Emmanuel Filiot
email: efiliot@ulb.ac.be

Edwin Hamel

Two-player Boundedness Counter Games

Keywords: 2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of computation Controller synthesis, Game theory, Counter Games, Boundedness objectives Digital Object Identifier 10.4230/LIPIcs... 1

We consider two-player zero-sum games with winning objectives beyond regular languages, expressed as a parity condition in conjunction with a Boolean combination of boundedness conditions on a finite set of counters which can be incremented, reset to 0, but not tested. A boundedness condition requires that a given counter is bounded along the play. Such games are decidable, though with non-optimal complexity, by an encoding into the logic WMSO with the unbounded and path quantifiers, which is known to be decidable over infinite trees. Our objective is to give tight or tighter complexity results for particular classes of counter games with boundedness conditions, and study their strategy complexity. In particular, counter games with conjunction of boundedness conditions are easily seen to be equivalent to Streett games, so, they are CoNP-c. Moreover, finite-memory strategies suffice for Eve and memoryless strategies suffice for Adam. For counter games with a disjunction of boundedness conditions, we prove that they are in solvable in NP∩CoNP, and in PTime if the parity condition is fixed. In that case memoryless strategies suffice for Eve while infinite memory strategies might be necessary for Adam. Finally, we consider an extension of those games with a max operation. In that case, the complexity increases: for conjunctions of boundedness conditions, counter games are EXPTIME-c.

Introduction

Games on graphs are a popular mathematical framework to reason on reactive synthesis problems [START_REF] Bloem | Graph games and reactive synthesis[END_REF][START_REF] Bruyère | Computer aided synthesis: A game-theoretic approach[END_REF]: the system to synthesize is seen as a protagonist which must enforce a given specification (its winning objective) against any adversarial behaviour of its environment. In this framework, executions of reactive systems are modelled as infinite sequences alternating between actions of the systems and actions of its environment. In the ω-regular setting, the set of correct executions of reactive systems is modelled as an automaton, for example, a non-deterministic Büchi automaton, then determinized into a parity automaton. The synthesis problem then boils down to solving a game played on the graph of the parity automaton, where the goal of the protagonist (Eve) is to satisfy, in the long run, the parity condition whatever her opponent (Adam) does. Motivated by the synthesis of more complex systems, the literature is rich in extensions of this basic two-player zero-sum ω-regular setting: multiple players, imperfect information, quantitative objectives, infinite graphs ... (see [START_REF] Bloem | Graph games and reactive synthesis[END_REF][START_REF] Bruyère | Computer aided synthesis: A game-theoretic approach[END_REF] for some references). In this paper, we follow this line of work and consider an extension of two-player games beyond ω-regularity: counter games with boundedness conditions. can: increment a counter, reset it, or skip it (i.e. leave its value unchanged). We consider objectives given as Boolean combinations of counter boundedness conditions. For c ∈ C, the condition B(c) is satisfied by all infinite paths π = v 0 v 1 . . . , called plays, such that for some N ∈ N, the value of c along π is bounded by N . Note that the bound N is not uniform, in the sense that it depends on π, and as a consequence, the set of plays satisfying B(c) is not ω-regular in general. In this paper, we consider particular classes of Boolean combinations of boundedness conditions. Since they do not necessarily capture all ω-regular objectives, we also, by default, equip counter games with a parity condition.

Given an objective W as a Boolean formula Φ over atoms B(c) for all c ∈ C, the goal of the protagonist, Eve, is to enforce plays which satisfy W and the parity condition, whatever the adversary, Adam, does. If she has a strategy to meet this objective, she is said to win the game. Counter games are zero-sum, meaning that the goal of Adam is to enforce the complementary objective. The goal of this paper is to study the complexity of deciding, given a counter game G, if Eve wins G.

Motivations On infinite words, classes of counter automata with boundedness conditions have appeared in various papers, e.g. in [START_REF] Bojanczyk | Bounds in w-regularity[END_REF][START_REF] Colcombet | The non-deterministic mostowski hierarchy and distance-parity automata[END_REF][START_REF] Bojanczyk | Weak MSO with the unbounding quantifier[END_REF][START_REF] Bojanczyk | Deterministic automata and extensions of weak MSO[END_REF]. The most relevant models in the context of counter games are the ωBS-automata of [START_REF] Bojanczyk | Bounds in w-regularity[END_REF] and the max-automata of [START_REF] Bojanczyk | Deterministic automata and extensions of weak MSO[END_REF]. They are equipped with the same counter operations as the counter games of this paper, plus a max operation in the case of max-automata, and some boundedness conditions. As a consequence, winning objectives in counter games can naturally be expressed with these automata. However, while they are known to have decidable emptiness problem, not much is known when they are used to define objectives in two-player games. A motivation for this paper is to investigate this question, for games where the winning conditions is not given by such an automaton but where counter operations are explicitly given in the arena.

In the same line of works, max-automata, which are deterministic, are known by [START_REF] Bojanczyk | Weak MSO with the unbounding quantifier[END_REF] to correspond to the logic WMSO+U, which extends weak MSO on infinite words with the unbounded quantifier UX. A formula UX.φ(X) holds if there are arbitrarily large sets X satisfying φ. An important result by Bojańczyk states that the extension of WMSO+U to infinite binary trees and with a path quantifier which allows to quantify over infinite paths, has decidable satisfiability problem [START_REF] Bojanczyk | On the decidability of MSO+U on infinite trees[END_REF]. Since strategies are definable, modulo a tree encoding, in this latter logic, a direct consequence of this result is that two-player games with objectives given by max-automata are decidable (see also Example 2 of [START_REF] Bojanczyk | On the decidability of MSO+U on infinite trees[END_REF]). As a consequence, counter games with boundedness conditions are decidable, though with non-elementary complexity.

Another motivation for our work is to obtain tight complexity results for particular classes of counter games with boundedness conditions, with the goal of providing conceptually simpler decidability proofs and insights for these particular instances, instead of using the general result of [START_REF] Bojanczyk | On the decidability of MSO+U on infinite trees[END_REF].

Finally, counter games with boundedness objectives are closely related to synthesis problems over infinite alphabets of data. In particular, the problem of synthesising Mealy machines with registers satisfying specifications given as deterministic register automata over (N, <, 0), has recently been studied in [START_REF] Exibard | Church synthesis on register automata over linearly ordered data domains[END_REF]. It is shown that this problem is decidable, and, even though the decidability proof is not based on counter games, it is proved that the synthesis problem reduces to a game with winning conditions given as a (deterministic) max-automaton whose acceptance is a disjunction of a parity condition and a condition of the form "counter c is unbounded". Here, we also study the complexity of counter games with max operation, giving an alternative procedure to decide the former synthesis problem.

Contributions Our contributions are summarized in Fig. 1. We consider objectives given as a conjunction of a parity condition and a formula over atoms B(c) in the following classes: conjunctions, disjunctions, disjunctions of conjunctions, and negation-free formulas. We also consider the extension of counter games with a max operator which can assign a counter with the maximal value of several counters. The table also mentions the strategy complexity. For conditions in B, counter games are easily proved to be interreducible in polynomial time to Streett games, yielding CoNP-completeness [START_REF] Grädel | Automata, logics, and infinite games. a guide to current research[END_REF]. More interestingly, we prove that when the number of counters is fixed, then, they are interreducible to parity games in polynomial time, using another reduction (Thm 6).

We then prove, in it is our main contribution, that for conditions in B, counter games are solvable in NP∩CoNP and in polynomial time when the index of the parity function is fixed. To prove this result, we introduce the notion of finitely switching strategies which are, to the best of our knowledge new, and we believe, interesting on their own. This notion is specifically designed for disjunctions of prefix-independent objectives (which is the case of counter boundedness conditions): in a finitely switching strategy, Eve announces which objective from the disjunction she aims to satisfy, and she can change her mind along the play, but only a finite number of times. Eventually, she is bound to satisfy one the objectives.

We give general conditions to decide whether Eve has a finitely switching strategy in a two-player game with a disjunction of prefix-independent objectives, and prove that such strategies are sufficient for Eve to win objectives in B and more generally in B.

Related works

Two-player games with boundedness conditions have been studied in the literature, first as finitary parity and Streett games [START_REF] Chatterjee | Finitary winning in omegaregular games[END_REF], then generalized to cost-parity and cost-Streett games [START_REF] Fijalkow | Cost-parity and cost-streett games[END_REF]. Finitary parity-and Streett-games are request-response games [START_REF] Chatterjee | The complexity of requestresponse games[END_REF],

with the additional constraint that the delay (number of edges) between a request and its response is bounded (by a bound which depends on the play). Delay games with objectives given by a max-automaton have been proved to be decidable in [START_REF] Zimmermann | Delay games with WMSO+U winning conditions[END_REF]. This result is orthogonal to ours: first, those games allow for some delay, here in the sense that Eve has some look-ahead on Adam's future actions. Second, the decision procedure is non-elementary and rely on an encoding into WMSO+UP on infinite trees, some argument we avoid here, but for less expressive boundedness objectives.

Finally, infinite-state games with boundedness conditions have been considered in [START_REF] Chatterjee | Infinite-state games with finitary conditions[END_REF], over pushdown arenas. Finitary games over these arenas are shown to be decidable, as well as (pushdown) counter games with conditions in B, without complexity results. Interestingly, it is shown that those games are equivalent to games where the objective of Eve is to uniformly bound all counters, for a bound which only depends on her strategy, and not on the plays.

For counter games in B over a finite arena, this result can easily be seen as a consequence that finite-memory strategies suffice for Eve. Figure 1 Complexity of deciding whether Eve has a winning strategy in a counter game for various winning objectives, always taken in conjunction with a parity objective. Bool + (B) means any negation-free Boolean combination of objectives of the form B(c). Hardness results hold for any parity function of fixed constant index. The notation +max indicates that counter games are also equipped with a max operation. Since counter games with boundedness objectives are determined, this yields the complexity of deciding whether Eve wins for the complementary objectives: for example, it is NP-c for objectives parity ∨ U and memoryless strategies are sufficient for Eve, and in PTIME for parity ∨ U but infinite memory might be necessary for Eve.

Preliminaries

In this paper, for any set Σ, we denote by Σ * (resp. Σ ω) the finite (resp. infinite) sequences of elements of Σ.

Two-player arenas

A two-player arena is a tuple A = (V, E, V ∃ , V ∀ , v 0)
, where V is finite set, E ⊆ V × V , and V ∃ and V ∀ are two subsets of V such that {V ∃ , V ∀ } is a partition of V , and v 0 is an initial vertex. In this paper, we assume that arenas are deadlock-free, i.e.

that for any v ∈ V , there exists v ∈ V such that (v, v) ∈ E. Given v ∈ V , we denote

A[v] = (V, E, V ∃ , V ∀ , v
) the arena A where v 0 has been substituted by v. A play ρ of A is a mapping from N to V such that (ρ(i), ρ(i + 1)) ∈ E, for all integer i ∈ N. The set of plays is denoted by Plays(A). Any play can also be seen as an element of V ω , and we call a history any finite prefix of a play, and denote by Hist(A) the set of histories of A.

