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EXTRACTION OF OPTIMAL SUBSEQUENCES OF SEQUENCE
OF BALLS, AND APPLICATION TO OPTIMALITY ESTIMATES

OF MASS TRANSFERENCE PRINCIPLES

Edouard DAVIAUD
Université Paris-Est, LAMA (UMR 8050) UPEMLV, UPEC, CNRS, F-94010,
Créteil, France

Abstract. In this article, we prove that from any sequence of balls whose
associated limsup set has full µ-measure, one can extract a well-distributed
subsequence of balls. From this, we deduce the optimality of various lower
bounds for the Hausdorff dimension of limsup sets of balls obtained by mass
transference principles. One also gives a version of Borel-Cantelli lemma suitable
for limsup sets of balls of full measure.

1. Introduction

Investigating Hausdorff dimensions of sets of points approximable at certain
“speed rate” by a given sequence of points (xn)n∈N is an important topic in Dio-
phantine approximation (see [6] and [4] among other references), in dynamical
systems [13, 19, 21] and in multifractal analysis [16, 1, 3]. These studies consists
in general, knowing that µ(lim supn→+∞Bn := B(xn, rn)) = 1 for a certain mea-
sure µ and a sequence of radius (rn)n∈N, in investigating the Hausdorff dimension
of lim supn→+∞ Un where Un ⊂ Bn. Typically Un is a contracted ball inside Bn,
but recently, general sets Un have been considered [17, 23, 8].The so-called ubiquity
theorems or mass transference principles mainly focus on finding a lower bound,
using an adequate measure µ, for the Hausdorff dimension (or Hausdorff measure)
of those sets. However it is key in many situations to understand whether this
lower bound is optimal or not. This article is dedicated to this problem.

In order to do so, we introduce, given a probability measure µ on Rd, the concept
of µ-asymptotically covering sequence of balls. This notion is a generalization
of a covering property used in the KGB Lemma stated in [6]. For a sequence
(Bn)n∈N, verifying this condition will be proved to be almost equivalent to verify
µ(lim supn→+∞Bn) = 1 (it is equivalent if the measure is doubling for instance, so
that working under this settings is very reasonable).

As said above, given a sequence of balls (Bn)n∈N and another (Un ⊂ Bn)n∈N,
ubiquity theorems or mass transference principles give lower bounds for the Haus-
dorff dimension of lim supn→+∞ Un when, roughly speaking, some information is
known about the geometry of lim supn→+∞Bn. Of course, there is no reason in
general for a lower-bound for dimH(lim supn→+∞ Un) obtained only knowing that
µ(lim supn→+∞Bn) = 1, to be sharp (i.e = dimH(lim supn→+∞ Un)). If one hopes
such a lower-bound to be accurate, the measure µ has to be particularly adapted,
in some sense, to the pair of sequences ((Bn)n∈N, (Un)n∈N). The approach adopted
in this article is to extract some sub-sequences from (Bn)n∈N which are still µ-a.c
(or still verifies µ(lim supn→+∞Bn) = 1) but are adapted to the measure µ. Apply-
ing mass transference principles (which are proved only for measures presenting
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2 EXTRACTION OF SEQUENCES OF BALLS, AND APPLICATIONS

enough self-similarity) to those sub-sequences, it will be proved that Hausdorff
dimension of the limsup set associated with the corresponding Un’s is given by the
lower-bounds found in [9] (so that it is also the case for the lower-bounds given in
[8, 4, 23]).

This shows that those lower-bounds are sharp in a strong sens: for any self-
similar measure µ, any µ-a.c sequence (Bn)n∈N, if one only considers the balls
that are relevant for the measure µ, the limsup set obtained by considering the
sub-sequence of the corresponding Un’s ((Un)n∈N being also the sequence of sets
involved in the articles mentioned) has the expected dimension.

