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Summability characterizations of positive sequences

In this paper, we propose extensions for the classical Kummer's test, which is a very far-reaching criterion that provides sufficient and necessary conditions for convergence and divergence of series of positive terms. Furthermore, we present and discuss some interesting consequences and examples such as extensions of Olivier's theorem and Raabe, Bertrand and Gauss's test.

Introduction

The Kummer's test is an advanced theoretical test which provides necessary and sufficient conditions that ensures convergence and divergence of series of positive terms. Below we present the statement of this result. Its proof and some additional historical background may be found in [START_REF] Bourchtein | A Hierarchy of the Convergence Tests Related to Cauchy's Test[END_REF][START_REF] Knopp | Theory and application of infinite series[END_REF][START_REF] Tong | Kummer's, Test Gives Characterizations for Convergence or Divergence of all Positive Series[END_REF]. Theorem 1. (Kummer's test) Consider the series a n where {a n } is a sequence of positive real numbers.

(i) The series a n converges if and only if there exist a sequence {q n }, a real number c > 0 and an integer N ≥ 1 for which q n a n a n+1 -q n+1 ≥ c, n ≥ N.

(ii) The series a n diverges if, and only if there exist a sequence {q n } and an integer N ≥ 1 for which 1 qn is a divergent series and q n a n a n+1 -q n+1 ≤ 0, n ≥ N.

Besides providing an extremely far-reaching characterization of convergence and divergence of series with positive terms, the importance of Kummer's test it is mostly ratified by its implications. For instance, Bertrand's test, Gauss's test, Raabe's test [START_REF] Tong | Kummer's, Test Gives Characterizations for Convergence or Divergence of all Positive Series[END_REF] are all special cases of Theorem 1. Kummer's test may be also usefull to characterize convergence in normed vector spaces [6, p.7] and applications of this test can be found in other branches of Analysis, such as difference equations [START_REF] Gyori | l p -solutions and stability analysis of difference equations using the Kummer's test[END_REF], as well.

On the other hand, turning our focus to series of the form c n a n , there are only few results dealing with this type of series. The Abel's test and test of Dedekind and Du-Bois Reymond (see for instance, [4, p.315], [START_REF] Hadamard | Deux theoremes d'Abel sur la convergence des series[END_REF] ) are probably the most famous, since they deal with general series of complex numbers. These tests provide conditions that ensure convergence by means of independent assumptions on {c n } and {a n }. In this context, the main feature of our results (Theorem 4 and Theorem 5 ) is that they characterize the relation between the sequences {a n } and {c n } in order to ensure necessary and sufficient conditions for the convergence and divergence of the series c n a n , respectively. Moreover, we present some examples and interesting consequences of this characterization. In particular, generalized versions of Raabe's, Bertrand's and Gauss's test for convergence and divergence of series of the form c n a n are obtained. Another important consequence of Theorem 4 is that it is possible to show that Olivier's theorem (see, for instance [4, p.124] or [START_REF] Niculescu | A note on the behavior of integrable functions at infinity[END_REF][START_REF] Sálat | A Classical Olivier's Theorem and Statistical Convergence[END_REF] for mor information) still holds when the monotonicity assumption on the sequence of positive terms {a n } is replaced by an additional assumption on a auxiliary sequence. We also present consequences of Theorem 4 when it is combined to the well-know Abel summation formula and the Cauchy condensation theorem. We refer to [START_REF] Knopp | Theory and application of infinite series[END_REF], p. 120 and p. 313 for more details on these results.

The rest of the paper is organized as follows. In Section 2, we present necessary and sufficient conditions for convergence/divergence of series generated by subsequences by extending Theorem 1. In Section 3 we present the results dealing with convergence and divergence of series of the form c n a n . The main ideia is to obtain necessary and sufficient conditions by means of an extension of Theorems 2 and Theorem 3. As we show, we characterize the relation between the sequences {c n } and {a n } that ensures convergence and divergence of the series. In Section 4 we present some consequences of the results obtained.

An extension of Kummer's test: I

In this section we present a first extension of Theorem 1. Its main feature is that it showns that is possible to obtain information about the summability of a sequence of positive real numbers based on the relation between non-consecutive elements of this sequence. In partiular, the idea is to characterize the summability of a sequence by comparing it to the elements of the translated sequence {a n+m , n ≥ 1}, for some m ≥ 1.

The first main result of this section is presented below.

