the theorem follows. It529

remains to show that for all subset X ⊆ V , any vertex u ∈ V and any counter c ∈ C ′,530

it is decidable in NP ∩ coNP (and in ptime for fixed parity) whether Eve wins the game531

(A[u], (Parity(A) ∩ B(c)) ∪ Reach(X)). First, we evacuate the reachability condition, i.e.,532

reduce in ptime the latter problem to solving a game (A′,Parity(A′) ∩ B(c)). This is easily533

done by adding a sink state to A reached whenever X is visited, with operation skip on c and534

priority 0. This reduction works for more general boundedness conditions (see Lemma 17 in535

Appendix). Finally, the game (A′,Parity(A′)∩B(c)) is solvable in NP∩coNP by Theorem 6,536

and in ptime for fixed parity, which is the case of A′ when the index of A is fixed, because537

they have the same colours.538

For Adam, infinite memory might be necessary to enforce the complementary objective,539

as illustrated by Example 1. For Eve, Theorem 6 states that a memory of size the index540

of the parity function is sufficient to solve the "local" games (A′,Parity(A′) ∩ B(c)), which541

can be translated back to strategies of same size in (A[u], (Parity(A) ∩ B(c)) ∪ Reach(X)).542

Therefore, the memory transfer lemma (Lemma 10) yields the result. J543

We now turn to games on arenas A with conditions in
∨∧

B, i.e., whereW = {Parity(A)∧544 ∧
c∈Ci

B(c) | i = 1, . . . , n} for C1, . . . , Cn finite subsets of counters. The same reasoning as in545

the proof of Theorem 13 applies. The only difference here is that, to solve the "local" games546

of the fixpoint computation (line 7 of algorithm SOLVE), we rely on Theorem 4.547

I Theorem 14. Counter games with winning conditions in
∨∧

B are coNP-complete.548

Finite memory suffices for Eve, and infinite memory is required for Adam.549

We conclude this section by the case of Boolean combination of boundedness objectives.550

I Theorem 15. Counter games with winning conditions in Bool+(B) are in PSPACE and551

CoNP-hard. Finite memory suffices for Eve, and infinite memory is required for Adam.552

Proof. Any counter condition which is a positive boolean combination φ ∈ Bool+(B) can be553

written in disjunctive normal form ψ =
∨
i∈{1,...,p}

∧
c∈Ci

B(c), where the Ci are subsets of C.554

Let W = {Parity(A) ∧
∧
c∈Ci

B(c) | i = 1, . . . , n}. A direct application of Theorem 14 yields555

a CoNExpTime, because p might be exponential. Instead, we do not construct ψ explicitely.556

Recall that, from Theorem 4, counter games with counter conditions in
∧

B are in coNP,557

and thus in PSPACE. Thus, since it is well-known that, even if p may be exponential in the558

size of φ, we can enumerate W in polynomial space, we can use this enumeration algorithm559
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at line 6 of algorithm SOLVE in Fig. 3 to compute the fixpoint SW in polynomial space. As560

a consequence, the problem of deciding whether Eve has a winning finitely switching strategy561

for counter games with winning conditions in Bool+(B) is in PSPACE. Hence, the result562

follows because, as for Theorem 14, these strategies suffice for Eve. J563

6 Extensions of counter games with max operation564

In this section, we consider counter games where the players can, in addition, put into a565

counter the maximum value of a subset of counters. In other words, max-counter games are566

defined in the same exact way as counter games, the only difference being counter operations567

are now mappings from a finite subset C of C to {i, r, skip} ∪ {max
c∈S

(c) | S ⊆ C}.568

I Theorem 16. Let G be the class of counter games G with counter condition
∧
c∈C B(c),569

where C is the set of counters of G. Given a game G in G, the problem of deciding whether570

Eve wins G is EXPTIME-c. Finite memory is sufficient for Eve and Adam.571

Proof. For hardness, we reduce the emptiness problem of the intersection of n deterministic572

top-down tree automata, which is known to be EXPTIME-hard [15]. We first show PSPACE-573

hardness if the case of arenas where Adam plays no role, i.e., V∀ = ∅. The proof is by574

reduction from the emptiness problem of the intersection of n DFA. The latter reduction575

is inspired from the proof that deterministic min-automata have PSPACE-c emptiness576

problem [7]. Using the fact that strategies are trees, we lift the latter reduction to tree577

automata. The detailed proof is in Appendix, in Lemma 18.578

It remains to show that solving a game in G can be done in exponential time. The579

difficulty for solving a game G of G comes from the fact that counters interact with each580

other, since the value of counters can "flow" from one to another via the max operation. That581

was not case for
∧
B-counter games without max, which are CoNP-c, and we could track582

each counter separately, replacing each boundedness condition by a condition of the form583

"if c is incremented infinitely often, then it is reset infinitely often". Here, we need to track584

sequences of counters that flow one into another, called traces. We rather solve games with585

the complementary objective, which is correct since max-counter games are determined (see586

Lemma 19 in Appendix). We define a (non-deterministic) automaton B with a single counter587

d that guesses either a new trace, or a valid continuation to the current trace, at every move588

of a play of G. Every operation on the counters of the trace are mimicked on d, and it accepts589

a play iff there exists a run such that d is unbounded. That same idea is already used in590

the proof of Theorem 1 of [3], from which this proof is inspired. So, solving G boils down591

to solving a game on the same arena but with objective given by the language L(B). To592

solve the latter, we convert B into a non-deterministic parity automaton T , which does not593

preserve the language, but preserves the existence of winning strategy for Eve: when playing594

on the arena of G, Eve wins the objective L(B) if and only if she wins the objective L(T ).595

Correctness is ensured by a pumping-like argument based on the fact that finite-memory596

strategies are sufficient to win ω-regular games, an argument very similar to the one used in597

the proof of Lemma 3. The automata B and T are constructed in ptime from G. Then we598

determinize T in exponential time, take its product with G, and obtain a classical parity599

game of exponential size and linear index. We can conclude since parity games with m edges,600

n vertices and index k can be solved in O(mnk) (see e.g. [13]). The detailed proof is in the601

Appendix, in Lemma 16. J602
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7 Future work603

In this paper, we have proved new complexity results for counter games and important classes604

of boundedness conditions. Beyond the objective of having an exhaustive complexity table, we605

believe that considering those different classes advance our understanding of those games, as606

the techniques required to solve conjunctions and disjunctions are different. By determinacy,607

those results also yield complexity bounds for the complementary classes of unboundedness608

objectives. For example, we get that games with conjunctions of objectives of the form609

U(c) can be solved in NP∩CoNP and that infinite memory is required. However, note that610

our counter games are always taken in conjunction with a parity condition. Therefore, in611

the complementary objectives, this parity condition is now taken in disjunction. We leave612

conjunction of parity and unboundedness objectives as future work. Another important613

direction is to consider classes of conditions that mix boundedness and unboundedness614

objectives. Since the techniques used to solve them individually are different, this would615

require new techniques. More generally, the only known upper bound for any Boolean616

combination (not necessarily negation-free) of boundedness objective is non-elementary. We617

believe there is space for improvement.618
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Appendix704

