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Abstract

This paper addresses the exponential stability of linear time-delay systems of
neutral type. In general, it is quite a challenge to establish conditions on the param-
eters of the system in order to guarantee such a stability. Recent works emphasized
the link between maximal multiplicity and dominant roots. Indeed, conditions for
a given multiple root to be necessarily dominant are investigated, this property is
known as Multiplicity-Induced-Dominancy (MID). The aim of this paper is to ex-
plore the effect of multiple roots with admissible multiplicities exhibiting, under
appropriate conditions, the validity of the MID property for second-order neutral
time-delay differential equations with a single delay. The ensuing control method-
ology is summarized in a five-steps algorithm that can be exploited in the design of
higher-order systems. The main ingredient of the proposed method is the dominancy
proof for multiple spectral values based on frequency bounds established via integral
equations. As an illustration, the stabilization of the classical oscillator benefits from
the obtained results.

Keywords. Delay Systems, Neutral Functional Differential Equations, Classical Oscillator, Multiplicity-
Induced-Dominancy.

1 Introduction
Delayed systems provide useful models of phenomena arising in various fields such as chemistry,
economics, engineering, physics or biology. For more details on time-delay systems and their
applications, we refer to [1, 13, 14, 17–19, 26, 27]. Furthermore, it is commonly accepted that
second-order linear systems capture the dynamic behavior of many natural phenomena and have
found numerous applications in a variety of fields, such as vibration and structural analysis. Sta-
bilization of solutions to such a reduced order model represents a standard test bench to approve
of new paradigms and methodologies in control design; see for instance [9].
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The present paper addresses the effect of the delay action on the behavior of solutions cor-
responding to such second-order dynamical systems. Namely, we investigate the following func-
tional differential equation which extends the study in [9]:

ẍ(t)+a1 ẋ(t)+a0 x(t)+α2 ẍ(t − τ)+α1 ẋ(t − τ)+α0 x(t − τ) = 0 (1.1)

where the unknown function x is real-valued, a0,a1,α0,α1,α2 ∈ R,α2 ̸= 0, and the delay τ > 0.
Since the derivative of highest order appears in both, the delayed term ẍ(t−τ) and the non-delayed
term ẍ(t), equation (1.1) is a delay differential equation of neutral type. Time-delay systems of
neutral type, which may have an infinite number of unstable poles, are more difficult to tackle than
delay systems of retarded type (i.e. the highest order of derivation is only on the non-delayed func-
tion ẍ(t)) which exhibit only a finite number of poles in any right half-plane, see for instance [9].

Spectral methods, which investigate the spectrum distribution of the characteristic equations,
are a powerful tool for the understanding of the asymptotic behavior of LTI time-delay system
solutions. In the Laplace domain, linear systems with delays are described by transfer functions
involving quasipolynomials : these quasipolynomials allow the spectral analysis of time-delay
systems, they have been widely studied in [8, 12, 34].

The characteristic function of equation (1.1) is the quasipolynomial function ∆ :C→C defined
for s ∈ C by

∆(s) = s2 +a1s+a0 +(α2s2 +α1s+α0)e−τ s. (1.2)

The exact definition and qualitative properties of a quasipolynomial are recalled in the next sec-
tion, including the fact that the multiplicity of a root of a quasipolynomial is bounded by the
generic Polya and Szegö bound (denoted PSB), which is equal to the degree of the correspond-
ing quasipolynomial, i.e., the sum of the degrees of the involved polynomials plus the number of
delays; see for instance [32, Problem 206.2, page 144 and page 347]. In particular, according to
Definition 1, the degree of ∆ in (1.2) is equal to 5.

For the exponential behavior of solutions of (1.1), we are interested in the spectral abscissa of
the corresponding characteristic function ∆ which is the real number ρ = sup{ℜ(s)|s ∈ C,∆(s) =
0}; see [ [19], Chapter 1, Theorem 6.2] for more details. The number ρ is related to the no-
tion of decay rate of time-delay system solutions. The dominant root of ∆, that is, a root of ∆

with the largest real part (see Definition 5), may apply to functions of the form (1.2); see for
instance [27]. From a control theory viewpoint, a recent safe control methodology, based on
the assignment of the closed-loop dominant solution’s decay rate, shows that under appropriate
conditions a multiple spectral value is the rightmost. Notice that multiple spectral values for
time-delay systems can be characterized using functional Birkhoff/Vandermonde matrices; see
for instance [4, 5, 8]. It turns out that, for characteristic quasipolynomials of some time-delay
systems, real roots of maximal multiplicity are necessarily dominant, this property is known
as Generic Multiplicity-Induced-Dominancy (GMID); see [6]. The link between multiple (not
necessarily of maximal multiplicity) spectral values and their dominance, baptised Multiplicity-
Induced-Dominancy (MID) in [9], has been first hinted at in [31] for some low-order cases without
any attempt to address the general question; see also [20] for the specific scalar first-order equa-
tions. Recent developments pursue the investigation of the MID property mainly in the single-
delay case, see for instance [3,9–11,23–25,33]. In [22], the stabilization via delayed proportional
derivative-acceleration feedback and predictor feedback of the inverted pendulum is considered,
where the critical length of the pendulum that limits stabilization is obtained owing to the MID
property; see also [29]. It is also shown in [28] that the MID-based approach provides the critical
delay, and the associated control gains are easily deduced from the characteristic equation and its
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derivatives.

Even though the GMID is completely characterized in [6], in general, the limits of the MID
property remain an open question and further developments are required to improve the under-
standing of its mechanisms and benefits for a control purpose.

Three main leads remain to be addressed for the MID property : the multi-delay case, spectral
values with non maximal admissible multiplicities and the neutral case.

To the best of our knowledge, the multi-delay case was first investigated in [16], where the
MID property is proved to hold for the first-order retarded scalar equation with two delays. Next, in
the context of spectral values with strictly intermediate admissible multiplicities, one may cite [9]
where a discriminant-based parametric MID was investigated in the second-order retarded case
with spectral values of codimensions three and four, and [2] where sufficient and necessary con-
ditions are provided for the MID to hold in nth-order retarded systems with a finite dimensional
part corresponding to realrooted plants. Further, the neutral case was addressed in some particular
cases ; see [3,23,25]. As a matter of fact, the MID has been fully characterized, in the case where
maximal multiplicity is reached (GMID), for the first-order neutral equation in [25], and for the
second-order in [3] and for nth-order systems in [6]. However, for spectral values with strictly
intermediate admissible multiplicities, the only contributions are provided in [23]. Indeed, the
MID property is extended to codimension four in second-order time-delay neutral systems, and a
systematic method for a PID stabilizing tuning for low-order delayed plants is proposed.

In the present paper, we aim at improving the understanding and the characterization of the
MID property for second-order neutral delay equations in the presence of real spectral values
with any admissible multiplicity, which is a question of interest from an application viewpoint;
see [28, 29].

The sequel of the paper is organized as follows. Section 2 presents some prerequisite per-
taining to quasipolynomials, and recent results for time-delay equations. Section 3 states a design
methodology exploiting the MID property, the classical steps leading to the proof are recalled
through a comprehensive example, the first-order neutral equation with a single delay. The main
result is presented in Section 4, where a classification of admissible multiplicities for second-order
neutral time-delay differential equation with a single delay is provided. Section 5 is dedicated to
the proof of the main result. Finally, Section 6 is dedicated to the illustration of the obtained results
on the stabilization of the classical oscillator.

2 Prerequisites
In the study of linear systems with delay, we deal with transfer functions involving quasipolyno-
mials, which are defined hereafter.

Definition 1. A quasipolynomial is a particular entire function ∆ : C→ C which may be written
as follows

∆(s) =
k

∑
i=0

Pi(s)e−τi s, (2.1)

where k is a positive integer, τi (i = 0..k) are pairwise distinct non-negative real numbers and Pi

(i = 0..k) are polynomials of degree di ≥ 0. The degree D of the quasipolynomial ∆ is equal the
sum of the degrees of the involved polynomials Pi plus the number of delays, i.e.,

D = k+
k

∑
i=0

di.
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An important result in the literature, known as Polya-Szegö bound, shows that there exists a
link between the degree of a quasipolynomial and the number of its roots in horizontal strips of
the complex plane.