Theorem 2. Let {a n } be a sequence of positive real numbers and m ≥ 1 any fixed positive integer.

If there exists a positive sequence {q n } such that

q n a n a n+m -q n+m ≥ c,
for some c > 0, for all n sufficiently large, then a n converges. The converse holds as well.

Proof. From the assumption we get that q n a n -a n+m q n+m ≥ ca n+m , for all n > N , for some N large. Hence

N +k n=N +1 q n a n -a n+m q n+m ≥ c N +k n=N +1 a n+m ,
for all k ≥ 1. That is, by the telescopic sum and considering without loss of generality k > m, we have

q N +1 a N +1 +• • •+q N +m a N +m -a N +k+1 q N +k+1 -• • •-a N +k+m q N +k+m ≥ c N +k n=N +1 a n+m ,
for all k > m. Since {a n } and {q n } are positive, the left side of previous inequality is less than q N +1 a N +1 +• • •+q N +m a N +m and then the series a n+m converges. Therefore, a n also converges.

Conversely, if

a n converges, a n = S say, then let us write a n+m-1 = S m , for m ≥ 1, positive integer. Let us define {q n } as

q n = S m - n i=1 a i+m-1 a n , n = 1, 2, 3... ,
thus, for this {q n } we have that

q n a n a n+m -q n+m = n+m i=n+1 a i+m-1 a n+m = 1 + a n+m+1 + ... + a n+2m-1 a n+m > 1, for all n ≥ 1. The proof is concluded.
We proceed by presenting a divergence version for the previous theorem. Theorem 3. Let {a n } be a sequence of positive real and m ≥ 1 a fixed positive integer. If there exists a positive sequence {q n } such that 1 qn diverges, q n a n ≥ c > 0, and q n a n a n+m -q n+m ≤ 0, for all n sufficiently large, then ∞ n=1 a n diverges. The converse holds, as well.

Proof. From the assumptions we obtain that there exists N > 0 such that q n a n a n+m -q n+m ≤ 0, for all n ≥ N . As so,

c 1 q n+m ≤ a n+m ,
for all n > N . Since 1/q n diverges, we obtain from the comparsion test that a n diverges. Conversely, suppose that a n diverges. Define for each n ≥ 1

q n = n i=1 a i a n .
Note that the definition implies

q 1 = 1, hence a n q n = n i=1 a i ≥ a 1 , for all n ≥ 1, that is, a n q n ≥ a 1 q 1 > 0 for all n ≥ 1. Clearly q n a n a n+m -q n+m ≤ 0, for all n ≥ 1.
Let us now show that 1 qn diverges. From the divergence of a n , given any positive integer k there exists a positive integer n ≥ k such that

a k + ... + a n ≥ a 1 + ... + a k-1 . (1) 
Due to [START_REF] Bourchtein | A Hierarchy of the Convergence Tests Related to Cauchy's Test[END_REF],

n j=k 1 q j = a k a 1 + ... + a k + ... + a n a 1 + ... + a n ≥ a k a 1 + ... + a n + ... + a n a 1 + ... + a n = 1 a1+...+a k-1 a k +...+an + 1 > 1 2 .

Hence,

n j=1 1 qj is not a Cauchy sequence. Therefore the series 1 qn diverges.

Extension of Kummer's test: II

Let us now turn our atention to series of the form c n a n with positive terms. The central idea in the following result is that it characterizes the relation between the sequences {c n } and {a n } in order to ensure the convergence of the series. The reader will note that the proof follows the same lines as the proof of Theorem 2 and also, that it could be obtained by some changes in the proof of Theorem 1, nevertherless, as the reader will also note, our proof provides important informations about the relation between the sequences {a n } and {c n }. 

q n a n a n+1 -q n+1 ≥ c n+1 , n ≥ N.
Proof. Let us show that c n a n converges. For this, note that the condition

q n a n a n+1 -q n+1 ≥ c n+1 , n ≥ N implies that a n q n ≥ a n+1 (q n+1 + c n+1 ), n ≥ N. (2) 
That is,

a N q N ≥ a N +1 (q N +1 + c N +1 ) ≥ a N +2 (q N +2 + c N +2 ) + a N +1 c N +1 . . . ≥ a N +k q N +k + k i=1 c N +i a N +i ≥ k i=1 c N +i a N +i > 0,
for all integer k ≥ 0. This implies the convergence of c n a n . For the converse, suppose that S := c n a n and let us define

q n = S - n i=1 c i a i a n , n ≥ N. (3) 
For this {q n }, clearly q n > 0 for all n ≥ 1 and it is easy to check that

q n a n a n+1 -q n+1 = c n+1 , n ≥ N.
Some remarks: (i) One can observe that it is, of course, possible to reduce any series to this form, as any number can be expressed as the product of two other numbers. Success in applying the above theorem will depend on the skill with which the terms are so split up.

