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EXTRACTION OF OPTIMAL SUBSEQUENCES OF SEQUENCE OF BALLS, AND APPLICATION TO OPTIMALITY ESTIMATES OF MASS TRANSFERENCE PRINCIPLES

In this article, we prove that from any sequence of balls whose associated limsup set has full µ-measure, one can extract a well-distributed subsequence of balls. From this, we deduce the optimality of various lower bounds for the Hausdor dimension of limsup sets of balls obtained by mass transference principles. One also gives a version of Borel-Cantelli lemma suitable for limsup sets of balls of full measure.

©

(k i ) i∈Z ∈Z Z . For x ∈ R d , r > 0, B(x, r) stands for the closed ball of (R d ,|| || ∞ ) of center x and radius r. Given a ball B, |B| is the diameter of B.

For t ≥ 0, δ ∈ R and B := B(x, r), tB stand for B(x, tr), i.e. the ball with same center as B and radius multiplied by t, and the δ-contracted B δ is dened by B δ = B(x, r δ ). Given a set E ⊂ R d , • E stands for the interior of the E, E its closure and ∂E is the boundary of E, i.e, ∂E = E \ • E. The σ-algebra of Borel sets of R d is denoted by B(R d ), L d is the Lebesgue measure on B(R d ) and M(R d ) stands for the set of Borel probability measure over R d .

For µ ∈ M(R d ), supp(µ) := {x : ∀r > 0, µ(B(x, r)) > 0} is the topological support of µ.

Given E ∈ B(R d ), dim H (E) and dim P (E) denote respectively the Hausdor and the packing dimension of E. 2.1. Denition and recalls. Denition 2.1. Let ζ : R + → R + be an increasing mapping verifying ζ(0) = 0.

The Hausdor measure at scale t ∈ (0, +∞) associated with ζ of a set E is dened

Introduction

Investigating Hausdor dimensions of sets of points approximable at certain speed rate by a given sequence of points (x n ) n∈N is an important topic in Diophantine approximation (see [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF] and [START_REF] Barral | Ubiquity and large intersections properties under digit frequencies constraints[END_REF] among other references), in dynamical systems [START_REF] Hill | The ergodic theory of shrinking targets[END_REF][START_REF] Seuret | Diophantine approximation by orbits of expanding markov maps[END_REF][START_REF] Persson | On shrinking targets for piecewise expanding interval maps[END_REF] and in multifractal analysis [START_REF] Jaard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF][START_REF] Barral | The multifractal nature of heterogeneous sums of dirac masses[END_REF]. These studies consists in general, knowing that µ(lim sup n→+∞ B n := B(x n , r n )) = 1 for a certain measure µ and a sequence of radius (r n ) n∈N , in investigating the Hausdor dimension of lim sup n→+∞ U n where U n ⊂ B n . Typically U n is a contracted ball inside B n , but recently, general sets U n have been considered [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF][START_REF] Wang | Mass transference principle from rectangles to rectangles in diophantine approximation[END_REF][START_REF] Daviaud | An anisotropic inhomogeneous ubiquity theorem[END_REF].The so-called ubiquity theorems or mass transference principles mainly focus on nding a lower bound, using an adequate measure µ, for the Hausdor dimension (or Hausdor measure) of those sets. However it is key in many situations to understand whether this lower bound is optimal or not. This article is dedicated to this problem.

In order to do so, we introduce, given a probability measure µ on R d , the concept of µ-asymptotically covering sequence of balls. This notion is a generalization of a covering property used in the KGB Lemma stated in [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF]. For a sequence (B n ) n∈N , verifying this condition will be proved to be almost equivalent to verify µ(lim sup n→+∞ B n ) = 1 (it is equivalent if the measure is doubling for instance, so that working under this settings is very reasonable).

As said above, given a sequence of balls (B n ) n∈N and another (U n ⊂ B n ) n∈N , ubiquity theorems or mass transference principles give lower bounds for the Hausdor dimension of lim sup n→+∞ U n when, roughly speaking, some information is known about the geometry of lim sup n→+∞ B n . Of course, there is no reason in general for a lower-bound for dim H (lim sup n→+∞ U n ) obtained only knowing that µ(lim sup n→+∞ B n ) = 1, to be sharp (i.e = dim H (lim sup n→+∞ U n )). If one hopes such a lower-bound to be accurate, the measure µ has to be particularly adapted, in some sense, to the pair of sequences ((B n ) n∈N , (U n ) n∈N ). The approach adopted in this article is to extract some sub-sequences from (B n ) n∈N which are still µ-a.c (or still veries µ(lim sup n→+∞ B n ) = 1) but are adapted to the measure µ. Applying mass transference principles (which are proved only for measures presenting enough self-similarity) to those sub-sequences, it will be proved that Hausdor 1 dimension of the limsup set associated with the corresponding U n 's is given by the lower-bounds found in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF] (so that it is also the case for the lower-bounds given in [START_REF] Daviaud | An anisotropic inhomogeneous ubiquity theorem[END_REF][START_REF] Barral | Ubiquity and large intersections properties under digit frequencies constraints[END_REF][START_REF] Wang | Mass transference principle from rectangles to rectangles in diophantine approximation[END_REF]). This shows that those lower-bounds are sharp in a strong sens: for any selfsimilar measure µ, any µ-a.c sequence (B n ) n∈N , if one only considers the balls that are relevant for the measure µ, the limsup set obtained by considering the sub-sequence of the corresponding U n 's ((U n ) n∈N being also the sequence of sets involved in the articles mentioned) has the expected dimension.

More precisely, it will be proven rst that, under those very weak condition over a µ-a.c sequence of balls (B n ) n∈N , it is always possible to extract a sub-sequence (B ϕ(n) ) n∈N , still µ-ac, "weakly redundant" (see Denition 2.3) and such that the balls (B ϕ(n) ) n∈N have prescribed behavior with respect to the measure µ, roughly meaning (see Theorem 2.3) that the balls (B ϕ(n) ) n∈N satises (1)

|B ϕ(n) | dim P (µ) ⪅ µ(B ϕ(n) ) ⪅ |B ϕ(n) | dim H (µ) .
In a second time, it will be proved that, for weakly redundant sequences satisfying [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF], the Hausdor dimension of lim sup set associated with any sequence of shrunk balls or very thin rectangles (R n ⊂ B n ) n∈N (see Theorem 2.10) can be bounded by above precisely by the lower-bound given in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF], which proves the optimality of those bounds.

Notation and definition

Let d ∈ N.

For n ∈ N, the set of dyadic cubes of generation n of R d is denoted D n (R d ) and dened as 

D n (R d ) = ¶ d i=1 [ k i 2 n , k i +1 2 
H ζ (E) = lim t→0 + H ζ t (E).
For t ∈ (0, +∞), s ≥ 0 and ζ : x → x s , one simply uses the usual notation

H ζ t (E) = H s t (E) and H ζ (E) = H s (E).
In particular, the s-dimensional Hausdor outer measure at scale t ∈ (0, +∞] of the set E is dened by Then, the lower and upper dimensions of µ are dened by [START_REF] Beresnevich | The divergence borel-cantelli lemma revisited[END_REF] dim

(4) H s t (E) = inf n∈N |B n | s : (B n ) n∈N closed balls, |B n | ≤ t and E ⊂ n∈N B n . Denition 2.2. Let µ ∈ M(R d ).
H (µ) = infess µ (dim(µ, x)) and dim P (µ) = supess µ (dim(µ, x)).
It is known that (for more details see [START_REF] Falconer | Fractal geometry[END_REF])

dim H (µ) = inf E∈B(R d ): µ(E)>0 dim H (E) and dim P (µ) = inf E∈B(R d ): µ(E)=1
dim P (E).

A measure verifying dim H (µ) = dim P (µ) := α will be called an α exact dimensional measure. From Denition 2.2, such measures verify, for µ-almost every x ∈ R d , lim r→0 + log µ(B(x,r)) log r = α. 

=: B(x n , r n )) n∈N be a family of balls in R d . Denote by T k (B) = B n : 2 -k-1 < r n ≤ 2 -k .
The family B is said to be weakly redundant when for all k, there exists an integer J k and T k,1 (B), .., T k,J k (B) a partition of T k (B) such that:

(C 1 ) T k (B) = 1≤j≤J k T k,j (B), (C 2 ) For every 1 ≤ j ≤ J k and every pair of balls B ̸ = B ′ ∈ T k,j (B), B ∩ B ′ = ∅, (C 3 ) lim k→+∞ log 2 (J k ) k = 0.
So, a sequence of balls (B n ) n∈N is weakly redundant when at each scale 2 -k , the balls of the family {B n } n∈N that have radii ≈ 2 -k can be sorted in a relatively small number of families of pairwise disjoint balls.

