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ABSTRACT

Image-guided thermal ablations have become an important therapeutic option for patient with cardiac arrhyth-
mia, it is minimally-invasive and provides better and faster patient recovery. However, to enhance the ablation
guidance, the therapist needs to link by image registration the intraoperative images to the high-resolution
anatomical preoperative imaging, in which the ablation path has been defined. In this work, we present a
convolutional neural networks (CNNs) framework for transesophageal ultrasound/computed tomography image
registration to solve the problem of high computation time of the classical iterative methods, which is not suitable
for a real-time application. We propose the following process: we first pass the input moving and fixed image
pairs through a siamese architecture consisting of convolutional layers, thus extracting features of moving and
fixed maps analogous to dense local descriptors, then matching the feature maps, and finally pass this correspon-
dence feature map into a registration network, which directly outputs the registration parameters set of the rigid
registration. Accuracy of the registration is quantified based on the Target Registration Error (TRE) for specific
anatomical landmarks. Results of the registration process show a median TRE of 2.2 mm for all the fiducial
points, and the registration computation time was around 3 ms comparing to the classic iterative methods which
takes around 70 seconds for one image pair. In our future work we are going to perform our approach on 2D/3D
learning-based registration to refine the estimation of the transesophageal probe pose in the 3D preoperative
volume.

Keywords: Rigid-body image registration, Ultrasound Imaging-cardiac, Multimodal image fusion.

1. INTRODUCTION

In the last 20 years, cardiac arrhythmias (heart rhythm problems) have become one of the most important
public health problems and a significant cause of increasing health care costs in Western countries. Arrhythmias
occur when the electrical impulses that coordinate the heartbeats do not propagate properly and cause rapid,
uncoordinated, weak contractions of the heart 1. Moreover, in the long term, arrhythmias may increase the risk
of developing other effects such as stroke and heart failures.

Treatments for arrhythmia can take many different forms, depending on the type and severity of the irregular
heartbeat and its cause. Medication treatments for arrhythmia are called chemical cardioversion. The patient
receives antiarrhythmic medicine orally or intravenously. But when medications don’t offer a solution, an ablation
treatment for arrhythmia based on thermal Radio Frequency (RF) can be considered. This ablation technique
can be performed on different targets of the heart 2. For example, in atrial/ventricular fibrillation ablation,
small scars are intentionally created on the cardiac wall to break up the electrical signals propagation paths that
cause the irregular heartbeats. During catheter ablation, a small RF ablator is inserted into the heart, usually
through a vein and then small areas of tissue that may be causing or propagating the arrhythmia are necrotized
by heating 2. However, RF lesions are not always trans-mural because a good contact between the tissue and
the catheter is difficult to achieve 3, and there are also many complications associated with endocardial therapy.

Recently, an ultrasound-guided transesophageal high-intensity focused ultrasound (HIFU) device has been
designed to perform lesions from the esophagus into the heart walls in various locations, while preserving inter-
vening tissues 4–6. This device is less invasive as RF and offer better targeting ability. This ablation device also
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integrates in its middle a 2D US imaging transducers for intraoperative guidance purpose. This imaging device
produces an US image perpendicular to the device axis. Classically, the planning of the intervention (ablation
path) is defined on a high-resolution preoperative anatomical imaging (CT/MRI). The goal of the cardiologist
is then to follow the pre-defined path with the help of the 2D US image alone. But this imaging device used for
guidance offers only a very limited view of the anatomy. It seems the important to merge this two information
(3D preoperative CT and 2D intraoperative US) by registration in order to improve the guidance of the gesture 7.
In a previous work of our team, Sandoval et al. proposed a solution to locate an intraoperative 2D US slice
within the 3D CT volume 8. Their method starts from the anatomical hypothesis that the intraoperative 2D US
slices are perpendicular to the esophagus axis. So, they reformat the preoperative 3D CT volume into 2D CT
slices perpendicular to the esophagus axis. For each 2D CT slice within a candidate zone, they perform a 2D
US to 2D CT image-based registration. They use the classical scheme in which an optimizer iteratively searches
the transformation (rigid in this case) which gives the highest similarity (Normalized Mutual Information in
their case). At the end, the 2D CT slice with the highest similarity after registration is considered as the final
result. One of the main drawbacks of this method is that the iterative 2D/2D registration process is too time
consuming to be used in the operating room. Recent studies have demonstrated the potential of deep learning
methods in directly solving the registration problem without any iterative process. but the main problem of
deep learning registration methods is the lack of ground truth for learning. This is why many methods use
unsupervised learning 9. However, if the ground truth is known, supervised methods can be considered. Among
the class of rigid registration supervised methods, Miao et al. 10 are the first to use deep learning to predict
rigid transformation parameters via hierarchical learning. They use a CNN to predict the transformation matrix
associated with the rigid registration of 2D/3D X-ray attenuation maps and 2D X-ray images. This approach
outperformed the classical image and optimization-based registration approaches in terms of both accuracy and
computational efficiency. Recently, Chee et al. 11 use a CNN to predict the transformation parameters used to
rigidly register 3D brain MR volumes. In their framework called Affine Image Registration network (AIRNet),
the Mean Square Error (MSE) between the predicted and ground truth affine transforms is used to train the
network. Salehi et al. 12 use a deep residual regression network, a correction network, and a bivariate geodesic
distance-based loss function to rigidly register T1 and T2 weighted 3D fetal brain MRs for atlas construction.
However, these methods mainly concern monomodal images.