A Detailed proofs of section 4705

I Lemma 10 (Memory transfer). Let A be a counter arena, V be its set of vertices, and W706

a finite set of prefix-independent winning conditions for A. Let N ∈ N and suppose that for707

all X ⊆ V , u ∈ V and W ∈ W, strategies of memory size at most N suffice for Eve to win708

(A[u],W ∪ Reach(X)). Then for all u ∈ SW , Eve wins (A[u],
∨
W) with memory at most N .709

Proof. Let us recall that the strategies βu,i constructed in the proof of Lemma 9 (implication710

3⇒ 2) are inductively defined as follows: Eve follows σu,i as long as SWi−1 is not reached. As711

soon as she reach a vertex v ∈ SWi−1, she applies βv,i−1. We let β = βu,|V | for some u ∈ SW ,712

which is a finitely switching strategy, and winning in (A[u],
∨
W) according to Lemma 9.713

Note that by construction of the family of strategies βu,i, in any arbitrary vertex v Eve has714

reached by playing β, she is always playing according to some local strategy σw,j for some w715

and j. It means that Eve has to remember w and j, but this costs |V |2 states. Instead, we716

show a different way of constructing a finitely switching strategy γ in (A[u],
∨
W) for any717

u ∈ SW as follows. Let us fix u ∈ SW in the rest of the proof.718

We take an arbitrary linear order <V on V . The memory of γ is {1, . . . , N}, just as the719

finite-memory strategies (σv,i)v,i. For all v, i, we let (δv,i, gv,i) be the memory mapping of720

σv,i. Remind that δv,i updates the states while gv,i defines the moves. We define γ as follows,721

with the invariant that all states γ reaches are in SW . Let i be the smallest integer such that722

u ∈ SWi \S
W
i−1. It exists since u ∈ SW . The initial state of γ is the initial state m0 of σu,i.723

Now, let v ∈ V∃ ∩ SW and m a memory state of γ. We define how γ plays when it is in v724

with memory state m. We let iv be the smallest integer such that v ∈ SWiv \S
W
iv−1. We let uv725

the smallest vertex such that726

1. uv ∈ SWiv \S
W
iv−1727

2. there exists a finite path h from uv to v consistent with σuv,iv such that δ∗uv,iv
(q0, h) = m,728

where δ∗uv,iv
(h) is the memory state of σuv,iv after h, starting in its initial state q0 at729

vertex uv.730

Then, γ at vertex v in memory state m plays guv,iv (v,m) and moves to state δuv,iv (v,m).731

Note that γ is well-defined: by construction, all the vertices v it reaches have been reached732

following some strategy σv,i and hence, there exists always a path h satisfying the conditions733

of point 2 above, for such vertices v.734

We prove that γ wins (A[u],
∨
W). Take a play π = v1v2v3 . . . consistent with γ. Let735

m0m1m2 . . . the sequence of states of γ on π. First, note that by definition of γ, there exists736

n such that all the vertices v visited by π after at least n steps all belong to the same part737

SWi∗ \S
W
i∗−1 for some i∗. It means that for all k ≥ n, ivk

= ivk+1 = i∗. To simplify notations,738

for all k ≥ n, let ik = ivk
and uk = uvk

. Consider the sequence (uk)k≥n. By definition of739

γ, it is decreasing for <V . Indeed, let k ≥ n. Then, there exists a finite path hk from uk740

to vk consistent with σuk,ik . By definition of γ, vk+1 is defined by σuk,ik at state vk and741

memory mk. Therefore, hkvk+1 is consistent with σuk,ik , so, uk meets the requirements of742

point 2 above. Since we want a minimal node, we obtain that uk+1 ≤V uk. Since there are743

finitely many vertices, eventually, the sequence (uk)k≥n stabilizes on the same vertex u∗, i.e.,744

there exists l such that for all k ≥ l, uk = u∗. From that point on, γ always applies strategy745

σu∗,i∗ . Formally, it means that the infinite prefix vlvl+1 . . . is consistent with σu∗,i∗ . We746

can conclude since σu∗,i∗ is winning in (A[u∗],W ∪Reach(SWi∗−1) for some W ∈ W , and since747

π never visits SWi∗−1 by definition of i∗, vjvj+1 · · · ∈W , and since W is prefix-independent,748

π ∈W . J749
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I Lemma 11 (Completeness for boundedness conditions in DNF). Let A be a counter arena and750

C its set of counters. Let W be a finite subset of counter conditions for A in Parity(A)∧
∧

B.751

If Eve wins (A,
∨
W), then she has a finitely switching strategy.752

Proof. Let C1, . . . , Cp be subsets of C such that W is the set of all counter conditions753 ∧
c∈Ci

B(c), for i ∈ {1, . . . , p}. Suppose that Eve does not have a finitely switching strategy754

from the initial vertex v0. This means, by Lemma 9, that v0 6∈ SW . We construct a755

winning strategy for Adam for the complementary objective Comp =
⋂
i∈{1,...,p}

⋃
c∈Ci

U(c)∪756

Parity(A). By definition of SW , f(SW) = SW . Therefore, for any v ∈ V \SW and i ∈757

{1, . . . , p}, Eve does not win the counter game (A[v],Parity(A)∩ (
⋂
c∈Ci

B(c)∪Reach(SW))).758

Thus, by determinacy (Lemma 2), Adam has a winning strategy σv,i in A[v] for the759

complementary objective
⋃
c∈Ci

U(c)∩Reach(SW)∪Parity(A[v]). We now define a well-suited760

decomposition of every history and play. To that aim, we define a successor function on761

every element of the set (N \ {0})× {1, . . . , p}. For any positive integer i and any integer762

j ∈ {1, . . . , p}, we thus define s(i, j) as (i, j + 1) if j < p, and as (i+ 1, 1) if j = p. We define763

the counting decomposition of a history or a play w as the sequence (wi)i∈E that satisfies764

the following properties:765

E is either equal to {1, . . . , n} for some n ∈ N or equal to N \ {0},766

w = w1 · · ·wn,767

for any integer i ∈ E,768

w 6= w1 · · ·wi−1,769

and, if we let (k, l) denote si−1(1, 1), hi is equal to the longest non-empty prefix770

h′ of (h1 · · ·hi−1)−1h such that, for any non-negative m with m ≤ |h′|, we have771

λ(ζ(h′), c)m < k for any c ∈ Cl (h′ can be an infinite word).772

Notice that the counting decomposition (hi)i∈{1,...,n} of any history h is indeed unique,773

since every hi is unique by induction on i.774

Using the above definitions, we formally define a winning strategy σ′ of Adam in the775

following way.776

For any history h, if we let (hi)i∈{1,...,n} denote the counting decomposition of h, v denote777

the first letter of hn, and (k, l) denote sn−1(1, 1), we define σ′(h) as σv,l(hn). We show that778

