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ABSTRACT This paper is about the estimation of the cyber-resilience of Cyber-Physical Systems (CPS).
We define two new resilience estimation metrics: k-steerability and `-monitorability. They aim at assisting
designers to evaluate and increase the cyber-resilience of CPSwhen facing stealthy attacks. The k-steerability
metric reflects the ability of a controller to act on individual plant state variables when, at least, k different
groups of functionally diverse input signals may be processed. The `-monitorability metric indicates the
ability of a controller tomonitor individual plant state variables with ` different groups of functionally diverse
outputs. Paired together, the metrics lead to CPS reaching (k, `)-resilience. When k and ` are both greater
than one, a CPS can absorb and adapt to control-theoretic attacks manipulating input and output signals. We
also relate the parameters k and ` to the recoverability of a system. We define recoverability strategies to
mitigate the impact of perpetrated attacks.We show that the values of k and ` can be augmented by combining
redundancy and diversity in hardware and software, in order to apply themoving target paradigm.We validate
the approach via simulation and numeric results.

INDEX TERMS Cyber-physical systems, control theory, cyber-resilience, covert attacks, security metrics,
attack remediation, recoverability, resilience estimation.

I. INTRODUCTION
Cyber-Physical Systems (CPS) integrate network and soft-
ware resources to control and monitor physical components
operating on different spatial and temporal scales [15]. Exam-
ples of CPS include industrial control systems for energy
distribution (e.g., smart grids), autonomous vehicles, robotics
and next-generation medical systems. Since physical, net-
worked and computational components are deeply inter-
twined, the protection of the system as a whole highly relies
on steerability and monitorability. Steerability refers to the
ability of a controller to drive and maintain a Cyber-Physical
System (CPS) in a desired operating point, by sending com-
mand and control input signals to the system actuators. Mon-
itorability indicates the capability of the system to process
and interpret output signals produced by the system sensors,
in order to accurately deduce the internal state of the CPS.
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The controller follows reference signals such that the CPS
ends being asymptotically stable. In the short term, slight
variations of either the input or outputs of the system do not
affect the stability. However, in the long term, such slight
variations may affect and disrupt the system. This is the
goal of a cyber-physical adversary. Given the knowledge of
central controllers about the physical behavior of a CPS,
i.e., steerability and monitorability, the goal of the defender is
to face faults and attacks by increasing system recoverability,
i.e., the system must be able to adapt and bounce back from
stability disruptions, as quick as possible.

Recent studies acknowledge the vulnerability of CPS to
integrity and availability attacks [2], [4], [23]. In this paper,
we focus on covert attacks [28], [29], i.e., a family of
cyber-physical attacks taking the form of physical aggres-
sions against the operation of a CPS, by manipulating input
signals to actuators and output signals from sensors. The
approach is, however, valid for other family of integrity and
availability attacks reported in the control-theoretic literature
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(being the family of covert attacks those reported as more
ambitious to handle [29]).

In this paper, we introduce the notion of k-steerability. The
parameter k corresponds to the minimum number of input
signals available to act on each individual plant state variable.
We also define the concept of `-monitorability. The parameter
` reflects the minimum number of output signals that can be
used to monitor each individual plant state variable. We study
values of k and ` with respect to system resilience and the
ability to recover a plant state. If due to covert attacks, h input
signals are compromised, then steerability of each individual
plant state is not entirely lost as long as h is lower than k .
This partial steerability can be leveraged to run a covert attack
mitigation plan. If due to covert attacks, g output signals are
hacked, then the ability to detect the condition is not entirely
lost as long as g is lower than `. We discuss how k and `
can be determined and augmented by adding redundant and
diverse hardware. k-steerability and `-monitorability com-
bine together into the (k, `)-resilient metric. Our work is
about resilience estimation. It is complementary to work on
security risk assessment. In the sequel, we elaborate further
on how to use them together. We assume that both input
and output signals can be correlated into functionally diverse
groups, as a complement to the traditional use of redundancy
in critical systems.

The use of redundancy assume the inclusion of alternative
copies, e.g., sensors, actuators and controllers, in order to
guarantee system availability. If the system finds itself under
a situation of attack, and the values of a group of compo-
nents are not behaving as expected, then the validation of
such values can be contrasted with the values of redundant
replicas, assuming that there was an attack affecting the
system. This technique is complementary to fault tolerance
techniques, also used to address situations in which some
system components are victims of failures or faults. However,
the use of redundancy for security purposes may have some
drawbacks. Since the replicas may be seen as identical, once
an attacker has managed to compromise one of them, then
the rest of the replicas can also be compromised very easily.
Hence, we need to impose the use of diversity. For instance,
if the replicas are geographically distributed, or the replicas
compute their values using different physical phenomena,
the approach can improve the way to handle attacks exploit-
ing the physical nature of vulnerable components. Hence, our
approach assumes the existence of different replicas behaving
in an independent manner and with non-overlapping patterns
(e.g., physical patterns) to handle the attacks.
In terms of contributions1:

• We propose a novel design stage approach to cyber-
physical resilience thinking in terms of physical
processing and intentional attacks.

• We introduce the steerability and monitorability mea-
sures paired together as the (k, `)-resilience metric, k
being the degree of steerability and ` the degree of
monitorability.

• We relate (k, `)-resilience metric to recoverabilty,
i.e., the number of steps required to recover from attacks.

• We review example CPS and their resilience estimation.
• We validate the approach with numeric simulations and
real world examples, including analysis of the proposed
ideas under practical attacks with respect to performance
disruption.

Sections II and III introduce CPS modeling, covert attacks
and related work. The k-steerability, `-monitorability and
(k, `)-resilient concepts are developed in Section IV. The
design and evaluation of representative CPS that are
(k, `)-resilient are reviewed in Section V. Section VI con-
cludes the paper. Additional details about our simulations and
results are available in an appendix.

II. SYSTEM AND ADVERSARY MODELS
A CPS consists of a plant and a controller. They are dis-
tributed and communicate through a network. Several mathe-
matical models exist for representing them [6], [21]. In the
sequel, we introduce the necessary modeling background,
using a CPS with fluid dynamics as an example.