Strategies and finite-memory

A strategy for Eve (resp. Adam) is a function σ from Hist(A) to V defined for all histories h = h 0 • • • h n with h n ∈ V ∃ (resp. h n ∈ V ∀), and such that (h n , σ(h)) ∈ E. A play ρ is consistent with a strategy for Eve (resp. Adam) if, for any integer n such that ρ(n) ∈ V ∃ (resp. ρ(n) ∈ V ∀), σ is defined on ρ(0) • • • ρ(n),
and

ρ(n + 1) = σ(ρ(0) • • • ρ(n)).
We let Plays(A, σ) (or just Plays(σ) when A is clear from the context) the set of plays consistent with σ.

A strategy σ of Eve (resp. Adam) is said to be finite-memory if there exists a finite set M , an element m I ∈ M , a mapping δ from V × M to V , and a mapping g from V × M to M such that the following is true.

When h = v 0 v 1 • • • v l is a prefix of a play consistent with σ such that v l ∈ V ∃ (resp. v l ∈ V ∀)
, and the sequence m 0 , m 1 , ..., m l is determined by

m 0 = m I and m i+1 = g(v i , m i), then σ(w) = δ(v l , m l).
In that case, we say that (δ, g) is a memory mapping pair of σ, and that m l is the memory state of g at move l. We also say that σ is of memory |M |, and memoryless if it is of memory 1. Note that a memoryless strategy can just be identified with a mapping from V to V . is the set of all infinite words w = w 0 w 1 • • • ∈ V ω such that the greatest colour occurring an infinitely often in κ(w 0)κ(w 1) • • • is even. A parity game is a game whose winning condition is a parity condition. We refer to A = (A, Q, κ) as a coloured arena, and also denote Parity(κ)

Two-player games A winning condition for

A is a subset W ⊆ V ω . A
as Parity(A) to avoid an explicit mention of the colouring κ. Note that a coloured arena A = (A, Q, κ) uniquely defines a parity game G = (A, Parity(A)). It is well-known that parity games are in NP ∩ CoNP [START_REF] Emerson | Tree automata, mu-calculus and determinacy[END_REF], and even solvable in quasi-polynomial time [START_REF] Calude | Deciding parity games in quasipolynomial time[END_REF].

Counter operations Our goal is now to define counter games. First, we introduce counter operations and their semantics. In the rest of the paper, we fix a countable set C whose elements are called counters. A counter operation is a mapping from a finite subset C of C to {i, r, skip}. We let Op(C) denote the set of counter operations over C ⊆ C. A counter valuation is a mapping ν from C to N. For any infinite word w ∈ Op(C) ω , we define λ(w)

as the infinite sequence of counter valuations ν 0 , ν 1 , ν 2 , . . . such that for any counter c ∈ C, ν 0 (c) = 0 and for any non-negative integer n, ν

n+1 (c) = ν n (c) + 1 if w n (c) = i, ν n+1 (c) = 0 if w n (c) = r and ν n+1 (c) = ν n (c) if w n (c) = skip.
We define λ(w) for w ∈ Op(C) * . To ease notations, we write λ(w, c) i instead of λ(w) i (c). We say that λ is the evaluation of w. We consider a particular type of winning objective for counter games, called boundedness conditions, always together with a parity condition. Let c ∈ C. We let B(c) be an atomic (skip, i)

Counter games with boundedness objectives

1 (i, skip) 2 (i, skip) Figure 2 Counter arena A = (V, E, V ∃ , V ∀ , v) with V = {1, 2, 3, 4}, V ∃ = {1, 3}, V ∀ = {2, 4}, v = 1.
There are two counters (c, d) whose updates are represented on the figure as pairs. We assume no parity condition and a counter condition B(c) ∨ B(d). From vertex 3, Eve has a memoryless winning strategy σ: always move to 4. However, she does not have a strategy from 1 to bound counter c, neither does she have a strategy from 1 to bound d. However, she has a memoryless strategy β winning for B(c) ∨ B(d): from 1, she moves to 2, and from 3 she moves to 4. If the play stays in {1, 2}, then d is bounded, and if the play eventually moves to 3, then c is bounded.

formula which intuitively requires that counter c is bounded along a play, by some constant. Formally, B(c) is interpreted in A by the set of plays ρ of A, denoted P lays (A, B(c)), such that the sequence λ(ζ(ρ), c) is bounded, i.e.

P lays (A, B(c)) = {ρ ∈ Plays(A) | ∃N ∈ N, ∀n ∈ N, λ(ζ(ρ), c) n ≤ N }
The set P lays (A, B(c)) is called a boundedness condition. We let U(c) as a shortcut for ¬B(c).

A counter condition for A is a Boolean formula φ over the set of propositions {B(c) | c ∈ C}. Example 1. First, Fig. 2 illustrates an example with a disjunction of boundedness objectives.

Its interpretation P lays

Our second example is given by an arena with two counters and a single state controlled by Adam. At each step, Adam can either increment c 1 and leave c 2 unchanged (called transitions t 1), or increment c 2 and leave c 1 unchanged (called transition t 2). Clearly, Eve has a strategy to win the objective i=1,2 U(c i). Indeed, in any play, there exists i such that t i is taken infinitely many times, and therefore c i is unbounded. Suppose now that Adam wants to win objectives i=1,2 U(c i). He can do so by playing longer and longer sequences of transition t 1 in alternation with longer and longer sequences of transition t 2 , which requires infinite memory.

Lemma 2. Counter games (with Boolean combinations of boundedness objectives) are determined and decidable.

Indeed, it is equal to the countable union for all N ≥ 0 of the sets

Plays N (A, B(c)) = {ρ ∈ Plays(A) | ∀n ∈ N, λ(ζ(ρ), c) n ≤ N } which are ω-regular. Indeed, a Büchi automaton needs |V | × N × |C| states to recognize Plays N (A, B(c)).
Since ω-regular sets are Borel, so is P lays (A, B(c)), as well as any Boolean combination of the latter. By Martin's determinacy theorem [START_REF] Martin | Borel determinacy[END_REF], the result follows.

To prove decidability, it suffices to notice that winning strategies in counter games are infinite trees such that all of their branches are accepted by a deterministic max-automaton as defined in [START_REF] Bojanczyk | Weak MSO with the unbounding quantifier[END_REF]: such automata have a finite set of counters which can be incremented, reset to 0, and take the maximal value of several counters and put it in another one. Such automata are closed under intersection and can recognize any regular language, so, we can encode the parity condition as well as the counter operations. Deterministic max-automata corresponds exactly to the logic WMSO+U over infinite words (weak MSO with the unbounding quantifier).

WMSO+U has been extended to WMSO+UP on infinite trees with an additional quantifier over infinite paths (P). Therefore, winning strategies of two-player games with winning conditions definable in WMSO+U over infinite words are definable in WMSO+UP (see Example 2 of [START_REF] Bojanczyk | Weak MSO+U with path quantifiers over infinite trees[END_REF]). The result follows since WMSO+UP has decidable satisfiability problem, again by [START_REF] Bojanczyk | Weak MSO+U with path quantifiers over infinite trees[END_REF].

Counter games with conjunctions of boundedness conditions

In this section, we study games with counter conditions in the class B. Such games are easily shown to be decidable using known results. Indeed, we prove that they are equivalent in polynomial time to Streett games, known to be CoNP-complete [START_REF] Emerson | The complexity of tree automata and logics of programs[END_REF]. Let us define Streett games. Given an arena A with set of vertices V , and a set of k pairs is satisfied by all sequences of counter operations such that if c is incremented infinitely often, then c is also reset infinitely often. So, E c is the set of vertices where c is incremented, while F c are those where c is reset. Let σ be a winning strategy for Eve in G and suppose it is not winning in G , then it means that there exists some play ρ ∈ Plays(A, σ) and a counter c ∈ C which is incremented infinitely often but reset finitely often. So, its value is not bounded along ρ, contradicting that σ is winning.

S = {(E i , F i) | 1 ≤ i ≤ k, E i , F i ⊆ V },
The converse uses the fact that finite-memory strategies suffice to win Streett games: let σ be a finite-memory strategy winning for Eve in G . Suppose it is not winning in G. Then, there is some play ρ ∈ Plays(A, σ) and a counter c ∈ C whose value is unbounded along ρ.

Therefore, ρ increases c infinitely many times. Since σ is winning for G , ρ resets c infinitely many times. So, it can be decomposed into infinitely many fragments ending with a reset of

c: ρ = ρ 1 v 1 ρ 2 v 2 .
. . such that each ρ i does not contain a reset of c and v i resets c. Since the value of c is unbounded, the ρ i contains an arbitrarily large number of increments of c: for all n ∈ N, there exists i such that ρ i increments c at least n times. By taking n large enough, there is necessarily some ρ i which can be decomposed into π 1 π 2 π 3 such that π 2 increments c at least once, and the strategy σ cycles on π 2 , i.e., has the same memory state and vertex before and after π 2 . This can be seen using standard pumping arguments. Indeed, if k is the number of memory states of σ, there are at most k|V | positions of ρ i which are not on a cycle. So, if the number of increments is bigger than k|V |, there is a cycle π 2 which contains an increment. Therefore,

ρ 1 v 1 . . . ρ i-1 v i-1 π 1 π ω 2 ∈ Plays(A, σ)
, it increments infinitely many times c, and resets c finitely many times, contradicting that σ is winning in G .

If now G also has a parity condition with x colors, we add x Streett pairs to the latter game G , using a standard parity-to-Streett conversion: those Streett pairs enforce that if an odd color α is seen infinitely often, then some even color β > α is seen infinitely often.

Conversely, let us explain how to convert any Streett game into a B-counter game. As a matter of fact, the latter reduction is a bijection, so, it suffices to apply its inverse, which we explicit here. If there are k Streett pairs, then we introduce

k counters C = {c 1 , . . . , c k }.
No parity condition is needed in the resulting counter game (formally, we introduce a trivial colouring which colors all vertices by 0). If (E i , F i) is a Streett pair, we assume wlog that

E i ∩ F i = ∅
, and for any vertex v, we add the following operation on c i to v:

increments c i if v ∈ E i , reset it if v ∈ F i , and skip otherwise. The counter condition is k i=1 B(c i).
As a corollary of the latter Lemma, by applying Ψ -1 • Ψ to a counter game in B, we get in polynomial time an equivalent counter game in B with a trivial parity condition.

Streett games are known to be coNP-complete and in PTIME for a fixed number of Streett pairs [START_REF] Piterman | Faster solutions of rabin and streett games[END_REF], and finite-memory strategies suffice for Eve while memoryless strategies suffice for Adam. Therefore, Lemma 3 immediately yields the following result: The latter theorem does not cover the case where only the number of counters is fixed.

We prove that in this case, the complexity is at most NP ∩ coNP. The proof of Theorem 4 is based on Lemma 3 which explicits a bijection between counter games in B and Streett games. In particular, it constructs a game whose winning condition is a conjunction of |C| Streett conditions and a parity condition (which is then itself converted as Streett pairs).