σ′ is a winning strategy for Adam for G (game arena of G with objective the complement779

of G’s objective). Let ρ be a play consistent with σ′, and let (hi)i∈E denote the counting780

decomposition of ρ. Let us suppose that there exists n ∈ N such that E = {1, . . . , n}. By781

definition of σ′, if we let v denote the first letter of hn and (k, l) denote sn−1(1, 1), hn is782

consistent with σv,l. However, since ρ = h1 · · ·hn, by definition of the counting decomposition,783

for any m ∈ N, we have λ(ζ(hn), c)m < k for any c ∈ Cl. Since σv,l is a winning strategy784

of Adam for Gl, hn /∈ Parity(A), and as a consequence, ρ /∈ Parity(A) either. Thus, if785

ρ ∈ Parity(A), we have E = N.786

Furthermore, by definition of the counting decomposition, for any i ∈ N, if we let787

(k, l) denote si−1(1, 1) and v′ denote the first letter of hi+1, there exists c ∈ Cl such that788

λ(ζ(h0 · · ·hiv′), cl)|hi|+1 = k. Thus, since every Cl is finite, for any l ∈ {1, . . . , p}, there789

exists c ∈ Cl such that, for any integer k, there exists an integer j with λ(ζ(ρ), c)j ≥ k. To790

conclude, σ′ is a winning strategy of Adam for G. J791

B Detailed proofs of section 5792

I Lemma 12. Let C ∈ {PTIME,NP,coNP,EXPTIME}. Let G be a class of games with793

prefix-independent objectives, such that deciding whether, given (A,W ) ∈ G, a vertex v of A,794
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and a subset X of vertices of A, Eve wins (A[v],W∪Reach(X)), is in C. Then, deciding, given795

an arena A and a finite subset of winning conditions W such that {(A,W ) |W ∈ W} ⊆ G,796

whether Eve has a winning finitely switching strategy for (A,
∨
W), is in C.797

Proof. Suppose first that C = PTIME. From Lemma 9, Eve has a winning finitely switching798

strategy for (A,
∨
W) if and only if the initial vertex v0 of A is in SW . Thus, we can decide799

whether Eve has a finitely switching strategy by recursively computing the SWi , one after800

the other, until SWi = SWi+1 = SW . In order to compute SWi+1 from SWi , we check for every801

vertex v of A whether Eve wins the game (A[v],W ∪ Reach(SWi )). Thus, since SW|V | = SW ,802

in order to compute SW , we only need to check whether Eve wins a game of the form803

(A[v],W ∪ Reach(X)) at most |V | × |V | × |W| times. As a consequence, the problem of804

deciding whether Eve has a winning finitely switching strategy for (A,
∨
W) is in PTIME.805

In order to better explain the case where C = NP, we give the full algorithm SOLVE(A,W)806

in Figure 4. In that figure, slv is an algorithm that terminates in polynomial time, and such807

that slv(A, v,W,H) returns true if and only if Eve wins (A[v],W ∪ Reach(H)). The case808

where C = EXPTIME is similar.809

Suppose now that C = NP. Intuitively, we can use a very similar algorithm to the one810

we used in the previous case: the only difference is that we guess the certificates needed811

to check if Eve wins the games of the form (A[v],W ∪ Reach(X)). This approach works812

because the algorithm returns True if and only if the answers to some well-chosen questions813

of the type "Does Eve win (A[v],W ∪ Reach(X))?" are true. In order to formalize this idea,814

for any arena A, and any set W such that {(A,W ) | W ∈ W} ⊆ G, we let size(A,W)815

denote the size of a coding of the arena A and of the set of winning conditions W. There816

exists an algorithm vrfE such that vrfE(A, v,W,H,w) verifies in polynomial time if Eve wins817

(A[v],W ∪Reach(SWi )) using the certificate w. More precisely, vrfE terminates in polynomial818

time, and there exists a polynomial P , such that for any game (A, w) ∈ G, the following is819

true: there exists w of length P (size(A,W)) such that vrfE(H,W,A, v, w) returns True if820

and only if Eve wins (A[v],W ∪Reach(H)). An algorithm VERIF_EVE that checks whether821

Eve has a winning finitely switching strategy for (A,
∨
W), given a certificate w of size822

P (size(A,W))× |V |2 × |W| (where V is the set of vertices of A), VERIF_EVE(A,W,w), is823

precisely described in Figure 5. In the algorithm, for any integer k and any sequence of words824

(li)i∈{1,...,k}, we use the notation
−−−−→∏
i=1,...,k

li for l1 · · · ln. It is easy to see that, if the initial825

vertex v of A is in SW , then there exists a certificate w of size P (size(A,W))× |V |2 × |W|826

such that VERIF(A,W,w) returns True. The converse directly comes the fact that, for any827

certificate w, during a run of VERIF_EVE(A,W,w), we always have Hα+1 ⊆ f(Hα), and828

that we thus have Hn ⊆ SW .829

Suppose now that C = CoNP. We show that the problem of deciding whether Eve does830

not win (A,
∨
W) is in NP, using the same idea as in the previous case, that is by computing831

SW in a non-deterministic way, with an algorithm that returns True if and only if the answers832

to some well-chosen questions (in fact, to all of the questions in this case) of the type "Does833

Eve win (A[v],W ∪ Reach(X))?" are false. However, in this case, we compute SW by guessing834

its complement. There exists an algorithm vrfA such that vrfA(A, v,W,H,w) verifies in835

polynomial time if Eve does not win (A[v],W ∪ Reach(SWi )) using the certificate w. More836

precisely, vrfA terminates in polynomial time, and there exists a polynomial P , such that for837

any game (A, w) ∈ G, the following is true: there exists w of length P (size(A,W)) such that838

vrfA(H,W,A, v, w) returns True if and only if Eve does not win (A[v],W ∪ Reach(H)). An839

algorithm VERIF_ADAM that checks whether Eve does not have winning finitely switching840

strategy for (A,
∨
W), given a certificate w of size |V |+ P (size(A,W))× |V | × |W| (where841
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SOLVE(A,W)
//v is the initial vertex of A
//V = {v1, . . . , vn}
//W = {W1, . . . ,Wp}

1. N ← n2 × p
2. α← 0
3. H0, H1, . . . ,HN ← ∅
4. While α < n

5. For i = 1, . . . , n
6. For j = 1, . . . , p
7. If slv(A, vi,Wj , Hα)
8. Hα+1 =← {vi} ∪Hα+1
9. α← α+ 1

10. Return v ∈ Hα

Figure 4 An algorithm for case C =
PTIME

VERIF_EVE(A,W,w)
//v is the initial vertex of A
//V = {v1, . . . , vn}
//W = {W1, . . . ,Wp}

// w =
−−−−→∏
α=1,...,n

−−−−→∏
i=1,...,n

−−−−→∏
j=1,...,p

wαi,j ,

//where each wαi,j is of length P (size(A,W)).