The main property we introduce for a sequence of balls B = (B n ) n∈N is meant to ensure that any set can be covered eciently by the limsup of the B n 's, with respect to a measure µ. This property is a general version of the KGB Lemma of Beresnevitch and Velani, stated in [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF], using a Borel probability measure µ. Such properties (like the KGB Lemma) are usually key (cf [START_REF] Jaard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF][START_REF] Barral | Heterogeneous ubiquitous systems in R d and Hausdor dimensions[END_REF] for instance) to prove ubiquity or mass transference results. Denition 2.4. Let µ ∈ M(R d ). The sequence B = (B n ) n∈N of balls of R d is said to be µ-asymptotically covering (in short, µ-a.c) when there exists a constant C > 0 such that for every open set Ω ⊂ R d and g ∈ N, there is an integer N Ω ∈ N as well as g ≤ n 1 ≤ ... ≤ n N Ω such that:

•

∀ 1 ≤ i ≤ N Ω , B n i ⊂ Ω, • ∀ 1 ≤ i ̸ = j ≤ N Ω , B n i ∩ B n j = ∅,
• one has

(6) µ 1≤i≤N Ω B n i ≥ Cµ(Ω).
In other words, for any open set Ω and any g > 0, there exists a nite set of disjoint balls of {B n } n≥g covering a large part of Ω from the µ-standpoint.

This notion of µ-asymptotically covering is related to the way the balls of B are distributed according to the measure µ. In particular, given a measure µ, this property is slightly stronger than being of lim sup of full µ-measure, as illustrated by the following Theorem.

Theorem 2.1. Let µ ∈ M(R d ) and B = (B n := B(x n , r n )) n∈N be a sequence of balls of R d with lim n→+∞ r n = 0. (1) If B is µ-a.c, then µ(lim sup n→+∞ B n ) = 1. (2) If there exists v < 1 such that µ lim sup n→+∞ (vB n ) = 1, then B is µ-a.c.
Moreover, it results from the proof of the KGB-Lemma [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF] that if the µ is doubling, µ lim sup n→+∞ B n = 1 ⇔ (B n ) n∈N is µ-a.c. 

Q s,t=1 µ(L B,s ∩ L B,t ) ≤ C µ(B) Q n=1 µ(L B,n ) 2 . (8) 
(B): Assume that there exists C > 1 such that for any open ball B, there exists a sub-sequence of (B n ) n∈N (L n,B ) n∈N with, for any n ∈ N, L n,B ⊂ B, satisfying [START_REF] Seuret | Diophantine approximation by orbits of expanding markov maps[END_REF] and [START_REF] Mattila | Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectiability[END_REF], then µ(lim sup n→+∞ B n ) = 1, so that, for any κ > 1, (κB n ) n∈N is µ-a.c. 

H µ,s t (A) = inf {H s t (E) : E ⊂ A, µ(E) = µ(A)} .
Let us also recall the denition of a self-similar measure.

Denition 2.6. A self-similar IFS is a family

S = {f i } m i=1 of m ≥ 2 contracting similarities of R d .
Let (p i ) i=1,...,m ∈ (0, 1) m be a positive probability vector, i.e.

p 1 + • • • + p m = 1.
The self-similar measure µ associated with {f i } m i=1 and (p i ) m i=1 is the unique probability measure such that [START_REF] Federer | Geometric measure theory, volume Band 153 of Die Grundlehren der mathematischen Wissenschaften[END_REF] 

µ = m i=1 p i µ • f -1 i .
The topological support of µ is the attractor of S, that is the unique non-empty compact set K ⊂ X such that K = m i=1 f i (K). The existence and uniqueness of K and µ are standard results [START_REF] Hutchinson | Fractals and self similarity[END_REF]. Recall that due to a result by Feng and Hu [START_REF] Feng | Dimension theory of iterated function systems[END_REF] any self-similar measure is exact dimensional.

Our goal is to investigate whether the lower-bound given by the following theorem, proved in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF], is sharp. Theorem 2.5. Let µ ∈ M(R d ) be a self-similar measure and B = (B n ) n∈N be a µ-a.c. sequence of closed balls of R d centered in supp(µ). Let U = (U n ) n∈N be a sequence of open sets such that U n ⊂ B n for all n ∈ N, and 0 ≤ s ≤ dim(µ). If, for every n ∈ N large enough, H µ,s

∞ (U n ) ≥ µ(B n ), then dim H (lim sup n→+∞ U n ) ≥ s.
One now states the main result of this section. Theorem 2.6. Let µ ∈ M(R d ) be a self-similar measure, K its support and

(B n ) n→+∞ be a weakly redundant sequence of balls of R d verifying |B n | → 0. Let (U n ) n∈N be a sequence of open sets satisfying U n ⊂ B n . For any 0 ≤ s < dim(µ) such that, for all large enough n ∈ N, H µ,s ∞ (U n ) ≤ µ(B n ), (12) 
dim H (lim sup n→+∞ Assume that there exists s 0 such that for any s < s 0 , for n large enough, H µ,s

U n ∩ K) ≤ s.
∞ (U n ) ≥ µ(B n ), for any s > s 0 , for n large enough, H µ,s ∞ (U n ) ≤ µ(B n ).
Then by Theorem 2.5 and Theorem 2.6,

dim H (lim sup n→+∞ U n ) = s 0 .
Remark 2.8. It is easily seen from the proof that the condition H µ,s

∞ (U n ) ≤ µ(B n ) in Theorem 2.6 can be weakened into lim inf n→+∞ log H µ,s ∞ (Un) log µ(Bn) ≥ 1. 2.3.2.
Application in the case of balls and rectangles. We can now show in which sense, in view of Theorem 2.3, Theorem 2.5 is sharp by applying Corollary 2.7 to the specic cases where the sets U n are balls or rectangles.

Corollary 2.9. Let µ ∈ M(R d ) be a self-similar measure of support K and

B = (B n ) n∈N be a sequence of balls centered in K satisfying |B n | → 0 and µ lim sup n→+∞ B n = 1. Then [9], dim H (lim sup n→+∞ B δ n ) ≥ dim(µ) δ .
Assume furthermore that B is weakly redundant and lim sup n→+∞ log µ(Bn)

log(|Bn|) = dim(µ), then for every δ ≥ 1, dim H (lim sup n→+∞ B δ n ) = dim(µ) δ .
Corollary 2.10. Let µ be a self-similar measure verifying that its support, K,

is the closure of its interior. Let 1 ≤ τ 1 ≤ ... ≤ τ d , τ = (τ 1 , ..., τ d ) and (B n := B(x n , r n )) n∈N be a sequence of balls of R d satisfying r n → 0, µ(lim sup n→+∞ B n ) = 1. Dene R n = Rτ (x n , r n ), where R τ (x n , r n ) = x n + d i=1 [-1 2 r τ i n , 1 2 r τ i n ]. Then [9] (13) dim H (lim sup n→+∞ R n ) ≥ min 1≤i≤d ® dim(µ) + 1≤j≤i τ i -τ j τ i
´.

Assume furthermore that (B n ) n∈N is weakly redundant and lim n→+∞ log µ(Bn)

log |Bn| = dim(µ), then (14) dim H (lim sup n→+∞ R n ) = min 1≤i≤d ® dim(µ) + 1≤j≤i τ i -τ j τ i
´.

Remark 2.11.

Corollaries 2.9 and 2.10 are direct consequences of second item of Remark 5.1 and Remark 5.3 in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF], together with Corollary 2.7

(applied to, respectively, s 0 = dim(µ) δ and s 0 = s(µ, τ )). Note that, by Theorem 2.3 combined with Corollary 2.9 and Corollary 2.10, for any sequence of balls (B n ) n∈N satisfying µ lim sup n→+∞

1 2 B n = 1 (µ a
self-similar measure satisfying the of hypothesis of Corollaries 2.9 or 2.10 for µ), it is always possible to extract a µ-a.c sub-sequence of balls so that the Hausdor dimension of the limsup set associated with corresponding U n 's is the bound stated in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF] and recalled in those corollaries. This in particular proves that those bounds are sharp.

In the case of the Lebesgue measure, it is always veried that lim n→+∞ log µ(Bn) log |Bn| = dim(µ). As a consequence, the lower-bound provided by Theorem 2.5 (which is established in [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF]) in the case of balls or rectangles is precisely the dimension of lim sup n→+∞ U n as soon as the sequence (B n ) is weakly redundant. More explicitly, given a weakly redundant sequence of balls

(B n ) n∈N of [0, 1] d satisfying |B n | → 0 and L d (lim sup n→+∞ B n ) = 1,
for any sequence rectangles associated with a vector τ as in Theorem 2.10, one has

dim H (lim sup n→+∞ R n ) = min 1≤i≤d ® d + 1≤j≤i τ i -τ j τ i
´.

Section 3 is dedicated to the proof of Theorem 2.1. In the next section, Section 4, Theorem 2.3 is established. Then some explicit examples of application of Theorem 2.3 are given in Section 5.

In the penultimate section, Section 6, Theorem 2.6 is proved.

The last section, Section 7, draws some conclusions and gives some perspectives about the results established in this article. 

F = B(x, r (x) ) : x ∈ E, r (x) > 0 , there exists F 1 , ..., F Q d,v nite or countable sub- families of F such that: • ∀1 ≤ i ≤ Q d,v , ∀L ̸ = L ′ ∈ F i , one has 1 v L ∩ 1 v L ′ = ∅. • E is covered by the families F i , i.e. ( 15 
) E ⊂ 1≤i≤Q d,v L∈F i L.
The case v = 1 corresponds to the standard Besicovich's covering lemma (see [START_REF] Mattila | Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectiability[END_REF], Chapter 2, pp. 28-34 for instance).

