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Abstract

A prominent approach to build datasets for training task-
oriented bots is crowd-based paraphrasing. Current ap-
proaches, however, assume the crowd would naturally pro-
vide diverse paraphrases or focus only on lexical diversity. In
this WiP we addressed an overlooked aspect of diversity, in-
troducing an approach for guiding the crowdsourcing process
towards paraphrases that are syntactically diverse.

Background & Motivation
Task-oriented chatbots (or simply bots) enable users to inter-
act with software-enabled services in natural language. Such
interactions require bots to process utterances (i.e., user in-
put) like “find restaurants in Milan” to identify the user’s in-
tent. A prominent approach to build datasets for intent recog-
nition models involves acquiring an initial set of seed utter-
ances (for the intents) and then grow it by paraphrasing this
set via crowdsourcing (Yaghoub-Zadeh-Fard et al. 2020b).

An important dimension to measure quality in this con-
text is diversity, i.e., the breath and variety of paraphrases
in the resulting corpus, which dictates the ability to capture
the many ways users may express an intent. In this context,
paraphrasing techniques generally rely on approaches that
aim at introducing lexical and syntactic variations (Thomp-
son and Post 2020). Lexical variations refer to changes that
affect individual words, such as substituting words by their
synonyms (e.g., “search restaurants in Milan”). Syntactic
variations, instead, refer to changes in sentence or phrasal
structure, such as transforming the grammatical structure of
a sentence (e.g., “Where can we eat in Milan?”). While
the development of techniques to introduce such lexical and
syntactic variations is the focus of ongoing work in auto-
matic paraphrasing (Berro et al. 2021), they are currently
greatly under-explored in the crowdsourcing community.

Among the few contributions towards diversity, a promi-
nent data collection framework involves turning crowd-
based paraphrasing into an iterative and multi-stage pipeline.
Here, multiple rounds of paraphrasing are chained together,
and the seed utterances for a round come from a previous
round by using different seed selection strategies (e.g., sim-
ply choosing all paraphrases from the previous round (Ne-
gri et al. 2012), random sampling (Jiang, Kummerfeld, and
Lasecki 2017), or identifying outliers (Larson et al. 2019)).
The focus of these strategies is to ultimately reduce the bias

effect of factors like the seed utterances and examples shown
to workers (Wang et al. 2012). Diversity can be further im-
proved by focusing on the actual crowdsourcing task. This
task could constraint the crowd from using frequently-used
words (Larson et al. 2020) or suggest words that workers
may incorporate in their paraphrases (Yaghoub-Zadeh-Fard
et al. 2020a). While valuable, these contributions assume
workers would naturally produce diverse paraphrases or fo-
cus primarily on lexical variations.

In this paper we describe our preliminary work towards a
multi-stage paraphrasing pipeline that can guide the crowd-
sourcing process towards producing paraphrases that are
syntactically diverse and balanced.

Crowdsourcing Diverse Paraphrases
Figure 1 depicts our approach and where it sits in an itera-
tive and multi-stage pipeline for crowd-based paraphrasing
based on prior art (Negri et al. 2012; Kang et al. 2018; Lar-
son et al. 2019). In this pipeline, a typical round r of data
collection (black arrows) takes as input a dataset of seeds
utterances X and a curated collection of paraphrases Y (ini-
tially, Y can be empty). The crowdsourcing task in the para-
phrase generation step asks a worker to provide a set of n
paraphrases yj for an utterance x. The resulting collection of
unverified paraphrases Ȳ is fed to the paraphrase validation
step, where another crowd helps to check for correctness.
The correct paraphrases are then appended to the collection
of curated paraphrases Y . The seed selection step updates
(or fully replaces) the seeds in X by sampling from the cor-
rect paraphrases to create the set of seeds for the next round.

Our approach assumes an initial (X , Y ) as input and aims
to steer the crowd towards specific patterns or encourage
workers to contribute novel syntactic variations to the input
dataset. For these goals, we introduce a pattern selection step
and propose novel prompts for paraphrase generation.
Pattern selection. To capture and control syntax, we fol-
low (Iyyer et al. 2018) and define a pattern as the top two
levels of a constituency parse tree (this depth mostly has
clause/phrase level nodes, making syntax comparisons less
strict but still effective). The pattern selection step thus an-
alyzes the paraphrases in Y and identifies target patterns to
support the paraphrase generation step towards these goals.