A. DIFFERENTIAL EQUATION REPRESENTATION
Let us consider as a plant an individual cylindrical tank,
with a single inflow and a single outflow of liquid. The tank
liquid level can be modeled by the following differential
equation [30]:

α
dh (t)
dt
= F(t)− a

√
h (t) (1)

Eq. (1) models the relationship between instantaneous
changes of liquid level and difference between the inflow rate
and outflow rate. As a function of time t (second), the level
of the liquid in the tank is h(t) (cm). Variable α represents a
cross-sectional area of the tank (cm2). The term F(t) repre-
sents the inflow rate (cm3/second). The parameter a denotes
the outlet valve coefficient. The outflow rate (cm3/second) is
proportional to the product of a times the square root of the
liquid level as at time t , represented by the term h (t). Note
that because of the square root term, the system in nonlinear.

The model represented by Eq. (1) is linearized assum-
ing a linear inflow rate and operation around a liquid level
h0, termed the operating point. It is assumed the level is
maintained at point h0 + 1, with |1| small. Linearization
is based on the observation that the expression (1 + ε)β is
approximately equal to the expression 1 + βε, when ε � 1.
In the expression a

√
h (t), substituting h(t) by the sum h0+1,

we get a linear model for the outflow rate:

a
√
h (t) = a

√
h0 +1 = a

√
h0
√
1+1/h0

≈ a
√
h0

(
1+

1

2 h0

)1An early (short version) of this paper was presented and discussed at [1]. 
New material and discussions, including experimental work, have been 
added to this version.



Inflow rate F(t) is modeled by the product γ κv. The
parameters γ , κ and v respectively denote the valve coeffi-
cient, pump coefficient (cm3/V second) and voltage applied
to the pump (V). The voltage v is the variable governed by the
controller. The resulting linear differential equation modeling
the liquid level is:

α
dh (t)
dt
= γ κv− a

√
h0

(
1+

1

2h0

)
(2)

Eq. (2) is an approximation that remains valid as long as1 is
relatively small, that is, at the chosen operating point h0 there
are only small level fluctuations. To maintain that condition,
the inflow rate γ κv must be equal to the outflow rate a

√
h0,

with small fluctuation −a
√
h0
(
1
2 h0

)
= −

a1
2
√
h0
.

B. STATE SPACE REPRESENTATION
The state space representation of a linear CPS is as follows:

xi+1 = Axi + Bui + wi (3)

yi = Cxi + Dui + vi (4)

Eq. (3) models the evolution of the CPS. At time i, given input
ui, state xi is transformed into state xi+1, where the index i
is in Z+, state column vectors xi and xi+1 are in X ⊆ Rm,
input column vector ui is in U ⊆ Rp, output column vector
yi is in Y ⊆ Rn and dimensions m, n and p are in Z+. The
transition may also be affected by random noise wi, in Rm.
Eq. (4) represents the CPS input, state and output relation.
At time i and in state xi, the sensor measurements are yi.
The sensor measurements may be also affected by random
noise represented by vi, in Rn. Matrices A, B, C and D are
respectively called the state (m by m), input (m by p), output
(n by m), and direct transmission (n by p) matrices.
For example, let us map Eq. (2) to a state-space representa-

tion. The input ui is the voltage applied to the pump. Let t be
the continuous time corresponding to the discrete time i. The
state variable xi tracks the difference between the liquid level
h(t) and operating point h0, i.e., xi = h(t) − h0, which is the
symbol 1 in Eq. (2). The corresponding state, input, output
and direct transmission matrices are:

A =
(
−

a
α2
√
h0

)
, B =

( γ κ
α

)
, C =

(
1
)
and D =

(
0
)
(5)

The state vector has one element xi[1], which is the current
level difference 1, w.r.t. the operating point h0. The state
matrix A contains one element, which is used to calculate
in a transition, from time i to time i + 1, the change in the
amount of liquid leaving the tank, i.e., a

α2
√
h0
· xi[1]. Note

that at the operating point, the total amount of liquid leaving
the tank is the subtrahend in Eq. (2), divided by α. The input
vector has a single element ui[1]. The input matrix B contains
one element and calculates the amount of liquid coming into
the tank in one transition, i.e., the product γ κ

α
· ui[1]. Note

that this mapping has the linearity advantage, but fidelity if
limited to small fluctuations around an operating point. As
we move from the operating, the effect of gravity is distorted.

This degree of fidelity is although more than sufficient for the
type of analysis conducted in the sequel of this paper.

Together, Equations 3, 4 and 5 model the dynamics of the
plant. Integrated in a CPS, the input and output signals are
transported over a network. It is reasonable to assume that
input and output signals are protected with security proto-
cols. It is also reasonable to expect that such protocols have
vulnerabilities, initially unknown but eventually uncovered
and exploited by an adversary, in a manner such as the one
discussed in the upcoming Section II-C. As a second line
of defense, it is also reasonable to believe that attack detec-
tion methods, such as the ones discussed in the upcoming
Section III, are deployed. The CPS has attack protection and
detection. However, this individual cylindrical tankCPS lacks
alternative inputs and outputs that can be used to steer and
monitor the plant when one input, one output or both are
attacked. These backup inputs and outputs should ideally
reflect different physical phenomena, protected by different
security protocols with of course their own vulnerabilities, but
possibly unlikely to be uncovered at the same time as for the
main input and output. The systematic estimation of this type
of resilience, which at the outset simply calls for common
sense, is precisely the purpose of this article.

C. ADVERSARY MODEL
We assume adversaries perpetrating covert attacks. Covert
attacks are a family of cyber-physical attacks in which the
adversary perturbs the state of a CPS while succeeding to
evade detection, i.e., the adversary attempts to remain invis-
ible [32], [34], [37], [38]. It is powerful attack because it
is assumed that the adversary knows the plant dynamics
(matrices A, B, C and D) and that input and output signals
can be spoofed. While an attack is being carried out, the per-
petrator manipulates the measurements to conceal the effect
of the spoofed inputs. Hence, from the point of view of an
observer, responsible for detecting attacks, the measurements
look normal. Using Eqs. (3) and (4), attacks are represented
as follows:

xi+1 = Axi + B(ui + uai )+ wi (6)

yi = Cxi + D(ui + uai )+ vi + s
a
i (7)

The variable uai , in U , denotes the addition of the adversary to
the signals to the actuators. The term sai , in R

n, represents the
manipulation done by the adversary on the sensor measure-
ments.