A rst step toward Proposition 3.1 is the next lemma, that allows to split a given family of "weakly" overlapping balls into a nite number of families of disjoint balls. Lemma 3.2. Let 0 < v < 1 and B = (B n ) n∈N be a countable family of balls such that lim n→+∞ |B n | = 0, and for every n

̸ = n ′ ∈ N, vB n ∩ vB ′ n = ∅. There exists γ d,v + 1 (γ d,v being the constant appearing in Lemma 3.3 below) sub-families of B, (F i ) 1≤i≤γ d,v +1 , such that: • B = 1≤i≤γ d,v +1 F i , • ∀ 1 ≤ i ≤ γ d,v + 1, ∀L ∩ L ′ ∈ F i , one has L ∩ L ′ = ∅.
Proof. The proof is based on the following lemma, whose proof can be found in [START_REF] Mattila | Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectiability[END_REF], Lemma 2.7, pp.30 -there, the result is obtained for v = 1/2 but the proof remains valid for any v < 1.

Lemma 3.3. For any 0 < v ≤ 1 there exists a constant γ v,d > 0 depending only on v and the dimension d only, satisfying the following: if a family of balls B = (B n ) n∈N and a ball B are such that

• ∀ n ≥ 1, |B n | ≥ 1 2 |B|, • ∀ n 1 ̸ = n 2 ≥ 1, vB n 1 ∩ vB n 2 = ∅, then B intersects at most γ v,d balls of B. The families F 1 , ..., F γ d,v +1 are built recursively. For k ∈ N, call G (k) = L ∈ F : 2 -k-1 < |L| ≤ 2 -k . Notice that, because lim n→+∞ |B n | = 0, each G (k) is empty or nite.
Observe rst that for every k ∈ N and every ball B ∈ G (k) , and every pair of balls

B 1 ̸ = B 2 ∈ k ′ ≤k G (k ′ ) \ {B}, one has vB 1 ∩ vB 2 = ∅ and for i = 1, 2, |B i | ≥ |B| 2 . By Lemma 3.3, this implies that B intersects at most γ d,v balls of k ′ ≤k G (k ′ ) \ {B}.
To get Lemma 3.2, we are going to sort the balls of

k ′ ≤k G (k ′ ) recursively on k into families F 1 , ..., F γ d,v
+1 of pairwise disjoint balls. At each step, a new ball B will be added to one of those families of balls F i and the resulting family, F i {B} will be denoted again by F i . Let k 0 be the smallest integer such that G (k 0 ) is non-empty. Consider an arbitrary L 0 ∈ G (k 0 ) . By Lemma 3.3, L 0 intersects n 0 ≤ γ d,v other balls of G (k 0 ) , that are denoted by L 1 , ..., L n 0 . The sets F i are then set as follows:

•

∀ 1 ≤ i ≤ n 0 , F i = {L i }, • ∀ n 0 + 1 ≤ i ≤ γ d,v , F i = ∅, • F γ d,v +1 = {L 0 } .
Further, consider L / ∈ 0≤i≤n 0 {L i } (whenever such an L exists). The same argument (Lemma 3.3) ensures that L intersects at most γ d,v balls of G (k 0 ) . In particular there must exists 1 ≤ i ≤ γ d,v + 1 such that for every L ∈ F i , L ∩ L = ∅. Choosing arbitrarily one of those indices i, one adds L to F i := L F i (we keep the same name for this new family).

The same argument remains valid for any other ball L ′′ / ∈ 1≤j≤γ d,v +1 L∈F j {L}.

Hence, proceeding recursively on all balls of G (k 0 ) allows to sort the balls of

G (k 0 ) into γ d,v + 1 families (F i ) 1≤i≤γ d,v +1 of pairwise disjoint balls.
Next, let k 1 be the smallest integer such that k 1 > k 0 and G (k 1 ) is non empty, take an arbitrary L

(1) 0 ∈ G (k 1 ) . It is trivial to check that the family G (k 0 ) ∪ G (k 1 ) and the ball L

(1) 0 satisfy the conditions of Lemma 3.3. Subsequently, L

(1) 0 intersects at most γ d,v balls of G (k 0 ) G (k 1 ) , and there must exist an integer

1 ≤ i 0 ≤ γ d,v + 1 such that L (1) 0 ∩ L∈F i 0 L = ∅.
As before, we add this ball L

(1)

0 to the family F i 0 . Consider L ∈ F (k 1 ) such that L / ∈ 1≤i≤γ d,v +1 F i (whenever such a ball exists).
The exact same argument shows the existence of an integer

1 ≤ i ≤ γ d,v + 1 such that L intersects at most γ d,v balls of G (k 0 ) G (k 1 )
. One adds L to the family F i , which remains composed only of pairwise disjoint balls.

One applies this argument to every ball of F (k 1 ) , hence nally sorting the balls of F (k 0 ) ∪ F (k 1 ) into γ d,v + 1 families of pairwise disjoint balls, as requested.

It is now easily seen that one can proceed recursively on k ≥ k 0 , ending up with the families F 1 , ..., F γ d,v +1 fullling the desired properties. □

We are now ready to prove Proposition 3.1.

Proof. Fix E ⊂ [0, 1] d and F = B(x, r (x) ) :

x ∈ E, r (x) > 0 . One applies Besicovich's theorem (i.e. Proposition 3.1 with v = 1) to F = B(x, r (x) ) :

x ∈ E r (x) > 0 . This provides us with a nite set of families of balls G 1 , ..., G γ d,1 +1 composed of pairwise disjoint balls satisfying [START_REF] Hutchinson | Fractals and self similarity[END_REF], i.e. E ⊂

1≤i≤Q γ d,1 +1 L∈G i L. For every 1 ≤ i ≤ Q γ d,1 +1 , one sets G (v) i = 1 v L : L ∈ G i , i.e
. the sets of balls with same centers as G i but with radii multiplied by v

-1 > 1. Notice that by construction, ∀ 1 ≤ i ≤ Q γ d,1 +1 , ∀ L ̸ = L ′ ∈ G (v) i , one has vL ∩ vL ′ = ∅. Hence, Lemma 3.2 yields γ d,v + 1 sub-families (G (v) i,j ) 1≤j≤γ d,v +1 of G (v) i such that: • ∀ 1 ≤ j ≤ γ d,v + 1, ∀ L ̸ = L ′ ∈ G (v) i,j , one has L ∩ L ′ = ∅, • G (v) i = 1≤j≤γ d,v +1 G (v) i,j .
Finally, we set for every

1 ≤ i ≤ Q d,1 and 1 ≤ j ≤ γ d,v + 1 F i,j = ¶ vL : L ∈ G (v) i,j © and F i = 1≤j≤γ d,v +1
F i,j .

These sets verify that:

• ∀ 1 ≤ i ≤ Q d,1 , ∀ 1 ≤ j ≤ γ d,v + 1, ∀L ̸ = L ′ ∈ F i,j , 1 v L ∩ 1 v L ′ = ∅ (because the balls of G i,j are pairwise disjoint), • E ⊂ 1≤i≤Q d,1 G i = 1≤i≤Q d,1 1≤j≤γ d,v +1 F i,j .
This proves the statement and the fact that Then for every open set Ω and every integer g ∈ N, there exists a subsequence (B

Q d,v = Q d,1 .(γ d,v + 1). □ 3 
(Ω) (n) ) ⊂ {B n } n≥g such that: (1) ∀ n ∈ N, B (Ω) (n) ⊂ Ω, (2) ∀ 1 ≤ n 1 ̸ = n 2 , B (Ω) (n 1 ) ∩ B (Ω) (n 2 ) = ∅, (3) µ Ä n≥1 B (Ω) (n) ä = µ(Ω).
In addition, there exists an integer N Ω such that for the balls (B

(Ω)

(n) ) n=1,...,N Ω , the conditions (1) and ( 2) are realized, and (3) is replaced by µ Ä

N Ω n=1 B (Ω) (n) ä ≥ 3 4 µ(Ω).
The last part of Lemma 3.4 simply follows from item (3) and the σ-additivity of µ.

Proof. The idea consists in covering Ω by pairwise disjoint balls amongst those balls of B, such that their union has measure at least Cµ(Ω), then in covering the complementary of the union of those balls in Ω (that is still open) with at least a proportion C of its measure, and so on.