(ii) Note that in the first part of Theorem 4, the assumption of positivity of the sequences {a n } and {c n } can be replaced by the following assumptions: {a n } is positive and {c n } is such that k i=1 c i a i > 0 for all k sufficiently large. Next, we presente a version of Kummer's test for divergent series of the form c n a n . The reader will note that it is more restrictive when it is compared to Theorem 1-(ii) however it may be suitable in some cases.

Theorem 5. Consider the series c n a n with {a n } {c n } sequences of positive real numbers.

(i) Suppose that there exist a sequence {q n } and a positive integer N for which q n a n a n+1 -q n+1 ≤ -c n+1 , n ≥ N with 1 qn being a divergent series. Then a n , 1 cn , (q n -c n )a n and q n a n diverge. If, in addition, cn qn diverges then c n a n diverges. (ii) Suppose that both series c n a n and a n diverge. Also, suppose that for every m ∈ N there exists r ≥ m, r ∈ N, such that

a m + ... + a r ≥ c m a m + ... + c r a r .
Then there exist a sequence {q n } and a positive integer N ≥ 1 such that

1 qn diverges and q n a n a n+1 -q n+1 ≤ -c n+1 , n ≥ N.
Proof. To prove (i) note that {q n } satisfies

a n+1 ≥ q n a n q n+1 -c n+1 , n ≥ N, (4) 
0 < q n+1 -c n+1 < q n+1 , n ≥ N (5) and 0 < c n+1 < q n+1 , n ≥ N.

By last inequality and comparsion test we see that 1 cn diverges. Next, using (4) successively we see that

a N +1 ≥ q N a N q N +1 -c N +1 , a N +2 ≥ q N +1 a N +1 q N +2 -c N +2 ≥ a N q N q N +1 (q N +2 -c N +2 )(q N +1 -c N +1 ) ,
and in general,

a N +k+1 ≥ a N q N q N +1 ...q N +k (q N +1 -c N +1 )...(q N +k+1 -c N +k+1 ) , k ≥ 0. ( 6 
)
From ( 5) and ( 6) we get

a N +k+1 > a N q N q N +k+1 , k ≥ 0. ( 7 
)
Thus

∞ k=0 a N +k+1 > a N q N ∞ k=0 1 q N +k+1
and therefore a n diverges. From ( 6)

(q N +k+1 -c N +k+1 )a N +k+1 ≥ a N q N q N +1 ...q N +k (q N +1 -c N +1 )...(q N +k -c N +k )
, k ≥ 0, and applying once again ( 5) we obtain that

q N +k+1 a N +k+1 > (q N +k+1 -c N +k+1 )a N +k+1 ≥ a N q N > 0, k ≥ 0.
This last set of inequalities implies that lim n→∞ q N +k+1 a N +k+1 = 0 and lim k→∞ (q N +k+1 -c N +k+1 )a N +k+1 = 0, so both series q n a n and (q n -c n )a n diverge.

Note that from [START_REF] Niculescu | A note on the behavior of integrable functions at infinity[END_REF] we obtain that

c N +k+1 a N +k+1 > a N q N c N +k+1 q N +k+1 , k ≥ 0. ( 8 
)
Therefore, if cn qn diverges, then it is clear that c n a n diverges. In order to prove (ii) define

q n = n i=1 c i a i a n , n ≥ 1.
Clearly, this is a sequence of positive real numbers that satisfies

q n a n a n+1 -q n+1 ≤ -c n+1 , n ≥ 1.
Let us show that 1 qn diverges by concluding that the sequence {s k }, defined as

s k = k i=1 1 qi , for each k ≥ 1, is not a Cauchy sequence. Since c n a n is divergent, given m ∈ N there exists k > m, k ∈ N, such that c m a m + ... + c k a k > c 1 a 1 + ... + c m-1 a m-1 . (9) 
Also, from the hypothesis, there exists r ≥ m such that

a m + ... + a r ≥ c m a m + ... + c r a r . (10) 
Next, we split the proof in two cases: k ≤ r and k > r.