The adversary model succinctly captures covert attacks
where an adversary has the ability to manipulate actuators
and sensors. Attacks can be perpetrated by insiders, but also
by outsiders due to communication channel vulnerabilities.
For instance, an adversary infiltration was perpetrated on a
steel mill using a spear phishing email tactic, first achieving
access to the corporate network and then succeeding entering
the plant network [16]. Generic covert attacks exploiting
communication channel vulnerabilities have been modeled in
numerous papers [29], [31], [36].



III. RELATED WORK
Methods have been devised to detect covert attacks. They
all require the analysis of inputs and outputs of the plant.
Rubio-Hernan et al. [24]–[26] have revisited challenge-
response detectors via authentication techniques, initially
proposed by Mo et al. [18], [19], [35]. Hoehn and Zhang [10]
and Schellenberger and Zhang [27] developed the idea of
external synthetic states that evolve in parallel and are
coupled to the physical states of the CPS.

Adversaries can apply system identification [30] and
machine learning [11], [30] to infer the dynamics of the plant.
All detection methods acknowledge that the adversary has
the ability to learn the dynamics of the CPS. However, they
are all based on the important assumption that the knowledge
of the adversary is not perfect. Due to this imperfect knowl-
edge, the adversary makes errors that may be caught by the
detection methods. Whether they are caught or not depends
on the degree of knowledge of the adversary and the level
of difficulty to avoid being detected. To make it challenging,
detection methods comprise the integration of time-varying
elements (inputs or states) concealed in the dynamics of
the plant. Assuming the parameters of these elements are
changed fast enough, the dynamics of the plant becomes a
moving target for the adversary [13], [14]. In other words, the
adversary does not have enough time to learn properly, makes
errors and perpetrates attacks that are not covert [8], [9]. Next,
we discuss in more details the concepts of challenge-response
and auxiliary state.

1) CHALLENGE-RESPONSE AUTHENTICATION
Challenge-response detectors, defined in [24]–[26], revisit
the authentication signal in [18], [19] to extend error detectors
into cyber-physical attack detectors. The resulting scheme
provides a real-time protection of the linear time-invariant
models of the plant. Built upon Kalman filters and linear-
quadratic regulators, the scheme produces authentication
signals to protect the integrity of physical measurements
communicated over the cyber and physical control space of
a networked control system. It is assumed that, without the
protection of the networked messages, malicious actions can
be conducted to mislead the system towards unauthorized or
improper actions, i.e., by disrupting the plant services.

Assume u∗i as the output of a controller and ui the con-
trol input that is sent to the plant, cf. Eq. (3). The idea
of challenge-response authentication is to superpose to the
control law u∗i an authentication signal 1ui ∈ Rp that serves
to detect integrity attacks. Thus, the control input ui is given
by:

ui = u∗i +1ui (8)

the controller) triggers an alarm whenever a malicious signal
is observed, i.e., whenever the challenge sent by the con-
troller over the plant is not observed within the measurements
returned by the plant. Towards this end, [18], [19] propose to
employ a χ2 detector, i.e., a well-known category of real-time
anomaly detectors classically used for fault detection in con-
trol systems [3], for the purpose of signaling the anomalies
identified in the behavior of the plant.

Further details about some more powerful challenge-
response detectors, capable of identifying adversaries
which are empowered by identification tools such as
ARX (autoregressive with exogenous input) and ARMAX
(autoregressive-moving average with exogenous input) [20],
i.e., using identification tools to evade detection, are available
in [25], [26].

2) AUXILIARY STATES
The CPS can also be augmented with a synthetic auxiliary
state, synthetic outputs and optionally new inputs [10], [27].
The auxiliary state has a linear time-varying dynamics that is
evolved in parallel with the CPS. The dynamics is concealed
to the adversary. Because it is time-varying, it becomes a
moving target that is challenging to identify by an adversary,
a precondition to the covert attack [7]. But, it is known to and
used by the operator to detect the covert attack. The operator
is in synchrony with the linear time-varying dynamics. It is
therefore able to track it properly and compare the actual evo-
lution of the auxiliary dynamics with the expected evolution.
Significant discrepancies indicate the presence of anomalies,
which can be used to identify the adversary.

The CPS model is extended with the auxiliary state x̃i and
additional actuators and sensors (ũi and ỹi) related to the aux-
iliary state. The state xi and auxiliary state x̃i are correlated.
Together with the auxiliary state, the state transformation
model is: (

x̃i+1
xi+1

)
= Ai

(
x̃i
xi

)
+ Bi

(
ũi
ui

)
+

(
w̃i
wi

)
(9)

Together with the additional elements, the sensor measure-
ments are: (

ỹi
yi

)
= Ci

(
x̃i
xi

)
+Di

(
ũi
ui

)
+

(
ṽi
vi

)
(10)

with

Ai =

(
A1,i A2,i
0 A

)
, Bi =

(
Bi
B

)
, Ci =

(
Ci 0
0 C

)
and

Di =

(
Di 0
0 D

)
.

Hidden to the adversary, the state sub-matrices A1,i and
A2,i, the input matrix Bi, output matrix Ci and direct trans-
mission matrix Di are randomized variables. According to
the approach proposed by Schellenberger and Zhang [27],
the actual matrices are randomly switched from time-to-time.
The operator and CPS are synchronized on the switching
sequence, perhaps through a switching signal. This secret

The authentication signal is a Gaussian random signal with
zero mean that is independent both from the state noise (wi) 
and measurement noise (vi). The authentication signal is used 
by the detector to identify the malicious signals originated by
the adversary. Since the control law ui

∗ carries the authenti-
cation signal 1ui, the detector (physically co-located within



is not shared with the adversary. Sensor measurement ỹi is
visible to the adversary, but changes over time in a random
way. The adversary is challenged with learning the random
auxiliary system state, input, output and direct transmission
matrices.