More precisely, this is achieved as follows:

• Step 1: By application of Denition 2.4 to Ω 0 := Ω and g ∈ N, there exists C > 0 and some integers g ≤ n 1 ≤ ... ≤ n N 0 so that the family of balls

F 0 := ¶ B n i := B (0) i © 1≤i≤N 0 is pairwise disjoint and µ( 1≤i≤N 0 B n i ) ≥ Cµ(Ω).
•

Step 2: Setting Ω 1 = Ω \ L∈F 0 L, applying Denition 2.4 to Ω 1 with the integer g provides us with a family F 1 of pairwise disjoint balls B

1 , ..., B

N 1 ∈ {B n } n≥g such that ∀ 1 ≤ i ≤ N 1 B (1) i ⊂ Ω 1 and µ( 1≤i≤N 2 B (1) i ) ≥ Cµ(Ω 1 ). One sets F 1 = F 0 F 1 . One sees that µ L∈F 1 L = µ L∈F 0 L + µ L∈G 1 L ≥ µ L∈F 0 L + C µ(Ω) -µ L∈F 0 L ≥ (1 -C)µ L∈F 0 L + Cµ (Ω) ≥ (C + C(1 -C))µ(Ω). (1) 
Observe that the balls of F 0 and F 1 are disjoint by construction.

• Following steps : Proceeding recursively, and applying the exact same argument as above, one constructs an increasing sequence of families (F i ) i∈N and a decreasing sequence of open sets Ω i such that:

• ∀ i ∈ N, L ∈ {B n } n≥g and ∀L ∈ F i , L ⊂ Ω i ⊂ Ω, • ∀ i ∈ N, ∀L ̸ = L ′ ∈ F i , L ∩ L ′ = ∅, • ∀ i ̸ = j ∈ N, ∀L ∈ F i and ∀L ∈ F j , L ∩ L ′ = ∅, • ∀ i ∈ N, µ L∈F i L ≥ µ(Ω) 1≤k≤i C(1 -C) k-1 .
Finally, setting F = i∈N F i , one sees that F is constituted by pairwise disjoint balls chosen amongst {B n } n≥g satisfying ( 16)

µ(Ω) ≥ µ L∈F L ≥ µ(Ω) k≥1 C(1 -C) k-1 = µ(Ω),
so that F fullls the conditions of Lemma 3.4. □

An easy consequence is the following.

Corollary 3.5. Let µ ∈ M(R d ) and (B n ) n∈N be a µ-a.c sequence of balls. Then for any Borel set E, for any g ∈ N, there exists a sub-sequence of balls (B For every g ∈ N, applying Lemma 3.4, there exists a sub-family of balls, F g ⊂ {B n } n≥g such that µ( L∈Fg L) = µ(R d ) = 1. In particular, µ( n≥g B n ) = 1 for every g ≥ 1, and µ(lim

(E) (n) ) ⊂ {B n } n≥g such that: (1) ∀1 ≤ n 1 ̸ = n 2 , B (E) (n 1 ) ∩ B (E) (n 2 ) = ∅, (2) µ n∈N B (E) (n) ∩ E = µ(E), (3) µ n∈N B (E) (n) ≤ µ(E) + ε,
sup n→+∞ B n ) = µ( g≥1 n≥g B n ) = 1.
(2) Suppose next that there exists v < 1 such that µ(lim sup n→+∞ vB n ) = 1, and let us show that B is µ-a.c.

Let Ω be an open set in R d . Our goal is to nd a constant C such that the conditions of Denition 2.4 are realized.

Let E = Ω∩lim sup n→+∞ vB n . For every y ∈ E, consider an integer n y ≥ g large enough so that y ∈ vB ny and B(y, 2r ny ) ⊂ Ω. This is possible since lim n→+∞ r n = 0.

Since y ∈ vB ny , one has 

v ′ = 1-v 2 < 1 allows to extract from F nite or countable sub-families F 1 , ..., F Q d,v ′ such that: • ∀1 ≤ i ≤ Q d,v ′ , L ̸ = L ′ ∈ F i , one has 1 v ′ L ∩ 1 v ′ L ′ = ∅. • E is covered by the families F i , i.e. (15) holds true. Now, µ(Ω) = µ(E) ≤ µ Ä Q d,v ′ i=1 L∈F i L ä . There must exist 1 ≤ i 0 ≤ Q d,v ′ such that µ Ñ L∈F i 0 L é ≥ 1 Q d,v ′ µ(E) = 1 Q d,v ′ µ

(Ω).

There exist L 1 , L 2 , ... L N balls of F i 0 such that

µ 1≤k≤N L k ≥ 1 2Q d,v ′ µ(Ω),
Notice the following facts:

• ∀1 ≤ i ≤ Q d,v ′ , every L ∈ F i is naturally associated with some y ∈ E and some ball B ny , with L ⊂ B ny ⊂ Ω, • ∀1 ≤ i ≤ Q d,v ′ , if L ∈ F i is associated with y ∈ E and B ny and L ′ ∈ F i is associated with y ′ ∈ E and B n y ′ , then 1 v ′ L ∩ 1 v ′ L ′ = ∅ implies by (17) that B ny ∩ B n y ′ = ∅.
The rst fact implies that there exist N integers n 1 , ..., n N such that B n k ⊂ Ω and

µ 1≤k≤N B n k ≥ 1 2Q d,v ′ µ(Ω),
The second fact implies that these balls B n k , k = 1, ..., N are pairwise disjoint. This exactly proves that B is µ-a.c.

3.4.

A version of Borel-Cantelli Lemma. In this manuscript, one mainly focuses on establishing Hausdor dimension of limsup sets knowing that a certain limsup set of balls has full measure. In many situation, proving that those limsup sets have full measure is straightforward. When it is not, it is convenient to have a tool at our disposal to be able to determine whether or not it is the case. In the case where the measure involved is doubling is treated by Beresnevich-Velani. 

) n∈N of (B n ) n∈N satisfying: L B,n ⊂ B, +∞ n=0 µ(L B,n ) = +∞, for innitely many Q ∈ N, (18) Q s,t=1 µ(L B,s ∩ L B,t ) ≤ C µ(B) Q n=1 µ(L B,n ) 2 .
Thanks to Theorem 2.1, one can complete this Theorem and remove the doubling assumption. 

Q s,t=1 µ(L B,s ∩ L B,t ) ≤ C µ(B) Q n=1 µ(L B,n ) 2 . (20) 
(B): Assume that there exists C > 1 such that for any open ball B, there exists a sub-sequence of (B n ) n∈N (L n,B ) n∈N with, for any n ∈ N, L n,B ⊂ B, satisfying [START_REF] Seuret | Diophantine approximation by orbits of expanding markov maps[END_REF] and [START_REF] Mattila | Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectiability[END_REF], then µ(lim sup n→+∞ B n ) = 1, so that, for any κ > 1, (κB n ) n∈N is µ-a.c.

Proof. Item A is proved in [START_REF] Beresnevich | The divergence borel-cantelli lemma revisited[END_REF] (this part of the proof does not use the doubling property of the measure in [START_REF] Beresnevich | The divergence borel-cantelli lemma revisited[END_REF]). Moreover, it is also proved in [START_REF] Beresnevich | The divergence borel-cantelli lemma revisited[END_REF] 

B n ∩ B) ≥ 1 C µ(B).
The following lemma combined with Theorem 2.1 nishes the proof of Proposition Proof. Assume that µ(E) < 1 and set A = R d \ E. By hypothesis, µ(A) > 0.

Let us recall the following density-lemma (which holds in metric sapces in which Besicovitch's theorem holds).

Lemma 3.9. [START_REF] Besicovitch | A general form of the covering principle and relative dierentiation of additive functions[END_REF] Let m ∈ M(R d ), 0 < c < 1 and A be a Borel set with m(A) > 0.

For every r > 0, set By Lemma 3.9, there exists an open ball B such that µ(B) > 0 and

µ(B ∩ A) ≥ (1 - c 2 )µ(B).
This yields

µ(E ∩ B ∩ A) = µ(E ∩ B) + µ(A ∩ B) -µ ((E ∩ B) ∪ (A ∩ B)) ≥ (c + 1 - c 2 -1)µ(B) = c 2 µ(B) > 0, which implies µ(E ∩ A) > 0, which is a contradiction. □ Taking c = 1
C and applying Lemma 3.8 nishes the proof of Proposition 3.7.

□

Remark 3.10. A version of Proposition 3.7 might also be useful in more general metric spaces. The only geometric property we used to prove Proposition 3.7 is actually Proposition 3.1 (which also implies Lemma 3.9), so that Proposition 3.7 actually holds in any direction-limited spaces as dened in [START_REF] Federer | Geometric measure theory, volume Band 153 of Die Grundlehren der mathematischen Wissenschaften[END_REF].

proof of Theorem 2.3

The following section is dedicated to the study of the properties one can ask an µ-a.c sequence (B n ) n∈N to verify, up to an µ-a.c extraction.

The concept of conditioned ubiquity was introduced by Barral and Seuret in [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF].

It consists in asking the balls of the sequence (B n ) to verify some specic properties with respect to the measure µ. When investigating the Hausdor dimension of some sets (U n ) n∈N , where U n ⊂ B n , in practical cases (when the measure carries some self-similarity), it turns out that when a lower-bound is found for (U n ) n∈N using the fact that the sequence (B n ) n∈N is of limsup of full µ-measure, it is often quite easy to prove that lim sup n→+∞ U n has precisely the expected measure provided that the sequence (B n ) veries some specic properties with respect to µ.