Proposition 2. [32, Problem 206.2, page 144 and page 347]. Let ∆ be a quasipolynomial of
degree D as in (2.1), and α , β ∈R be such that α ≤ β . If M is the number of roots of ∆ contained
in the set {s ∈ C |α ≤ ℑ(s)≤ β} counting multiplicities, then

(τk − τ0)(β −α)

2π
−D ≤ M ≤ (τk − τ0)(β −α)

2π
+D.

Furthermore, for a given root s0 ∈ C of a quasipolynomial ∆, one obtains the following link
between the multiplicity of s0 and the degree of ∆.

Corollary 3. Let ∆ be a quasipolynomial of degree D. Then, any root s0 ∈ C of ∆ exhibits a
multiplicity at most equal to D.

Remark 4. Corollary 3 is obtained immediately by letting α = β =ℑ(s0) in Proposition 2. Notice
also that Polya-Szegö bound has been recovered in [4] using a constructive approach based on
functional Birkhoff matrices. Furthermore, if some coefficients of the polynomials Pi defined in
(2.1) vanish, then a sharper bound for the multiplicity is provided in [4].

In what follows, we give a precise definition of the dominant root.

Definition 5. A spectral eigenvalue s0 is said to be a dominant (respectively, strictly dominant)
root of ∆, if one has ℜ(s̃) ≤ ℜ(s0) (respectively, ℜ(s̃) < ℜ(s0)) for any s̃ ∈ C\{s0}, a distinct
eigenvalue of ∆.

In this paper, ℜ(s) and ℑ(s) designate respectively the real and imaginary part of the com-
plex root s. The next proposition presents important recent result providing insights on spectrum
distribution for neutral delay systems.

Proposition 6. [30]. The generic form of the transfer function of a neutral delay system is

G(s) =
r(s)

P0(s)+Pτ(s)e−sτ

where P0, Pτ and r are real polynomials such that degP0 = degPτ and τ > 0. Let α = lim
|s|→∞

P0(s)
Pτ(s)

• If 0 < |α|< 1, then G has an infinite number of unstable poles in the right half-plane;

• If |α|> 1, then G has a finite number of unstable poles.

Notice that sufficient conditions for the dominancy of simple spectral values has been proposed
in [15] in the case of first-order scalar neutral equation.

Lemma 7. [15]. Consider a characteristic equation of the form

Q(s) = s

(
1+

m

∑
l=1

cl e−σl s

)
−a−

k

∑
j=1

b j e−h j s (2.2)

where a,b j( j = 1, ...,k),cl(l = 1, ...,m) are real numbers and h j( j = 1, ...,k), σl(l = 1, ...,k) are
positive real numbers.
Given equation (2.2), we introduce a function V : R→ R, defined by,

V (s) =
m

∑
l=1

|cl|(1+ |s|σl)e−σl s +
k

∑
j=1

|b j|e−h j s, s ∈ R.

Suppose that there exists a real zero s0 of equation (2.2). If V (s0) < 1, then s0 is a real simple
dominant zero of (2.2).
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Note that the extension of the above result to second-order delay equations remains a chal-
lenging endeavor.

3 MID methodology on a toy model
The MID property consists of the conditions under which a given multiple complex zero of a
quasipolynomial is dominant. For instance, in the generic quasipolynomial case, the real root of
maximal multiplicity is necessarily the dominant (GMID). However, multiple roots with interme-
diate admissible multiplicities may be dominant or not. Thanks to this property, an ensued control
strategy is proposed in [2, 9], which consists in assigning a root with an admissible multiplicity
once appropriate conditions guaranteeing its dominancy are established. Furthermore, the MID
property may be used to tune standard controllers. For instance, in [23] it is applied to the sys-
tematic tuning of the stabilizing PID controller of a first order plant. Here, we aim at assigning
dominant multiple real roots with admissible codimensions.

The proof of the MID property consists of five steps. First, we establish conditions on the
parameters of the system guaranteeing the existence of a multiple root. Second, an affine change
of variable of the characteristic equation is performed in order to reduce the said quasipolynomial
to a normalized form; the desired multiple root becomes 0 and the delay 1. Next, under the latter
normalization, the characteristic equation may be easily factorized in terms of an integral expres-
sion. Hence, we derive a bound on the imaginary part of roots of the normalized quasipolynomial
in the complex right half-plane. Lastly, a certification of the dominance of the multiple root is
demonstrated.

In the following, Algorithm 1 is a pseudo-code listing the instructions to be followed to target
an suitable frequency bound.

To illustrate the proof of the methodology of the MID property described above, we consider
a model of phenomena in the bio-sciences describing the dynamics of a vector-borne disease. It is
based on a simple scalar delay differential equation with a positive single delay τ . In its linearized
version, the infected host population x(t) is governed by

ẋ(t)+a0 x(t)+a1 x(t − τ) = u(t) (3.1)

where u is the delayed output-feedback: u(t) = (a1 −α0)x(t − τ)−α1ẋ(t − τ), α0, α1 are real
coefficients, and a1 > 0 is called the contact rate; it represents the contact number between infected
and uninfected populations. Assume that the infection of the host recovery proceeds exponentially
at a rate of −a0 > 0. The characteristic equation of (3.1) is the quasipolynomial function of degree
3, defined by

∆(s) = s+a0 +(α1s+α0)e−τ s. (3.2)

The first-order neutral equation is treated in the context of delay differential-algebraic systems
in [25]. In the following, we shall illustrate the dominancy proof following the methodology
previously described.

Step 1. (Forcing multiplicity) The real s0 is a root of multiplicity 3 of ∆ if, and only if, the coeffi-
cients a0,α0,α1, the root s0 and the delay τ satisfy the relations below

a0 =−s0 −
2
τ
, α0 =

(
−s0 +

2
τ

)
es0τ , α1 = eτ s0 . (3.3)
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Algorithm 1: Estimation of the MID frequency bound in second-order neutral
time-delay differential equations

Input: ∆̃(z) = P0(z)+P1(z)e−z; // Normalized quasipolynomial

// Initialization

1 ord = 0; // ord: order of truncation of the Taylor expansion of

e2x = 1︸︷︷︸
ord=0

+2x︸ ︷︷ ︸
ord=1

+2x2 + 4x3

3 + ...;

2 dominance = f alse;
3 ∃z0 = x+ ι̇ω ∈ R∗

++ ι̇R∗
+ s.t. ∆̃(z0) = 0;

4 |P0(x+ ι̇ω)|2 e2x = |P1(x+ ι̇ω)|2;
5 while ∼ dominance do
6 ord =ord+1;
7 F(ω) = |P1(x+ ι̇ω)|2 −|P0(x+ ι̇ω)|2 Tord(e2x)> 0; // Tord(e

2x): Taylor

expansion of e2x of order= ord
8 ω2 = Ω;
9 G(Ω) = a(x)Ω2 +b(x)Ω+ c(x); // a(x) ̸= 0, G(Ω) = F(ω)

10 Ω±(x) = −b(x)±
√

b2(x)−4a(x)c(x)
2a(x) ; // Ω±(x) depends on free parameters

denoted by param hereafter

11 if maxx(maxparam(Ω
±(x)))< π2 then

12 dominance = true;
Output: Frequency bound ;

Step 2. (Normalization) Performing the translation and scaling of the spectrum by the following
change of variables ∆̃(z) = τ ∆( z

τ
+ s0) for z ∈C, we get the following normalized

characteristic equation ∆̃(z) = z+b0 +(β1z+β0)e−z

with relations (3.3) normalized as follows

b0 = τ (a0 + s0) , β0 = τ (α1 s0 +α0) e−τ s0 , β1 = α1 e−τ s0 . (3.4)