We have introduced the system and adversary models and
reviewed defense methods. In the next sections, we build
upon that material and introduce new ideas to address
resilience and state recovery.

IV. THE (k, `)-RESILIENT PROPERTY
We define the k-steerability and `-monitorability properties.
In conjunction, they define the (k, `)-resilient property.

A. INTER-VARIABLE DEPENDENCIES
To bright to light the dependency between two variables,
we use Pearson correlation coefficients.
Definition 1 (Pearson correlation coefficient): Given two

random variables, E and F , and n observations for each of
them, their correlation coefficient is defined by

ρ(E,F) =
1

n− 1

n∑
i=1

(
ei − µE
σE

)(
fi − µF
σF

)
(11)

where e1, . . . , en (f1, . . . , fn), µE (µF ) and σE (σF ) are the
observations, mean and standard deviation of random vari-
able E (F).
A correlation coefficient is a unitless value between minus
one and one. When ρ(E,F) is equal to one, we have perfect
positive correlation between E and F . When it is minus
one, we have perfect negative correlation. Intuitively, when
|ρ(E,F)| is between zero and 0.2, the linear correlation is
from null to weak. It is moderate between 0.2 and 0.6. Above
0.6, it is strong [33]. Note that null linear correlation does
not mean necessarily that variables E and F are independent.
In such a case, there is no linear dependency revealed by
the observations, but a nonlinear dependency is possible.
For example, Eq. (1) generates nonlinear output correlated
with the input. In such a case, existence of correlation can
be confirmed calculating the correlation coefficient using a
linearized version of the output data. Furthermore, correlation
is one way to establish dependencies between variables.

B. DEPENDENCY GRAPH
Let u, x and y be respectively p-element, m-element and
n-element column vectors representing the input, state and
output variables of a CPS. We define correlation coefficient
matrices to capture the relationships that exist between state
variables and input or output variables.
Definition 2 (Input correlation coefficient matrix): Them×

p input correlation coefficient matrix Q is equal to (qi,j),
where i = 1, . . . ,m, j = 1, . . . , p. An entry qi,j is the
correlation coefficient ρ(xi, uj) between the state variable xi
and input variable uj.
Definition 3 (Output correlation coefficient matrix): The

m × n output correlation coefficient matrix R is equal to

(ri,j), where i = 1, . . . ,m, j = 1, . . . , n. An entry ri,j is the
correlation coefficient ρ(xi, yj) between the state variable xi
and output variable yj.
Definition 4 (Input dependency graph): The input depen-

dency graph is a bipartite graph GU = (X ,U ,E) where
the two sets of vertices are X = {x1, . . . , xm} and U =
{u1, . . . , up}, the state and input variables. Pearson correla-
tion is used to determine dependencies. There is an edge
(xi, ui) inE if-and-only-if the absolute value of the correlation
between variables xi and ui, i.e., |qi,j|, is greater than or
equal to a threshold T . Possible values for T are discussed
in Section IV-A. In this article, we use strong correlation and
a value of T close to one is chosen.
Definition 5 (Output dependency graph): The output

dependency graph is a bipartite graph GY = (X ,Y ,E)
where the two sets of vertices are X = {x1, . . . , xm} and
Y = {y1, . . . , yn}, the state and output variables. There is
an edge (xi, yi) in E if-and-only-if the absolute value of the
correlation between variables xi and yi, i.e., |ri,j|, is greater
than or equal to a threshold T .
For the dependency graph GU and a vertex x in X , let

the expression deg(x) be its input degree, i.e., the number of
adjacent vertices in U . Similarly, for the dependency graph
GY and a vertex x in X , let deg(x) be its output degree, i.e., the
number of adjacent vertices in Y . The `-monitorability degree
reflects the availability of at least ` sensor output signals for
monitoring any state variable.
Definition 6 (`-monitorability degree2): Let GY be the

output dependency graph of a CPS. Let ` be equal to
min
x∈X

deg(x).

Then, the CPS has `-monitorability.
The notion of steerability is related to the control-theoretic
concept of controllability. Controllability refers to the ability
to drive a system to any state of its state space, under certain
constraints [21]. This is consistent with our conceptualization
of steerability, but the latter is a weaker and necessary condi-
tion emphasizing redundancy that can be evaluated calculat-
ing statistical correlation between state variables and inputs.
The idea of monitorability is related the one of observability
used in control theory. For example, in Ref. [6] a state variable
is observable when it is connected to the outputs, which
is consistent with our concept of monitorability. However,
the exact techniques behind these two concepts are differ-
ent and do not capture the same properties. In Ref. [6],
observability is determined by computing the rank of an
observability matrix. However, this particular technique is not
universally recommended in the control literature for observ-
ability testing [22]. Our technique measures the correlations
between state variables and outputs, intuitively, a necessary
condition to ascertain connections between state variables or
outputs. While steerability highlights redundancy in inputs,
monitorability emphasizes redundancy in outputs.

We introduce the notion of k-steerability. It indicates that
there are at least k actuator input signals available for acting
on every single plant state variable.



FIGURE 1. Security risk versus resilience scenarios.

Definition 7 (k-steerability degree3): Let GU be the input
dependency graph of a CPS. Let k be equal to

min
x∈X

deg(x).

solid line represents a case where security and resilience are
in equilibrium. The red dotted line pictures the undesirable
case where a growth in resilience implies a strong security
risk increase. The blue dashed line shows the most desirable
situation where a growth in resilience may imply a security
risk increase, due to the augmentation of points where attacks
can be perpetrated. Although, the increase is moderate and
offset by significant growth in resilience.

We have established the principles of our approach. In the
following section, we review a number of designs, explain
how the (k, `)-resilient property translates into possibilities
of acting on and recovering the state of a plant when attacks
are perpetrated. We define performance of a CPS design as
the ability to maintain the plant in target state, despite the
fact that there may be actuators and sensors being attacked.
We compare performance of the different designs.