Note that in full generality, understanding the optimality of a bound as mentioned above, means understanding very nely the behavior of the measure µ on the sets U n (the sequence (B n ) being µ-a.c). It will be proved in this article that, under mild conditions on the sequence (B n ) n∈N , it is always possible to give a natural upper-bound for dim H (lim sup n→+∞ U n ). This upper-bound turns out to be optimal when the measure carries enough self-similarity (in particular it works for quasi-Bernoulli measures or fully supported self-similar measures).

In this section, the balls (B n ) n∈N are supposed to be pairwise distinct and such that |B n | → n→+∞ 0. 

) of {B n } N n≥g k satisfying (1) ∀1 ≤ n 1 ̸ = n 2 , B (n 1 ,k) ∩ B (n 2 ,k) = ∅, (2) µ n∈N B (n,k) = 1.
Dene B ψ = (B ψ(n) ) n∈N as the sub-sequence of balls corresponding to k∈N B (n,k) n∈N .

Since the following inclusion holds [START_REF] Wang | Mass transference principle from rectangles to rectangles in diophantine approximation[END_REF] k∈N n∈N

B (n,k) ⊂ lim sup n→+∞ B ψ(n) , by item (2) one has µ(lim sup n→+∞ B ψ(n) ) = 1.
Note that, for all k ∈ N, all B ∈ B (n,k) n∈N , |B| ≤ 2 -k . Following the notation of Denition 2.3, for any k ∈ N, T k (B ψ ) can contain only balls of the sequence of the k rst families B (n,k) n∈N , which are composed of pairwise disjoint balls. This proves that T k (B ψ ) can be sorted in at most k + 1 families of pairwise disjoint balls. In particular, B ψ is weakly redundant.

It remains to show that (B ψ(n) ) n∈N is µ-a.c.

Let Ω be an open set and g ∈ N. One will extract from B ψ a nite number of balls satisfying the condition of Denition 2.4.

There exists k 0 so large that, µ x ∈ Ω(x, 2

-k 0 +1 ) ≥ 3µ(Ω) 4 for any k ≥ k 0 , B (n,k) n∈N ⊂ B ψ(n) n≥g and µ(lim sup n→+∞ B ψ(n) ∩ Ω) ≥ 3µ(Ω)

4

.

Setting

" E = ß x ∈ lim sup n→+∞ B ψ(n) ∩ Ω : B(x, 2 -k 0 +1 ) ⊂ Ω ™ , it holds that µ( " E) ≥ 1 2 µ(Ω). Recalling (23), for every x ∈ " E, consider B x , the ball of B (n,k 0 ) n∈N con- taining x. Note that, because for B ∈ B (n,k 0 ) n∈N , |B| ≤ 2 -k 0 , one has B x ⊂ B(x, 2 -k 0 +1 ) ⊂ Ω. Set F 1 = ¶ B x : x ∈ " E © . The set F 1 is composed of pairwise disjoint balls (by item (1) above) of B ψ(n) n≥g included in Ω and such that (24) µ L∈F 1 L ≥ µ( " E) ≥ 1 2 µ(Ω).
Using the σ-additivity of µ concludes the proof. □ µ(lim sup n→+∞ vB n ) = 1 for some 0 < v < 1, there exists an µ-a.c sub-sequence

(B ϕ(n) ) n∈N verifying dim H (µ) ≤ lim inf n→+∞ log µ(B ϕ(n) ) log |B ϕ(n) | ≤ lim sup n→+∞ log µ(B ϕ(n) ) log |B ϕ(n) | ≤ dim P (µ).
Remark 4.3. For the left part of (4.2), the proof actually only uses the fact that µ(lim

sup n→+∞ B n ) = 1.
Let us introduce some useful sets to prove Lemma 4.5 and Lemma 4.6, which are key in order to prove (4.2).

Denition 4.1. Let 0 ≤ α ≤ γ be real numbers, µ ∈ M(R d ), and ε, ρ > 0 two positive real numbers. Then dene

(25) E [α,γ],ρ,ε µ = ¶ x ∈ R d : dim(µ, x) ∈ [α, γ] and ∀r ≤ ρ, µ(B(x, r)) ≤ r dim(µ,x)-ε © , (26) 
F [α,β],ρ,ε µ = ¶ x ∈ R d : dim(µ, x) ∈ [α, β] and ∀r < ρ, µ(B(x, r)) ≥ r dim(µ,x)+ε © .
and

E [α,γ],ε µ = n≥1 Writing B ′ = {B n : µ(B n ) ≤ r α-ε
n }, the argument above shows that only balls of B ′ have been used to cover Ω . This is satised for every open set Ω, so that B ′ is a sub-sequence of B satisfying the condition of Denition 2.4, which concludes the proof of Lemma 4.5.

□ Lemma 4.6. Let µ ∈ M(R d ), v < 1 and B = (B n := B(x n , r n )) n∈N a sequence of balls of R d verifying µ(lim sup n→+∞ vB n ) = 1.
For all ε > 0, there exists a sub-sequence (B ϕ(n) ) n∈N of B as well as 0

< v ′ < 1 such that µ(lim sup n→+∞ v ′ B ϕ(n) ) = 1 and for all n ∈ N, one has µ(B ϕ(n) ) ≥ (r ϕ(n) ) dim H (µ)+ε .
Remark 4.7. The sequence (B ϕ(n) ) n∈N found in Lemma 4.6 is in particular µ-a.c by Theorem 2.1.

Proof. Let α = infess µ (dim(µ, x)) and γ = dim P (µ). Let ε > 0 and v < v ′ < 1.

By (30) and Theorem 2.1, µ(lim

sup n→+∞ vB n ∩ F [α,γ], 3ε 2 µ ) = 1. For all x ∈ lim sup n→+∞ vB n ∩ F [α,γ], 3ε 2 µ
, there exists r x > 0 small enough so that (32)

r ε 2 x ≤ (v ′ -v) γ+ 3ε 2 and ∀0 < r ≤ r x , µ(B(x, r)) ≥ r γ+ 3ε 2 .
Since x ∈ lim sup n→+∞ vB n , for all n ∈ N, there exists

n x ≥ n such that x ∈ vB nx and (v ′ -v)r nx ≤ r x . Note that B(x, (v ′ -v)r nx ) ⊂ v ′ B nx . This implies the following inequalities: µ(B nx ) ≥ µ(v ′ B nx ) ≥ µ(B(x, (v ′ -v)r nx ) ≥ ((v ′ -v)r nx ) γ+ 3ε 2 ≥ r γ+2ε nx . Set B γ,2ε = {B n : µ(B n ) ≥ r γ+2ε n }. One just showed that lim sup n→+∞ vB n ∩ F [α,γ], ε 2 ⊂ lim sup B∈B γ,2ε v ′ B.
This proves that µ(lim sup B∈B γ,2ε v ′ B) = 1.

Since ε > 0 was arbitrary, the results also holds with ε 2 , which proves Lemma 4.6.

□

We are now ready to prove Proposition 4.2.

Proof. Set α = dim H (µ) and β = dim H (µ).

Let us x (ε n ) n∈N ∈ (R * + ) N verifying lim n→+∞ ε n = 0.
The strategy of the proof consists in constructing recursively coverings of the cube R d by using Lemma 4.5 and Lemma 4.6 and a diagonal argument (on the choice of ε) at each step.

More precisely, at step 1, one will build a family of balls (F 1,i ) i∈N verifying:

for all i, j ≥ 1, ∀L ∈ F 1,i , ∀L ′ ∈ F 1,j such that L ̸ = L ′ , one has L ∩ L ′ = ∅, for all i ≥ 1, F 1,i is a nite sub-family of {B n } n≥1 , for all i ≥ 1, for all L ∈ F 1,i , |L| β+ε i ≤ µ(L) ≤ |L| α-ε i , µ Ä i∈N L∈F 1,i L ä = 1.
Note that for each i ∈ N, only a nite number of balls L ∈ F 1 := j∈N F 1,j veries (for that ε i naturally associated with those balls) |L| β+ε i ≤ µ(L) ≤ |L| α-ε i .

At step 2, a family of balls (F 2,i ) i∈N will be constructed such that:

for all i, j ≥ 1, L ∈ F 2,i , L ′ ∈ F 2,j , L ̸ = L ′ = ∅, µ Ä i∈N L∈F 1,i L ä = 1.
Recall that, to justify the last item, this recursive scheme allows to cover R d , up to a set of µ-measure 0 (the argument is similar to the one developed at the end of the proof of Lemma 3.4 to obtain ( 16)).

Set

F 1 = i≥1 F 1,i . With each ball L ∈ F is naturally associated a positive real number ε(L), such that ε(L) = ε i if L ∈ F 1,i .
Let us notice that the construction of the family F 2 does not rely on the existence of the family F 1 , so that the families F k can actually be built independently, following the same scheme, as described below.