1. N ← n2 × p
2. α← 0
3. H0, H1, . . . ,HN ← ∅
4. While α < n

5. For i = 1, . . . , n
6. For j = 1, . . . , p
7. If vrfE(A, vi,Wj , Hα, w

α
i,j)

8. Hα+1 ← {vi} ∪Hα+1
9. α← α+ 1
10. Return v ∈ Hα

Figure 5 An algorithm in the case C = NP

V is the set of vertices of A), VERIF_ADAM(A,W,w), is precisely described in Figure 6.842

For any certificate w, if VERIF_ADAM(A,W ,w) returns True, if we let S′ denote the value843

of the set S at the beginning of line 4 of a run of VERIF_ADAM(A,W,w), we always have,844

for any u ∈ S′ and for any W ∈ W, Eve does not win (A[u],W ∪ Reach(V \ S′)). Suppose845

now that S′ ∩ SW 6= ∅, and let k be the smallest integer such that SWk = SWk+1. We show by846

induction on i that, for any i ∈ {0, . . . , k}, S′ ∩ SWk−i 6= ∅. Indeed, the property is obvious for847

k = 0 since SWk = SW . Furthermore, if there exists u such that u ∈ S′ ∩ SWk−i, then Eve wins848

(A[u],W ∪Reach(SWk−i−1)), but Eve does not win (A[u],W ∪Reach(V \S′)). As a consequence,849

SWk−i−1 is not a subset of V \ S′, and thus SWk−i−1 ∩ S′ 6= ∅. Therefore, S
W
0 ∩ S′ 6= ∅, which850

is impossible since SW0 = ∅. Thus, we have S′ ⊆ V \ SW . As a consequence, if there exists851

a certificate w such that VERIF_ADAM(A,W,w) returns True, then Eve does not have852

a winning finitely switching strategy for (A,
∨
W). The converse is straightforward. To853

conclude, the problem of deciding whether Eve does not win (A,
∨
W) is in NP.854

J855

The following lemma assesses the complexity of games of the form (A[v],W ∪ Reach(X)).856

We show that, when W comes from a counter condition, we can reduce games of the form857

(A[v],W ∪ Reach(X)) to a game (A′,W ) in polynomial time.858

I Lemma 17. Let A be a counter arena, V be its set of vertices, v be a vertex in V ,859

X be a subset of V , and W be a counter condition for A. We can construct a counter860

arena A′ in polynomial time with respect to |V |, such that Eve wins (A[v], (Plays (A,W ) ∩861

Parity(A)) ∪ Reach(X)) if and only if Eve wins (A′,W ). Furthermore, if strategies with862

memory size at most N suffice for (A′,W ), then strategies with memory size at most N863

suffice for (A[v], (Plays (A,W ) ∩ Parity(A)) ∪ Reach(X)).864

Proof. The idea is to construct an arena A′ that comes from A by replacing all the elements of865
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VERIF_ADAM(A,W,w)

//V = {v1, . . . , vn}
//W = {W1, . . . ,Wp}
//v is the initial vertex of A
//w = w1w2, with
//w1 = u1#u2# · · ·un#, and

//w2 =
−−−−→∏
α=1,...,n

−−−−→∏
j=1,...,p

wi,j ,

//where each wi,j is of length P (size(A,W))

1. S ← ∅
2. For i = 1, . . . , n
3. S = S ∪ {ui}
4. For i = 1, . . . , n
5. For j = 1, . . . , p
6. If vrfA(A, vi,Wj , V \ S,wi,j) returns False
7. Return False
8. Return True

Figure 6 An algorithm in NP for the complement problem, for the
case C = CoNP

X by a single one, that we call −1. When a play would reach X in A, there is a corresponding866

play in A′ with the same previous history, that reaches −1, and that subsequently stays at867

that vertex ad. infinitum. Furthermore, the labeling and colouring of the vertex −1 are868

defined appropriately so that, if a play stays at the vertex {−1}, it is always winning for Eve.869

Let C be the counter the set of counters of A. Since W is a counter condition, it is a870

boolean formula φ over the set of propositions {B(c) | c ∈ C}. If v ∈ V , then any strategy of871

Eve is winning for (A[v], (Plays (A,W ) ∩ Parity(A)) ∪ Reach(X)). We thus suppose in the872

following that v /∈ V .873

Suppose now that φ is not satisfiable, then Plays (A,W ) is empty. As a consequence, Eve874

wins (A[v], (Plays (A,W )∩Parity(A))∪Reach(X)) if and only if Eve wins (A[v],Reach(X)).875

Since deciding reachability in two-player games can done in polynomial time, and since876

memoryless strategies are sufficient for Eve and for Adam [20], the theorem follows.877

We can thus suppose that φ is satisfiable. Then φ is implied by some condition of the form878 ∧
c∈C1

B(c)∧
∧
c∈C2

U(c), with C1, C2 ⊆ C. Let (V,E, V∃, V∀, u) be the underlying two-player879

arena of A, let ζ be the vertex labeling of A, and κ be its vertex colouring. We can suppose880

without loss of generality that −1 is not in V . We let V ′ denote X ∪ {−1}, and E′ denote881

the union of the following sets:882

the set (E ∩ ((V \X)× (V \X)))883

the set of all pair of vertices (u,−1) such that there exists t ∈ X such that (u, t) ∈ E884

the singleton {(−1,−1)}.885

Furthermore, we let V ′∃ denote the set V∃ ∪ {−1}, Q′ denote Q ∪ {0}, κ′ denote the vertex
colouring equal to κ on X, and such that κ(−1) = 0, and ζ ′ denote the vertex labeling equal
to ζ on X and such that

ζc(−1) =
{

r if c ∈ C1
i if c ∈ C2.
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Finally, we let A′ denote the counter arena with underlying two-player arena equal to886

(V ′, E′, V ′∃, V∀ ∩X, v), set of counters C, vertex labeling ζ ′, set of colours Q′ and colouring887

κ′.888

The lemma is direct consequence of the fact that, if σ and σ′ are two strategies of Eve for889

the game (A[v], (Plays (A,W ) ∩ Parity(A)) ∪ Reach(X)) and for the counter game (A′,W )890

respectively that are equal on (V \X)ω, then σ is winning if and only if σ′ is winning.891

J892

C Detailed proofs of section 6893

I Theorem 16. Let G be the class of counter games G with counter condition
∧
c∈C B(c),894

where C is the set of counters of G. Given a game G in G, the problem of deciding whether895

Eve wins G is EXPTIME-c. Finite memory is sufficient for Eve and Adam.896

The proof of Theorem 16 is split into two parts, each covered by a different lemma.897