If k ≤ r, from [START_REF] Tong | Kummer's, Test Gives Characterizations for Convergence or Divergence of all Positive Series[END_REF] we see that

c m a m + ... + c k a k + ... + c r a r ≥ c m a m + ... + c k a k > c 1 a 1 + ... + c m-1 a m-1 . (11) 
Thus, by ( 11) and (10)

r n=m 1 q n = a m c 1 a 1 + ... + c m a m + ... + a r c 1 a 1 + ... + c r a r ≥ a m + ... + a r c 1 a 1 + ... + c r a r ≥ c m a m + ... + c r a r c 1 a 1 + ... + c r a r = 1 c1a1+...+cm-1am-1 cmam+...+crar + 1 > 1 2
and {s k } is not a Cauchy sequence. On the other hand, if k > r we can use hypothesis again (now applied to m 1 = r + 1) and to obtain r 1 ≥ r + 1 such that a r+1 + ... + a r1 ≥ c r+1 a r+1 + ... + c r1 a r1 .

Again, we can use the same argument to conclude that there exists

r 2 ≥ r 1 + 1 such that a r1+1 + ... + a r2 ≥ c r1+1 a r1+1 + ... + c r2 a r2 .
This procedure can be applied a finite number of times in order to obtain r j ≥ k for which a r (j-1) +1 + ... + a rj ≥ c r (j-1) +1 a r (j-1) +1 + ... + c rj a rj .

Summing up (10) with all these previous inequalities we obtain that a m + ... + a rj ≥ c m a m + ... + c rj a rj with k ≤ r j . This reduces the proof to the previous case which we have already proved.

Some examples and consequences

The main goal in this section is to present some of the implications of the main results of this paper.

The next three theorems are extensions of the Raabe, Bertrand and Gauss test derived from Theorem 4 and Theorem 5. For more information about these tests we refer to [START_REF] Bourchtein | A Hierarchy of the Convergence Tests Related to Cauchy's Test[END_REF][START_REF] Knopp | Theory and application of infinite series[END_REF] and references therein.

Consider the sequences

R - n = n a n a n+1 -(n + 1) -c n+1 and R + n = n a n a n+1 -(n + 1) + c n+1 ,
for all positive integer n.

Theorem 6 (Raabe's test). Let c n a n be a series of positive terms and suppose that lim inf R , for all n sufficiently large. The proof is concluded.

- n = R 1 and lim sup R - n = R 2 . If (i) R 1 > 0,
To close this section of applications we present a result related to the Olivier's Theorem, which is stated below. Lemma 2. [4, p. 124] or [START_REF] Niculescu | A note on the behavior of integrable functions at infinity[END_REF](Olivier's Theorem) Let {a n } be summable decreasing sequence of positive real numbers. Then lim n a n = 0.

We are going to show that it possible to recover the same Olivier's asymptotic behaviour for {a n } without the decreasigness assumption on {a n }. Instead of using the monotonicity, we consider an additional assumption on the sequence {q n } (that auxiliary sequence of Theorem 4). Let us first introduce an auxiliary notation.

Theorem 10. Suppose that {a n } is a sequence of positive numbers. We have that a n converges if, and only if, there exists a sequence {q n } of positive numbers such that q n n + 1 n -q n+1 ≥ (n + 1)a n+1 , for all n sufficiently large. Moreover, if {q n } satisfies lim q n n + 1 n -q n+1 = 0, then lim na n = 0.

Proof. It is clear that a n converges if and only if

1 n na n also converges. From Theorem 4, with a n = 1/n and c n = na n , we can conclude that a n converges if, and only if, there exists a sequence {q n } such that q n n + 1 n -q n+1 ≥ (n + 1)a n+1 , for all n sufficiently large. Hence, lim na n = 0 certainly occurs when the sequence {q n } above is such that lim q n n + 1 n -q n+1 = 0.