Step k:

As in step 1, one constructs a family of balls (F k,i ) i≥1 verifying:

for all i, j ≥ 1, L ∈ F k,i , L ′ ∈ F k,j , L ̸ = L ′ , L ∩ L ′ = ∅, for all i ≥ 1, F k,i is a nite subset of {B n } n≥k , for all i ≥ 1, for all L ∈ F k,i , |L| β+ε i+k ≤ µ(L) ≤ |L| α-ε i+k , one has (34) 
µ

Ñ i∈N L∈F k,i L é = 1. Set F k = i≥1 F k,i and F = k≥1 F k .
Denote by (B ϕ(n) ) n∈N the sub-sequence of balls that constitutes the family F. By construction, for all i ∈ N, only a nite number of balls L ∈ F veries ε(L) = ε i (and |L| β+ε i ≤ µ(L) ≤ |L| α-ε i ). In particular, for all ε > 0, there exists N large enough so that, for every n ≥ N , ε n ≤ ε. Similarly, there exists N ′ ∈ N so large that for every n

′ ≥ N ′ , |B ϕ(n ′ ) | β+ε ≤ µ(B ϕ(n ′ ) ) ≤ |B ϕ(n ′ ) | α-ε . It follows that α -ε ≤ lim inf n→+∞ log µ(B ϕ(n) ) log |B ϕ(n) | ≤ lim sup n→+∞ log µ(B ϕ(n) ) log |B ϕ(n) | ≤ β + ε. Letting ε → 0 shows that dim H (µ) ≤ lim inf n→+∞ log µ(B ϕ(n) ) log |B ϕ(n) | ≤ lim sup n→+∞ log µ(B ϕ(n) ) log |B ϕ(n) | ≤ dim H (µ).
It only remains to prove that (B ϕ(n) ) n∈N is µ-a.c.

Let Ω be an open set and g ∈ N. We nd a nite family of balls {L} i∈I ⊂ B ϕ(n) n≥g satisfying the conditions of Denition 2.4.

Note that, by (33),

setting E = k≥1 L∈F k L, then µ (E) = 1.
Let x ∈ Ω ∩ E and r x > 0 small enough so that B(x, r x ) ⊂ Ω. Consider k x ≥ ϕ(g) ≥ g large enough so that, for all n ≥ k x , |B n | ≤ 2r x . Recall that F kx ⊂ {B n } n≥kx . Finally, let us x k large enough so that µ( "

E) ≥ µ(Ω) 2 ,
where " E = {x ∈ E : k x ≤ k}. For x ∈ " E, let L x ∈ F k be the ball that contains x (the balls of F k being pairwise disjoint, L x is well dened) and 1) Suppose that there exists 0 < v < 1 such that µ(lim sup B∈B ε > vB) > 0. Then, since µ is assumed to be exact-dimensional, there exists x ∈ lim sup B∈B ε > vB such that lim r→0 log µ(B(x,r)) log r = α.

{L i } i≥1 = ¶ L x : x ∈ " E © . One has for all 1 ≤ i < j, L i ∩ L j = ∅, for all i ∈ N, L i ∈ B ϕ(n) n≥g and L i ⊂ Ω, µ( i≥1 L i ) ≥ µ( " E) ≥ µ(Ω) 2 . By σ-additivity, there exists N ∈ N such that µ( 1≤i≤N L i ) ≥ µ(Ω)
B ε > = {B n : µ(B n ) ≤ |B n | α+ε } and B ε < = {B n : µ(B n ) ≥ |B n | α-ε } . Then (1) for any v < 1, µ(lim sup B∈B ε > vB) = 0, (2) µ(lim sup B∈B ε < B) = 0. Proof. (
Consider r x > 0 small enough so that, for any 0 < r ≤ r x , µ(B(x, r)) ≥ r dim(µ)+ ε 2 and ( 1-v 2 ) dim(µ)+ ε 2 ≥ r ε 4

x . Let also n be large enough so that x ∈ B n and |B n | ≤ r x . Then B(x, (1-v) 2

|B n |) ⊂ B n , so that µ(B n ) ≥ µ(B(x, 1 -v 2 |B n |)) ≥ |B n | α+ ε 2 ( 1 -v 2 ) α+ ε 2 ≥ |B n | α+ 3ε 4 . (35) 
This contradicts the denition of B ε > .

(2) Assume that µ(lim sup B∈B ε < B) > 0. Then, again, there exists x ∈ lim sup B∈B ε < B so that lim r→0 log µ(B(x,r)) log r = α. Consider r x > 0 small enough so such that, for any 0

< r ≤ r x , µ(B(x, r)) ≤ r α-ε 2 . Consider n ∈ N large enough so that x ∈ B n and |B n | ≤ r x . One has B n ⊂ B(x, |B n |), hence µ(B n ) ≤ µ(B(x, |B n |)) ≤ |B n | α-ε 2 .
This contradicts the denition of B ε < . □ Remark 4.9. For doubling measures, it is straightforward that item (1) can be replaced by simply µ(lim sup B∈B ε > B) = 0. It can be proved that this is also the case for 1-average d-1 unrectiable measures (as a consequence of [START_REF] Käenmäki | Dynamics of the scenery ow and geometry of measures[END_REF]Theorem 2.11]).

Some self-similar measures with open set condition satises this property (see [START_REF] Käenmäki | Dynamics of the scenery ow and geometry of measures[END_REF] again for more details).

Some explicit examples

In this section, applications of Theorem 2.3 are given. Let m ≥ 2 and S = {f 1 , ..., f m } be a system of m similarities of R d → R d of ratio of contraction 0 < c 1 < 1, ..., 0 < c m < 1.

Let us also write Λ = {1, ..., n}, Λ * = k≥0 Λ k and for i = (i 1 , ...

, i k ) ∈ Λ k , f i = f i 1 • ... • f i k , X i = f i ([0, 1] d ), c i = c i 1 × ... × c i k .
Let us x also (p 1 , ..., p m ) ∈ R N + a probability vector, i.e a vector verifying 1≤i≤m p i = 1.

Remark 5.5. Let µ dened by [START_REF] Federer | Geometric measure theory, volume Band 153 of Die Grundlehren der mathematischen Wissenschaften[END_REF] and x ∈ K S . Then, for any k ∈ N, the balls

{B(f i (x), 2|K S |c i )} i∈Λ k covers K S . In particular, by Theorem 2.1 B(f i (x), 3|K S |c i ) i∈Λ * is µ-a.c.
As a consequence of Theorem 2.3 and Lemma 5.5, one gets:

Corollary 5.6. Let µ ∈ M(R d ) be a measure dened by [START_REF] Federer | Geometric measure theory, volume Band 153 of Die Grundlehren der mathematischen Wissenschaften[END_REF] and x ∈ K S .

There exists a µ-a.c weakly redundant sub-sequence of balls

(B n ) n∈N extracted from B(f i (x), 3c i ) i∈Λ *
such that, for all n ∈ N and for some sequence

(ε k ) k∈N ∈ (R * + ) N verifying ε k → 0, |B n | dim(µ)+εn ≤ µ(B n ) ≤ |B n | dim(µ)-εn , and B µ = {B n } n∈N satises dim H (lim sup n→+∞ B n ) = dim(µ).
6. Proofs of Theorem 2.6

The proof strongly relies on the following result proved in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF]. Theorem 6.1. Let S be a self-similar IFS of R d . Let K be the attractor of S.

Let µ be a self-similar measure associated with S. 

c(d, µ, s)|B| s ≤ H µ,s ∞ ( B) ≤ H µ,s ∞ (B) ≤ |B| s and c(d, µ, s)H s ∞ (Ω ∩ K) ≤ H µ,s ∞ (Ω) ≤ H s ∞ (Ω ∩ K). (37) 
For any s > dim(µ), H µ,s ∞ (Ω) = 0.

Recall that the sequence B = (B n ) n∈N is assumed to be weakly redundant. In such a case, for any ε > 0, following the notation involved in Denition 2.3, it holds that n≥0

|B n | ε µ(B n ) = k≥0 B∈T k (B) |B| ε µ(B) ≤ k≥0 1≤j≤J k 2 -kε B∈T k,j (B)

µ(B).

Since for every (k, j) the family T k,j is composed of pairwise disjoint balls, this yields

(38) n≥0 |B n | ε µ(B n ) ≤ k≥0 1≤j≤J k 2 -kε = k≥0 J k 2 -kε < +∞. Now, for n ∈ N, consider a sequence of balls (A n k ) k∈N , with |A n k | ≤ |B n | and such that U n ∩ K ⊂ k≥0 A n k .
Recall Theorem 6.1 and its notations. One has.

(39)

H s ∞ (U n ) ≤ k≥0 |A n k | s ≤ 2H s ∞ (U n ) ≤ 2 c(d, µ, s) H µ,s ∞ (U n ) ≤ 2 c(d, µ, s) µ(B n ). Since for each n ∈ N, U n ∩ K ⊂ k≥0 A n k , it holds that lim sup n→+∞ U n ∩ K ⊂ lim sup k,n→+∞ A n k . For any ε > 0, one gets n≥0 k≥0 |A n k | s+ε ≤ n≥0 |B n | ε 2 c(d, µ, s) µ(B n ).
In particular, by (38),

|A n k | s+ε < +∞.