Step 3. (Integral representation) The real root s0 is a root of multiplicity 3 of ∆ if, and only if, 0
is a root of multiplicity 3 of ∆̃. As a matter of fact, since ∆̃ is a quasipolynomial
of degree 3, zero is a root of multiplicity 3 of ∆̃ if, and only if, ∆̃(0) = ∆̃′(0) =
∆̃′′(0) = 0. The latter identities yield a linear system whose unique solution is
(b0,β0,β1) = (−2,2,1). From relations (3.4), one concludes that s0 is a root of
multiplicity 3 of ∆ if, and only if, relations (3.3) hold. Moreover, under the latter
conditions, the quasipolynomial (3.2) reduces to ∆̃(z) = P0(z)+P1(z)e−z where
P0(z)= z−2 and P1(z)= z+2. Hence, the quasipolynomial ∆̃ admits the following
Fredholm integral representation

∆̃(z) =
w 1

0
q(t)K (z, t)dt

where
q(t) = t (1− t) , K (z, t) = z3e−t z

which is easily verified via an integration by parts.
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Step 4. (Frequency bound) Assume that z0 = x0+ ι̇ω0 ∈R++ ι̇R+ is a root of ∆̃, so that ∆̃(z0) = 0
if, and only if, |P0(x0 + iω0)|2 e2x0 = |P1(x0 + iω0)|2. Considering a truncation
of order 1 of the exponential term e2x, the latter is lower bounded by 1 + 2x.
Next, define F(x,ω) = |P1(x+ iω)|2 − (1+2x) |P0(x+ iω)|2 where F > 0 for any
x > 0. The zeros of F are characterized by the first order polynomial G(Ω =
ω2) = −2xΩ− 2x3 + 8x2. The polynomial function G admits a single real root
Ω0(x) = −x(x−4), which reaches a maximum value at x∗ = 2. As a result, Ω0
is bounded by Ω∗ = 4 < π2. Thus, one obtains the desired frequency bound,
0 < ω ≤ 2 < π .

Step 5. (Dominancy) The purpose of the frequency bound is to prove the dominancy by a contra-
diction argument. For this purpose, assume that there exists z0 ∈R++ iR+ root of
∆̃. Then, the integral representation yields

r 1
0 t (1− t)e−t z0 dt = 0, the imaginary

part of which is w 1

0
t (1− t)e−t x sin(ω t)dt = 0.

Now, the frequency bound 0 < ω ≤ π of the previous step entails that the function
t 7→ t (1− t)e−xt sin(ω t) is strictly positive in (0,1), thereby contradicting the last
equality.

4 Statement of the main result
The main result in this paper presents a classification of admissible multiplicities for a given root
of the quasipolynomial (1.2).

Theorem 8. Consider the quasipolynomial function ∆ defined in (1.2).

(a) GMID : spectral value of maximal admissible multiplicity

(a) The real s0 is a root of multiplicity 5 of ∆ if, and only if, the coefficients a0,a1,α0,α1,α2, the
root s0 and the delay τ satisfy the following relations{

a1 =−2s0 − 6
τ
, a0 = s2

0 +
6
τ
s0 +

12
τ2 ,

α2 =−eτs0 , α1 =
(
2s0 − 6

τ

)
eτs0 , α0 =−

(
s2

0 − 6
τ
s0 +

12
τ2

)
eτs0 .

(4.1)

(b) If relations (4.1) are satisfied then s0 is necessarily a dominant root of ∆.

(b) MID : codimension 4

(a) Consider d = a1
2 − 4a0 the discriminant of the finite dimensional part of the dynamical

system defined by ∆. The quasipolynomial function (1.2) admits a real root at

s± =
1
τ

(
−a1τ

2
−3± 1

2

√
τ2 d +12

)
(4.2)

of multiplicity 4 if, and only if, the coefficients α0, α1 and α2 satisfy the following relations{
α0 =

((
a1

2τ

2 − τ a0 +6a1 +
42
τ

)
s±+ τ a0 a1

2 + 3a1
2

2 +8a0 +
30a1

τ
+ 54

τ2

)
eτ s± ,

α1 =
(
(a1τ +12)s±+2τ a0 +8a1 +

18
τ

)
eτ s± , α2 =

(
2+ τ

(
s±+ a1

2

))
eτ s± .

(4.3)

(b) If the relations above are satisfied, and a1, a0 satisfy the lower bounds a0 ≥ − 6
τ2 and a1 ≥

− 6
τ
, then s+ is a dominant root of ∆.
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(c) MID : codimension 3

(a) The real number s0 is a root of multiplicity 3 of ∆ if, and only if, the following relations hold
α0 =−1

2

(
τ2a1s0

3 + τ2s0
4 + τ2a0 s0

2 +2τ s0
3 −2τ a0 s0 +2a0

)
eτ s0 ,

α1 =
(
τ2a1s0

2 + τ2s0
3 + τ2a0s0 + τ a1 s0 +3τ s0

2 − τ a0 −a1
)

eτ s0 ,

α2 =−1
2

(
τ2a1s0 + τ2s0

2 +a0τ2 +2a1τ +4τ s0 +2
)

eτ s0 .

(4.4)

(b) If the relations above hold and a1, a0 satisfy the lower bounds a0 ≥ ε

4τ2 and a1 ≥ 0, where

ε = (−10
√

2−16)
√

16
√

2−22+16
√

2+20, then the real root s0 chosen as follows
s0 ∈

(
−a1

2 −
√

d+ ε

τ2

2 ,−a1
2 +

√
d+ ε

τ2

2

)
if d < 0,

s0 ∈

(
−a1

2 −
√

d+ ε

τ2

2 ,−a1
2 −

√
d

2

)
∪

(
−a1

2 +
√

d
2 ,−a1

2 +

√
d+ ε

τ2

2

)
otherwise,

is a dominant root of ∆.

From a control theory viewpoint, if instantaneous access to the state variables is not available,
one option is to consider delayed controllers. In our case, the aim is to stabilize solutions of
the control system ẍ(t)+ a1 ẋ(t)+ a0 x(t) = u(t) by using a delayed feedback controller u(t) =
−α2 ẍ(t−τ)−α1 ẋ(t−τ)−α0 x(t−τ). Notice that, such an idea has already been proposed in [9]
with controller u(t) = −α1 ẋ(t − τ)−α0 x(t − τ), by exploiting the MID property for retarded
differential equation, the above result extends such an idea to neutral equations. Furthermore,
Theorem 8 offers a certified tuning of the controller’s parameters allowing to assign the closed-
loop dominant spectral value based on the MID strategy with appropriate admissible multiplicity.
This can be done by taking into account the discriminant of the open-loop characteristic function
as discussed in [9], see also [2]. Such a control strategy is part of a more general framework called
partial pole placement, see for instance [7].

5 Proof of the main result
The proof of item (a) (GMID) in Theorem 8 is detailed in [3]. The normalization of the character-
istic function ∆ gives ∆̃(z) = z2 −6z+12− (z2 +6z+12)e−z. Next, the integral factorization of ∆̃

is computed to be ∆̃(z) = z5

2

r 1
0 t2(t −1)2e−ztdt. The dominance proof is established by providing

an adequate frequency bound (ω0 < π), where the considered truncation is of order 3, to show that
a non-zero root of ∆̃ with non-negative real part cannot exist.