More precisely, it will be proven first that, under those very weak condition over
a µ-a.c sequence of balls (Bn)n∈N, it is always possible to extract a sub-sequence
(Bφ(n))n∈N, still µ-ac, "weakly redundant" (see Definition 2.3) and such that the
balls (Bφ(n))n∈N have prescribed behavior with respect to the measure µ, roughly
meaning (see Theorem 2.3) that the balls (Bφ(n))n∈N satisfies

(1) |Bφ(n)|dimP (µ) / µ(Bφ(n)) / |Bφ(n)|dimH(µ).

In a second time, it will be proved that, for weakly redundant sequences satisfying
(1), the Hausdorff dimension of lim sup set associated with any sequence of shrunk
balls or very thin rectangles (Rn ⊂ Bn)n∈N (see Theorem 2.10) can be bounded
by above precisely by the lower-bound given in [9], which proves the optimality of
those bounds.

2. Notation and definition

Let d ∈ N.
For n ∈ N, the set of dyadic cubes of generation n of Rd is denoted Dn(Rd) and

defined as Dn(Rd) =
¶∏d

i=1[ ki
2n
, ki+1

2n
)
©

(ki)i∈Z∈ZZ
.

For x ∈ Rd, r > 0, B(x, r) stands for the closed ball of (Rd,|| ||∞) of center x
and radius r. Given a ball B, |B| is the diameter of B.

For t ≥ 0, δ ∈ R and B := B(x, r), tB stand for B(x, tr), i.e. the ball with
same center as B and radius multiplied by t, and the δ-contracted Bδ is defined
by Bδ = B(x, rδ).

Given a set E ⊂ Rd,
◦
E stands for the interior of the E, E its closure and ∂E is

the boundary of E, i.e, ∂E = E \
◦
E.

The σ-algebra of Borel sets of Rd is denoted by B(Rd), Ld is the Lebesgue
measure on B(Rd) andM(Rd) stands for the set of Borel probability measure over
Rd.

For µ ∈ M(Rd), supp(µ) := {x : ∀r > 0, µ(B(x, r)) > 0} is the topological
support of µ.

Given E ∈ B(Rd), dimH(E) and dimP (E) denote respectively the Hausdorff and
the packing dimension of E.

2.1. Definition and recalls.

Definition 2.1. Let ζ : R+ 7→ R+ be an increasing mapping verifying ζ(0) = 0.
The Hausdorff measure at scale t ∈ (0,+∞) associated with ζ of a set E is defined
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by
(2)

Hζ
t (E) = inf

{∑
n∈N

ζ(|Bn|) : (Bn)n∈N closed balls, |Bn| ≤ t and E ⊂
⋃
n∈N

Bn

}
.

The Hausdorff measure associated with ζ of a set E is defined by

(3) Hζ(E) = lim
t→0+
Hζ
t (E).

For t ∈ (0,+∞), s ≥ 0 and ζ : x → xs, one simply uses the usual notation
Hζ
t (E) = Hs

t (E) and Hζ(E) = Hs(E). In particular, the s-dimensional Hausdorff
outer measure at scale t ∈ (0,+∞] of the set E is defined by

(4) Hs
t (E) = inf

{∑
n∈N

|Bn|s : (Bn)n∈N closed balls, |Bn| ≤ t and E ⊂
⋃
n∈N

Bn

}
.

Definition 2.2. Let µ ∈ M(Rd). For x ∈ supp(µ), the lower and upper local
dimensions of µ at x are

dim(µ, x) = lim inf
r→0+

log µ(B(x, r))

log r

and dim(µ, x) = lim sup
r→0+

log µ(B(x, r))

log r
.

Then, the lower and upper dimensions of µ are defined by

(5) dimH(µ) = infessµ(dim(µ, x)) and dimP (µ) = supessµ(dim(µ, x)).

It is known that (for more details see [10])

dimH(µ) = inf
E∈B(Rd): µ(E)>0

dimH(E) and dimP (µ) = inf
E∈B(Rd): µ(E)=1

dimP (E).