One concludes that

H s+ε (lim sup n→+∞ U n ∩ K) ≤ H s+ε (lim sup k,n→+∞ A n k ) < +∞. This implies that dim H (lim sup n→+∞ U n ∩ K) ≤ s + ε and ε being arbitrary, dim H (lim sup n→+∞ U n ∩ K) ≤ s.
Remark 6.2.

An important fact to underline here is that the convergences established in (38) and (39) do not rely on the fact that the measure is self-similar, but hold for any measure µ. One could state a comparable upper-bound Theorem for any measure µ by replacing K by a G δ set of full measure in [START_REF] Feng | Dimension theory of iterated function systems[END_REF].

These computations also have the following straightforward consequence for a measure µ ∈ M(R d ) without the self-similarity assumption: Assume that, for n large enough, H µ,s ∞ (U n ) ≤ µ(B n ). If the sequence (U n ) n∈N veries that for any ball B i ⊂ U n one also has B i ⊂ k≥n A n k (where the balls (A k,n ) k∈N are chosen as in the proof of Theorem 2.6), then dim H (lim sup n→+∞ U n ) ≤ s. In particular if this holds for any s > s(µ, B, U), then dim H (lim sup n→+∞ U n ) = s(µ, B, U).

When the self-similar measure veries supp(µ) = [0, 1] d , the existence of s 0 as in Corollary 2.7 is ensured as soon as the shapes of the sets U n are uniform in n. s) , for the mapping g τ : R + → R + , dened as (see [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF])

g τ (s) = max 1≤k≤d sτ k - 1≤i≤k τ k -τ i .
Note that g τ (s) does not depend on n. Corollary can therefore be applied with s 0 = min s:gτ (s)≥d {s}.

Unfortunately, when such an s 0 does not exist, the Hausdor dimension of lim sup n→+∞ U n has to depend on the structure of the sequence (U n ) itself. Consider 0 < s 1 < s 2 ≤ d and two vectors τ 1 and τ 2 such that s 1 = min s:gτ 1 (s)≥d {s} and s 2 = min s:gτ 2 (s)≥d {s} . Then smallest real number such that the condition of Theorem 2.6 holds is s 2 , the largest real number such that the condition of Theorem 2.5 holds is s 1 and dim H (lim sup n→+∞ U n ) = s 2 .

On the other hand, following the scheme of example 3.5 in [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF], it is also possible to construct two weakly redundant sequences of balls (B n,1 ) n∈N and (B n,2 ) n∈N such that: Those properties implies that that any sequence (B n ) n→+∞ corresponding to the family {B n,i } n∈N,i∈{1,2} is weakly redundant and satises L d (lim sup n→+∞ B n ) = 1.

Again, the smallest real number such that the condition of Theorem 2.10 holds is s 2 , the largest real number such that the condition of Theorem 2.5 holds is s 1 but this time, dim H (lim sup n→+∞ U n ) = s 1 .

Conclusion and perspectives

The properties stated in Theorem 2.3 (the prescribed measure and the weak redundancy) are of course non exhaustive and maybe more can be imposed to well chosen subsequences of µ-.a.c sequences of balls. It turns out that in the quasi-Bernoulli case it is enough to get condition under which the lower-bound found in [START_REF] Daviaud | An anisotropic inhomogeneous ubiquity theorem[END_REF] is also an upper-bound , but it is likely that in some other cases, one needs to ask the sequence to verify more properties to ensure the sharpness of a certain lower-bound. In particular, it can be proved that, under very weak hypothesis on a µ-a.c sequence (B n ) n∈N , given a G δ set of full measure G, it is possible to assume (up to an extraction) that the set G ′ = lim sup n→+∞ B n is a G δ set of full measure with G ′ ⊂ G (so that one can assume that lim sup n→+∞ B n is always included in any G δ of full measure if needed).

  For x ∈ supp(µ), the lower and upper local dimensions of µ at x are dim(µ, x) = lim inf r→0 + log µ(B(x, r)) log r and dim(µ, x) = lim sup r→0 + log µ(B(x, r)) log r .

3 .

 3 Proof of Theorem 2.1 3.1. A useful modied version of Besicovitch covering Lemma. One focuses on a modied version of Besicovitch's covering Lemma. Proposition 3.1. For any 0 < v ≤ 1, there exists Q d,v ∈ N ⋆ , a constant depending only on the dimension d and v, such that for every E ⊂ [0, 1] d , for every set

. 2 .Lemma 3 . 4 .

 234 Consequences of the µ-asymptotic covering property. One rst shows that the constant C in Denition 2.4 can be replaced by 1 if innite subsequences of balls are authorized. In fact Denition 2.4 ensures that any open set can be covered (with respect to the µ-measure) by disjoint balls B n of arbitrary large indices. Let µ ∈ M(R d ) and B = (B n := B(x n , r n )) n∈N be a µ-a.c sequence of balls of R d with lim n→+∞ r n = 0.

□ 3 . 3 .

 33 Proof. By outer regularity, there exists an open set Ω such that E ⊂ Ω and m(Ω) ≤ µ(E) + ε. Applying Lemma 3.4 to Ω, the sequence (B n ) n∈N fullls the condition of Corollary 3.5. Proof of Theorem 2.1. (1) Assume rst that B = (B n ) n∈N is µ-a.c, and let us prove that µ(lim sup n→+∞ B n ) = 1.

( 17 )

 17 B(y, (1 -v)r ny ) ⊂ B ny ⊂ B(y, (1 + v)r ny ) ⊂ B(y, 2r ny ), and the family F = B(y, (1 -v)r ny ) : y ∈ E covers E by balls centered on E. Applying Proposition 3.1 with constant

Theorem 3 . 6 (

 36 [START_REF] Beresnevich | The divergence borel-cantelli lemma revisited[END_REF]). Let µ ∈ M(R d ) be a doubling measure and (B n ) n∈N a sequence of balls centered in supp(µ) such that |B n | → 0. Then µ(lim sup n∈N B n ) = 1 ⇔ ∃C > 1 such that for any open ball B centered on supp(µ), there exists a subsequence (L B,n

Proposition 3 . 7 .

 37 Let (B n ) n∈N be a sequence of closed balls satisfying |B n | → 0 and µ ∈ M(R d ) be a probability measure. (A): Assume that (B n ) n∈N is µ-a.c, then, there exists C > 1 such that for any open ball B, there exists a sub-sequence of (B n ) n∈N , (L n,B ) n∈N satisfying, for any n ∈ N, L B,n ⊂ B and (19) n≥0 µ(L B,n ) = +∞ and for innitely many Q,

3. 7 .

 7 Lemma 3.8. Let E ⊂ R d . Assume that there exists 0 < c < 1 such that for any open ball B, µ(E ∩ B) ≥ cµ(B), then µ(E) = 1.

( 21 )

 21 A(r) = {x ∈ A : ∀r ≤ r, m(B(x, r) ∩ A) ≥ c.m(B(x, r)

4. 1 .

 1 Extraction of weakly redundant µ-a.c subsequences. The main result of this section is stated here. Proposition 4.1. Let µ ∈ M(R d ) and (B n ) n∈N be a µ-a.c sequence of balls lim n→+∞ |B n | = 0. There exists a subsequence (B ψ(n) ) n∈N of (B n ) n∈N which is weakly redundant and µ-a.c.Proof. Let g k ∈ N be large enough so that ∀n ≥ g k , |B n | ≤ 2 -k . By Proposition 3.4, applied with the sequence (B n ) n∈N , Ω = R d for any k ∈ N, there exists a sub-sequence (B (n,k)

4. 2 .

 2 Extraction of sub-sequences of balls with conditioned measure. Let µ ∈ M(R d ) and (B n ) n∈N be an µ-a.c sequence of balls. This part aims to understand what condition can be assumed about the measure of the ball of the sequence (B n ) n∈N in general under the µ-a.c condition. More precisely, item (2) of Theorem 2.3 is proved. Proposition 4.2. Let µ ∈ M(R d ). For any sequence of balls (B n ) n∈N satisfying

5. 3 .

 3 Examples in dynamical systems. Let us introduce some notation.

  For any 0 ≤ s < dim(µ), there exists a constant c = c(d, µ, s) > 0 depending on the dimension d, µ and s only, such that for any ball B = B(x, r) centered on K and r ≤ 1, any open set Ω, one has

  For instance, consider the case where µ = L d and (U n = R n ) n∈N , where R n is an open rectangle associated with some vector τ = (τ 1 , ..., τ d ) dened as in Theorem 2.10. Recall that by Theorem 6.1, the Lebesgue essential Hausdor content and the classical Hausdor content are equivalent. It is easily veried that, for any n ∈ N, H s ∞ (R n ) = |B n | gτ (

  Consider a weakly redundant sequence of balls (B n ) n∈N of [0, 1] d and a sequence of open sets (U n ) n∈N , U n ⊂ B n satisfying:|B n | → 0, L d (lim sup n→+∞ B n ) = 1, for any n ∈ N, B n ⊂ [0, 1 2 ) × d i=2 [0, 1] or B n ⊂ ( 1 2 , 1] × d i=2 [0, 1], for any n ∈ N such that B n ⊂ [0, 1 2 ) × d i=2 [0, 1], U n = (R n ) with R n an open rectangle associated with τ 1 as in Theorem 2.10, for any n ∈ N such that B n ⊂ ( 1 2 , 1] × d i=2 [0, 1], U n = R n withR n an open rectangle associated with τ 2 .

|B n, 1 |

 1 → 0 and |B n,2 | → 0, 0 < L d (lim sup n→+∞ B n,2 ) < 1, lim sup n→+∞ R n,2 = ∅, where R n,2 ⊂ B n,2 is an open rectangle associated with τ 2 , lim sup n→+∞ B n,1 ⊂ [0, 1] d \ lim sup n→+∞ B n,2 and L d (lim sup n→+∞ B n,1 ) = 1 -L d (lim sup n→+∞ B n,2 ).