How to identify target patterns? For example, we may
choose the k least-frequent patterns in Y as targets, or the
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Figure 1: Our approach (in red) sits in a pipeline for paraphrasing. Pattern selection identifies target patterns (capturing syntax).
Paraphrase generation leverages these patterns to craft prompts aiming for specific syntax or to elicit novel syntactic variations.

k most-frequent ones, any choice informing the generation
step differently. Bottom-k patterns may be used to guide
workers to provide paraphrases matching any target pattern
to collectively contribute more balanced syntax. While the
top-k may be used as “taboo” to avoid frequent syntax.
Paraphrase generation. Prompts can easily include words
and ask workers to avoid/incorporate them in their para-
phrases. This is not straightforward for patterns, as patterns
directly are not informative for non-experts.

How can the prompts leverage target patterns to steer to-
wards (or encourage novel) syntax? To achieve these goals,
this work proposes prompts that 1) impose constraints or
2) give recommendations, both by showing example words
or paraphrases sampled from target patterns. The specific
goal shapes the prompt and what the target patterns repre-
sent. For example, if we want to steer the crowd towards
uncommon syntax, we can set target patterns to the least fre-
quent patterns in Y . The prompts can then show example
paraphrases sampled from these patterns and ask workers to
contribute paraphrases matching a pattern in any example
(i.e., constraining workers to a specific syntax and compen-
sating for less frequent syntax in Y ). Alternatively, we may
aim for novel syntax, so the prompts may use example para-
phrases/words as recommendations to inspire workers and
encourage them to contribute novel (or “unseen”) patterns.

Ongoing Experiments
We are running experiments to explore (i) whether our ap-
proach can effectively increase syntactic diversity, and (ii)
what task designs are more effective for this goal. Below,
we overview of our planned experiments.
Datasets. We selected the ParaQuality dataset (Yaghoub-
Zadeh-Fard et al. 2019), which contains seed utterances for
intents from different domains, including those for Scopus,
Spotify, Open Weather, Gmail among other services.
Experimental conditions1. We consider six task designs,
each representing different prompts. All prompts share the

1Screenshots and details at https://tinyurl.com/hcomp2021div

same basic set of instructions. The Ê baseline prompt sim-
ply queries for paraphrases for the given seed. Variations of
the baseline include Ë word recommendations (Yaghoub-
Zadeh-Fard et al. 2020a) Ì and taboo words (Larson et al.
2020). Our approach Í patterns by example shows example
paraphrases associated with least-frequent patterns and asks
workers to use them as inspiration (allowing novel syntax).
A variant of this prompt constraints workers to use only pat-
terns present in the examples. The Î taboo patterns asks for
paraphrases with a pattern different than the given example
paraphrases (sampled from most-frequent patterns). We also
propose Ï patterns by words to show words (sampled from
least-frequent patterns) and request workers to use them in
their paraphrases. A variant fixes the position of the words
and asks workers to fill in the blanks. Informed by pilots, all
conditions include validators to avoid paraphrases that are
(clearly) incorrect: (i) check that they are not copies of the
examples and are unique after preprocessing (e.g., lemma-
tizing), and (ii) avoid gibberish, as in (Liu and Liu 2019).
Procedure. We conduct two full rounds of the pipeline in
Figure 1, running all conditions. Pattern selection simply
counts the frequency of unique patterns using exact match-
ing, and we adopt the approach in (Larson et al. 2019) for
paraphrase validation. Seeds selection is based on random
sampling of correct paraphrases. For the first round (r1), we
use the seeds and correct paraphrases from ParaQuality as
input. We recruit English-speaking workers ranked top-20%
in Toloka and collect paraphrases from 10 workers per seed.
Metrics. We consider commonly-used paraphrase diversity
metrics: Type-Token Ratio (TTR), Paraphrase In N-gram
changes (PINC) (Chen and Dolan 2011), and DIV (Kang
et al. 2018). We also consider a measure of pattern diver-
sity based on Jiang, Kummerfeld, and Lasecki (2017): the
number of distinct patterns divided by the total number of
paraphrases. Following Yaghoub-Zadeh-Fard et al. (2020a),
we also measure the accuracy of an intent detection model
trained on the datasets resulting from each condition.
Discussion. We have implemented the pipeline and prompts,
informed by pilots, and are ready to start the experiments.

https://tinyurl.com/hcomp2021div
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