Each Streett pair can be seen as a parity condition over colors {0, 1, 2}. Therefore, when the number of counters is fixed, the reduction of Lemma 3 yields a game with a winning condition which is a conjunction of a fixed number of parity conditions over colors {0, 1, 2} and a single arbitrary parity condition. We prove that such games are reducible in polynomial time to parity games for = 1 in the following lemma, later on applied recursively to show the result the result for any fixed (Theorem 6). Proof. Let V be the set of vertices of A, Q the set of colours of κ and m the minimal even number greater than or equal to every element of Q. We construct in polynomial time a parity game G over a coloured arena

A = (V , E , V ∃ , V ∀ , Q , κ , v 0) such that Eve
wins G iff she wins G , and such that the index of κ is equal to 2k + 1. To prove that finite-memory strategies of memory size equal to k suffice to win G , we use the known result that memoryless strategies suffice to win parity games, and prove that any memoryless winning strategy in G can be translated back to a finite-memory winning strategy in G with memory size equal to k.

The construction of G is as follows. We let V = V × Q and Q = {0, . . . , 2m + 2} with the following parity function κ : any vertex (u, q) ∈ V is coloured by

κ (u, q) =    κ(u) if κ 3 (u) = 0 m + 1 if κ 3 (u) = 1 m + 2 + max{κ(u), q} if κ 3 (u) = 2
Before defining the transitions, let us prove some property (called P) about the colouring

κ . Let π = v 0 v 1 • • • ∈ Plays(A)
. For all i ≥ 0, we let q i be the color by κ seen since the last vertex v j , j < i, such that κ 3 (v j) = 2. Formally, j is the largest integer such that j < i and κ 3 (v j) = 2, and we let

q i = max{κ(v k) | j ≤ k < i}. If j does not exist, then q i = 0.
Let π = (v 0 , q 0)(v 1 , q 1) We prove that π ∈ W iff π ∈ Parity(κ). Let x be the maximal priority occurring infinitely often in κ 3 (π) (κ 3 here, is extended morphically to sequences in V ω). We consider three cases:

If x = 0, then κ (π) = κ(π), so, π ∈ W iff π ∈ Parity(κ) iff π ∈ Parity(κ).
If x = 1, then κ (π) sees m+1 (which is odd) infinitely often, and therefore π ∈ Parity(κ) and π ∈ W .

If x = 2, this is the most interesting case. In that case, π can be decomposed into fragments π = f 1 f 2 f 3 . . . such that each f i contains exactly one node v, at its end, such that κ 3 (v) = 2. Let α i be the maximal color of fragment f i . Then, the maximal colour seen infinitely often in κ (π) is the same as in the sequence (m + 2 + α 1)(m + 2 + α 2) . . . , which is equal to m + 2 + α, where α is the maximal color occurring infinitely often in

κ(π). As m is even, π ∈ Parity(κ) iff π ∈ Parity(κ) iff π ∈ W .
The transitions of A are constructed so that any play π ∈ Plays(A) bijectively corresponds to the play π defined above. In particular, when a vertex (v, q) such that κ 3 (v) = 2 is visited and there is a transition (v, v) in A, q is reset to 0 (we add a transition to (v , 0) in A), and if κ 3 (v) = 2, we add a transition to (v , max(κ(v), q)). Such a construction ensures that there is a bijection Ψ between Plays(A) and Plays(A) such that, by property P above, π ∈ Parity(κ) ∩ Parity(κ 3) iff Ψ(π) ∈ Parity(κ), so, correctness follows. Moreover, any memoryless strategy in G is translated into a finite-memory strategy in G with a memory size equal to the index of κ, concluding the proof.

Note that Lemma 5 entails that games with a conjunction of a parity condition of index k and a fixed number N of parity conditions over colors {0, 1, 2} are solvable in NP ∩ CoNP. Indeed, by iterating Lemma 5 N times, the latter games reduce to parity games of index 2 N (k + 1) -1. Games with Boolean combinations of parity objectives have been studied in [START_REF] Chatterjee | Generalized parity games[END_REF]. However, the former complexity result is not covered by [START_REF] Chatterjee | Generalized parity games[END_REF]. As explained before, Lemma 5 together with the bijection of Lemma 3 imply the following theorem: Theorem 6. For any fixed positive integer N , counter games of parity index k with winning conditions in B and at most N counters, are in NP ∩ CoNP (and parity-hard). Finite memory strategies with memory size 2 N -1 (k + 1) -1 suffice for Eve and Adam.

Finitely switching strategies for games with disjunction of prefix-independent objectives

Let A be an arena, let V be its set of vertices, and let W be a finite set of prefix-independent1 winning conditions for A, i.e., W ⊆ 2 V . We let W = {W | W ∈ W}. In this section, we consider a class of strategies for Eve, called finitely switching, whose existence entail that she wins (A, W). We characterize the existence of finitely switching strategies via a least fixpoint and, for some particular classes of winning objectives W of interest in this paper, prove that such strategies suffice for Eve to win (A, W). The complexity of computing the fixpoint for those particular classes of objectives is deferred to Section 5.

Let us first give intuition on the notion of finitely switching strategies. In such a strategy, Eve announces an initial goal W ∈ W she wants to satisfy, but she may switch her mind during the play, i.e., announce another goal W ∈ W, depending on what Adam does. She can do this only a finite number of times and eventually keep the same goal forever and satisfy it. Formally, for k ≥ 0, a k-switching strategy for Eve is a strategy σ such that there exists a mapping goal from finite histories of σ to W such that for all

π = v 1 v 2 • • • ∈ Plays(σ), there exists W 1 , . . . , W k+1 ∈ W such that π ∈ W k+1 and goal(v 0)goal(v 0 v 1)goal(v 0 v 1 v 2) • • • ∈ W * 1 W * 2 . . . W * k W ω k+1
The goal W k+1 is called the ultimate goal of π. We say that σ is finitely switching if it is k-switching for some k ≥ 0. Consider now the single-state arena of Example 1 in which Eve wants to satisfy c=1,2 U(c).

She has no finitely switching strategy: whenever she announces she wants to satisfy U(c i)

for some i, Adam loops on transition t 3-i until Eve switches her mind. If her ultimate goal is U(c i) for some i, then Adam will loop forever on t 3-i and c i will be bounded, so that Eve does not meet the ultimate goal she announced. By seeing operations on c 1 and c 2 as priority functions, this example also shows that finitely switching strategies are not sufficient to win disjunctions of parity objectives in general. More precisely, for i = 1, 2, we can define the priority functions p i , here on transitions, which colors transition t i by 0 and transition t 3-i by 1. If she ultimately announces her goal is to satisfy priority p i , then Adam takes transition t 3-i forever and p i sees infinitely many times color 1.

Since in a finitely switching strategy, any play consistent with that strategy must satisfy its ultimate goal, the following result is immediate:

Lemma 8 (Soundness). Any finitely switching strategy for Eve in A is winning for (A, W).

We will see later on that the converse holds for some particular classes of boundedness objectives, but for now, let us characterize the existence of finitely switching strategies via some least fixpoint. For a set X ⊆ V , we denote the objective of reaching X by Reach(X) = V * XV ω . We let f be the function which associates any X ⊆ V to the set of vertices u from which Eve can win the objective W ∪ Reach(X) for some W ∈ W. Formally,

f (X) = {u ∈ V | ∃W ∈ W, Eve wins (A[u], W ∪ Reach(X))}. Note that X ⊆ f (X) for
all X ⊆ V . Indeed, if u ∈ X, then Eve has a trivial strategy from u to reach X, and so u ∈ f (X). Since (2 V , ⊆) is a complete lattice, by Knaster-Tarski theorem, f has a unique least fixpoint denoted S W . To compute S W , it suffices to compute the following sequence of sets until it stabilizes:

S W 0 = ∅, for i ≥ 0, S W i+1 = {u ∈ V | ∃W ∈ W, Eve wins (A[u], W ∪ Reach(S W i))}.
For all i ≥ 1 and u ∈ S W i (if it exists), we denote by σ u,i a strategy for Eve winning in the

game (A[u], W ∪ Reach(S W i-1
)) for some W ∈ W. It exists by definition of S W i .

We now prove the following characterization.

Lemma 9 (Fixpoint characterization of finitely switching strategies). Let A be an arena with set of vertices V and W a finite set of prefix-independent winning conditions for A. For all u ∈ V , the following are equivalent:

1. Eve has a finitely switching strategy from u

2.

Eve has a |V |-switching strategy from u

u ∈ S W

Proof. Clearly 2 ⇒ 1. We first prove 1 ⇒ 3 and then 3 ⇒ 2.

Let σ be a k-switching strategy for some k ≥ 0. By induction on k, we prove that u ∈ S W k+1 . This implies the claim as S W k+1 ⊆ S W .

If k = 0, then Eve never changes her mind and therefore all plays of (σ) are in goal(u)

(the history with only the vertex u), so, u ∈ S W 1 . Suppose that k > 0. We take W = goal(u).

Let π ∈ Playsσ. We prove that π ∈ W ∪ Reach(S W k). If Eve never switches her mind during π, then π ∈ W . Otherwise, let h the smallest prefix of π such that goal(h) = W . Let v be the last vertex of h. Note that the strategy2 σ| h is a (k -1)-switching strategy from v. By IH, v ∈ Reach(S W k), which means that π ∈ Reach(S W k) and we are done.

We now prove 3 ⇒ 2. Let u ∈ S W . Let i be smallest index such that u ∈ S W i . Note that i ≤ |V |. We prove by induction on i that Eve has an (i -1)-switching strategy β u,i witnessed by a goal function goal u,i . If u ∈ S W 1 , then σ u,1 wins (A[u], W) for some W ∈ W and so we let goal u,1 (h) = W for any history h of σ u,1 .

Suppose that i > 1 and u ∈ S W i . Remind that the strategy σ u,i wins (A[u], W ∪ Reach(S W i-1)). We modify σ u,i into a strategy β u,i as follows: β u,i is the same as σ u,i as long as S W i-1 has not been reached. If eventually S W i-1 is reached, say at a vertex v, then β u,i plays according to β v,i-1 (which exists by IH).

We prove that β u,i is (i -1)-switching. We let goal u,i (h) = W for any history h which

does not visit S W i-1 . For any history h = h 1 vh 2 such that |h 1 | is minimal and v ∈ S W i-1 , we let goal u,i (h) = goal v,i-1 (vh 2). Let π ∈ Plays(β u,i). If π = v 0 v 1 . . . never visits S W i-1 , then goal(v 0)goal(v 0 v 1) • • • ∈ W ω , and π ∈ W ω . If there exists j minimal such that v j ∈ S W i-1 ,
then, by HI, there exists

W 1 , . . . , W i ∈ W such that goal vj ,i-1 (v j)goal vj ,i-1 (v j v j+1) • • • ∈ W * 1 . . . W * i-1 W ω i . By definition of goal u,i , we obtain that goal u,i (v 0)goal u,i (v 0 v 1) • • • ∈ W * W * 1 . . . W * i-1 W ω i .
Finally, it remains to prove that π ∈ W i : by IH, its suffix v j v j+1 . . . is in W i , and since W i is prefix-independent, so is π, concluding the proof.

According to Lemma 9, when Eve has a finitely switching strategy, then she has a

|V |-switching strategy. Interestingly, observe that the number of times she possibly needs to switch her mind does not depend on the number of winning objectives in W.