For

  any n ∈ N, denote by R n,1 ⊂ B n,1 an open rectangle associated with τ 1 .

  2.2. Main statements. Before stating the Theorems proved in this article, one starts by recalling the following denition, introduced in [2].

	Denition 2.3.

Let B = (B n

  An interesting consequences of Theorem 2.1 is the following version of Borel-Cantelli lemma which is extends the case where µ is doubling, established[START_REF] Beresnevich | The divergence borel-cantelli lemma revisited[END_REF]. Proposition 2.2. Let (B n ) n∈N be a sequence of closed balls satisfying |B n | → 0

	(7)	µ(L B,n ) = +∞
	n≥0	
	and for innitely many Q,	

and µ ∈ M(R d ) be a probability measure.

(A): Assume that (B n ) n∈N is µ-a.c, then, there exists C > 1 such that for any open ball B, there exists a sub-sequence of (B n ) n∈N , (L n,B ) n∈N satisfying, for any n ∈ N, L B,n ⊂ B and

  Let µ ∈ M(R d ) Let (B n ) n∈N be a sequence of balls of R d .(1) If (B n ) n∈N is µ-a.c, then there exists a µ-a.c sub-sequence (B ϕ(n) ) n∈N which ) n∈N veries µ(lim sup n→+∞ vB n ) = 1, for some v < 1, it is possible to extract a µ-a.c sub-sequence verifying items (1) and (2).

	One now states the main result about extraction of sub-sequences of balls of this
	article.					
	Theorem 2.3. is weakly redundant.			
	(2) If there exists v < 1 such that µ(lim sup n→+∞ vB n ) = 1, then there exists
		a µ-a.c sub-sequence (B ϕ(n) ) n∈N verifying		
	(9)	dim H (µ) ≤ lim inf n→+∞	log µ(B ϕ(n) ) log |B ϕ(n) |	≤ lim sup n→+∞	log µ(B ϕ(n) ) log |B ϕ(n) |	≤ dim P (µ).
	Remark 2.4. Theorem 2.3 implies in particular that if the sequence of balls
	(B n Section 3.3 and Section 4 are respectively dedicated to the proof of Theorem 2.1
	and Theorem 2.3.				
	Section 5 provides some explicit applications of Theorem 2.3.
	In the last section, Section 6, one proves Theorem 2.6 and some nal remark
	are given about Corollary 2.7.			
	2.3. Application to the study of the optimality of lower-bounds in ob-tained via mass transference principles.
	2.3.1. An upper-bound for ubiquity Theorem in the self-similar case. In this sec-
	tion, one shows how the previous extraction theorem can be used to investigate
	optimal bounds in inhomogeneous mass transference principles. Let us recall rst
	the denition of the following geometric quantity, introduced in [9].
	Denition 2.5. Let µ ∈ M(R d ), and s ≥ 0. The s-dimensional µ-essential
	Hausdor content at scale t ∈ (0, +∞] of a set A ⊂ B(R d ) is dened as
	(10)					

  Note that if, for any n ∈ N, the ball B n intersects K, lim sup n→+∞ U n ∩ K = lim sup n→+∞ U n . Theorem 2.5 and Theorem 2.6 yields the following useful corollary. Corollary 2.7. Let µ ∈ M(R d ) be a self-similar measure. Let (B n ) n∈N be a weakly redundant µ-a.c sequence of balls satisfying |B n | → 0 and B n ∩ K ̸ = ∅ for any n ∈ N. Let (U n ) n∈N be a sequence of open sets satisfying that, for any n ∈ N, U n ⊂ B n .

  that, if there exists C > 0 such that for any open ball B, there exists a sub-sequence of (B n ) n∈N (L n,B ) n∈N with, for any n ∈ N, L n,B ⊂ B, satisfying[START_REF] Seuret | Diophantine approximation by orbits of expanding markov maps[END_REF] and[START_REF] Mattila | Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectiability[END_REF], then

	µ(lim sup
	n→+∞

  One nishes this section with the following proposition, which supports the idea that, roughly speaking, for an α exact-dimensional measure µ and a µ-a.c sequence of balls (B n ), considering balls (B n ) n∈N which does not verify µ(B n ) ≈ |B n | α is not relevant from the µ-standpoint. Proposition 4.8. Let µ ∈ M(R d ) be an α exact-dimensional measure and (B n ) n∈N a sequence of balls satisfying |B n | → 0. Let ε > 0. Let is also dene

	that (B ϕ(n) ) n∈N satises Denition 2.4 with C = 1 4	, which proves and is indeed µ-a.c. 4 □

E

[α,γ], 1 n ,ε µ and

The following statements are easily deduced from Denition 2.2. Proposition 4.4. For every µ ∈ M(R d ), ρ > 0, every 0 ≤ α ≤ γ and ε > 0,

Furthermore, for α 1 = dim H (µ) and γ 1 = supess µ (dim(µ, x)), one has

Similarly, for α 2 = infess µ (dim(µ, x)) and γ 2 = dim P (µ), one has

Proof. For any x ∈ R d , for any ε > 0, there exists r x > 0 such that, ∀r ≤ r x , r dim(µ,x)+ε ≤ µ(B(x, r)) ≤ r dim(µ,x)-ε . This implies

and

recalling Denition 2.2, it holds that, following the notation of Proposition 4.4,

□

Before showing Proposition 4.2, let us start by the two following Lemmas 4.5 and 4.6. The rst one will be used to prove the left part of the inequality (9) while the second one will be useful to prove the right part. For any ε > 0, there exists a µ-a.c subsequence

Let Ω be an open set and ε > 0. By (29), µ(E

Recall (27) and that the sets E [α,γ],ρ,ε µ are non-increasing in ρ. In particular there exists ρ Ω > 0 such that the set E

Let g ∈ N. Applying Lemma 3.4 to Ω, the sequence (B n ) and the measure m, there exists N Ω as well as g ≤ n 1 ≤ ... ≤ n N Ω verifying:

(1) for every

2 . We may assume that µ(B n i ) > 0 for every i, otherwise B n i does not play any role.

Item [START_REF] Barral | The multifractal nature of heterogeneous sums of dirac masses[END_REF] together with (31) implies that

Furthermore, for every

and by (25) , item [START_REF] Barral | Heterogeneous ubiquitous systems in R d and Hausdor dimensions[END_REF], and (28), it holds that

Write F 2 = i≥1 F 2,i . Note that the family of balls F 2 veries, by construction, that any L ∈ F 2 the natural ε i associated with L is never equal to ε 1 , so that only some balls constructed in step 1 are associated with ε 1 .

The other steps are achieved following the same scheme.

The construction is detailed below:

Step 1:

Sub-step 1.1: By Lemma 4.5 and Lemma 4.6 applied to ε = ε 1 , there exists a µ-a.c subsequence (B ψ 1,1 (n) ) n∈N , satisfying, for every n ∈ N,

By Lemma 3.4 applied to Ω 1,1 , the sequence (B ψ 1,1 (n) ) n∈N and g = 1, there exists an integer N 1,1 as well as some balls L

Sub-step 1.2:

Let Ω 1,2 = Ω 1,1 \ L∈F 1,1 L. By Lemma 4.5 and Lemma 4.6 with ε = ε 2 , there exists a µ-a.c sub-sequence

Proceeding iteratively as Sub-step 1.1 and Sub-step 1.2, for any i ∈ N, at Substep 1.i a family of balls (F 1,i ) i∈N is constructed so that it veries:

1. Rational approximation. Let us recall the following result from Hurwitz see [START_REF] Holley | Multifractal dimensions and scaling exponents for strongly bounded random fractals[END_REF], p 219, for more details.

Theorem 5.1. Let x ∈ [0, 1] \ Q. There exists an innite number of pairs (p, q) ∈ N × N * with p ∧ q = 1 and (36)

x -p q < 1 √ 5q 2 .

An immediate corollary of Theorem 2.1, Theorem 2. 

is weakly redundant (see [START_REF] Barral | Ubiquity and large intersections properties under digit frequencies constraints[END_REF]) and µ-a.c. In particular, if µ is α-exact-dimensional, for 0 ≤ α ≤ d, then there exists a sequence (ε n ) n∈N ∈ (R * + ) N with lim n→+∞ ε n = 0 and an innite number of pairs (p n , q n ) ∈ N × {0, ..., q n } N such that p n ∧ q n = 1 and