Item (b) is well presented in [23]. In a similar way, the normalization of the characteristic
function ∆ provides

∆̃(z) = z2 +(ρ −6)z−3ρ +12+
[
(ρ/2−1)z2 +(2ρ −6)z+3ρ −12

]
e−z, (5.1)

where ρ =
√

12+(a12 −4a0)τ2. The integral representation of the characteristic function is
∆̃(z) = z4

2

r 1
0 t (1− t)(t(ρ −4)+2)e−tz dt. The dominance of s+ as a root of ∆ is equivalent to

the dominance of z = 0 as a root of ∆̃. Consider z0 = x0 + iω0 ∈ R++ iR+ as a root of ∆̃(z) =
P0(z)+P1(z)e−z as defined in (5.1), with P0(z) = z2+(ρ −6)z−3ρ +12 and P1(z) =

(
ρ

2 −1
)

z2+
(2ρ −6)z + 3ρ − 12, so that |P0(x0 + iω0)|2e2x0 = |P1(x0 + iω0)|2. Now, define the function
Fρ(x,ω) = |P1(x+ iω)|2 − (1+2x)|P0(x+ iω)|2, where Fρ > 0 since e2x > 1+2x for any x > 0;
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the order of the considered truncation order in this case is equal to 1. The zeros of Fρ can be
characterized by the quadratic polynomial

Gρ(x,Ω) = aρ(x)Ω
2 +bρ(x)Ω+ cρ(x) (5.2)

where Ω = ω2, aρ(x) =
(
ρ2 −4ρ −8x

)
/4, bρ(x) = x2

(
ρ2 −12ρ −8x+48

)
/2, and cρ(x) =

−2x5 + x4(ρ −8)(ρ −12)/4+ 24 (ρ −4)x3 +18 (ρ −4)2 x2. The discriminant of Gρ is positive
under the condition ρ ∈ (2

√
3,4) for x > 0. The polynomial function Gρ admits two real roots de-

noted by Ω±
ρ , where Ω+

ρ is the greater solution (positive signal). Using the fact that ρ ∈ (2
√

3,4),
the solution Ω+

ρ is upper-bounded by

Ω
+(x) =−x2 −3

√
3x+

15
2

x+
√
(−228x+468)

√
3+4x2 +369x−810

which depends only on x and reaches its maximum at x∗ ≈ 2.139. Thus, ω2 = Ω+
ρ (x)< Ω+(x∗)≈

4.961 < π2, i.e., ω < π .

The completion of the proof of Theorem 8 (item (c)) is presented in the sequel; it follows the
methodology already described in detail in section 3 and applied to the toy model (3.1); see also
Algorithm 1.

5.1 Forcing multiplicity and normalization of the characteristic func-
tion

This section covers Step 1 and 2 of the methodology. The following lemma gives a normalization
of the quasipolynomial function ∆ admitting a triple real root, which corresponds to conditions
(4.4).

Lemma 9. Let s0 ∈ R and consider the quasipolynomial ∆̃ : C→ C obtained from ∆ in (1.2) by
the following change of variables ∆̃(z) = τ2∆

( z
τ
+ s0

)
, z ∈ C, then

∆̃(z) =
(
(−δ/2−1−υ)z2 +(−δ −υ)z−δ

)
e−z + z2 +υ z+δ ,

δ = τ2
(
s0

2 +a1s0 +a0
)
,

υ = τ (2s0 +a1) .

(5.3)

Proof. It follows immediately from the normalization that s0 is a root of multiplicity 3 of ∆ if, and
only if, 0 is a root of multiplicity 3 of ∆̃. As a matter of fact, zero is a root of multiplicity 3 of ∆̃

if, and only if, ∆̃(0) = ∆̃′(0) = ∆̃(2)(0) = 0. Hence, we obtain the linear system b0 +β0 = −β0 +
β1 +b1 = 2+β0 −2β1 +2β2 = 0 whose solution is (β0,β1,β2) = (−b0,−b0 −b1,−1− b0

2 −b1),
where{

b0 =
(
s0

2 +a1 s0 +a0
)

τ2, b1 = 2τ
(
s0 +

1
2 a1
)

β0 = τ2
(
α2 s0

2 +α1 s0 +α0
)

e−s0 τ , β1 = 2τ
(
α2 s0 +

1
2 α1

)
e−s0 τ , β2 = α2 e−s0 τ ,

(5.4)

which completes the proof. ■

5.2 Factorization of the normalized characteristic function
This section covers Step 3 of the methodology. The quasipolynomial ∆̃ defined in (5.3) can be
factorized as

∆̃(z) = z3
w 1

0
qδ ,υ(t)e−tz dt where qδ ,υ(t) =

δ

2
t2 +υ t +1. (5.5)
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In our approach, the sign constancy of the polynomial qδ ,υ defined previously for t ∈ (0,1) is
necessary. Therefore, the following lemma gives regions in the parameter space guaranteeing the
sign constancy of qδ ,υ for t ∈ (0,1); see Figure 5.1.

Lemma 10. Let qδ ,υ be the quadratic polynomial with respect to t defined by (5.5). Then, qδ ,υ

has a constant sign for t ∈ (0,1) if, and only if, (δ ,υ) ∈ Rq = R1
q ∪R2

q ∪R3
q where

R1
q =

{
(δ ,υ) ∈ R2 : δ > 0,−δ

2
−1 ≤ υ ≤−δ

}
∪
{
(δ ,υ) ∈ R2 : δ > 0,−

√
2δ < υ

}
, (5.6)

R2
q =

{
(δ ,υ) ∈ R2 : δ < 0,υ ≥−1− δ

2

}
and R3

q =
{
(δ ,υ) ∈ R2 : δ = 0,υ ≥−1

}
. (5.7)

Proof. The polynomial qδ ,υ admits two roots given by t± =
(
−υ ±

√
υ2 −2δ

)
/δ . Since, for

υ2−2δ < 0, the polynomial qδ ,υ does not admit real roots, then qδ ,υ has a constant sign in (0,1).
If υ2 −2δ ≥ 0, then qδ ,υ admits two real roots t±; sub-cases are to be considered with respect to
the sign of δ .

(a) If δ > 0, then t− ≤ t+ and the assumption υ2 − 2δ ≥ 0 is equivalent to υ ≤ −
√

2δ or
υ ≥

√
2δ . Since δ > 0, one has υ2 −2δ < υ2, so that(

−|υ |+
√

υ2 −2δ
)
/δ < 0.

The latter inequality is split in two cases.

(a) If υ ≥
√

2δ , then t+ < 0. As a result, qδ ,υ has no roots in (0,1) which guarantees its sign
constancy.

(b) If υ ≤ −
√

2δ , then t− > 0. In this case, we need to look for conditions guaranteeing that
t− ≥ 1. Since δ > 0, we have −υ−

√
υ2 −2δ ≥ δ , so thatυ2−2δ ≤ (δ +υ)2. We conclude

that −1− δ

2 ≤ υ . Consequently, t− ≥ 1 if, and only if, − δ

2 −1 ≤ υ ≤−δ for all δ > 0.

As a conclusion, if δ > 0, then the quadratic polynomial qδ ,υ has constant sign for t ∈ (0,1) if,
and only if, (δ ,υ) ∈ R1

q.

(b) If δ < 0, then the assumption υ2 − 2δ ≥ 0 is obviously satisfied and we can notice that
t− > 0, t+ < 0 and t− > t+. In this case, we need to look for conditions under which t− ≥ 1 which
is equivalent to

√
υ2 −2δ ≥−δ −υ .

Now, consider two cases.

(a) If −δ −υ ≥ 0, then
√

υ2 −2δ ≥−δ −υ is equivalent to − δ

2 −1 ≤ υ ≤−δ , for all δ < 0.

(b) If −δ −υ < 0, then
√

υ2 −2δ ≥−δ −υ is immediately satisfied, so that t− ≥ 1 if υ >−δ ,
for all δ < 0.

As a conclusion, if δ < 0, then the quadratic polynomial qδ ,υ has constant sign for t ∈ (0,1) if,
and only if, (δ ,υ) ∈ R2

q.

(c) If δ = 0, then the quadratic polynomial reduces to qδ ,υ(t) = υ t + 1 which reduces to 1 for
υ = 0.

Next, if we assume that υ ̸= 0, then qδ ,υ admits one real root given by t0 = − 1
υ

. As a matter of
fact, one has t0 < 0 when υ ≤ 0 and t0 ≥ 1 when −1 ≤ υ < 0. Hence, qδ ,υ has constant sign for
t ∈ (0,1) if, and only if, (δ ,υ) ∈ R3

q.