Lemma 18 gives the EXPTIME-hardness, and Lemma 20 gives the EXPTIME-easyness.898

I Lemma 18. Max-counter games with a single winning condition B(c) for some counter c,899

and no parity condition, are EXPTIME-hard.900

Proof of Lemma 18. We prove EXPTIME-hardness of max-counter games with no parity901

condition and a conjunction of boundedness conditions
∧
c∈C B(c). This entails the result902

because one can always add a counter cm which takes the maximal value of all other counters903

c ∈ C at each step, so that
∧
c∈C B(c) is satisfied iff B(cm) is satisfied.904

To prove the theorem for conjunctions of boundedness conditions, we reduce the problem,905

called
⋂
nDTOP , of deciding if the intersection of n languages recognized by deterministic906

top-down tree automata (DTOP) is empty, which is known to be EXPTIME-c [21]. Before907

giving the EXPTIME-hardness proof, we first prove PSPACE-hardness for the particular908

class of counter games where V∀ = ∅, i.e., where Adam plays no role. We reduce the problem909

of deciding if the intersection of n languages recognized by deterministic finite-automata910

(DFA) is empty. We call the latter problem
⋂
nDFA. The proof is inspired by a PSPACE-911

hardness proof of deciding non-emptiness of the language recognized by a deterministic912

min-automaton [7]. Then we lift the reduction from
⋂
nDFA to the problem

⋂
nDTOP ,913

i.e., to trees, by using the branching nature of counter games induced by Adam.914

Consider an alphabet Σ and n complete DFA Di = (Σ, Qi, qi0, Fi, δi) such that all Qi are915

pairwise disjoint. We construct a counter arena A[D1, . . . , Dn] with V∀ = ∅ and a set C of916

n+ 1 counters, and no parity condition, such that Eve has a strategy to satisfy objective917 ∧
c∈C B(c) iff

⋂
i L(Di) 6= ∅. This construction is similar to that of [7], which is a reduction918

from the universality problem for NFA. We assume that Σ contains a symbol # ∈ Σ and919

for all i, L(Di) ⊆ (Σ−#)∗#. The counter arena A[D1, . . . , Dn] is defined by V∃ = Σ and920

V∀ = ∅, and the set of transitions is E = V∃×V∃. The vertex # is initial. The set of counters921

is C = {c0} ∪ {cq | q ∈ Qi, i = 1, . . . , n}, and they are updated as follows for i = 1, . . . , n,922

where max(∅) = 0:923

on vertex f 6= #: for all q ∈ Qi, cq := max{cq′+1 | ∃q′ ∈ Qi, δ(q′, f) = q} and c0 := c0 +1924

on vertex #: cqi
O

:= max{cq | q ∈ Qi′ for some i′ and δi′(q,#) 6∈ Fi′}, and the counters925

cq for all q ∈ Qi \ {qi0} are reset, as well as c0.926

Note that for f 6= #, two operations are performed at once: increment counters cq′ and take927

the max. This is done to simplify the presentation and can be simulated by doubling the928

number of vertices of the arena.929
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Now, observe that Plays(A[D1, . . . , Dn]) = #Σω and a strategy for Eve is nothing but930

an infinite word w in #Σω. We prove the following claims:931

Claim 1 For all non-empty finite set X ⊆
⋂n
i=1 L(Di), any play in #.Xω satisfies

∧
c∈C B(c).932

933

Claim 2 No play in #.(
⋃n
i=1((Σ−#)∗#)\L(Di))ω satisfies

∧
c∈C B(c).934

Proof of Claim 1. Let m = max{|u| | u ∈ X}. Let w = #u1u2 . . . such that for all j ≥ 1,935

uj ∈ X. We prove that w, which is a play of A[D1, . . . , Dn]) satisfies that all the counters936

are bounded by 2m. First, note that each uj is of the form vj#, because uj ∈
⋂
i L(Di) and937

the DFA Di are assumed to accept words where # is an endmarker. First, consider counter938

c0: it is reset every time # is read, so, its maximal value is bounded by m. Now, for all j ≥ 1939

and q ∈
⋃
iQi, we let inj,q be the value of counter cq after prefix #u1 . . . uj−1 and outj,q is940

value after prefix #u1 . . . uj−1vj . By definition of the counter updates, we have:941

1. inj,q = 0 for all j ≥ 1 and q not initial942

2. inj,qi
0

= max{outj−1,q | q ∈ Qi′ for some i′ and δi′(q,#) 6∈ Fi′} for all j ≥ 1943

3. outj,q = inj,qi
0

+ |vj | if q ∈ Qi for some i and there exists a run of Di from qi0 to q on vj944

4. otherwise, outj,q = |r| where r is a run of maximal length on a prefix of vj , ending in q.945

Let q ∈ Qi for some i such that δi(q,#) 6∈ Fi. For all j ≥ 1, there is no run from qi0 to q946

on vj , since uj = vj# ∈ L(Di). So, we are in case 4 above and we have outj,q ≤ |vj | ≤ m.947

From the latter fact and 2, we get that inj,qi
0
≤ m for all i, j. From that and 3, we get that948

outj,q ≤ m + |vj | ≤ 2m for all j. So, all the counter have value at most 2m after each vj ,949

which concludes the proof that they are bounded. J950

Proof of Claim 2. Let w be a play of A[D1, . . . , Dn] in #.(
⋃n
i=1((Σ−#)∗#)\L(Di))ω. Then,951

w = #w1#w2#w3# . . . such that wj ∈ (Σ−#)∗ for all j ≥ 1. Moreover, for all j ≥ 1, there952

exists ij ∈ {1, . . . , n} such that wj# 6∈ L(Dij ) and there exists a run of Dij on wj from q
ij
0953

to some non-accepting state qij . Denote by in(ij) the value of counter c0qij
before reading954

wj#wj+1 . . . in w, and by out(ij) the value of counter cqij
before reading #wj+1#wj+1 . . . in955

w. By definition of the counter updates, we have out(i1) ≥ in(i1) + |u|, out(i2) ≥ in(i2) + |u|,956

and so on. Moreover, in(i2) ≥ out(i1), in(i3) ≥ out(i2), and so on, since the states qij957

are non-accepting. This yields that the sequence (in(ij))j is unbounded, concluding the958

proof. J959

As a side note, observe that the two claims imply the following:
⋂n
i=1 L(Di) 6= ∅ iff there960

exists a word w ∈ #Σω which satisfies
∧
c∈C B(c). Indeed, if there exists u ∈

⋂n
i=1 L(Di),961

then it suffices to apply Claim 1 to X = {u}. Conversely, if
⋂n
i=1 L(Di) = ∅, then962