The proof of Lemma 9 constructs, for all 1 ≤ i ≤ |V | and u ∈ S W i , a finitely switching strategy β u,i , which either mimics σ u,i or switch to a strategy β v,i-1 . So, Eve needs to remember the current vertex u and index i, in order to know whether she must play according to σ u,i or to switch to a strategy β v,i-1 . So, even if for some N , all the strategies σ u,i are finite-memory of size at most N , β u,i needs memory O(N.|V | 2) in general. We now prove that Eve can do better.

Lemma 10 (Memory transfer).

Let A be a counter arena, V be its set of vertices, and W a finite set of prefix-independent winning conditions for A. Let N ∈ N and suppose that for all X ⊆ V , u ∈ V and W ∈ W, strategies of memory size at most N suffice for Eve to win

(A[u], W ∪ Reach(X)).
Then for all u ∈ S W , Eve wins (A[u], W) with memory at most N .

Proof. For all 1 ≤ i ≤ |V | and u ∈ S W i , we assume the existence of a strategy σ u,i winning in (A[u], W ∪ Reach(S W i)) for some W ∈ W, of memory states {1, . . . , N }. Note that the σ u,i share the same memory states. The main idea of the proof is to provide a way for Eve, given a current vertex v ∈ S W and a memory state m, to uniquely identify the (finite memory) strategy σ u,i according to she must play in vertex v and state m. Given v, we take i to be the smallest integer such that v ∈ S W i \S W i-1 . To identify u, we take the smallest vertex u according to an arbitrary linear order on V such that u ∈ S W i \S W i-1 and v is reachable from u by a finite path p consistent with σ u,i , such that if σ u,i is in its initial memory state m 0 at u, then after p, it is in memory state m. Then, Eve moves to vertex g(v, m), for (δ, g) the memory mapping of σ u,i . Intuitively, if Eve stays forever in S W i \S W i-1 , she will by monotonicity eventually always play according to the same strategy σ u,i , and so satisfy some W , as conditions in W are prefix-independent. Otherwise, she will reach another S W j \S W j-1 for some j < i and we make the same reasoning inductively. See Appendix for details.

The converse of Lemma 8 does not hold in general, as illustrated in Example 1 for disjunction of unboundedness objectives. However, we show here that it holds for disjunctions of conjunctions of boundedness objectives.

Lemma 11 (Completeness for boundedness conditions in DNF). Let A be a counter arena and

C its set of counters. Let W be a finite subset of counter conditions for A in Parity(A) ∧ B.

If Eve wins (A, W), then she has a finitely switching strategy. for the complementary objective

(c∈Ci U(c) ∪ Parity(A[v])) ∩ Reach(S W).
Intuitively, a strategy for Adam winning for Comp could be defined by breaking it down into the following steps:

Adam begins by step (1, 1): he follows strategy σ v0,1 until the play of the game reaches a vertex where the value of a counter of C 1 is 1. If that is never the case, then Adam follows σ v0,1 ad. infinitum. Notice that, if the value of every counter of C 1 is bounded by a certain integer, Adam wins, since the play does not belong to Parity(A).

After completing step (i, j) in a vertex v, two cases arise:

If j < p, then Adam carries out step (i, j + 1) by following σ v,j+1 until the play of the game reaches a vertex where the value of a counter of C j+1 is i. If that is never the case, Adam follows σ v,j+1 ad. infinitum.

If j = p, then Adam carries out step (i + 1, 1) by following σ v,1 until the play of the game reaches a vertex where the value of a counter of C 1 is i + 1. If that is never the case, Adam follows σ v,1 ad. infinitum.

See the Appendix for a complete proof.

Complexity of games with disjunctions of boundedness conditions

The next result gives sufficient conditions on a class of games G, to guarantee decidability of the problem of deciding if Eve has a finitely switching strategy for a disjunction of objectives in the class. In this result, we assume that the winning objectives of G are finitely represented in some way. This is the case of all classes to which we apply this lemma in the paper. We present this generic fixpoint algorithm in Fig. 3, as it is useful to treat the case For i = 1, . . . , n 6.

C = NP. In
For j = 1, . . . , p 7.

If slv(A, v i , W j , H α)

We are now ready to prove complexity results for solving counter games with disjunction of boundedness objectives.

We start with the case of B. Therefore, the memory transfer lemma (Lemma 10) yields the result.

We now turn to games on arenas A with conditions in B, i.e., where W = {Parity(A)∧ c∈Ci B(c) | i = 1, . . . , n} for C 1 , . . . , C n finite subsets of counters. The same reasoning as in the proof of Theorem 13 applies. The only difference here is that, to solve the "local" games of the fixpoint computation (line 7 of algorithm SOLVE), we rely on Theorem 4.

Theorem 14. Counter games with winning conditions in

B are coNP-complete.

Finite memory suffices for Eve, and infinite memory is required for Adam.

We conclude this section by the case of Boolean combination of boundedness objectives. Recall that, from Theorem 4, counter games with counter conditions in B are in coNP, and thus in PSPACE. Thus, since it is well-known that, even if p may be exponential in the size of φ, we can enumerate W in polynomial space, we can use this enumeration algorithm at line 6 of algorithm SOLVE in Fig. 3 to compute the fixpoint S W in polynomial space. As a consequence, the problem of deciding whether Eve has a winning finitely switching strategy for counter games with winning conditions in Bool + (B) is in PSPACE. Hence, the result follows because, as for Theorem 14, these strategies suffice for Eve.

Extensions of counter games with max operation

In this section, we consider counter games where the players can, in addition, put into a counter the maximum value of a subset of counters. In other words, max-counter games are defined in the same exact way as counter games, the only difference being counter operations are now mappings from a finite subset C of C to {i, r, skip} ∪ {max Proof. For hardness, we reduce the emptiness problem of the intersection of n deterministic top-down tree automata, which is known to be EXPTIME-hard [START_REF] Hubert Comon-Lundh | Tree Automata Techniques and Applications[END_REF]. We first show PSPACEhardness if the case of arenas where Adam plays no role, i.e., V ∀ = ∅. The proof is by reduction from the emptiness problem of the intersection of n DFA. The latter reduction is inspired from the proof that deterministic min-automata have PSPACE-c emptiness problem [START_REF] Bojanczyk | Deterministic automata and extensions of weak MSO[END_REF]. Using the fact that strategies are trees, we lift the latter reduction to tree automata. The detailed proof is in Appendix, in Lemma 18.

It remains to show that solving a game in G can be done in exponential time. The difficulty for solving a game G of G comes from the fact that counters interact with each other, since the value of counters can "flow" from one to another via the max operation. That was not case for B-counter games without max, which are CoNP-c, and we could track each counter separately, replacing each boundedness condition by a condition of the form "if c is incremented infinitely often, then it is reset infinitely often". Here, we need to track sequences of counters that flow one into another, called traces. We rather solve games with the complementary objective, which is correct since max-counter games are determined (see Lemma 19 in Appendix). We define a (non-deterministic) automaton B with a single counter d that guesses either a new trace, or a valid continuation to the current trace, at every move of a play of G. Every operation on the counters of the trace are mimicked on d, and it accepts a play iff there exists a run such that d is unbounded. That same idea is already used in the proof of Theorem 1 of [START_REF] Bojanczyk | Weak MSO with the unbounding quantifier[END_REF], from which this proof is inspired. So, solving G boils down to solving a game on the same arena but with objective given by the language L(B). To solve the latter, we convert B into a non-deterministic parity automaton T , which does not preserve the language, but preserves the existence of winning strategy for Eve: when playing on the arena of G, Eve wins the objective L(B) if and only if she wins the objective L(T).

Correctness is ensured by a pumping-like argument based on the fact that finite-memory strategies are sufficient to win ω-regular games, an argument very similar to the one used in the proof of Lemma 3. The automata B and T are constructed in ptime from G. Then we determinize T in exponential time, take its product with G, and obtain a classical parity game of exponential size and linear index. We can conclude since parity games with m edges, n vertices and index k can be solved in O(mn k) (see e.g. [START_REF] Chatterjee | Generalized parity games[END_REF]). The detailed proof is in the Appendix, in Lemma 16.

Future work

In this paper, we have proved new complexity results for counter games and important classes of boundedness conditions. Beyond the objective of having an exhaustive complexity table, we believe that considering those different classes advance our understanding of those games, as the techniques required to solve conjunctions and disjunctions are different. By determinacy, those results also yield complexity bounds for the complementary classes of unboundedness objectives. For example, we get that games with conjunctions of objectives of the form U(c) can be solved in NP∩CoNP and that infinite memory is required. However, note that our counter games are always taken in conjunction with a parity condition. Therefore, in the complementary objectives, this parity condition is now taken in disjunction. We leave conjunction of parity and unboundedness objectives as future work. Another important direction is to consider classes of conditions that mix boundedness and unboundedness objectives. Since the techniques used to solve them individually are different, this would require new techniques. More generally, the only known upper bound for any Boolean combination (not necessarily negation-free) of boundedness objective is non-elementary. We believe there is space for improvement.

1. u v ∈ S W iv \S W iv-1
2. there exists a finite path h from u v to v consistent with σ uv,iv such that δ * uv,iv (q 0 , h) = m, where δ * uv,iv (h) is the memory state of σ uv,iv after h, starting in its initial state q 0 at vertex u v .

Then, γ at vertex v in memory state m plays g uv,iv (v, m) and moves to state δ uv,iv (v, m).

Note that γ is well-defined: by construction, all the vertices v it reaches have been reached

following some strategy σ v,i and hence, there exists always a path h satisfying the conditions of point 2 above, for such vertices v.

We prove that γ wins (A[u], W). Take a play π = v 1 v 2 v 3 . . . consistent with γ. Let m 0 m 1 m 2 . . . the sequence of states of γ on π. First, note that by definition of γ, there exists n such that all the vertices v visited by π after at least n steps all belong to the same part

S W i * \S W i * -1 for some i * . It means that for all k ≥ n, i v k = i v k+1 = i * . To simplify notations, for all k ≥ n, let i k = i v k and u k = u v k . Consider the sequence (u k) k≥n . By definition of γ, it is decreasing for < V . Indeed, let k ≥ n. Then, there exists a finite path h k from u k to v k consistent with σ u k ,i k . By definition of γ, v k+1 is defined by σ u k ,i k at state v k and memory m k . Therefore, h k v k+1 is consistent with σ u k ,i k ,
so, u k meets the requirements of point 2 above. Since we want a minimal node, we obtain that u k+1 ≤ V u k . Since there are finitely many vertices, eventually, the sequence (u k) k≥n stabilizes on the same vertex u * , i.e., there exists l such that for all k ≥ l, u k = u * . From that point on, γ always applies strategy

σ u * ,i * . Formally, it means that the infinite prefix v l v l+1 . . . is consistent with σ u * ,i * . We can conclude since σ u * ,i * is winning in (A[u *], W ∪ Reach(S W i * -1
) for some W ∈ W, and since). We now define a well-suited decomposition of every history and play. To that aim, we define a successor function on every element of the set (N \ {0}) × {1, . . . , p}. For any positive integer i and any integer j ∈ {1, . . . , p}, we thus define s(i, j) as (i, j + 1) if j < p, and as (i + 1, 1) if j = p. We define the counting decomposition of a history or a play w as the sequence (w i) i∈E that satisfies the following properties:

π never visits S W i * -1 by definition of i * , v j v j+1 • • • ∈ W , and since W is prefix-independent, π ∈ W .
E is either equal to {1, . . . , n} for some n ∈ N or equal to N \ {0},

w = w 1 • • • w n , for any integer i ∈ E, w = w 1 • • • w i-1 ,
and, if we let (k, l) denote s i-1 (1, 1), h i is equal to the longest non-empty prefix Notice that the counting decomposition (h i) i∈{1,...,n} of any history h is indeed unique, since every h i is unique by induction on i.

h of (h 1 • • • h i-1) -1 h such that,
Using the above definitions, we formally define a winning strategy σ of Adam in the following way.