V. REVIEW OF (k, `)-RESILIENT DESIGNS
The degree of steerability (k) of a CPS can be increased
by introducing a diversity of new actuators. Adding more
actuators increases the number of points for acting on a plant.
Likewise, monitorability (`) can be increased by introducing
a diversity of new sensors. Adding new sensors providesmore
monitoring points for detecting anomalies and estimating
the state of a plant. As discussed at the end of Section IV,
we reiterate that increasing k , ` or both must be done in
conjunction with security risk assessment. For a CPS with
fluid dynamics, there is a diversity of sensor types that include
flow rate, liquid level, turbidity, water leak, water pressure
and gravity liquid level.

Making abstraction of noise for the sake of simplicity,
we revisit the state-space representation of Eq. (5) aug-
mented with an inflow rate sensor and an outflow rate sensor.
The output column vector y comprises three entries: (1) the
level difference (y1), (2) inflow rate (y2) and (3) outflow
rate (y3):

A =
[
−

a
α2
√
h0

]
, B =

[
γ k
α

]
, C =

 1
0
a

2
√
h0

 and

D =

 0
γ k
0

 (12)

The design comprises three outputs strongly correlated
with the liquid level difference, the correlation is strong
between the level difference state variable and any of the
outputs. The CPS has three-monitorability, because in GU ,
min deg(x) for x ∈ X , is equal to three.With respect to Eq. (5),
only the output matrix (C) and direct transmission matrix
(D) have changed. When there are changes in the actuator
configuration, the input matrix (B) needs to be modified. The
plant dynamics, represented by the state matrix (A), does
not change. Hereafter, we discuss a series of configurations,
with increasing k and `, i.e., increasing resilience estimation
pairs. We review the different possibilities of state recovery
according to their (k, `)-resilient design.

Then, the CPS has k-steerability.
Definition 8 ((k, ̀ )-resilient): A CPS with k-steerability 

and `-monitorability is said to be (k, ̀ )-resilient.
The dependency graphs highlight the relationships that exist 
between the inputs and state variables, and relationships 
between state variables and outputs. This is essential to for-
mally determine who can control what and who can monitor 
what. Besides, being (k, ̀ )-resilient means that the CPS can 
tolerate a maximum of k − 1 attacked actuators, while being 
able to act on every single state variable xi, i = 1, . . . , m. It 
also means that the CPS can withstand no more than ` − 1 
attacked sensors, while being able to monitor every single 
state variable xi.

As in any system design exercise, there are several objec-
tives that can conflict with each other. In the design of a CPS, 
security and resilience are two of them. While higher k and/or
` achieves higher resilience, this may also translate to more 
points where an adversary can try to control or monitor the 
plant, that is, the attack surface is augmented. In this article, 
we provide a methodology to estimate the resilience of a 
CPS. Complementing the work presented in this article, there 
are methodologies for CPS security risk assessment [17]. 
A fine balance between security risk and resilience must 
be achieved. Figure 1 schematically represents security risk 
versus resilience. The x-axis represents resilience. It can 
be quantified either with the resilience estimates k , ` or a 
weighted sum thereof. One can also envision a 3D model 
with one axis for k and another for `, forming together a 
resilience estimation plane. In other words, resilience can 
examined from the point of view of the inputs, outputs or 
both at the same time. The y-axis represents security risk. It 
can be quantified with a risk assessment method [17]. Three 
scenarios are pictured with three different curves. The black



FIGURE 2. Quadruple-tank plant scenario. (a) Original scheme, based on
Ref. [12]. (b) Extended (2, 2)-resilient scheme, with additional pumps and
sensors.

A. SCENARIOS
We use the quadruple-tank plant of Johansson [12] as exper-
imental testbed, cf. Fig. 2, Part (a), and supplementary mate-
rial available in an online repository.4 There are four tanks
and two pumps. Each tank has an outlet at its bottom.
Pump 1 pushes liquid into Tanks 1 and 4. Pump 2 pushes
liquid into Tanks 2 and 3. Tank 3 is placed above Tank 1.
By gravity, liquid from Tank 3 flows into Tank 1. Similarly,
Tank 4 is placed above Tank 2. By gravity, liquid from
Tank 4 flows into Tank 2. We examine three different designs
for this CPS: (1, 1)-, (1, 2)- and (2, 2)-resilient.
(1,1)-resilient CPS — In this initial design, there are four
ultrasonic sensors measuring the liquid level (one per tank)
and two actuators (mechanic pumps) moving liquid into the
tanks. Every pump has one liquid input and two outputs. The
sensors and actuators are visible on the cyber space. The plant
is observed and controlled from the cyber space. The state
representation of the plant is as follows:

A =



−a

α2
√
h0

0
a

α2
√
h0

0

0
−a

α2
√
h0

0
a

α2
√
h0

0 0
−a

α2
√
h0

0

0 0 0
−a

α2
√
h0


,

B =



γ1κ

α
0

0
γ2κ

α

0
(1− γ2)κ

α
(1− γ1)κ

α
0


, C = I4, D = 04,2

(13)

State matrix A has four rows and four columns. The ele-
ments of row m, i.e., a[m, ·] (m = 1, 2, 3, 4), determine
the next value of the m-th state variable, i.e., xi+1[m]. The
individual element a[m, n] of that row (n = 1, 2, 3, 4),
determines the weight that the old state variable value xi[n]
has in determining xi+1[m]. In the input matrix B, γ1 (γ2) is

4Cf. https://github.com/mirrored-quadruple-tank

the fraction of the liquid flow of Pump 1 (Pump 2) going to
Tank 1 (Tank 2), 1− γ1 (1− γ2) is going to Tank 4 (Tank 3).
Since there are four level sensors, the output matrix C is the
identity matrix of dimension four I4. The direct transmission
matrix D is a null matrix of dimension four by two 04,2.
(1,2)-resilient CPS — The previous model is extended with
outflow meters, one for each tank, see Fig. 2, Part (b). The
output signals yi[2n − 1] and yi[2n] correspond to the level
and outflow of Tank n (n = 1, 2, 3, 4). Output matrix C is
augmented to represent readings of outflows from the tanks.