In this work, we propose a CNN framework for CT/US image registration, using Deep Features representation
for a supervised rigid transformation estimation.

2. METHOD

The heart is a moving organ. However, some characteristics of the cardiac movement allowed us to consider a
rigid registration scheme. First, we had at our disposal a Cine CT from a patient’s heart composed of 20 volumes
at each 5% phase of the RR interval. Second, we are interested in ventricular fibrillation. During its diastolic
phase, the ventricle is relatively stationary. The HIFU treatment will be shot in this phase to have a fixed focal
point in relation to the organ and thus avoid a dispersion of heat prejudicial to the necrosis of the tissues. So, a
quasi-static ventricle pose can be considered. Moreover, on our US system, the acquisition is synchronized with
the ECG. Thus, it is relatively easy to create pairs of US/CT images at the same phase and so to consider rigid
registration.

In this section, we will introduce the proposed framework for estimating the transformation parameters of
a rigid image registration between a preoperative CT slice and an intraoperative US image. In our case and
following the approach described in 8, only a 2D rigid transform with three Degrees of Freedom (DOF) – one
rotation and 2 translations- has to be estimated.

The main idea is to estimate the registration that best aligns some common characteristics of the images.
The information contained in the two images is of a very different nature (gray levels proportional to the X-ray
absorption coefficient of the tissues for the CT and information formed by the reflection of waves on surfaces
and speckle for US). We must therefore first extract from the two imaging modalities a common information, in
our case the shapes of the organs, before performing registration. Therefore, we propose the following process
(see Figure 1):



(i) Descriptors are extracted from the moving IM and the fixed IF images using Deep Learning. For this,
IM and IF are passed through a siamese CNN architecture (ResNet18) consisting of convolutional layers, thus
extracting two feature maps fM , and fF which are analogous to dense local descriptors;

(ii) These feature maps are combined in a concatenating layer;

(iii) This corresponding feature maps are the set as input into a convolutional network which directly outputs
the parameters set T (two translations, one rotation) of the rigid registration. This framework should be trainable
end-to-end for rigid registration task.

Figure 1. The overall of the proposed framework.

2.1 Feature extraction

The first step of the framework is feature extraction. Features extraction is a classical tool in deep learning.
One common feature extraction technique is to feed the image to a conventional pre-trained neural network and
use the representation for that particular image in the intermediate layers of the neural network. We used the
ResNet18, which is one of the most efficient standard feature extraction model that can be used in many medical
applications 13. This model handles the vanishing or exploding gradient problem when the CNN goes deeper.

Resnet18 can be found implemented in PyTorch. This implementation offers a version with the weights
pre-trained for feature extraction on ImageNet, the large benchmark database, Each of our input modalities has
its own image characteristics. Thus we passed each of the two images to be registered in its own network. Each
of these networks produces a feature map f composed of image descriptors.

2.2 Matching

These two feature maps should be combined across images as a single tensor to input it to the rigid transformation
parameters estimation network. To achieve this, a concatenation of descriptors along the channel dimensions is
performed in the concatenation layer.

2.3 Registration network

We will present the network architecture which consists of three blocks of convolutional layers using a kernel
size of 5, each followed by batch normalization layers, and a rectified linear unit (ReLU). The last layer is a
fully connected layer to estimate the rigid registration parameters. The network expects the concatenated map
extracted from moving and fixed images as its input, and directly estimates the parameters (tx, ty, and θ) of
the rigid transformation that connects these images. The idea behind this architecture is that the estimation
is performed in a bottom-up manner where early convolutional layers vote for candidate transformations, and
these are then processed by the later layers to aggregate the votes. The first convolutional layers can also enforce
local neighborhood consensus by learning filters which only fire if nearby descriptors in image IM are matched
to nearby descriptors in image IF .



2.4 Training

We consider a supervised learning scheme, the training datasets include pairwise images of moving CT and
fixed US image pairs, and their associated rigid geometric transformation parameters as ground truth GT . The
training loss function can be formulated as the L2 norm of the error between the GT (TGT ) and the predicted
transformation parameter TEst.