(
⋃n
i=1(Σ∗\L(Di)))ω = Σω and Claim 2 implies that no word of Σω satisfy

∧
c∈C B(c).963

We now lift the latter reduction to (binary) trees. We let Σ be a finite alphabet containing964

a symbol # called a constant symbol, and all other symbols are called binary symbols. We965

let Σ2 = Σ−# be the set of binary symbols. A Σ-tree is defined as a term where terms t966

are inductively defined by t, t1, t2 ::= # | f(t1, t2), f ∈ Σ2. The set of branches of a Σ-tree t967

is inductively defined as br(#) = {#}, and br(f(t1, t2)) = {(f, d).b | d ∈ {1, 2}, b ∈ br(td)}.968

A deterministic top-down tree automaton is a tuple T = (Q, q0, F, δ) where Q is a finite set
of states, q0 ∈ Q the initial state, F ⊆ Q the final states, and δ : Q×({#}∪(Σ2×{1, 2}))→ Q

is a (total) transition function. We see T as a DFA DFA(T ) recognizing a language
in (Σ2 × {1, 2})∗# naturally as follows: DFA(T ) = (Q, q0, F, δ

′) where for all q ∈ Q,
for all (f, d) ∈ Σ2 × {1, 2}, δ′(q, f) = projd(δ(q, f)), with projd the dth projection, and
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Figure 7 Arena for the proof of Theorem 18, where Σ = {#, f1, . . . , fm}. Transitions in bold are
in both directions. Square vertices are controlled by Adam, and the initial vertex is #. When Adam
picks a direction d ∈ {1, 2}, then Eve is forced to pick a vertex in Σ2 × {d}, or #.

δ′(q,#) = δ(q,#), and we denote by Lbr(T ) the language recognized by this DFA. The
language of Σ-trees accepted by T is the set

L(T ) = {t ∈ TreesΣ | br(t) ⊆ Lbr(T )}

Deciding3, given n DTOP T1, . . . , Tn, whether
⋂n
i=1 L(Ti) = ∅ is EXPTIME-c [15].969

Given T1, . . . , Tn such that Ti = (Qi, qi0, Fi, δi) for all i, we construct a max-counter game970

G winnable by Eve iff
⋂n
i=1 L(Ti) 6= ∅. The main idea of the proof is construct a game where971

Adam picks a direction d ∈ {1, 2} (1 means left and 2 right), while Eve picks the labels in Σ.972

The arena A[T1, . . . , Tn] of G (without the counters) is depicted on Fig. 7.973

We now define counter conditions which make sure that if Eve has a strategy to keep974

all the counters bounded iff there exists t ∈
⋂
i L(Ti). For all i, let Ti = (Qi, qi0, Fi, δi).975

The set of counters is C = {cq | q ∈
⋃
iQi} ∪ {c0} (we assume wlog that all the sets Qi976

are pairwise disjoint). Let us define counter updates. They are defined as for the arena977

A[DFA(T1), . . . , DFA(Tn)]. To simplify the presentation (and in particular the structure978

of the arena), we perform several operations at once. Let us define the updates, for all979

1 ≤ i ≤ n:980

on vertex (f, j) ∈ Σ2 ×{1, 2}: for all qj ∈ Qi, cqj
:= max{cq + 1 | ∃q, q3−j ∈ Qi, δ(q, f) =981

(q1, q2)} and c0 := c0 + 1982

on vertex #: cqi
O

:= max{cq | q ∈ Qi′ for some i′ and δi′(q, λ) 6∈ Fi′}, and the counters983

cq for all q ∈ Qi \ {qi0} are reset, as well as c0.984

on vertices i ∈ {1, 2}: counters are unchanged.985

There is no parity condition and the counter condition is that the counters in C must986

be bounded. Let G be the constructed max-counter game. Before showing correctness, let987

us introduce some useful notation. Note that the histories and plays of G are elements of988

{#} ∪ Σ2 × {1, 2} alternating with directions in {1, 2}. The following function removes the989

3 In [15], the definition of DTOP is slightly different, but less general: there are no accepting states but
the transition function can be partial. A tree is accepted if there is a run on it which traverses the
whole tree (it is not in an inner node). Those automata can easily be encoded into (our) DTOP by
completing the transition function into a sink state qs, declaring all states to be final but qs.
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Figure 8 Strategy σt constructed from a Σ-tree t.

intermediate directions. Given w = λ1d1λ2d2 . . . λndn such that for all i, λi ∈ {#}∪Σ2×{1, 2}990

and di ∈ {1, 2}, we let lab(w) = λ1λ2 . . . λn.991

We now show correctness of the reduction. Suppose that there exists some t ∈
⋂
i L(Ti).992

We first define a strategy σt for Eve and then show it is winning in G. The strategy σt just993

mimics t: it plays as t dictates when a leaf of t is reached, its behaviour is reset to the root of994

t. It is illustrated on Fig.8. Formally, the construction of σt satisfies the following invariant:995

all histories ending with an Eve vertex are words of the form h = #h1h2 . . . hkpd where:996

all hi are such that lab(hi) ∈ br(t),997

lab(p) is a prefix of a branch of t998

d ∈ {1, 2}999

Given such a history h, we consider two cases: if lab(p) ∈ br(t), then σt is reset to the root of t,1000

which means that σt(h) = (f, d) such that f is the label of the root of t. Otherwise, σt(h) = #1001

if lab(p)# ∈ br(t), and σt(h) = (f, d) if lab(p)(f, d) ∈ br(t). Let us show that σt is winning.1002

Let π ∈ Plays(σt). First, we observe that lab(π) is a play of A[DFA(T1), . . . , DFA(Tn)].1003

Let C ′ be the set of counters of the latter arena. By definition of σt, lab(π) is of the form1004

#b1#b2# . . . with infinitely many # such that for all j ≥ 1, bj# is a branch of t. Since1005

t ∈
⋂
i L(Ti), we also get that bj# ∈

⋂
i L(DFA(Ti)). The set X = {bj# | j ≥ 1} is1006

finite since its elements correspond to branches of t. Therefore, by Claim 1, π satisfies1007 ∧
c∈C′ B(c). We conclude by observing that C = C ′, that A[T1, . . . , Tn] has the same vertices1008

as A[DFA(T1), . . . , DFA(Tn)] plus the two vertices 1 and 2, with the same counter updates1009

for their common vertices and no update on 1 and 2. Therefore, π satisfies
∧
c∈C B(c) in1010

A[T1, . . . , Tn].1011

Conversely, suppose that
⋂
i L(Ti) = ∅. Take an arbitrary strategy σ of Eve. We show1012

it is not winning. Intuitively, σ can be seen as an infinite tree. If there is a branch of the1013

tree which visits # finitely many times, then σ is not winning because by following the1014

directions corresponding to that branch, Adam can guarantee that counter c0 is unbounded.1015

So, we can assume that σ is such that all plays consistent with it sees infinitely many #. We1016

construct a play π of the form #h1#h2# . . . such that for all j ≥ 1, there exists i such that1017

lab(hj)# 6∈ L(DFA(Ti)), and we conclude by Claim 2. The construction of π is illustrated1018

on Fig.9.1019

Consider the set of histories H1 of σ which contains a # symbol only at their end.1020