C =



1 0 0 0
a

α2
√
h0

0 0 0

0 1 0 0
0 a

α2
√
h0

0 0

0 0 1 0
0 0 a

α2
√
h0

0

0 0 0 1
0 0 0 a

α2
√
h0


(14)

(2,2)-resilient CPS — This new design comprises new aux-
iliary actuators connected to fixed-flow Pumps 3 and 4. The
fixed-flow pumps can take over the roles of Pumps 1 and 2,
respectively. The input matrix of the plant is updated as
follows:

B =


γ1κ
α

0 η1λw1
α

0
0 γ2κ

α
0 η2λw2

α

0 (1−γ2)κ
α

0 (1−η2)λw2
α

(1−γ1)κ
α

0 (1−η1)λw1
α

0

 (15)

where η1 (η2) is the fraction of the liquid flow of Pump 3
(Pump 4) going to Tank 1 (Tank 2), 1− η1 (1− γ2) is going
to Tank 4 (Tank 3), λ and w1 (w2) respectively denote the
Pump 3 (Pump 4) coefficient (cm3/V second) and voltage (V),
not controllable from the cyber space. For Pumps 3 and 4,
the input signals are zero or one, corresponding to off and
on. The input column vector ui has now four rows. The first
two rows are the input voltages to Pumps 1 and 2. The last
two rows are the off/on (0/1) signals to Pumps 3 and 4. In the
sequel, we bridge the (k, `)−resilient property and plant state
recoverability.

B. RESILIENCE AND STATE RECOVERABILITY
We connect (k, `)-resilient estimation to behavioral proper-
ties. Building upon Refs. [5], [36], we quantify the resources
needed to adapt and bounce back from disruptions. For the
sake of simplicity, we make abstraction of noise. Firstly,
we assume that only sensor attacks may occur. When attacks
are perpetrated, we show that under certain conditions an
increased number and a diversity of sensors make possible
recovery of the state of a CPS. Secondly, we assume that
both actuators and sensors can be attacked. While attacks are
carried out, we demonstrate that it may be possible to identify
which actuators are being attacked and how they are being
attacked. If at all possible, these actuators can be deactivated.

https://github.com/jgalfaro/mirrored-quadruple-tank
https://github.com/jgalfaro/mirrored-quadruple-tank


Non-attacked actuators can be used to run a resilience plan
that steers the CPS in a safe state.

1) ATTACKS ON SENSORS ONLY
Let xi and x ′i be two states in Rm, with corresponding length
τ output sequences yi, . . . , yi+τ−1 and y′i, . . . , y

′

i+τ−1 result-
ing from the application of corresponding length τ input
sequences ui, . . . , ui+τ−1 and u′i, . . . , u

′

i+τ−1.
Definition 9 (Recoverable state with sensor attacks): The

state of a CPS is recoverable in τ steps, if for all states xi and
x ′i whenever the corresponding observed output sequences are
such that yi = y′i, . . . , yi+τ−1 = y′i+τ−1, then xi is equal to x

′
i .

Theorem 1 (Recoverable state with sensor attacks): The
state xi ∈ Rm of an attacked CPS is recoverable in one
step, if for j = 1, . . . ,m, there is at least one non-attacked
sensor implementing an injective function with input state
element xi[j].

Proof: LetC andD be the output and direct transmission
matrices of the CPS. Let xi and x ′i be two states. Because
for j = 1, . . . ,m at least one sensor implements an injective
function, when CxiDxi is equal to Cx ′iDx

′
i we have that xi is

equal to x ′i . Every state is uniquely determined by the sensor
outputs.
A technique such as watermarking [36] can be used to deter-
mine which sensors are being attacked. Theorem 1 can be
used to determine the exact state of CPS under attack.
Case 1: The state of the one-tank system modeled by

Eq. (12) is recoverable in one step if only sensor level dif-
ference (y1) or sensor outflow rate (y3) is attacked, but not
both.

Proof: It follows from the fact that both sensor types are
injective functions with domain system states and co-domain
length-one output traces.
Simulation of Case 1: The one-tank system has one level
sensor and one outflow sensor. The state of this system
is recoverable if the level sensor or the outflow sensor is
attacked, but not both. Fig. 3 (a,b) shows that we can recover
the state of the system from the outflow sensor, in case an
attack is targeting the level sensor. The simulation is based
on Matlab code, available on-line in a github repository.5

Additional details about the simulation code and results are
available in the appendix.
Case 2: The state of the (1, 1)-resilient system, cf. Eq. (13),
is not recoverable if one sensor is attacked.

Proof: When one sensor is attacked, there are no
additional points of observations (Fig. 3 (c,d)).
Simulation of Case 2: The (1, 1)-resilient system has only
four levels sensors (one per tank). When an adversary perpe-
trates an attack on these sensors, the state of the system is not
recoverable. Fig. 3 (c) shows the levels in each tank, when
the system is not attacked. Fig. 3 (d) shows the levels when
an attack is perpetrated. Since there is no non-attacked sensor
type implementing an injective function on its elements,
the state is not recoverable.

5Cf. https://github.com/mirrored-quadruple-tank/

Case 3: The state of the (1, 2)-resilient system, modeled by
Eqs. (13) and (14), is recoverable in one step if, for i =
1, 2, 3, 4, only level sensors y[2i−1] or outflow sensor y[2i] is
attacked, but not both (note, output column vector has format
(y[1], . . . , y[n])T ).

Proof: It follows from the fact that sensors y[2i − 1]
and y[2i] are injective functions of state component x[i],
for i = 1, 2, 3, 4 (note, state column vector has format
(x[1], . . . , x[m])T ).
Simulation of Case 3: Details available in the appendix.

2) ATTACKS ON ACTUATORS AND SENSORS
We now assume that both actuators and sensors can be
disrupted by an adversary perpetrating a covert attack
(cf. Section II-C). When actuators and sensors are attacked,
and thanks to redundancy and diversity, it may be possible to
determine the state of a CPS andwhich actuators are attacked.
The current state can be recovered provided that the output
sequence is unique, w.r.t. that state. Furthermore, we can find
out which actuators are attacked and how they are attacked,
provided that the output sequence is unique w.r.t. the input
sequence. Hence, the entire state of the CPS is recoverable.
The non-attacked actuators can be used to mitigate the attack
and steer the CPS into a safe condition.
Definition 10 (Recoverable with actuator and sensor

attacks): The state of a CPS is recoverable in τ steps, if for all
states xi and x ′i whenever the corresponding observed output
sequences are such that yi = y′i, . . . , yi+τ−1 = y′i+τ−1,
then xi is equal to x ′i and input signals are such that ui =
u′i, . . . , ui+τ−1 = u′i+τ−1.
Case 4: The state of the (2, 2)-resilient system, modeled by
Eqs. (13), (14) and (15), is recoverable in one step when, for
Tanks 1, 2, 3 and 4, the inflows are greater than zero, but
respectively less than η1λw1

α
, η2λw2

α
(1−η2)λw2

α
and (1−η1)λw1

α
.