L = α‖tGT − tEst‖2 + β‖ϑGT − ϑEst‖2 (1)

With tGT and tEst the translation vector of respectively the ground truth transformation and the estimated
one expressed in mm, ϑGT and ϑEst the rotation angle expressed in degrees and α and β are weights controlling
the balance between the translation and the rotation losses. The choice to use mm for translation and degrees
for rotation gave a certain coherence and balance between these parameters. Indeed, an error of 1 degree in
rotation leads to a displacement of 1 mm at 60 mm from the center of rotation. Because of this consistency, α
and β could be set to 1.

The network is trained by the gradient of the loss function with respect to the estimated rigid parameters (tx,
ty, and ϑ). This gradient is then used to minimize the loss function by using backpropagation and Stochastic
Gradient Descent.

After training, the network can be applied for registration of unseen image pairs. We implemented the
network using PyTorch and we trained it on a NVIDIA TitanX GPU with 10000 iterations.

3. RESULTS

3.1 dataset

Because ground truth cannot be obtained on real data, i.e. we can never ensure that a real US image is perfectly
associated to a real CT plane, we decided to simulate US images from CT data.

Our study has been conducted on a public available dataset of twenty contrast enhanced cardiac CT vol-
umes 14,15. All the data were obtained from two state-of-the-art 64-slice CT scanners (Philips Medical Systems,
Netherlands) using a standard coronary CT angiography protocol at two sites affiliated to Shanghai Shuguang
Hospital. Images were acquired in the axial view, covering the whole heart from the upper abdominal to the
aortic arch. The in-plane resolution was about 0.44× 0.44 mm and the average slice thickness was 0.60 mm.

In these volumes, the esophagus was roughly segmented manually.

From these volumes, we create a set of corresponding pair of CT and US images with known transformation
(Figure 2) First we extracted randomly 4000 2D CT oblique cut planes from the 20 CT volumes (200 images per
volume). For this we:

1. We choose randomly 4000 initial poses along the esophagus axes within the 20 CT volumes.

2. For each pose we create a new referential by setting some randomly transformations near these initial poses
with some translations within ±10 mm and rotations within ±15 degree around each coordinate axis.

3. The x − y plane of this referential will serves as the fixed CT image ICT . The origin of the x − y plane
served also as origin of ICT .

4. For each ICT , we simulated the corresponding US images with the method described in 16 that predict
the appearance and properties of a B-scan ultrasound image from a probe origin pose, the point spread
function of the US device, the acoustical impedance of the tissues and some tissue-adapted distribution of
point scatterers. We randomly define the pose of the simulated US origin probe within a range of ±10 mm
from the ICT origin and we randomly rotate the probe in a range of ±15 degree around this origin. These
two translation and rotation defines the ground truth transformation TGT between the CT and US image.

5. So, for each ICT we get an US image IUS and a transformation ground truth TGT .

From this dataset, the network was trained by selecting the 3600 pairs of corresponding ICT and IUS slices
from 18 of the 20 cardiac CT scans. For validation, we used 400 image pairs from the 2 remaining volumes



Figure 2. Datasets creation workflow

3.2 Evaluation

We compared the registration results obtained by the proposed methods to these obtained by the classical iterative
rigid registration method implemented in the SimpleITK Library 17. We used Normalized Mutual Information
as similarity measure because it has been found as one of the most suited for our CT/US registration problem 18,
We also used 2D Euler transform to presents the spatial mapping of points from the fixed image space to points
in the moving image space. We evaluate the performance of the method in terms of computation time and
registration accuracy.

3.2.1 Computation time

The mean registration computation time for all the 400 image pairs is now lower than 3 ms for each image
pair. which is suitable for a real-time application. For comparison, the classic iterative method takes around 70
seconds to register one image pair.

3.2.2 Transformation estimation error

We compared the parameters of the transformation obtained by our proposed methods with the ground truth
(GT ). A transformation is composed by a translation vector t (tx, ty) and a rotation (vartheta). We evaluate
separately the translation errors and the rotation errors between the estimated pose of each of the 400 validation
image pairs and their associated GT .

We estimated the translation errors by equation (2), where tGT,i and tEst,i are the translation parameters of
respectively the GT and the estimated one.

The rotation error has been estimated using the angle difference in degrees estimated between the orientation
parameter of the pose of respectively the GT and the estimated rotation angle (equation (3)), where ϑGT,i and
ϑEST,i are the angles that encode the orientation parameter of the pose of respectively the GT and the estimated
rotation.

‖tGT,i − tEST,i‖2 (2)

|ϑGT,i − ϑEST,i| (3)

Figure 3.a shows the boxplots of the 400 translation errors from our CNN-based registration and the classical
iterative one. The median translation errors are 1.1 mm using CNN and 1.2 mm using the classical approach.