For any history h, if we let (h i) i∈{1,...,n} denote the counting decomposition of h, v denote the first letter of h n , and (k, l) denote s n-1 (1, 1), we define σ (h) as σ v,l (h n). We show that Furthermore, by definition of the counting decomposition, for any i ∈ N, if we let (k, l) denote s i-1 (1, 1) and v denote the first letter of h i+1 , there exists c ∈ C l such that For i = 1, . . . , n 6.

σ
λ(ζ(h 0 • • • h i v), c l) |hi|+1 = k. Thus,
For j = 1, . . . , p 7.

If

slv(A, v i , W j , H α) 8. H α+1 =← {v i } ∪ H α+1 9. α ← α + 1 10. Return v ∈ H α Figure 4 An algorithm for case C = PTIME VERIF_EVE(A,W,w) //v is the initial vertex of A //V = {v 1 , . . . , v n } //W = {W 1 , . . . , W p } // w = ----→ α=1,...,n ----→ i=1,...,n ----→ j=1,...,p w α i,j ,
//where each w α i,j is of length P (size(A, W)).

1. N ← n 2 × p 2. α ← 0 3. H 0 , H 1 , . . . , H N ← ∅ 4. While α < n 5.
For i = 1, . . . , n 6.

For j = 1, . . . , p 7.

If V is the set of vertices of A), VERIF_ADAM(A,W,w), is precisely described in Figure 6.

vrfE(A, v i , W j , H α , w α i,j) 8. H α+1 ← {v i } ∪ H α+1 9. α ← α + 1 10. Return v ∈ H α
For any certificate w, if VERIF_ADAM(A,W,w) returns True, if we let S denote the value of the set S at the beginning of line 4 of a run of VERIF_ADAM(A,W,w), we always have, for any u ∈ S and for any W ∈ W, Eve does not win (A[u], W ∪ Reach(V \ S)). Suppose now that S ∩ S W = ∅, and let k be the smallest integer such that S W k = S W k+1 . We show by induction on i that, for any i ∈ {0, . . . , k}, S ∩ S W k-i = ∅. Indeed, the property is obvious for k = 0 since S W k = S W . Furthermore, if there exists u such that u ∈ S ∩ S W k-i , then Eve wins

(A[u], W ∪Reach(S W k-i-1)
), but Eve does not win (A[u], W ∪Reach(V \S)). As a consequence, S W k-i-1 is not a subset of V \ S , and thus S W k-i-1 ∩ S = ∅. Therefore, S W 0 ∩ S = ∅, which is impossible since S W 0 = ∅. Thus, we have S ⊆ V \ S W . As a consequence, if there exists a certificate w such that VERIF_ADAM(A,W,w) returns True, then Eve does not have a winning finitely switching strategy for (A, W). The converse is straightforward. To conclude, the problem of deciding whether Eve does not win (A, W) is in NP.

The following lemma assesses the complexity of games of the form (A[v], W ∪ Reach(X)).

We show that, when W comes from a counter condition, we can reduce games of the form To prove the theorem for conjunctions of boundedness conditions, we reduce the problem, called n DT OP , of deciding if the intersection of n languages recognized by deterministic top-down tree automata (DTOP) is empty, which is known to be EXPTIME-c [START_REF] Kupferman | Pushdown specifications[END_REF]. Before giving the EXPTIME-hardness proof, we first prove PSPACE-hardness for the particular class of counter games where V ∀ = ∅, i.e., where Adam plays no role. We reduce the problem of deciding if the intersection of n languages recognized by deterministic finite-automata (DFA) is empty. We call the latter problem n DF A. The proof is inspired by a PSPACEhardness proof of deciding non-emptiness of the language recognized by a deterministic min-automaton [START_REF] Bojanczyk | Deterministic automata and extensions of weak MSO[END_REF]. Then we lift the reduction from n DF A to the problem n DT OP , i.e., to trees, by using the branching nature of counter games induced by Adam.

(A[v], W ∪ Reach(X))
Consider an alphabet Σ and n complete DFA D i = (Σ, Q i , q i 0 , F i , δ i) such that all Q i are pairwise disjoint. We construct a counter arena A[D 1 , . . . , D n] with V ∀ = ∅ and a set C of n + 1 counters, and no parity condition, such that Eve has a strategy to satisfy objective c∈C B(c) iff i L(D i) = ∅. This construction is similar to that of [START_REF] Bojanczyk | Deterministic automata and extensions of weak MSO[END_REF], which is a reduction from the universality problem for NFA. We assume that Σ contains a symbol # ∈ Σ and for all i, L(D i) ⊆ (Σ -#) * #. The counter arena A[D 1 , . . . , D n] is defined by V ∃ = Σ and V ∀ = ∅, and the set of transitions is E = V ∃ × V ∃ . The vertex # is initial. The set of counters is C = {c 0 } ∪ {c q | q ∈ Q i , i = 1, . . . , n}, and they are updated as follows for i = 1, . . . , n, where max(∅) = 0: on vertex f = #: for all q ∈ Q i , c q := max{c q + 1 | ∃q ∈ Q i , δ(q , f) = q} and c 0 := c 0 + 1 on vertex #: c q i O := max{c q | q ∈ Q i for some i and δ i (q, #) ∈ F i }, and the counters c q for all q ∈ Q i \ {q i 0 } are reset, as well as c 0 .

Note that for f = #, two operations are performed at once: increment counters c q and take the max. This is done to simplify the presentation and can be simulated by doubling the number of vertices of the arena. δ (q, #) = δ(q, #), and we denote by L br (T) the language recognized by this DFA. The language of Σ-trees accepted by T is the set L(T) = {t ∈ T rees Σ | br(t) ⊆ L br (T)} Deciding3 , given n DTOP T 1 , . . . , T n , whether

n i=1 L(T i) = ∅ is EXPTIME-c [15].
Given T 1 , . . . , T n such that T i = (Q i , q i 0 , F i , δ i) for all i, we construct a max-counter game G winnable by Eve iff We now define counter conditions which make sure that if Eve has a strategy to keep all the counters bounded iff there exists t ∈ i L(T i). For all i, let T i = (Q i , q i 0 , F i , δ i).

The set of counters is C = {c q | q ∈ i Q i } ∪ {c 0 } (we assume wlog that all the sets Q i are pairwise disjoint). Let us define counter updates. They are defined as for the arena A[DF A(T 1), . . . , DF A(T n)]. To simplify the presentation (and in particular the structure of the arena), we perform several operations at once. Let us define the updates, for all 1 ≤ i ≤ n:

on vertex (f, j) ∈ Σ 2 × {1, 2}: for all q j ∈ Q i , c qj := max{c q + 1 | ∃q, q 3-j ∈ Q i , δ(q, f) = (q 1 , q 2)} and c 0 := c 0 + 1 on vertex #: c q i O := max{c q | q ∈ Q i for some i and δ i (q, λ) ∈ F i }, and the counters c q for all q ∈ Q i \ {q i 0 } are reset, as well as c 0 .

on vertices i ∈ {1, 2}: counters are unchanged.

There is no parity condition and the counter condition is that the counters in C must be bounded. Let G be the constructed max-counter game. Before showing correctness, let us introduce some useful notation. Note that the histories and plays of G are elements of {#} ∪ Σ 2 × {1, 2} alternating with directions in {1, 2}. The following function removes the We now show correctness of the reduction. Suppose that there exists some t ∈ i L(T i).

We first define a strategy σ t for Eve and then show it is winning in G. The strategy σ t just mimics t: it plays as t dictates when a leaf of t is reached, its behaviour is reset to the root of t. It is illustrated on Fig. Conversely, suppose that i L(T i) = ∅. Take an arbitrary strategy σ of Eve. We show it is not winning. Intuitively, σ can be seen as an infinite tree. If there is a branch of the tree which visits # finitely many times, then σ is not winning because by following the directions corresponding to that branch, Adam can guarantee that counter c 0 is unbounded.

So, we can assume that σ is such that all plays consistent with it sees infinitely many #. We construct a play π of the form #h 1 #h 2 # . . . such that for all j ≥ 1, there exists i such that lab(h j)# ∈ L(DF A(T i)), and we conclude by Claim 2. The construction of π is illustrated on Fig. 9.

Consider the set of histories H 1 of σ which contains a # symbol only at their end.

Clearly, H 1 can be identified with a Σ-tree t 1 . Since t 1 ∈ i L(T i), there exists i such

 For cost-parity and cost-Streett, instead of the number of edges, costs (including 0) label edges and the delay is defined as the sum of the costs. Cost-parity and cost-Streett games can be encoded as counter games with conditions in B, though with an exponential blowup. The difference between those counter games and finitary-and cost-games can be seen in their complexity: counter games with conditions in B are CoNP-c, finitary parity games are in PTime, cost-parity in NP∩CoNP, and finitary Streett and cost-Streett are ExpTime-c.

 Let A be an arena with set of vertices V , C ⊆ C a finite set of counters, and ζ : V → Op(C) a mapping from vertices to counter operations, called vertex labeling. Let Q be a set of colours and κ : V → Q be a colouring of V . To avoid cumbersome notations, for any vertex v ∈ V and counter c ∈ C, we let ζ c (v) denote (ζ(v))(c). We refer to A = (A , C, ζ, Q, κ) as a counter arena, to A as its underlying arena and to (A, Q, κ) as its underlying coloured arena. We let Parity(A) = Parity(κ).

 (A, φ) ⊆ Plays(A) over A is defined naturally. Given a counter condition φ, the pair G = (A, φ) is called a counter game. The game induced by G = (A, φ) is the game G φ = (A , P lays (A, φ) ∩ Parity(A)). Note that in a counter game, both the counter condition and the parity condition must be satisfied. The notion of strategies and winning strategies carry over to counter games by considering the games they induce. In particular, Eve wins G if she wins G φ , i.e., she has a strategy winning for the objective P lays (A, φ) ∩ Parity(A). In this paper, we consider several classes of counter conditions. The class of counter conditions of the form c∈C B(c) for some finite set C ⊆ C is denoted B. Similarly, we denote by B, B and Bool + (B) the classes of counter conditions which are respectively, disjunctions of atoms B(c), disjunction of conjunctions of atoms B(c) (DNF), any negation-free Boolean formula.

Lemma 3 .