Clearly, H1 can be identified with a Σ-tree t1. Since t1 6∈
⋂
i L(Ti), there exists i such1021
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Figure 9 Losing play π = #h1#h2# . . . constructed from a strategy σ, seen as a tree.

that t1 6∈ L(Ti) and therefore, a history h1# ∈ H1 such that lab(h1)# 6∈ L(DFA(Ti)). To1022

construct h2, h3, . . . , we proceed similarly. Let us explain how to construct h2. We let H2 be1023

the set of histories of the form h1#g2# such that h1#g2# is a history of σ such that g2 does1024

not contain #. The set (h1#)−1H2 can be identified with a Σ-tree t2. Now, it suffices to1025

take h2# ∈ (h1#)−1H2 such that lab(h2#) 6∈ L(DFA(Ti)) for some i = 1, . . . , n. It exists1026

since t2 6∈
⋂
i L(Ti). This concludes the proof. J1027

In order to prove Lemma 20, we first prove the following, in a very similar way to the1028

proof of Lemma 2.1029

I Lemma 19. Max-counter games (with Boolean combinations of boundedness objectives)1030

are determined.1031

Proof. Given a counter arena A and a counter c of A, the set Plays (A,B(c)) is a Borel set.
Indeed, it is equal to the countable union for all N ≥ 0 of the sets

PlaysN (A,B(c)) = {ρ ∈ Plays(A) | ∀n ∈ N, λ(ζ(ρ), c)n ≤ N}

which are ω-regular. Indeed, a Büchi automaton that stores, in every state, the maximums1032

between N and the value of each counter of C needs |V | × N |C| states to recognize1033

PlaysN (A,B(c)). Since ω-regular sets are Borel, so is Plays (A,B(c)), as well as any Boolean1034

combination of the latter. By Martin’s determinacy theorem [22], the result follows. J1035

I Lemma 20. Given a game in G, the problem of deciding whether Eve wins G is in1036

EXPTIME. Finite memory is sufficient for Eve and Adam.1037

Proof. We show that counter games G with condition of the form Plays

(
A,
∨
c∈C

U(c)
)
∪1038

Parity(A), where C is the set of counters of G, and A its underlying two-player arena, can1039

be solved in EXPTIME, which implies the theorem by Lemma 19.1040

We construct, from a max-counter game G, a parity game G′, of exponential size and1041

linear index, such that Eve wins G′ if and only if Eve wins G. To simplify the presentation,1042

we introduce an intermediate automata model, called UB-automata. A (non-deterministic)1043

UB-automaton B is a pair (A,W ), where1044
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A is a counter arena without max where Adam plays no role (V∀ = ∅), where each edge is1045

labeled by a letter of an alphabet Σ, i.e.. the set of edges of the counter game is replaced1046

by a subset E of V × V × Σ, and where the domain of the colouring κ is Σ rather than1047

V (we colour the edges rather than colouring the vertices)1048

W is a winning condition for A, i.e. a subset of V ω.1049

A run in B is an infinite word π = y0y1 · · · ∈ Y ω such that the first element of y0 is the1050

initial vertex of B, and such that the second element of each yi is the first element of yi+11051

for any non-negative integer i. We let Play(π) denote the word v0v1 · · · , where each vi is1052

the first element of yi, and we let Input(π) denote the word z0z1 · · · , where each zi is the1053

third element of yi (i.e. the label of the edge yi). A word w is accepted by B if Input(π) is1054

in Parity(κ), or if there exists a run π of B such that Input(π) = w, and such that Play(π)1055

is winning in B (i.e. satisfies the winning condition of B). The language accepted by B is1056

the set of accepted words.1057

Let G be a counter game with underlying two-player arena A = (V,E, V∃, V∀, v), vertex1058

labeling ζ, set of colors Q, colouring κ, and winning condition Plays
(
A,
∨
c∈C U(c)

)
∪1059

Parity(A). We construct a UB-automaton B, of size polynomial in |C|, with only one counter1060

d /∈ C, that recognizes the language of all words w ∈ V ω such that either w ∈ Parity(κ), or1061

ζ(w) satisfies the condition
∨
c∈C

U(c). To make the construction more easily understood, we1062

first introduce the notion of trace. A trace of a word w = z0z1 · · · ∈ Op(C)ω is a mapping θ1063

from {i, . . . , j} to C, where i ≤ j are two integers, such that, for any l ∈ {i, . . . , j − 1},1064

either θ(l) = θ(l + 1) and zl(θ(l)) ∈ {i, r, skip},1065

or θ(l + 1) 6= θ(l) and zl(θ(l + 1)) = max
c∈S

(c) with S ⊆ C and θ(l) ∈ S.1066

The value of θ at move t ∈ {i, . . . , j} is defined inductively as 0 if t = i, one plus the value at1067

move t− 1 if zt−1(θ(t− 1)) = i, 0 if zt−1(θ(t− 1)) = r, and the value at move t− 1 otherwise.1068

If a counter c reaches a value N ≥ 1 at some point in w, then it is always possible to "track1069

back", with a trace of w, the sequence of counter operations which led to c having that value,1070

by choosing, every time we go back to a previous counter operation of the type c′ = max
d∈S

(d)1071

with S ⊆ C, the good counter d of S (the one with the maximum value), until reaching a1072

counter whose value is 0. Thus, there exists a counter c ∈ C and two integers t and N such1073

that λ(w, c)t = N if and only if there exists a trace θ of w, such θ(t) = c, and such that1074

the value of θ at move t is N . As a consequence, there exists counter c such that λ(w, c) is1075

unbounded if and only if the values of the traces of w are unbounded.1076

This result allows us to define B in the following way. The UB-automaton B works, on1077

input w, by guessing all the possible traces of ζ(w), by using non-determinism. The value of1078

a trace is stored inside the counter d. More precisely, every time B reads a letter, it either1079

guesses a new trace, or guesses the next counter c′ of C of the trace it is following, while1080

applying, if c′ is equal to the current counter c of the trace, the operation over c induced by1081

the letter read, to counter d. Thus, the UB-automaton B is constructed so that the value of d1082

is unbounded if and only if there are traces of its input of arbitrarily large values. Moreover,1083

we set the colouring of B as κ. Thus, B recognizes the language of all words w ∈ V ω such that1084

either w ∈ Parity(κ), or ζ(w) satisfies the condition
∨
c∈C

U(c), i.e. the language recognized1085

by B is the winning condition of the game G. The precise definition of B is given below.1086