The boxplots of the rotation errors in Figure 3.b show that the median rotation errors are 2.1 degree using
CNN and 2.4 degree when using the iterative classical method.



Figure 3. Box plots of a) the Translation Estimation Errors, b) the Rotation Estimation Errors.

3.2.3 Target Registration Error (TRE)

The validation can also be done by estimating the registration errors on some fiducial markers. To quantify the
error, we defined eight specific feature points (or landmarks) Pj in the US fixed images, and we used the two
transformations matrices, the estimated TEst and the GT TGT one to project these points in the corresponding
CT images: PEst,j = TEstPj and PGT,j = TGTPj . The Euclidean distance between the corresponding projected
points PEst,j and PGT,j gives the TRE. Figure 4 shows the boxplot of the TREs for all the 8 fiducial points of
all the 400 test images. Quantitative results show a median TRE of 2.2 mm for all the fiducial points of all the
400 test images using CNN, and 2.7 mm using the classical method.

Figure 4. Boxplots of the mean Target Registration Errors

3.2.4 Visual validation

Figure 5 shows a visual comparison between the simulated fixed US image, and the corresponding moving CT
image pair. It shows the overlap between the moving CT image and the fixed US image: a) before registration
b) after registration with the proposed method. Visually, the results obtained by the proposed method seems to
provide a good alignment, this can be seen for example at the probe center, and the bottom of the image on the
thoracic chest.

3.2.5 Discussion

From the previous quantitative results, we can conclude that on the one hand, the registration accuracy obtained
by CNN is of the same order as that obtained by the classical iterative method. The results obtained by CNN



Figure 5. An example of the registration of an image pair. The overlap between the moving CT image and the fixed US
image a) before registration, and b) after registration with the proposed method

are even slightly better, even if statistically this improvement is not significant. Compared to other methods in
the literature, the global target registration error (TRE) of 2.2 mm is on the same range of magnitude as those
reported in 8,10.

On the other hand, CNN allows to strongly accelerate the processing time. The registration between two
images takes only 3 ms (instead of 70 s for the classical iterative method). This gain in computation time allows
us to consider implementing the 3D CT/2D US registration technique proposed by 8 in clinical practice.

These results were obtained from simulated US images. We are fully aware that there are differences between
simulated and real US images (signal attenuation compensation, acoustic shadowing, post processing of real US
images...). However, we found in a previous study that a method developed on simulated data performed well
on real data 8,10. We are therefore confident that our method will also work on real data.

4. CONCLUSION

In this paper, we presented a deep feature learning-based approach for the registration of transesophageal US/CT
cardiac images. The results showed a strong improvement in terms of computation time with a promising result
in terms of registration accuracy. In future work, we will integrate the features learning approach to a minimally-
invasive HIFU procedure to improve the therapy planning and guidance. We will apply our approach our approach
on 2D/3D learning-based registration to refine the estimation of the transesophageal probe pose placement in
the 3D preoperative volume. Finally, we will include data from physical phantom and real-patients to evaluate
the contribution of our registration scheme to the therapy guidance.

ACKNOWLEDGMENTS

This work was part of the CHORUS (ANR-17-CE19-0017) project which have been supported by the French
National Research Agency (ANR).

REFERENCES

[1] Sinclair-Smith, B. C., “Electrical reversion of cardiac arrhythmias.,” South Med J 65(3), 289–293 (1972).

[2] Huang, S. K. S. and Wood, M. A., [Catheter ablation of cardiac arrhythmias e-book ], Elsevier Health Sciences
(2014).



[3] Reddy, V. Y., Shah, D., Kautzner, J., Schmidt, B., et al., “The relationship between contact force and
clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study,”
Heart Rhythm 9(11), 1789–1795 (2012).

[4] Pichardo, S. and Hynynen, K., “New design for an endoesophageal sector-based array for the treatment
of atrial fibrillation: a parametric simulation study,” IEEE Trans Ultrason Ferroelectr Freq Control 56(3),
600–612 (2009).

[5] Constanciel, E., N’Djin, A., Bessière, F., et al., “Design and evaluation of a transesophageal hifu probe
for ultrasound-guided cardiac ablation: simulation of a hifu mini-maze procedure and preliminary ex vivo
trials.,” IEEE Trans Ultrason Ferroelectr Freq Control 60, 1868–1883 (2013).

[6] Bessière, F., N'djin, W. A., Constanciel-Colas, E., et al., “Ultrasound-guided transesophageal high-intensity
focused ultrasound cardiac ablation in a beating heart: a pilot feasibility study in pigs,” Ultrasound Med
Biol 42(8), 1848–1861 (2016).
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