 3 we let Streett(S) be the set of words w ∈ V ω such that for all i = 1, . . . , k, if w contains infinitely many occurrences of some e ∈ E i , then it must contain infinitely many occurrences of some f ∈ F i . A Streett game is a pair G = (A, W) where W is given as set of k Streett pairs S, i.e., W = Streett(S). We prove that B-counter games are interreducible to Streett games in polynomial time. There is a bijection Ψ from counter games with condition in B to Streett games such that Ψ is computable in PTime, such that for all counter games G, Eve wins G iff she wins the Streett game Ψ(G), and such that for all Streett game G , Ψ -1 (G) has a trivial parity function (with color 0 only). Proof. Let G be a counter game over an underlying arena A and a set of counters C, with winning condition of the form c∈C B(c) for some C ⊆ C. To simplify our explanations, we first assume that G does not contain any parity condition. To construct a Streett game G , we keep the same arena A and construct, for all c ∈ C , a Streett pair (E c , F c) which

Theorem 4 .

 4 Counter games with winning conditions in B are coNP-complete, and in PTIME if both the index of the priority function and the number of counters are fixed constants. Finite memory suffice for Eve and memoryless strategies suffice for Adam. coNPhardness holds even if the index of the parity function is any fixed constant.

Lemma 5 .

 5 Games of the form G = (A, W) where W = Parity(κ) ∩ Parity(κ 3) for κ an arbitrary colouring of index k and κ 3 a colouring in {0, 1, 2}, reduce in polynomial time to parity games of index 2k + 1. Moreover, finite-memory strategies of memory size equal to k are sufficient for Eve to win G.

Example 7 .

 7 Consider the example of Fig. 2. The described strategy β is 1-switching for W = {B(c), B(d)}: initially, her goal is B(d). If Adam ever tries to make it so that counter d becomes unbounded, by going to vertex 3 from vertex 2, Eve can now set her new goal to B(c).

Proof. Let C 1

 1 , . . . , C p be subsets of C such that W is the set of all counter conditions c∈Ci B(c), for i ∈ {1, . . . , p}. Suppose that Eve does not have a finitely switching strategy from the initial vertex v 0 . This means, by Lemma 9, that v 0 ∈ S W . We construct a winning strategy for Adam for the complementary objective Comp = i∈{1,...,p} c∈Ci U(c) ∪ Parity(A). By definition of S W , f (S W) = S W . Therefore, for any v ∈ V \S W and i ∈ {1, . . . , p}, Eve does not win the counter game (A[v], (Parity(A[v]) ∩ c∈Ci B(c)) ∪ Reach(S W))). Thus, by determinacy (Lemma 2), Adam has a winning strategy σ v,i in A[v]

Lemma 12 .

 12 Let C ∈ {PTIME, NP, coNP, EXPTIME}. Let G be a class of games with prefix-independent objectives, such that deciding whether, given(A, W) ∈ G, a vertex v of A,and a subset X of vertices of A, Eve wins (A[v], W ∪Reach(X)), is in C. Then, deciding, given an arena A and a finite subset of winning conditions W such that {(A, W) | W ∈ W} ⊆ G, whether Eve has a winning finitely switching strategy for (A, W), is in C. Proof. Suppose first that C = PTIME. From Lemma 9, Eve has a winning finitely switching strategy for (A, W) if and only if the initial vertex v 0 of A is in S W . Thus, we can decide whether Eve has a finitely switching strategy by recursively computing the S W i , one after the other, until S W i = S W i+1 = S W . In order to compute S W i+1 from S W i , we check for every vertex v of A whether Eve wins the game (A[v], W ∪ Reach(S W i)). Thus, since S W |V | = S W , in order to compute S W , we only need to check, in ptime, whether Eve wins a game of the form (A[v], W ∪ Reach(X)) at most |V | × |V | × |W| times. As a consequence, the problem of deciding whether Eve has a winning finitely switching strategy for (A, W) is in PTIME.

Theorem 13 .

 13 Counter games with counter conditions in B are in NP ∩ coNP, and are in PTIME if the index of the colouring is fixed. A memory of size equal to the index of the colouring suffices for Eve, and infinite memory is required for Adam. Proof. Let G be a game over counter arena A with set of counters C, initial vertex v and objective W where W = {Parity(A) ∩ B(c) | c ∈ C } for some C ⊆ C. It should be clear that those conditions are prefix-independent, therefore, by Lemma 9 and Lemma 11, Eve wins G iff she has a finitely switching strategy iff v ∈ S W . So, to check whether Eve wins G, it suffices to compute the fixpoint S W . We prove that each step of the fixpoint computation (line 7 in algorithm SOLVE) is done in NP ∩ coNP, and in PTIME if the index of the colouring is fixed. By Lemma 12, the complexity statement of the theorem follows. It remains to show that for all subset X ⊆ V , any vertex u ∈ V and any counter c ∈ C , it is decidable in NP ∩ coNP (and in ptime for fixed parity) whether Eve wins the game (A[u], (Parity(A) ∩ B(c)) ∪ Reach(X)). First, we evacuate the reachability condition, i.e., reduce in ptime the latter problem to solving a game (A , Parity(A) ∩ B(c)). This is easily done by adding a sink state to A reached whenever X is visited, with operation skip on c and priority 0. This reduction works for more general boundedness conditions (see Lemma 17 in Appendix). Finally, the game (A , Parity(A) ∩ B(c)) is solvable in NP ∩ coNP by Theorem 6, and in ptime for fixed parity, which is the case of A when the index of A is fixed, because they have the same colours. For Adam, infinite memory might be necessary to enforce the complementary objective, as illustrated by Example 1. For Eve, Theorem 6 states that a memory of size the index of the parity function is sufficient to solve the "local" games (A , Parity(A) ∩ B(c)), which can be translated back to strategies of same size in (A[u], (Parity(A) ∩ B(c)) ∪ Reach(X)).

Theorem 15 .

 15 Counter games with winning conditions in Bool + (B) are in PSPACE and CoNP-hard. Finite memory suffices for Eve, and infinite memory is required for Adam. Proof. Any counter condition which is a positive boolean combination φ ∈ Bool + (B) can be written in disjunctive normal form ψ = i∈{1,...,p} c∈Ci B(c), where the C i are subsets of C. Let W = {Parity(A) ∧ c∈Ci B(c) | i = 1, . . . , n}. A direct application of Theorem 14 yields a CoNExpTime, because p might be exponential. Instead, we do not construct ψ explicitely.

Theorem 16 .

 16 Let G be the class of counter games G with counter condition c∈C B(c), where C is the set of counters of G. Given a game G in G, the problem of deciding whether Eve wins G is EXPTIME-c. Finite memory is sufficient for Eve and Adam.

Lemma 11 (

 11 Completeness for boundedness conditions in DNF). Let A be a counter arena andC its set of counters. Let W be a finite subset of counter conditions for A in Parity(A) ∧ B.If Eve wins (A, W), then she has a finitely switching strategy.Proof. Let C 1 , . . . , C p be subsets of C such that W is the set of all counter conditions c∈Ci B(c), for i ∈ {1, . . . , p}. Suppose that Eve does not have a finitely switching strategy from the initial vertex v 0 . This means, by Lemma 9, that v 0 ∈ S W . We construct a winning strategy for Adam for the complementary objective Comp = i∈{1,...,p} c∈Ci U(c) ∪ Parity(A). By definition of S W , f (S W) = S W . Therefore, for any v ∈ V \S W and i ∈ {1, . . . , p}, Eve does not win the counter game (A[v], Parity(A) ∩ (c∈Ci B(c) ∪ Reach(S W))).Thus, by determinacy (Lemma 2), Adam has a winning strategy σ v,i in A[v] for the complementary objective c∈Ci U(c)∩Reach(S W)∪Parity(A[v]

 for any non-negative m with m ≤ |h |, we have λ(ζ(h), c) m < k for any c ∈ C l (h can be an infinite word).

 is a winning strategy for Adam for G (game arena of G with objective the complement of G's objective). Let ρ be a play consistent with σ , and let (h i) i∈E denote the counting decomposition of ρ. Let us suppose that there exists n ∈ N such that E = {1, . . . , n}. By definition of σ , if we let v denote the first letter of h n and (k, l) denote s n-1 (1, 1), h n is consistent with σ v,l . However, since ρ= h 1 • • • h n ,by definition of the counting decomposition, for any m ∈ N, we have λ(ζ(h n), c) m < k for any c ∈ C l . Since σ v,l is a winning strategy of Adam for G l , h n / ∈ Parity(A), and as a consequence, ρ / ∈ Parity(A) either. Thus, if ρ ∈ Parity(A), we have E = N.

Figure 5

 5 Figure 5 An algorithm in the case C = NP

Figure 7

 7 Figure 7 Arena for the proof of Theorem 18, where Σ = {#, f1, . . . , fm}. Transitions in bold are in both directions. Square vertices are controlled by Adam, and the initial vertex is #. When Adam picks a direction d ∈ {1, 2}, then Eve is forced to pick a vertex in Σ2 × {d}, or #.

 n i=1 L(T i) = ∅. The main idea of the proof is construct a game where Adam picks a direction d ∈ {1, 2} (1 means left and 2 right), while Eve picks the labels in Σ. The arena A[T 1 , . . . , T n] of G (without the counters) is depicted on Fig. 7.

Figure 8

 8 Figure 8 Strategy σt constructed from a Σ-tree t.

Let π ∈

 ∈ Plays(σ t). First, we observe that lab(π) is a play of A[DF A(T 1), . . . , DF A(T n)].Let C be the set of counters of the latter arena. By definition of σ t , lab(π) is of the form #b 1 #b 2 # . . . with infinitely many # such that for all j ≥ 1, b j # is a branch of t. Sincet ∈ i L(T i), we also get that b j # ∈ i L(DF A(T i)). The set X = {b j # | j ≥ 1} isfinite since its elements correspond to branches of t. Therefore, by Claim 1, π satisfies c∈C B(c). We conclude by observing that C = C , that A[T 1 , . . . , T n] has the same vertices as A[DF A(T 1), . . . , DF A(T n)] plus the two vertices 1 and 2, with the same counter updates for their common vertices and no update on 1 and 2. Therefore, π satisfies c∈C B(c) in A[T 1 , . . . , T n].