The announced result is proved. ■
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5.3 Parametric characterization of candidate regions for MID
Now, we follow Algorithm 1 in order to tackle Step 4 of the methodology. Let z0 = x0+ iω0 ∈R++
iR+ be a root of ∆̃(z) = P0(z)+P1(z)e−z as defined in (5.3), where P0(z) = z2 +υ z+δ , P1(z) =
(−δ/2−1−υ)z2 + (−δ −υ)z− δ and z0 satisfy the following equality |P0(x0 + iω0)|2e2x0 =
|P1(x0 + iω0)|2. Since e2x > Tord(e2x) for any x ∈ R+ for truncation orders ord ∈ {0,1}, function
Fδ ,υ(x,ω) = |P1(x+ iω)|2−|P0(x+ iω)|2 Tord(e2x) satisfies Fδ ,υ(x0,ω0)> 0. Moreover, the zeros
of Fδ ,υ can be characterized by the following quadratic polynomial of degree 2 in Ω = ω2

Gδ ,υ(x,Ω) = aδ ,υ(x)Ω
2 +bδ ,υ(x)Ω+ cδ ,υ(x), (5.8)

where coefficients aδ ,υ ,bδ ,υ ,cδ ,υ depend on the lower bound Tord provided by the truncation order
ord.

5.3.1 Order zero truncation

In this case, T0 = 1, hence the Gδ ,υ coefficients are given by{
aδ ,υ = (2υ+δ+4)(2υ+δ )

4 , bδ ,υ(x) = 2aδ ,υ x2 +b1,δ ,υ x,
cδ ,υ(x) = aδ ,υ x4 +b1,δ ,υ x3 + c2,δ ,υ x2 + c1,δ ,υ x,

(5.9)

with, b1,δ ,υ = δ 2 +3υ δ +2υ2 +2δ , c1,δ ,υ = 2δ 2, and c2,δ ,υ = 2 (2υ +δ )δ .

Recall that in our approach, the condition of constancy of the sign of qδ ,υ is necessary. In
addition, we need to guarantee the positivity of Gδ ,υ , i.e., one has to investigate conditions on the
signs of aδ ,υ as well as the discriminant of Gδ ,υ which is defined by the following second degree
polynomial in x

Dδ ,υ(x) =
(
−4aδ ,υ c2,δ ,υ +b2

1,δ ,υ
)

x2 −
(
4aδ ,υ c1,δ ,υ

)
x. (5.10)

Let define
ϒδ ,υ =−4aδ ,υ c2,δ ,υ +b2

1,δ ,υ . (5.11)

The following lemma provides an analysis of the sign of ϒδ ,υ .

Lemma 11. Consider ϒδ ,υ given by (5.11), and let

υ1 =δ+− 1
4

√
(α++β+δ )δ , υ2 = δ−− 1

4

√
(α−−β−δ )δ , (5.12)

υ3 =δ−+
1
4

√
(α−−β−δ )δ , (5.13)

υ4 =δ++
1
4

√
(α++β+δ )δ , δ1 =−α+

β+
, δ2 =

α−
β−

. (5.14)

where

α± = 16(3±2
√

2), β± = 12
√

2±17, δ± =
δ

4
± δ√

2
. (5.15)

Then,

• ϒδ ,υ > 0 ⇐⇒ (δ ,υ) ∈ Rϒ+ , with

Rϒ+ = R++
1 ∪R++

2 ∪R++
3 ∪R−+

1 ∪R−+
2 ∪R−+

3 ∪R−+
4 ∪R−+

5 ∪R−+
6 ,
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where

R++
1 =

{
(δ ,υ) ∈ R2 : δ > 0,υ < υ1

}
,

R++
2 =

{
(δ ,υ) ∈ R2 : δ > 0,υ2 < υ < υ3

}
,

R++
3 =

{
(δ ,υ) ∈ R2 : δ > 0,υ > υ4

}
,

R−+
1 =

{
(δ ,υ) ∈ R2 : δ1 < δ < 0

}
,

R−+
2 =

{
(δ ,υ) ∈ R2 : δ2 < δ < δ1,υ > υ4

}
,

R−+
3 =

{
(δ ,υ) ∈ R2 : δ2 < δ < δ1,υ < υ1

}
,

R−+
4 =

{
(δ ,υ) ∈ R2 : δ < δ2,υ > υ4

}
,

R−+
5 =

{
(δ ,υ) ∈ R2 : δ < δ2,υ < υ1

}
,

R−+
6 =

{
(δ ,υ) ∈ R2 : δ < δ2,υ2 < υ < υ3

}
.

• ϒδ ,υ < 0 ⇐⇒ (δ ,υ) ∈ Rϒ− , with

Rϒ− = R+−
1 ∪R+−

2 ∪R−−
1 ∪R−−

2 ∪R−−
3

where

R+−
1 =

{
(δ ,υ) ∈ R2 : δ > 0,υ1 < υ < υ2

}
,

R+−
2 =

{
(δ ,υ) ∈ R2 : δ > 0,υ3 < υ < υ4

}
,

R−−
1 =

{
(δ ,υ) ∈ R2 : δ2 < δ < δ1,υ1 < υ < υ4

}
,

R−−
2 =

{
(δ ,υ) ∈ R2 : δ < δ2,υ3 < υ < υ4

}
R−−

3 =
{
(δ ,υ) ∈ R2 : δ < δ2,υ1 < υ < υ2

}
.

Proof. We compute the expression of ϒδ ,υ in terms of δ and υ ,

ϒδ ,υ =−2 (2υ +δ +4)(2υ +δ )2
δ +

(
δ

2 +3υ δ +2υ
2 +2δ

)2
.

As a fourth-degree polynomial with respect to υ , ϒδ ,υ admits 4 roots.

(a) Case δ > 0 : The roots are real such that υ1 < υ2 < υ3 < υ4, see (5.12-5.14), and ϒδ ,υ =
4(υ −υ1)(υ −υ2)(υ −υ3)(υ −υ4). As a result,

• ϒδ ,υ > 0 ⇐⇒ (δ ,υ) ∈ R++
1 ∪R++

2 ∪R++
3 ;

• ϒδ ,υ < 0 ⇐⇒ (δ ,υ) ∈ R+−
1 ∪R+−

2

(b) Case δ < 0 : Consider δ1 and δ2 given in (5.14). In this case, υ1 and υ4 are well defined for
δ ∈ (−∞,δ1), as for υ2 and υ3 are well defined for δ ∈ (−∞,δ2). Notice that υ1 and υ4 form a
parabola of vertex (δ1,δ+), and that υ2 and υ3 form a parabola of vertex (δ2,δ−), this leads to

• ϒδ ,υ > 0 ⇐⇒ (δ ,υ) ∈ R−+
1 ∪R−+

2 ∪R−+
3 ∪R−+

4 ∪R−+
5 ∪R−+

6 ;

• ϒδ ,υ < 0 ⇐⇒ (δ ,υ) ∈ R−−
1 ∪R−−

2 ∪R−−
3 . ■

We are now able to characterize the regions in the parameter space guaranteeing the positivity
of the discriminant Dδ ,υ .
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Figure 5.1: The left plot represents region Rq in terms of the parameters (δ ,υ) as defined
in (5.6) and (5.7). The middle plot represents region RD+ = R+−

1 . The last plot shows a
zoom on the regions Pi, i = 1..4.

Lemma 12. If the expression of ϒδ ,υ defined in (5.11) is negative, then the discriminant Dδ ,υ de-

fined in (5.10) is positive for x ∈
(

0,4aδ ,υ c1,δ ,υ/(−4aδ ,υ c2,δ ,υ +b2
1,δ ,υ)

)
if, and only if, (δ ,υ) ∈

R+−
1 .