Proof: When the states xi and xi+1 are recoverable
according to Definition 9, the evaluation of the product Axi
in Eq. (6) can be determined. Hence, the exact value of the
product B(ui + uai ) can be resolved, i.e., the exact inflow for
each tank, despite the presence of the adversary signal uai on
actuators.When for Tanks 1, 2, 3 and 4, the inflows are greater
than zero, but respectively less than η1λw1

α
, η2λw2

α
(1−η2)λw2

α

and (1−η1)λw1
α

, there is no way to obtain such flows involving
Pumps 3 or 4. It means that Pumps 1 or/and 2 have been
functioning, but not Pumps 3 and 4.
Simulation of Case 4: Case 4 is simulated in Fig. 4. Inflows
to Tanks 1, 2, 3 and 4 are shown by pump number. In Part (a),
because they are variable flow, Pumps 1 and 2 can achieve
inflows that are the same or below the inflows achievable
by fixed-flow Pumps 3 and 4. When inflows are below what
fixed-flow pumps can achieve, they can only be attributed to
variable-flow pumps. When either Pumps 1 and 2 operate or
Pumps 3 and 4 operate, we can tell which pair is involved.
Discrimination is possible. Part (b) shows a condition where
Pumps 1 and 2 are operated in ranges above what fixed-flow
pumps can achieve. For example, an adversary adds voltages
to signals and provokes inflow increases. Such a condition is

https://github.com/jgalfaro/mirrored-quadruple-tank/


FIGURE 3. Simulation of Cases 1 and 2. Part (a) plots the level in a one tank system under normal operation (solid blue
line). In Part (b), and assuming solely the ultrasonic sensor is attacked, it is possible to track the level using the outflow
sensor (solid red line). In Part (c), tank levels are tracked with ultrasonic sensors in the (1, 1)-resilient system. In Part (d) an
adversary spoofs actuators and manipulates sensor signals such that they look as expected (dashed lines), although actual
levels (solid lines) are different. The degree of resilience does not enable state recovery. In Part (e), tanks levels are tracked
with ultrasonic sensors in the (2, 2)-resilient system. In Part (f), an adversary spoofs actuators and manipulates solely
ultrasonic sensor signals (dashed lines). Actual levels (solid lines) can be recovered using observations from outflow
sensors.

achievable operating Pumps 1 and 2 alone, or also in combi-
nation with Pumps 3 and 4. For this example, discrimination
might be impossible.

Fig. 5 (a) shows the input voltages u1, and u2, respectively
applied to Pump 1 and Pump 2. The dashed line represents
the attack signal used by an adversary. Fig. 5 (b) represents



FIGURE 4. Simulation of Case 4. Plots show inflows to Tanks 1, 2, 3 and 4,
attributed to each pump. In Part (a), variable-flow pumps push liquid into
tanks at rates below what fixed-flow pumps can do. In Part (b),
variable-flow pumps push liquid into tanks at rates above what
fixed-flow pumps can do.

the levels in Tank 1 and Tank 4, when the attack starts at
T = 500 seconds.
Case 5: When the state xi of the (2, 2)-resilient system,
modeled by Eqs. (13), (14) and (15), is recoverable in one step
and the action of the adversary on actuators can be determined
resolving column vector uai in the following equation:

xi+1 = Axi + BS(ui + uai ) (16)

with the selection matrix

S =


1 0 0 0
0 1 0 0
0 0 0 0



FIGURE 5. Simulation results of Case 5. As a function of time, Part
(a) shows values of input signals ui [1] (solid read), ui [2] (solid blue) and
spoofed input signal ua

i [1] (dashed red). In Part (b), the adversary
manipulates the ultrasonic sensor signal such that they look as
expected (dashed) lines. Actual levels (solid lines) are recovered using
the outflow sensors. Assuming inflows are below what fixed-flow pumps
can achieved, it is possible to determine and track the values of the
adversary signal ua

i [1].

to Pumps 1 and 2. It results into two equations, with one
unknown in each of them, i.e., the adversary contributions to
the actuator inputs uai [1] and u

a
i [2].

3) DISCUSSION
Fig. 6 provides an interpretation of all our simulations. We
consider that the performance of a system is the capacity to
maintain expected levels in tanks. Hence, the performance
degradation corresponds to the deviation from the expected
levels. The larger the deviation, the lower the performance.
In Fig. 6, we represent these deviations in percentages.

Figs. 6 (a), (b), and (c) respectively show the performance
of the (1, 1)-, (1, 2)- and (2, 2)-resilient systems, when attacks
are perpetrated. When a system is not attacked, perfor-
mance is 100%. Attacks start at T = 500 seconds. The
adversary manipulates inputs to drive more liquid in the
Tanks 1 and 4. The consequence of the attack is a deviation
from the expected system state. Quantifying this deviation,

0 0 0 0

Proof: By assumption, states xi and xi+1 are recoverable. 
Since it is determined by the controller, the input column ui 
is known. The effects of Pumps 3 and 4 have been excluded. 
The selection matrix S picks the inputs (voltages) applied



FIGURE 6. Performance evolution of the (1, 1)-, (1, 2)- and (2, 2)-resilient
systems, when they are confronted to a covert attack. Performance
degradation corresponds to the deviation from their expected levels. The
larger the deviation, the lower the performance. The (1, 1)-resilient
system, with no recovery capability, experiences a performance drop.
In contrast, the (1, 2)- and (2, 2)-resilient systems recover from the attack.
The (1, 2)-resilient system recovers with graceful degradation, due to the
absence of actuator redundancy, while the (2, 2)-resilient system fully
recovers.

we obtain a percentage of performance loss. When the
(1, 1)-resilient system (with no recovery capability) is under
attack, it experiences a performance drop. In the (1, 2)- and
(2, 2)-resilient systems, it is possible to mitigate the effects
of attacks and bounce back. As shown in Figs. 6 (b) and (c),
respectively, the (1, 2)-resilient system recovers with graceful
degradation, due to the absence of actuator redundancy, while
the (2, 2)-resilient system fully recovers.