 Reach(H α)) given a certificate. All the certificates needed for each call at line 7 are taken as input of the algorithm VERIF. This approach works because the algorithm VERIF returns True if and only if the answers to some well-chosen questions of the type "Does Eve win (A[v], W ∪ Reach(X))?" are true. The case where C = CoNP is done in a similar way, but this time by guessing the complement of S W . See Appendix for details.

that figure, slv is an algorithm that terminates in polynomial time, and such that slv(A, v, W, H) returns true if and only if Eve wins (A[v], W ∪ Reach(H)). The case where C = EXPTIME is similar. In the case where C = NP, we transform the algorithm SOLVE into an ptime algorithm VERIF (given in Appendix), which is defined as the algorithm SOLVE, except that line 7 is replaced by a call to a ptime verifier that Eve wins

(A[v i], W j ∪ SOLVE(A,W) //v is the initial vertex of A //V = {v 1 , . . . , v n } //W = {W 1 , . . . , W p } 1. N ← n 2 × p 2. α ← 0 3. H 0 , H 1 , . . . , H N ← ∅ 4. While α < n 5.

 since every C l is finite, for any l ∈ {1, . . . , p}, there exists c ∈ C l such that, for any integer k, there exists an integer j with λ(ζ(ρ), c) j ≥ k. To conclude, σ is a winning strategy of Adam for G. and a subset X of vertices of A, Eve wins (A[v], W ∪Reach(X)), is in C. Then, deciding, given an arena A and a finite subset of winning conditions W such that {(A, W) | W ∈ W} ⊆ G, whether Eve has a winning finitely switching strategy for (A, W), is in C.Proof. Suppose first that C = PTIME. From Lemma 9, Eve has a winning finitely switching strategy for (A, W) if and only if the initial vertex v 0 of A is in S W . Thus, we can decide W , we only need to check whether Eve wins a game of the form(A[v], W ∪ Reach(X)) at most |V | × |V | × |W| times.As a consequence, the problem of deciding whether Eve has a winning finitely switching strategy for (A, W) is in PTIME.In order to better explain the case where C = NP, we give the full algorithm SOLVE(A,W) in Figure4. In that figure, slv is an algorithm that terminates in polynomial time, and such that slv(A, v, W, H) returns true if and only if Eve wins (A[v], W ∪ Reach(H)). The case where C = EXPTIME is similar.Suppose now that C = NP. Intuitively, we can use a very similar algorithm to the one we used in the previous case: the only difference is that we guess the certificates needed to check if Eve wins the games of the form (A[v], W ∪ Reach(X)). This approach works because the algorithm returns True if and only if the answers to some well-chosen questions of the type "Does Eve win (A[v], W ∪ Reach(X))?" are true. In order to formalize this idea, for any arena A, and any set W such that {(A, W) | W ∈ W} ⊆ G, we let size(A, W) denote the size of a coding of the arena A and of the set of winning conditions W. There exists an algorithm vrfE such that vrfE(A, v, W, H, w) verifies in polynomial time if Eve wins(A[v], W ∪ Reach(S W i)) using the certificate w. More precisely, vrfE terminates in polynomial time, and there exists a polynomial P , such that for any game (A, w) ∈ G, the following is i for l 1 • • • l n . It is easy to see that, if the initial vertex v of A is in S W , then there exists a certificate w of size P (size(A, W)) × |V | 2 × |W| such that VERIF(A,W,w) returns True. The converse directly comes the fact that, for any certificate w, during a run of VERIF_EVE(A,W,w), we always have H α+1 ⊆ f (H α), and that we thus have H n ⊆ S W .Suppose now that C = CoNP. We show that the problem of deciding whether Eve does not win (A, W) is in NP, using the same idea as in the previous case, that is by computing S W in a non-deterministic way, with an algorithm that returns True if and only if the answers to some well-chosen questions (in fact, to all of the questions in this case) of the type "Does

	SOLVE(A,W)
	//v is the initial vertex of A
	//V = {v 1 , . . . , v n }
	//W = {W 1 , . . . , W p }
	whether Eve has a finitely switching strategy by recursively computing the S W i , one after the other, until S W i = S W i+1 = S W . In order to compute S W i+1 from S W i , we check for every vertex v of A whether Eve wins the game (A[v], W ∪ Reach(S W i)). Thus, since S W |V | = S W , 1. N ← n 2 × p 2. α ← 0 3. H 0 , H 1 , . . . , H N ← ∅ 4. While α < n in order to compute S true: there exists w of length P (size(A, W)) such that vrfE(H, W, A, v, w) returns True if 5.
		and only if Eve wins (A[v], W ∪ Reach(H)). An algorithm VERIF_EVE that checks whether
		Eve has a winning finitely switching strategy for (A, W), given a certificate w of size
		P (size(A, W)) × |V | 2 × |W| (where V is the set of vertices of A), VERIF_EVE(A,W,w), is
		precisely described in Figure 5. In the algorithm, for any integer k and any sequence of words ----→
		(l i) i∈{1,...,k} , we use the notation
		i=1,...,k
		Eve win (A[v], W ∪ Reach(X))?" are false. However, in this case, we compute S W by guessing
		its complement. There exists an algorithm vrfA such that vrfA(A, v, W, H, w) verifies in
		polynomial time if Eve does not win (A[v], W ∪ Reach(S W i)) using the certificate w. More
		precisely, vrfA terminates in polynomial time, and there exists a polynomial P , such that for
	B	Detailed proofs of section 5 any game (A, w) ∈ G, the following is true: there exists w of length P (size(A, W)) such that
		vrfA(H, W, A, v, w) returns True if and only if Eve does not win (A[v], W ∪ Reach(H)). An

Lemma 12. Let C ∈ {PTIME, NP, coNP, EXPTIME}. Let G be a class of games with prefix-independent objectives, such that deciding whether, given (A, W) ∈ G, a vertex v of A, l algorithm VERIF_ADAM that checks whether Eve does not have winning finitely switching strategy for (A, W), given a certificate w of size |V | + P (size(A, W)) × |V | × |W| (where © Emmanuel Filiot and Edwin Hamel-de le Court; licensed under Creative Commons License CC-BY Leibniz International Proceedings in Informatics Schloss Dagstuhl -Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

 to a game (A , W) in polynomial time.Finally, we let A denote the counter arena with underlying two-player arena equal to(V , E , V ∃ , V ∀ ∩ X, v), set of counters C, vertex labeling ζ , set of colours Q and colouring κ .The lemma is direct consequence of the fact that, if σ and σ are two strategies of Eve for the game (A[v], (P lays (A, W) ∩ Parity(A)) ∪ Reach(X)) and for the counter game (A , W) respectively that are equal on (V \ X) ω , then σ is winning if and only if σ is winning. Let G be the class of counter games G with counter condition c∈C B(c), where C is the set of counters of G. Given a game G in G, the problem of deciding whether Eve wins G is EXPTIME-c. Finite memory is sufficient for Eve and Adam.The proof of Theorem 16 is split into two parts, each covered by a different lemma.Lemma 18 gives the EXPTIME-hardness, and Lemma 20 gives the EXPTIME-easyness.

	C	Detailed proofs of section 6
	Theorem 16.
	Lemma 17. Let A be a counter arena, V be its set of vertices, v be a vertex in V ,
	X be a subset of V , and W be a counter condition for A. We can construct a counter
	arena A in polynomial time with respect to |V |, such that Eve wins (A[v], (P lays (A, W) ∩
	Parity(A)) ∪ Reach(X)) if and only if Eve wins (A , W). Furthermore, if strategies with
	memory size at most N suffice for (A , W), then strategies with memory size at most N
	suffice for (A[v], (P lays (A, W) ∩ Parity(A)) ∪ Reach(X)).

Proof. The idea is to construct an arena A that comes from A by replacing all the elements of © Emmanuel Filiot and Edwin Hamel-de le Court; licensed under Creative Commons License CC-BY Leibniz International Proceedings in Informatics Schloss Dagstuhl -Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany Lemma 18. Max-counter games with a single winning condition B(c) for some counter c, and no parity condition, are EXPTIME-hard. Proof of Lemma 18. We prove EXPTIME-hardness of max-counter games with no parity condition and a conjunction of boundedness conditions c∈C B(c). This entails the result because one can always add a counter c m which takes the maximal value of all other counters c ∈ C at each step, so that c∈C B(c) is satisfied iff B(c m) is satisfied.

 [START_REF] Bruyère | Computer aided synthesis: A game-theoretic approach[END_REF]. Formally, the construction of σ t satisfies the following invariant: all histories ending with an Eve vertex are words of the form h = #h 1 h 2 . . . h

k pd where:

all h i are such that lab(h i) ∈ br(t), lab(p) is a prefix of a branch of t d ∈ {1, 2}

Given such a history h, we consider two cases: if lab(p) ∈ br(t), then σ t is reset to the root of t, which means that σ t (h) = (f, d) such that f is the label of the root of t. Otherwise, σ t (h) = # if lab(p)# ∈ br(t), and σ t (h) = (f, d) if lab(p)(f, d) ∈ br(t). Let us show that σ t is winning.

© Emmanuel Filiot and Edwin Hamel-de le Court; licensed under Creative Commons License CC-BY Leibniz International Proceedings in Informatics Schloss Dagstuhl -Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

A winning condition W is prefix-independent if, for all (w, u)∈ (V ω , V), w ∈ W iff uw ∈ W . © Emmanuel Filiotand Edwin Hamel-de le Court; licensed under Creative Commons License CC-BY Leibniz International Proceedings in Informatics Schloss Dagstuhl -Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

The restriction σ| h is defined by σ| h (h) = σ(hh) for all h . © Emmanuel Filiot and Edwin Hamel-de le Court; licensed under Creative Commons License CC-BY Leibniz International Proceedings in Informatics Schloss Dagstuhl -Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

In[START_REF] Hubert Comon-Lundh | Tree Automata Techniques and Applications[END_REF], the definition of DTOP is slightly different, but less general: there are no accepting states but the transition function can be partial. A tree is accepted if there is a run on it which traverses the whole tree (it is not in an inner node). Those automata can easily be encoded into (our) DTOP by completing the transition function into a sink state qs, declaring all states to be final but qs. © Emmanuel Filiot and Edwin Hamel-de le Court; licensed under Creative Commons License CC-BY Leibniz International Proceedings in Informatics Schloss Dagstuhl -Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Appendix

A

Detailed proofs of section 4

Lemma 10 (Memory transfer). Let A be a counter arena, V be its set of vertices, and W a finite set of prefix-independent winning conditions for A. Let N ∈ N and suppose that for all X ⊆ V , u ∈ V and W ∈ W, strategies of memory size at most N suffice for Eve to win

. Then for all u ∈ S W , Eve wins (A[u], W) with memory at most N .

Proof. Let us recall that the strategies β u,i constructed in the proof of Lemma 9 (implication 3 ⇒ 2) are inductively defined as follows: Eve follows σ u,i as long as S W i-1 is not reached. As soon as she reach a vertex v ∈ S W i-1 , she applies β v,i-1 . We let β = β u,|V | for some u ∈ S W , which is a finitely switching strategy, and winning in (A[u], W) according to Lemma 9.

Note that by construction of the family of strategies β u,i , in any arbitrary vertex v Eve has reached by playing β, she is always playing according to some local strategy σ w,j for some w and j. It means that Eve has to remember w and j, but this costs |V | 2 states. Instead, we show a different way of constructing a finitely switching strategy γ in (A[u], W) for any u ∈ S W as follows. Let us fix u ∈ S W in the rest of the proof.

We take an arbitrary linear order < V on V . The memory of γ is {1, . . . , N }, just as the finite-memory strategies (σ v,i) v,i . For all v, i, we let (δ v,i , g v,i) be the memory mapping of σ v,i . Remind that δ v,i updates the states while g v,i defines the moves. We define γ as follows,

with the invariant that all states γ reaches are in S W . Let i be the smallest integer such that u ∈ S W i \S W i-1 . It exists since u ∈ S W . The initial state of γ is the initial state m 0 of σ u,i . Now, let v ∈ V ∃ ∩ S W and m a memory state of γ. We define how γ plays when it is in v with memory state m. We let i v be the smallest integer such that v ∈ S W iv \S W iv-1 . We let u v the smallest vertex such that VERIF_ADAM(A,W,w)

w i,j , //where each w i,j is of length P (size(A, W))

For j = 1, . . . , p 6.