Proof. Considering Dδ ,υ as a polynomial of degree 2 with respect to x, it admits two roots x1 = 0
and x2 = 4aδ ,υ c1,δ ,υ/(−4aδ ,υ c2,δ ,υ +b2

1,δ ,υ). The term aδ ,υ as a polynomial of degree 2 with
respect to υ , admits 2 real roots given by υ ∈ {−δ/2−2,−δ/2}, so that aδ ,υ is negative if, and
only if,

(δ ,υ) ∈ Ra− =

{
(δ ,υ) ∈ R2 : −δ

2
−2 < υ <−δ

2

}
and positive elsewhere. Note that the region Ra− is of interest in our analysis. Now, we investigate
the sign of x2 taking into account the signs of aδ ,υ and ϒδ ,υ . Namely, since coefficient c2,δ ,υ > 0,
then x2 is positive if, and only if,

(
aδ ,υ > 0 and ϒδ ,υ > 0

)
or
(
aδ ,υ < 0 and ϒδ ,υ < 0

)
, so

that x2 is positive if, and only if, (δ ,υ) ∈ Ra− ∩
{

R+−
1 ∪R+−

2 ∪R−−
1 ∪R−−

2 ∪R−−
3

}
= R+−

1 . If
ϒδ ,υ > 0, then Dδ ,υ > 0 for x ∈ (−∞,0)∪ (x2,+∞). As a result, if ϒδ ,υ < 0, then Dδ ,υ > 0 for
x ∈ (0,x2) if, and only if, (δ ,υ) ∈ R+−

1 , as expected. ■

In the sequel, we are interested in the parameter region guaranteeing the sign constancy of qδ ,υ

and the positivity of Dδ ,υ , which corresponds to Rq ∩RD+ . More precisely, Rq ∩RD+ =
⋃4

i=1 Pi,
where

P1 =
{
(δ ,υ) ∈ R2 : δ ∈

(
0,2/(3+2

√
2)
]
,υ ∈

(
υ1,υ2

)}
,

P2 =
{
(δ ,υ) ∈ R2 : δ ∈

(
2/(3+2

√
2),2

]
,υ ∈

[
−1−δ/2,υ2

)}
,

P3 =
{
(δ ,υ) ∈ R2 : δ ∈

(
2,2+

√
2
]
,υ ∈

(
−
√

2δ ,υ2
)}

,

P4 =
{
(δ ,υ) ∈ R2 : δ ∈

(
2+

√
2,
(√

2−4+
√

16
√

2−22
)2(3+2

√
2
)
/4
)
,

υ ∈
(
−
√

2δ ,υ2
)}

(5.16)

where υ1 and υ2 are defined in (5.12).
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5.3.2 Order one truncation

In this case, T1 = 1+2x (see Algorithm 1), which in turn allows us to define the quadratic poly-
nomial (5.8) of degree 2 in Ω = ω2, where

aδ ,υ(x) =−2x+
(δ +2υ)(δ +2υ +4)

4
,

bδ ,υ(x) =−4x3 +

(
δ 2 +4δ υ +4υ2 +4δ

)
x2

2
+δ (δ +3υ +6)x,

cδ ,υ(x) =−2x5 +

(
δ 2 +4δ υ +4υ2 +4δ −8υ

)
x4

4
+δ (δ +3υ −2)x3 +2δ

2x2.

In order to guarantee the positivity of Gδ ,υ , one has to investigate conditions on the signs of aδ ,υ

as well as the discriminant of Gδ ,υ denoted in the sequel D̃δ ,υ(x) = x2 Dδ ,υ(x) where

Dδ ,υ(x) =−16
(
−υ

2 +4δ
)

x2 +8δ
(
δ

2 +3δυ +υ
2 +6δ +2υ

)
x−δ

4 −2δ
3
υ

+δ
2
υ

2 +4δ
3 +20δ

2
υ +36δ

2. (5.17)

As a matter of fact, let Ω1,2 be the two real solutions of Gδ ,υ(x,Ω) = 0, then Gδ ,υ is positive if,
and only if, (

Dδ ,υ < 0 and aδ ,υ > 0
)

or(
Dδ ,υ > 0 and aδ ,υ > 0 and Ω ∈ R− (Ω1, Ω2)

)
or(

Dδ ,υ > 0 and aδ ,υ < 0 and Ω ∈ (Ω1, Ω2)
)
.

Note that in the first and second cases, Gδ ,υ is unbounded which is not of interest in our method.
Hence, we only keep the third set of conditions. Since the coefficient in front of x in the expres-
sion of aδ ,υ is negative and independent of δ and υ , then aδ ,υ is negative for x ∈ (x∗,+∞), where
x∗ = (δ +2υ)(δ +2υ +4)/8.

The next lemma provides a characterization of regions in the parameter space guaranteeing
the positivity of Dδ ,υ .

Lemma 13. Let Dδ ,υ be the parametric polynomial defined in (5.17). Then, Dδ ,υ is positive

• for x ∈ (−∞,min
δ ,υ

(x−,x+))∪ (max
δ ,υ

(x−,x+),+∞), if (δ ,υ) ∈ Rd+ ∩RA+ ,

• for x ∈ (min
δ ,υ

(x−,x+),max
δ ,υ

(x−,x+)), if (δ ,υ) ∈ Rd+ ∩RA− ,

where x± =
(
−8δ

(
δ 2 +3δ υ +υ2 +6δ +2υ

)
±
√

d(δ ,υ)
)
/(32υ2 −128δ ).

Proof. To investigate the sign of Dδ ,υ , we first study the sign of its leading coefficient that we
denote by A(δ ,υ) = 16υ2 −64δ , a polynomial in δ of degree 1, which admits one positive root
at δ = υ2

4 . As a result, A(δ ,υ) is positive if, and only if, (δ ,υ)∈ RA+ =
{
(δ ,υ) ∈ R2 : δ ≤ υ2/4

}
and negative if (δ ,υ) ∈ RA− =R2−RA+ . To study the sign of Dδ ,υ , as a polynomial in x of degree
2, we analyse its discriminant which is given by

d(δ ,υ) = 64 (δ +2υ +4)
(
δ

3 +4δ
2
υ +4δ υ

2 +4δ
2 +8δ υ −8υ

2 +36δ
)

δ
2.

Now, consider d1(δ ,υ) = δ +2υ +4, as a polynomial in δ of degree 1, it admits one real root at
δ =−2υ −4. Next, consider

d2(δ ,υ) =
(
δ

3 +4δ
2
υ +4δ υ

2 +4δ
2 +8δ υ −8υ

2 +36δ
)
,
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Figure 5.2: The left plot represents region Rd+ . The middle plot represents regions P̃1, P̃2
and P̃3. The last plot shows that regions Pi, i = 1..4 obtained for an order zero truncation
have been recovered and enlarged when we increased the truncation order.

as polynomial in δ of degree 3, it admits two conjugate roots and, for υ ∈ (−1− 2
√

6,+∞) one
real root δ ∗ = 1

3 Γ− 4
3(−υ2 −2υ +23)/Γ, where

Γ =
(
8υ

3 +132υ
2 +600υ +584

+12
√

12υ5 +213υ4 +1284υ3 +2988υ2 +3456υ +7776
) 1

3

In the sequel, we shall assume that υ ∈ (−1−2
√

6,+∞) which allows to conclude that d(δ ,υ) is
positive if,

(δ ,υ) ∈ Rd+ =
{
{(−∞,δ ∗]∪ (−2υ −4,∞)}×

(
−1−2

√
6,−3

]}
∪{(−∞,−2υ −4]× (−3,−2]}∪{(δ ∗,∞)× (−3,∞)} .

■

The set of interest here is Rd+ ∩RA− to which we shall add conditions guaranteeing the sign
constancy of qδ ,υ . Hence, we characterize the intersection Rq ∩Rd+ ∩RA− as

3⋃
i=1

P̃i =
{(

0,2/(3+2
√

2)
]
×
(
−2

√
δ ,2

√
δ

)}
∪
{(

2/(3+2
√

2),2
]
×
[
−1−δ/2,2

√
δ

)}
∪
{
(2,+∞]×

(
−
√

2δ ,2
√

δ

)}
. (5.18)

5.4 Frequency bound

After having characterized the candidate regions, we present the main technical ingredient for the
analysis of the frequency bound, which achieves Step 4 of the methodology.