VI. CONCLUSION
We have addressed covert attacks on CPS. We have defined
the new k-steerability and `-monitorability control-theoretic
concepts. The k-steerability concept reflects the ability in a
CPS to act on each of its individual plant state variables with
at least k functionally diverse groups of input signals. In other
words, it reflects the ability of the CPS to mitigate the impact
of covert attacks when less than k groups of input signals
are compromised, using static functional diversity. The `-
monitorability concept reflects the number of observations on
each state variable of a CPS that can be used to identify covert
attacks. Together, k-steerability and `-monitorability deter-
mine the (k, `)-resilient property of a CPS. If we assume that
the detection process is conducted by combining strategies,
such as redundancy and diversity in hardware and software
techniques, the resulting (k, `)-resilient concept applies the
moving target paradigm, in which the CPS adapts itself to
invalidate the acquired knowledge of the adversaries.We have
validated our findings by conducting representative simula-
tions. Future work will improve current results by applying
dynamic functional diversity, e.g., by applying a functional
diversity of components that will evolve over time.

APPENDIX. A. SUPPLEMENTARY MATERIAL TO THE
SIMULATIONS
We report in this appendix the simulation of Case 3
(cf. Section V-B). An existing Matlab implementation of
the quadruple-tank process for this case scenario (avail-
able online at https://github.com/karrocon/pcsmatlab), was
adapted and complemented with Matlab and Simulink code,
w.r.t. the resilience and adversary models presented in this
paper. The resulting code is also available on-line, in our
github repository (cf. https://github.com/mirrored-quadruple-
tank/). The simulation of the Case 3, as in the Cases 1,
2, 4, and 5 (already reported in the main body of this
paper, cf. Section V-B), implements a proportional-integral
(PI) controller based on the differential equations of the
quadruple-tank scenario By Johansson in Ref. [12].

Since the valves of the quadruple-tank scenario are not
assumed vulnerable (e.g., we assume they cannot be attacked
from the cyber space), we build the attacks assuming
that the adversary is only taking control over the pumps
(i.e., the adversary manages a remote access to the system,
that allows manipulating the input voltages of the pumps
acting as actuators of the quadruple-tank plant). Fig. 7 depicts
the idea of our attack for both the original scheme of
the quadruple-tank scenario in Ref. [12], and the extended
(2, 2)-resilient scheme discussed in Section V-A. By attack-
ing the voltage of the pumps, the adversary changes the inflow
levels of the tanks. As depicted in Fig. 7, the adversary adds
an attack signal to the input voltage of Pump 1. As a result of
the attack, more liquid is pumped into Tanks 1 and 4.

According to the theorems defined in Section V-B,
the adversary can also attack the sensors, in order to evade
detection (i.e., by attacking both sensors and actuators,
the adversary perpetrates a covert attack). The attack against

https://github.com/karrocon/pcsmatlab
https://github.com/jgalfaro/mirrored-quadruple-tank/
https://github.com/jgalfaro/mirrored-quadruple-tank/


FIGURE 8. Simulation results associated with Case 3 (cf. Section V-A),
with regard to the (1,2)-resilient design. In Part (a,) we show the levels of
the plant under normal operation (the ultrasonic level sensors are not
under attack). In Part (b), attack mode, and assuming solely the ultrasonic
sensor are attacked, we track the level using the outflow rate meters.

controller of the first simulation. Furthermore, and during
the attack against the actuators, the adversary intercepts the
truthful signals from the controller, and adds a modified
input signal to the plant. This represents the disruption of the
plant that is captured from the sensors of the system. Finally,
the simulations assume that the attacked input voltage of the
Pump 1 is increased by 50% w.r.t. its initial value, as shown
in Fig. 5(a), in Section V-B. The consequence of this attack
is depicted in Fig. 5(b) (also in Section V-B). As a result of
the aforementioned attack simulations, with respect to the
(1,2)-resilient system (cf. Section V-A), Fig. 8 shows the
plant signals associated to the Case 3 (cf. Section V-B). The
(1,2)-resilient system has eight sensors (four ultrasonic sen-
sors and four outflow meters) and two actuators (Pumps
1 and 2). If only the ultrasonic level sensors (or only the
outflow meters sensors) are attacked, then the state is recov-
erable. Fig. 8(a) shows the signals from the non-attacked

FIGURE 7. Simplified representation of two representative attack 
scenarios. Red lines represent signals generated by the adversary. In Part 
(a), we assume an adversary perpetrating an attack against the original 
scheme in Ref. [12]. In Part (b), we assume an attack against the extended 
(2, 2)-resilient scheme discussed in Section V-A.

the sensors consists to manipulate the measurement signals
of the sensors, before reaching the controller (e.g., by means 
of injection, spoofing and man-in-the-middle cyber attacks,
using a remote access from the cyber space). Hence, wrong 
measurements are provided to the controller, to conceal the
detection of the attack against the actuators (i.e., the pumps). 
In fact, the measurement modification hides the real state of 
the system to the eyes of the controller. In our simulations, 
we can separate the processing of truthful signals, from those 
manipulated by the adversary. To ease the analysis, two sim-
ulations are conducted for each scenario, at the same time.
The sensor signals of the second simulation are sent to the



level sensors. When only one family of sensors is attacked
(either the ultrasonic or the outflow meters ones), then we
can appreciate the system can recover the state by using the
non-attacked outflow sensors, as shown in Fig. 8(b). Notice
that if we were conducting the full covert attack over the
(2,2)-resilient system (cf. Fig. 7(b)), the controller will also
be able to recover the system state, using the additional
pumps (Pumps 3 and 4), in a more optimal way, as already
indicated in the discussion of Section V-B (and shown in the
interpretation of results included in Fig. 6 of Section V-B).
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