If vrfA(A, v i , W j , V \ S, w i,j) returns False 7.

Return False 8. Return True X by a single one, that we call -1. When a play would reach X in A, there is a corresponding play in A with the same previous history, that reaches -1, and that subsequently stays at that vertex ad. infinitum. Furthermore, the labeling and colouring of the vertex -1 are defined appropriately so that, if a play stays at the vertex {-1}, it is always winning for Eve.

Let C be the counter the set of counters of A. Since W is a counter condition, it is a boolean formula φ over the set of propositions {B(c) | c ∈ C}. If v ∈ V , then any strategy of Eve is winning for (A[v], (P lays (A, W) ∩ Parity(A)) ∪ Reach(X)). We thus suppose in the following that v / ∈ V .

Suppose now that φ is not satisfiable, then P lays (A, W) is empty. As a consequence, Eve

Since deciding reachability in two-player games can done in polynomial time, and since memoryless strategies are sufficient for Eve and for Adam [START_REF] Grädel | Automata, logics, and infinite games. a guide to current research[END_REF], the theorem follows.

We can thus suppose that φ is satisfiable. Then φ is implied by some condition of the form

) be the underlying two-player arena of A, let ζ be the vertex labeling of A, and κ be its vertex colouring. We can suppose without loss of generality that -1 is not in V . We let V denote X ∪ {-1}, and E denote the union of the following sets:

the set of all pair of vertices (u, -1) such that there exists t ∈ X such that (u, t) ∈ E the singleton {(-1, -1)}.

Furthermore, we let V ∃ denote the set V ∃ ∪ {-1}, Q denote Q ∪ {0}, κ denote the vertex colouring equal to κ on X, and such that κ(-1) = 0, and ζ denote the vertex labeling equal to ζ on X and such that

Now, observe that Plays(A[D 1 , . . . , D n]) = #Σ ω and a strategy for Eve is nothing but an infinite word w in #Σ ω . We prove the following claims:

Claim 1 For all non-empty finite set X ⊆ n i=1 L(D i), any play in #.X ω satisfies c∈C B(c).

. . such that for all j ≥ 1, u j ∈ X. We prove that w, which is a play of A[D 1 , . . . , D n]) satisfies that all the counters are bounded by 2m. First, note that each u j is of the form v j #, because u j ∈ i L(D i) and the DFA D i are assumed to accept words where # is an endmarker. First, consider counter c 0 : it is reset every time # is read, so, its maximal value is bounded by m. Now, for all j ≥ 1 and q ∈ i Q i , we let in j,q be the value of counter c q after prefix #u 1 . . . u j-1 and out j,q is value after prefix #u 1 . . . u j-1 v j . By definition of the counter updates, we have:

1. in j,q = 0 for all j ≥ 1 and q not initial 2. in j,q i 0 = max{out j-1,q | q ∈ Q i for some i and δ i (q, #) ∈ F i } for all j ≥ 1 3. out j,q = in j,q i 0 + |v j | if q ∈ Q i for some i and there exists a run of D i from q i 0 to q on v j 4. otherwise, out j,q = |r| where r is a run of maximal length on a prefix of v j , ending in q.

Let q ∈ Q i for some i such that δ i (q, #) ∈ F i . For all j ≥ 1, there is no run from q i 0 to q on v j , since u j = v j # ∈ L(D i). So, we are in case 4 above and we have out j,q ≤ |v j | ≤ m.

From the latter fact and 2, we get that in j,q i 0 ≤ m for all i, j. From that and 3, we get that out j,q ≤ m + |v j | ≤ 2m for all j. So, all the counter have value at most 2m after each v j , which concludes the proof that they are bounded.

Proof of Claim 2. Let w be a play of

Moreover, for all j ≥ 1, there exists i j ∈ {1, . . . , n} such that w j # ∈ L(D ij) and there exists a run of D ij on w j from q ij 0 to some non-accepting state q ij . Denote by in(i j) the value of counter c 0 qi j before reading w j #w j+1 . . . in w, and by out(i j) the value of counter c qi j before reading #w j+1 #w j+1 . . . in w. By definition of the counter updates, we have out

and so on. Moreover, in(i 2) ≥ out(i 1), in(i 3) ≥ out(i 2), and so on, since the states q ij are non-accepting. This yields that the sequence (in(i j)) j is unbounded, concluding the proof.

As a side note, observe that the two claims imply the following:

then it suffices to apply Claim 1 to

) ω = Σ ω and Claim 2 implies that no word of Σ ω satisfy c∈C B(c).

We now lift the latter reduction to (binary) trees. We let Σ be a finite alphabet containing a symbol # called a constant symbol, and all other symbols are called binary symbols. We let Σ 2 = Σ -# be the set of binary symbols. A Σ-tree is defined as a term where terms t are inductively defined by t, t 1 , t 2 :

The set of branches of a Σ-tree t is inductively defined as br(#) = {#}, and br(f

A deterministic top-down tree automaton is a tuple T = (Q, q 0 , F, δ) where Q is a finite set of states, q 0 ∈ Q the initial state, F ⊆ Q the final states, and δ : Q×({#}∪(Σ 2 ×{1, 2})) → Q is a (total) transition function. We see T as a DFA DF A(T) recognizing a language in (Σ 2 × {1, 2}) * # naturally as follows: DF A(T) = (Q, q 0 , F, δ) where for all q ∈ Q, for all (f, d) ∈ Σ 2 × {1, 2}, δ (q, f) = proj d (δ(q, f)), with proj d the dth projection, and that t 1 ∈ L(T i) and therefore, a history h 1 # ∈ H 1 such that lab(h 1)# ∈ L(DF A(T i)). To construct h 2 , h 3 , . . . , we proceed similarly. Let us explain how to construct h 2 . We let H 2 be the set of histories of the form h 1 #g 2 # such that h 1 #g 2 # is a history of σ such that g 2 does not contain #. The set (h 1 #) -1 H 2 can be identified with a Σ-tree t 2 . Now, it suffices to

In order to prove Lemma 20, we first prove the following, in a very similar way to the proof of Lemma 2.

Lemma 19. Max-counter games (with Boolean combinations of boundedness objectives)

are determined.

Proof. Given a counter arena A and a counter c of A, the set P lays (A, B(c)) is a Borel set. Indeed, it is equal to the countable union for all N ≥ 0 of the sets

which are ω-regular. Indeed, a Büchi automaton that stores, in every state, the maximums between N and the value of each counter of C needs |V | × N |C| states to recognize Plays N (A, B(c)). Since ω-regular sets are Borel, so is P lays (A, B(c)), as well as any Boolean combination of the latter. By Martin's determinacy theorem [START_REF] Martin | Borel determinacy[END_REF], the result follows. A is a counter arena without max where Adam plays no role (V ∀ = ∅), where each edge is labeled by a letter of an alphabet Σ, i.e.. the set of edges of the counter game is replaced by a subset E of V × V × Σ, and where the domain of the colouring κ is Σ rather than V (we colour the edges rather than colouring the vertices)

W is a winning condition for A, i.e. a subset of V ω .

A run in B is an infinite word π = y 0 y 1 • • • ∈ Y ω such that the first element of y 0 is the initial vertex of B, and such that the second element of each y i is the first element of y i+1

for any non-negative integer i. We let Play(π) denote the word v 0 v 1 Let G be a counter game with underlying two-player arena The value of θ at move t ∈ {i, . . . , j} is defined inductively as 0 if t = i, one plus the value at move t - The UB-automaton B is the UB-automaton with set of vertexes V 1 , set of edges E 1 , initial vertex v 1 , set of counters {d}, vertex labeling ζ 1 , set of colors Q, colouring κ, and its winning condition is defined as the set of all words w ∈ V ω 1 that satisfy U(d).

We now transform B into a parity automaton. To achieve that goal, we first transform B into an automaton with two colourings and without counters. To simplify the presentation of that construction, we introduce the notion of dual parity automaton. A (non-deterministic)

dual parity automaton is a two-player game T where Adam plays no role, with an alphabet Σ, a set of colours P in addition to the original set of colours P , a colouring η over Σ in addition to the original colouring η over the set X of vertices of G, and where every edge is labeled by Σ (i.e. the set of edges of T is a subset of X × X × Σ). Furthermore, a word

The language recognized by T , denoted L(T), is the set of words accepted by T . Notice that T can be converted into a non-deterministic automaton T 1 , with two colours whose domains are the set of vertexes, by copying each vertex for every edge that goes to it. The acceptation condition of T 1 is expressed by the union of the parity conditions induced by its two colourings. That automaton T 1 can be further converted into a non-deterministic parity automaton T 2 with a single colour and two initial states, by duplicating it, colouring the first copy with the first colouring and the second copy with the second colouring. Thus, there exists a parity automaton T 2 that recognizes the same language as T , and L(T) is thus an ω-regular language.

We now define T as the dual parity automaton with set of vertices

Notice that T and B have the same edges with the same labels, and the same initial state

We let L(B) denote the language accepted by B. Since L(T) ⊆ L(B), Eve wins (A, L(B)) if Eve wins (A, L(T)). We now show the converse.

Suppose that Eve has a winning strategy σ for (A, L(B)), and that Eve does not win (A, L(T)). Since L(T) is an ω-regular objective, (A, L(T)) is determined, and Adam has a finite memory winning strategy τ with memory mapping pair (δ, g) and memory size N , for (A, V ω \ L(T)). Let ρ be a play of A consistent with σ and τ . Then ρ satisfies both of the following properties:

(1) either ρ ∈ Parity(κ), or there exists a run π in B such that Input(π) = ρ and Play(π) satisfies U(d)

(2) ρ / ∈ Parity(κ), and for any run π in T such that Input(π) = ρ, the greatest colour appearing infinitely often in Play(π) is odd. If ρ ∈ Parity(κ), then ρ cannot satisfy property (2). Thus, from property (1), there exists a counter c ∈ C, and a run π in B such that input(π) = ρ and play(π) satisfies U(d). Therefore, if we let µ 0 µ 1 • • • = play(π), there exists two integers i and j such that there is no occurrences

As a consequence, there exists two integers i and j such that there is at least one occurrence of i in ζ d (µ i • • • µ j) and no occurrences of r, such that µ i = µ j , such that the g-memory state of play(π) at move i equal to the g-memory state of play(π) at move j , and such that ρ(i) = ρ(j). Thus, if we let π denote the run π(0) We let k be the index of G, and n be the number of its vertices. Notice that T 2 is a parity automaton with a polynomial size and index, with respect to nk. It is well-known that there is a deterministic parity automaton D with an exponential size and polynomial index with respect to the product of the size and index of T 2 , that recognizes the same language as T 2 .

Thus, D has exponential size and polynomial index with respect to the size of G, and Eve wins G if and only if Eve wins (A, L(D)).

We now construct a game G as the product of G and D. More precisely, if is V D be the set of vertices of D, E D is its set of edges, v D is its initial state, Q D is its set of colours, and κ D is its colouring, we let Z denote the set of all pairs ((u 1 , v 1), (u 2 , v 2)) of elements of