For more information on this asymptotic behavior of summable sequences of positive numbers we refer to [START_REF] Liflyand | Extending tests for convergence of number series[END_REF][START_REF] Niculescu | A note on the behavior of integrable functions at infinity[END_REF][START_REF] Sálat | A Classical Olivier's Theorem and Statistical Convergence[END_REF] and references therein.
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 4 Consider the series c n a n with {a n } {c n } sequences of positive real numbers. The series c n a n converges if and only if that there exist a sequence {q n } of positive real numbers and a positive integer N ≥ 1 for which

  Again, we have q n = n for all n ≥ 1. So, due to the divergence of c n /n, Theorem 5 implies that c n a n diverges.for some sequence {θ n }, such that θ n ≤ θ < 1, for all n ≥ 1, and Theorem 4 also allows us to provide a different approach for the well-know Cauchy's condensation test, which we present in the next lemma. Lemma 1. [4, p. 120](Cauchy's condensation test ) Let {a n } be a decreasing sequence of positive numbers. Then a n converges if, and only if, 2 n a 2 n converges. For a decreasing sequence {a n } of positive real numbers, combining Lemma 1 with Theorem 4, we obtain a the following characterization of convergence. Let a n be a series with {a n } being a decreasing sequence. Then a n converges if, and only if, there exists a sequence {q n } of positive numbers such that q n -2q n+1 ≥ 2a 2 n+1 , for all n sufficiently large. Proof. By Lemma 1, a n coverges if, and only if, 2 n a 2 n converges. On the other hand, an application of Theorem 4 with a n = 2 n and c n = a 2 n show us that 2 n a 2 n converges if, and only if, there exists a sequence {q n } of positive real numbers such that q n -2q n+1 ≥ 2a 2 n+1

	(ii) Due to the assumptions on (ii), we have that µ -1 + θn n γ-1 < 0 and
	then (ii) R 2 < 0 and n a n a n+1	c n a n converges; c n /n diverges then -(n + 1) ≤ -c n+1 + (µ -1) + c n a n diverges; θ n n γ-1 ≤ -c n+1 ,
	for all n sufficiently large. The conclusion follows from an application of Theo-Proof. (i) If R 1 > 0, then for all n sufficiently large we have that rem 5.
					n	a n a n+1	-(n + 1) -c n+1 ≥ 0,
	hence Theorem 4, with q n = n for all n ≥ 1, implies that the series	c n a n
	converges.					
	(ii) If R 2 < 0, then for all n sufficiently large
					n	a n a n+1	-(n + 1) + c n+1 ≤ 0.
	Theorem 9.					
	Theorem 7 (Bertrand's test). Let	c n a n be a series of positive terms.
	(i) If					
					a n a n+1	> 1 +	1 n	+	θ n + c n+1 n ln(n)	,
	for some sequence {θ n }, such that θ n ≥ θ > 1, for all n ≥ 1, then	c n a n
	converges.					
	(ii) If					
					a n a n+1	≤ 1 +	1 n	+	θ n -c n+1 n ln(n)	,
							cn
							n ln(n)
	diverges then	c n a n diverges.
	Proof. (i) From the assumption we get
			n ln(n)	a n a n+1	≥ n ln(n) + ln(n) + c n+1 + θ n ,
	for all n sufficiently large. That is,
	n ln(n)	a n a n+1	-(n + 1) ln(n + 1) ≥ (n + 1) ln	n n + 1	+ θ n + c n+1 ,
	for all n sufficiently large. It follows from the assumption on {θ n } that
					(n + 1) ln	n n + 1	+ θ n > 0,

for all n > 1 sufficiently large hence we conclude that n ln(n)

a n a n+1 -(n + 1) ln(n + 1) > c n+1 , for all n sufficiently large. Therefore, the convergence of c n a n follows from an application of Theorem 4.

(ii) It suffices to note that

for all n sufficiently large. Since (n+1) ln n n+1 +θ n < 0 for all n > 1 sufficiently large we obtain

for all n sufficiently large. The conclusion follows from Theorem 5.

Theorem 8 (Gauss's test). Let c n a n be a series of positive terms, γ ≥ 1 and {θ n } a bounded sequence of real numbers.

(i) Suppose that there exists a µ ∈ R such that θ n ≥ (1 -µ)n γ-1 holds for all n sufficiently large. If

holds for all n sufficiently large, then c n a n converges. (ii) Suppose that there exists a µ ∈ R such that θ n ≤ (1 -µ)n γ-1 holds for all n sufficiently large. If c n /n diverges and

for all n sufficiently large, then c n a n diverges.

Proof. (i) From the assumption we obtain that

for all n sufficiently large. Taking N > 0 such that µ -1 + θn n γ-1 ≥ 0, for all n > N , we concude that n a n a n+1 -(n + 1) ≥ c n+1 , for all n > N . Therefore, by Theorem 4, the series c n a n converges.