We let V1 = C × {i, r, skip}, and v1 = (c, r) where c is any counter in C. Furthermore, we1087

let ζ1 denote the mapping from V1 to Op({d}) such that (ζ1(c, α))(d) = α, and E1 denote1088
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the the smallest subset of V1 × V1 × V such that, for any α ∈ {i, r, skip} and any v ∈ V , we1089

have1090

for any c, c′ ∈ C, ((c, α), (c′, r), v) ∈ E1 (this comes from the fact that B should be able1091

to guess a new trace at any time),1092

for any c ∈ C, if ζc(v) ∈ {i, skip}, ((c, α), (c, ζc(v)), v) ∈ E1 (the trace follows the increment1093

or skip operation of a counter while updating d),1094

for any c ∈ C, if ζc(v) = max
c′∈S

(c), then ((c′, α), (c, skip), v)) ∈ E1, for any c′ ∈ S (the trace1095

changes counters on a max operation while leaving d unchanged).1096

The UB-automaton B is the UB-automaton with set of vertexes V1, set of edges E1, initial1097

vertex v1, set of counters {d}, vertex labeling ζ1, set of colors Q, colouring κ, and its winning1098

condition is defined as the set of all words w ∈ V ω1 that satisfy U(d).1099

We now transform B into a parity automaton. To achieve that goal, we first transform B1100

into an automaton with two colourings and without counters. To simplify the presentation of1101

that construction, we introduce the notion of dual parity automaton. A (non-deterministic)1102

dual parity automaton is a two-player game T where Adam plays no role, with an alphabet1103

Σ, a set of colours P ′ in addition to the original set of colours P , a colouring η′ over Σ in1104

addition to the original colouring η over the set X of vertices of G, and where every edge is1105

labeled by Σ (i.e. the set of edges of T is a subset of X ×X × Σ). Furthermore, a word1106

w = b0b1 · · · is accepted by T if and only if either b0b1 · · · is in Parity(η′), or there exists a1107

run (v0, v1, b0)(v1, v2, b1) · · · of T such that v0v1 · · · is in Parity(η). The language recognized1108

by T , denoted L(T ), is the set of words accepted by T . Notice that T can be converted into1109

a non-deterministic automaton T1, with two colours whose domains are the set of vertexes, by1110

copying each vertex for every edge that goes to it. The acceptation condition of T1 is expressed1111

by the union of the parity conditions induced by its two colourings. That automaton T11112

can be further converted into a non-deterministic parity automaton T2 with a single colour1113

and two initial states, by duplicating it, colouring the first copy with the first colouring and1114

the second copy with the second colouring. Thus, there exists a parity automaton T2 that1115

recognizes the same language as T , and L(T ) is thus an ω-regular language.1116

We now define T as the dual parity automaton with set of vertices V1 = V × {i, r, skip},
alphabet V , edges E1, initial vertex v1, colouring κ from V to Q, and colouring κ′ from V1
to {1, 2, 3} such that

κ′(v, α) =


1 if α = skip
2 if α = i
3 if α = r

Notice that T and B have the same edges with the same labels, and the same initial state1117

We let L(B) denote the language accepted by B. Since L(T ) ⊆ L(B), Eve wins (A,L(B)) if1118

Eve wins (A,L(T )). We now show the converse.1119

Suppose that Eve has a winning strategy σ for (A,L(B)), and that Eve does not win1120

(A,L(T )). Since L(T ) is an ω-regular objective, (A,L(T )) is determined, and Adam has a1121

finite memory winning strategy τ with memory mapping pair (δ, g) and memory size N , for1122

(A, V ω \ L(T )). Let ρ be a play of A consistent with σ and τ . Then ρ satisfies both of the1123

following properties:1124

(1) either ρ ∈ Parity(κ), or there exists a run π in B such that Input(π) = ρ and Play(π)1125

satisfies U(d)1126

(2) ρ /∈ Parity(κ), and for any run π in T such that Input(π) = ρ, the greatest colour1127

appearing infinitely often in Play(π) is odd.1128
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If ρ ∈ Parity(κ), then ρ cannot satisfy property (2). Thus, from property (1), there exists a1129

counter c ∈ C, and a run π in B such that input(π) = ρ and play(π) satisfies U(d). Therefore,1130

if we let µ0µ1 · · · = play(π), there exists two integers i and j such that there is no occurrences1131

of r in ζd(µi · · ·µj) but at least N ×#V ×#V1 + 1 occurrences of i. As a consequence, there1132

exists two integers i′ and j′ such that there is at least one occurrence of i in ζd(µi′ · · ·µj′) and1133

no occurrences of r, such that µi′ = µj′ , such that the g-memory state of play(π) at move i′1134

equal to the g-memory state of play(π) at move j′, and such that ρ(i′) = ρ(j′). Thus, if we1135

let π′ denote the run π(0) · · ·π(i′ − 1)(π(i′) · · ·π(j′ − 1))ω (where π(0)π(1) · · · = π), the play1136

ρ′ = ρ(0) · · · ρ(i′ − 1)(ρ(i′) · · · ρ(j′ − 1))ω is consistent with σ and τ , input(π′) = ρ′, and the1137

greatest colour occurring infinitely often in play(π′) is equal to 2, which is even. This directly1138

contradicts property (2). Therefore, Eve wins (A,L(B)) if and only if Eve wins (A,L(T )).1139

Eve thus wins G, if and only if Eve wins (A,L(B)), if and only if Eve wins (A,L(T2)).1140

We let k be the index of G, and n be the number of its vertices. Notice that T2 is a parity1141

automaton with a polynomial size and index, with respect to nk. It is well-known that there1142

is a deterministic parity automaton D with an exponential size and polynomial index with1143

respect to the product of the size and index of T2, that recognizes the same language as T2.1144

Thus, D has exponential size and polynomial index with respect to the size of G, and Eve1145

wins G if and only if Eve wins (A,L(D)).1146

We now construct a game G′ as the product of G and D. More precisely, if is VD be the1147

set of vertices of D, ED is its set of edges, vD is its initial state, QD is its set of colours,1148

and κD is its colouring, we let Z denote the set of all pairs ((u1, v1), (u2, v2)) of elements of1149

V × VD such that (u1, u2) is in E and (v1, v2, u1) is in ED, and we let χ denote the mapping1150

from V × VD to QD that maps (u, u′) to κD(u′). We define G′ as the parity game with1151

underlying two-player arena (V × VD, Y, V∃ × VD, V∀ × VD, (v, vD)), set of colours QD, and1152

colouring χ. A play (v0, u0)(v1, u1) · · · is winning in G′ if and only if v0v1 · · · is winning in1153

G. Thus, Eve wins G if and only if wins G′. Furthermore, since finite memory strategies are1154

sufficient for Eve and Adam for G′, finite memory strategies are also sufficient for Eve and1155

Adam for G: the winning player of G only needs to simulate a winning play in G′ with the1156

help of a finite memory winning strategy for G′, by remembering at every move the exact1157

vertex the corresponding play of G′ would be in. In addition, it is well-known that solving a1158

parity game with m edges, n vertices, and index 2k can be done in O(m(nk)). Therefore,1159

G′, can be solved in time O((2P (n))Q(n), where P and Q are two polynomials. To conclude,1160

max-counter games in G can be solved in EXPTIME. J1161
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