Lemma 14. Let ∆̃ = ∆̃δ ,υ be the quasipolynomial given in (5.3), with (δ ,υ) ∈ P̃1 ∪ P̃2 ∪P3 ∪P4,
where the regions P̃1, P̃2, P3 and P4 are given by (5.18) and (5.16) respectively. If ∆̃ has a root
z0 ∈ R++ ι̇R+, then 0 < ℑ(z0)< π. In addition, the root z0 may be properly assigned.
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Proof. Consider (δ ,υ)∈ P̃1∪ P̃2∪P3∪P4. Since the discriminant of the polynomial function Gδ ,υ

defined in (5.8-5.9) is positive, then Gδ ,υ admits the following two real roots

Ω
±
δ ,υ(x) =−

(
δ 2x+4υ xδ +4υ2x+2δ 2 +6δ υ +4δ x−8x2 +12δ

)
x

δ 2 +4δ υ +4υ2 +4δ +8υ −8x

±

√
D̃δ ,υ(x)

δ 2

2 +2δ υ +2υ2 +2δ +4υ −4x,
(5.19)

where Ω
+
δ ,υ denotes the greater solution (positive signal). We deal with each of the considered

regions separately hereafter.

(a) Region P̃1. Since υ ∈
(
− 2

√
δ ,2

√
δ
)

and x > 0, the solution Ω
+
δ ,υ is upper bounded with

respect to υ by the parameter expression

Ω
+
δ
(x) =

(
h1,δ (x)−2x

√
h2,δ (x)

)
/h3,δ (x)

where

h1,δ (x) = 8x3 +
(
−δ

2 +8δ
3
2 −20δ

)
x2 +

(
−2δ

2 +12δ
3
2 −12δ

)
x,

h2,δ (x) = x
(

8δ
3 +48δ

5
2 +80δ

2 +32δ
3
2

)
−δ

4 −4δ
7
2 +8δ

3 +40δ
5
2 +36δ

2,

h3,δ (x) =−8x+δ
2 −8δ

3
2 +20δ −16

√
δ .

Next, we obtain the following parameter-free upper bound for Ω
+
δ

Ω
+(x) =

8x3

−8x−4

+
2x

8x+4

√√√√√√x
(

111872
√

2+158208
)

(
1+

√
2
)11 +

1989312+1406656
√

2(
1+

√
2
)15

which reaches a maximum value at x∗ ≈ 0.5791.
Thus, ω2 = Ω

+
δ ,υ(x)≤ Ω+(x∗)≈ 0.3970 < π2, i.e., ω0 < π .

Now, we shall detail the assignment of s0. From (5.3), we infer that υ =−
√(

a2
1 −4a0

)
τ2 +4δ

which, combined with υ ∈ (−2
√

δ ,2
√

δ ), leads to

−4δ <
(
a2

1 −4a0
)

τ
2 < 0. (5.20)

The above inequality represents the condition of compatibility in terms of a1 and a0 for
the assignment of s0. We shall assume henceforth that it holds. Now, since 0 < δ ≤
2/(3+2

√
2), from (5.3) we get 0 < τ2

(
s0

2 +a1s0 +a0
)
≤ 2(3+2

√
2). We consider each

inequality separately below.

(a) Condition τ2
(
s0

2 +a1s0 +a0
)
> 0. Solving τ2

(
s0

2 +a1s0 +a0
)
= 0 with respect

to s0, two roots are obtained s±0,A =−a1
2 ± 1

2

√
a12 −4a0. So that, if a1

2 −4a0 < 0,
there is no sign change and the set of solutions is R. Otherwise, a1

2 −4a0 ≥ 0 and,
consequently, s0 ∈ (−∞,s−0,A)∪ (s+0,A,+∞).
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(b) Condition τ2
(
s0

2 +a1s0 +a0
)
≤ 2

3+2
√

2
. Solving τ2

(
s0

2 +a1s0 +a0
)
= 2

3+2
√

2
with

respect to s0, we obtain two roots

s±0,B =−a1

2
± 1

2

√
a12 −4a0 +(−16

√
2+24)/τ2.

From (5.20) and the fact that δ is upper bounded by 2/(3+2
√

2), we show that
a1

2 −4a0 +(−16
√

2+24)/τ2 > 0. Hence, the set of solutions is s0 ∈
[
s−0,B,s

+
0,B

]
.

Now, bearing in mind that s−0,B < s−0,A < s+0,A < s+0,B, the intersection between the set of
solutions for both cases is s0 ∈

[
s−0,B,s

+
0,B

]
if a1

2−4a0 < 0, and s0 ∈
[
s−0,B,s

−
0,A

)
∪
(
s+0,A,s

+
0,B

]
otherwise. Finally, for the exponential decay s0 has to be negative, so we impose that
s+0,B < 0, i.e., a0 ≥ (−4

√
2+6)/τ2 and a1 ≥ 0.

(b) Region P̃2. Since υ ∈
[
−1−δ/2,2

√
δ
)

and x > 0, the solution Ω
+
δ ,υ is upper bounded with

respect to υ by the parameter expression Ω
+
δ
(x) which is upper bounded with respect to δ

by the parameter-free expression

Ω
+(x) =

1
−8x−4

8x3 +

(
−20−8

√
2
)

x2

3+2
√

2
+

(
−32−24

√
2
)

x(
3+2

√
2
)2

−2x

√
192+ x

(
384+256

√
2
)
+128

√
2

)

which reaches a maximum value at x∗≈ 1.9018. Thus, ω2 =Ω
+
δ ,υ(x)<Ω+(x∗)≈ 6.7190<

π2, so that ω0 < π .

To assign the root s0 in this case, we proceed as with the previous region P̃1 and con-
clude that if a0 ≥ 2

τ2 and a1 ≥ 0, then s0 ∈
[
s−0,C,s

−
0,B

)
∪
(
s+0,B,s

+
0,C

]
where s±0,C = −a1

2 ±
1
2

√
a12 −4a0 +8/τ2.

(c) Region P̃3. Consider δ ∈ (2,ϑ), with ϑ > 0 and follow the same procedure as with previous
regions. The table below

ϑ 2.001 2.2 2.3 2.5
Ω+ 8.7083 9.7402 10.2747 11.3748

emphasizes the fact that an interesting frequency bound may be found only for a posi-
tive δ close to 2, which is not interesting for continuing the next step. Unfortunately for
δ ∈ (2,∞), the dominancy of s0 cannot be concluded unless the order of truncation of
the exponential term is increased as in Algorithm 1 in order to obtain an adequate fre-
quency bound.

(d) Region P3 ∪P4. Since υ ∈
(
−
√

2δ ,υ2
)

and x > 0, the solution Ω
+
δ ,υ is upper bounded with

respect to υ by the parameter expression Ω
+
δ

, a function the expression of which we have
avoided writing because of its length, this function Ω

+
δ

itself can be upper bounded with

respect to δ by the parameter-free expression Ω+(x) =
(

h1(x)−2x
√

h2(x)
)/

(−8x−4)
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where

h1(x) = 8x3 +

((
−4

√
2+6

)√
41−28

√
2+40

√
2−66

)
x2 −8x,

h2(x) =−64x2 + x
((

−3184
√

2−4512
)√

16
√

2−22+2720
√

2+3680
)

+
(

4016
√

2+5664
)√

16
√

2−22−3104
√

2−4384.

The latter expression of Ω+ reaches a maximum value at x∗ ≈ 1.5514. Thus, ω2 =
Ω

+
δ ,υ(x)< Ω+(x∗)≈ 5.1031 < π2, i.e., ω0 < π . To assign the root s0 in this case, we anal-

yse in a similar way as in the previous cases and we conclude that if a0 ≥
[
(−10

√
2−16)

√
16

√
2−22+16

√
2+20

]
/4τ2

and a1 ≥ 0 are satisfied, then we are able to assign the root s0 such that s0 ∈ (s−0,D,s
−
0,C)∪

(s+0,C,s
+
0,D), where

s±0,D =−a1

2
± 1

2

√
a12 −4a0 +

[
(−10

√
2−16)

√
16

√
2−22+16

√
2+20

]
/τ2.

The proof is complete. ■

Remark 15.

(a) Our approach gives sufficient conditions for the dominance which are valid in regions Pi, i =
3,4 and in regions P̃i, i= 1,2 which contain respectively Pi, i= 1,2. For each of the aforementioned
regions, a frequency bound of interest (ω < π) was obtained. For region P̃3, the truncation order
needs to be increased.

(b) Note that the set of conditions guaranteeing the MID obtained with a truncation of order
k+1 contains the set of conditions guaranteeing the MID with a truncation of order k. As a result,
higher orders of truncation shall lead to wider ranges on the conditions.

5.5 Conclusion of the proof of Theorem 8 (item (c))

After characterizing regions for which a frequency bound of interest was found, we can complete
the proof of Theorem 8 ; this corresponds to Step 5 of the methodology.

Proof. From the subsections 5.1 and 5.2, the normalization of ∆ is given by ∆̃ in (5.3), while
the factorization of ∆̃ is defined in (5.5). Using relations (5.4), one concludes that s0 is a root of
multiplicity 3 of ∆ if, and only if, relations (4.4) hold, thereby ending the proof of the item ((c)a).
To show ((c)b), we use the technical results previously proved. Consider (δ ,υ)∈ P̃1∪ P̃2∪P3∪P4,
the proof of the dominance is based on a contradiction. To do so, assume that there exists z0 ∈ C
root of ∆̃ satisfying ℜ(z0)> 0. Write z0 = x0+ iω0 and using the fact that z0 is a non-zero root of ∆̃,
one may infer from (5.5) by taking the imaginary part, that

r 1
0

(
δ

2 t2 + tυ +1
)

sin(t ω0)e−t x0 dt = 0.
Since ω0 < π from Lemma 14, the function t 7→ ( δ

2 t2+tυ+1)sin(t ω0) is strictly positive in (0,1),
which contradicts the above equality as required to end the proof.■
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Figure 6.1: For ω = 2, η = 1
9 and τ = 1, the left plot exhibits the spectrum distribution of

the quasipolynomial ∆ where the assigned rightmost triple root at s0 = −3 and the roots
with large modulus are asymptotic to a vertical line ℜ(s) ≈ −log |α|/τ ≈ −4.2 ( [30]),
and the second plot illustrates the oscillator response with initial condition taken to be
ϕ(t) = 1 for t ∈ [−τ, 0).

6 Illustrative example: Classical oscillator
Consider the classical oscillator control problem:

ẍ(t)+2η ω ẋ(t)+ω
2 x(t) = u(t), (6.1)

with u as the delayed output-feedback as proposed in [21]: u(t) = −α2 ẍ(t − τ)−α1 ẋ(t − τ)−
α0 x(t − τ), η is the damping factor such that 0 < η < 1, ω describes the natural frequency.
The characteristic equation corresponds to (6.1) is defined by

∆(s) = s2 +2η ω s+ω
2 +(α2 s2 +α1 s+α0)e−τ s. (6.2)

Following item (c) in Theorem 8, it shows that the real number s0 is a root of multiplicity 3 of the
quasipolynomial function (6.2) if, and only if, the following relations hold

α0 =−1
2

(
2ω2 +

(
2η ω s0

3 +ω2s0
2 + s0

4
)

τ2 −
(
2ω2s0 −2s0

3
)

τ
)

eτ s0 ,

α1 =
(
−2η ω +

(
2η ω s0

2 +ω2s0 + s0
3
)

τ2 +
(
2η ω s0 −ω2 +3s0

2
)

τ
)

eτ s0 ,

α2 =−1
2

(
2+
(
2η ω s0 +ω2 + s0

2
)

τ2 +(4η ω +4s0)τ
)

eτ s0 .

(6.3)

The normalization and the integral representation of the characteristic function (6.2) are defined in
(5.3) and (5.5) respectively, where in this case δ = τ2

(
s0

2 +2η ω s0 +ω2
)

and υ = 2τ (s0 +η ω).
Notice that δ > 0 for all s0 since δ = τ2

(
(s0 +η ω)2 +ω2(1−η2)

)
> 0. Finally, we conclude

that if ω ≥ max
{

δ

τ2 −
υ2

2
4τ2 ,

1
τ

√
2

3+2
√

2

}
is satisfied, then we are able to assign the root s0 in the

interval −η ω − 1
τ

√
B ≤ s0 ≤−η ω + 1

τ

√
B, with B = 2

3+2
√

2
−τ2 ω2(1−η2)> 0. The left plot in

Figure 6.1 illustrates the roots of ∆̃ computed numerically using Maple, while the right Figure in
6.1 presents a temporal simulation with the same choice of ω and η .

7 Further remarks on the MID: case of multiplicity 2
Consider the quasipolynomial function ∆ defined in (1.2). The real number s0 is a root of multi-
plicity 2 of the quasipolynomial function ∆ if, and only if, for α2 = γ2 eτ s0 the following relations
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Figure 7.1: The left plot illustrates for ω = 2, η = 0.02 the rightmost double root of
∆ at s0 = −0.5 and the roots with large modulus asymptotic to the vertical line ℜ(s) ≈
−log |α|/τ ≈ −1.88. The right plot is the time-response of a particular solution of (6.1)
with the same choice of coefficients ; the initial condition is taken to be ϕ(t) = 0 for
t ∈ [−τ, 0).

hold {
α0 =

(
τ s0

3 +(τ a1 + γ2 +1)s0
2 + τ a0 s0 −a0

)
eτ s0 ,

α1 =
(
−τ s0

2 +(−τ a1 −2γ2 −2)s0 − τ a0 −a1
)

eτ s0 .
(7.1)

The normalized quasipolynomial is given by ∆̃(z) =
(
γ2 z2 − (δ +υ)z−δ

)
e−z+ z2+υ z+δ with

δ = τ2
(
s0

2 +a1s0 +a0
)

and υ = τ (2s0 +a1). The integral representation is given by ∆̃(z) =

z2
(

1+υ + γ2 +
δ

2 − z
r 1

0

(
− δ t2

2 +υ (1− t)+ γ2 +
δ

2

)
e−t z dt

)
which is not the standard factoriza-

tion. In fact, it is a more general form as the one described for instance in [24]. In the case of
multiplicity 2, the normalized polynomial admits 3 free parameters which makes the analytic proof
of the MID property quite delicate. However, we claim that even in in such a case, one is able to
numerically exploit such a property for rightmost spectral value assignment as is exhibited by the
next example.

Consider the classical oscillator control problem (6.1). Let ω = 2 and η = 0.02, we choose
s0 =−0.5, τ = 1 and γ2 =−0.25e0.5. Then, α2 ≈−0.25 and, owing to relations (7.1), we compute
α1 ≈−2.1471 and α0 ≈−3.5891.

8 Conclusion
In this paper, we have treated the multiplicity-induced-dominancy (MID) property for second
order time-delay differential equations of neutral type with single-delay, i.e., the corresponding
characteristic function is a quasipolynomial of degree 5. We present an algorithm as well as an
overview of classification of admissible multiplicities for this class of equations. First, necessary
and sufficient conditions are established, in which a real root of the characteristic function of
maximal multiplicity 5 is necessarily dominant. Next, necessary and sufficient conditions have
been provided in order to ensure that a given root of multiplicity 4 is the rightmost root of the
characteristic function. For the case of multiplicity 3, we only provide sufficient conditions for the
dominance where the number of free parameters is 2. In the latter case, we used first a truncation
of the exponential function of order 0, which led to some regions where the MID property holds.
To illustrate the use of the proposed algorithm, we further extended the validity area of the MID
property by increasing the truncation up to order one, this allowed to enlarge the region of validity
of the MID obtained with truncation of order 0. Finally, for the multiplicity 2, as the number of
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free parameters increases (3 free parameters), the computations become quite cumbersome from
a symbolic point of view, but for the time being we used numerical approaches which can give
sufficient conditions for the dominance. The obtained results have been illustrated through the
delayed stabilization of the classical oscillator.
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