A measure verifying dimH(µ) = dimP (µ) := α will be called an α exact di-
mensional measure. From Definition 2.2, such measures verify, for µ-almost every
x ∈ Rd, limr→0+

log µ(B(x,r))
log r

= α.

2.2. Main statements. Before stating the Theorems proved in this article, one
starts by recalling the following definition, introduced in [2].

Definition 2.3. Let B = (Bn =: B(xn, rn))n∈N be a family of balls in Rd. Denote
by Tk(B) =

{
Bn : 2−k−1 < rn ≤ 2−k

}
. The family B is said to be weakly redun-

dant when for all k, there exists an integer Jk and Tk,1(B), .., Tk,Jk(B) a partition
of Tk(B) such that:

(C1) Tk(B) =
⋃

1≤j≤Jk Tk,j(B),

(C2) For every 1 ≤ j ≤ Jk and every pair of balls B 6= B′ ∈ Tk,j(B), B∩B′ = ∅,

(C3) limk→+∞
log2(Jk)

k
= 0.

So, a sequence of balls (Bn)n∈N is weakly redundant when at each scale 2−k, the
balls of the family {Bn}n∈N that have radii ≈ 2−k can be sorted in a relatively
small number of families of pairwise disjoint balls.

The main property we introduce for a sequence of balls B = (Bn)n∈N is meant
to ensure that any set can be covered efficiently by the limsup of the Bn’s, with
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respect to a measure µ. This property is a general version of the KGB Lemma of
Beresnevitch and Velani, stated in [6], using a Borel probability measure µ. Such
properties (like the KGB Lemma) are usually key (cf [16, 6, 2] for instance) to
prove ubiquity or mass transference results.

Definition 2.4. Let µ ∈ M(Rd). The sequence B = (Bn)n∈N of balls of Rd is
said to be µ-asymptotically covering (in short, µ-a.c) when there exists a constant
C > 0 such that for every open set Ω ⊂ Rd and g ∈ N, there is an integer NΩ ∈ N
as well as g ≤ n1 ≤ ... ≤ nNΩ

such that:
• ∀ 1 ≤ i ≤ NΩ, Bni ⊂ Ω,

• ∀ 1 ≤ i 6= j ≤ NΩ, Bni ∩Bnj = ∅,
• one has

(6) µ

( ⋃
1≤i≤NΩ

Bni

)
≥ Cµ(Ω).

In other words, for any open set Ω and any g > 0, there exists a finite set of
disjoint balls of {Bn}n≥g covering a large part of Ω from the µ-standpoint.

This notion of µ-asymptotically covering is related to the way the balls of B
are distributed according to the measure µ. In particular, given a measure µ, this
property is slightly stronger than being of lim sup of full µ-measure, as illustrated
by the following Theorem.

Theorem 2.1. Let µ ∈ M(Rd) and B = (Bn := B(xn, rn))n∈N be a sequence of
balls of Rd with limn→+∞ rn = 0.

(1) If B is µ-a.c, then µ(lim supn→+∞Bn) = 1.

(2) If there exists v < 1 such that µ
(

lim supn→+∞(vBn)
)

= 1, then B is µ-a.c.

Moreover, it results from the proof of the KGB-Lemma [6] that if the µ is
doubling, µ

(
lim supn→+∞Bn

)
= 1⇔ (Bn)n∈N is µ-a.c.

An interesting consequences of Theorem 2.1 is the following version of Borel-
Cantelli lemma which is extends the case where µ is doubling, established [5].

Proposition 2.2. Let (Bn)n∈N be a sequence of closed balls satisfying |Bn| → 0
and µ ∈M(Rd) be a probability measure.
(A): Assume that (Bn)n∈N is µ-a.c, then, there exists C > 1 such that for any

open ball B, there exists a sub-sequence of (Bn)n∈N, (Ln,B)n∈N satisfying,
for any n ∈ N, LB,n ⊂ B and

(7)
∑
n≥0

µ(LB,n) = +∞

and for infinitely many Q,

(8)
Q∑

s,t=1

µ(LB,s ∩ LB,t) ≤
C

µ(B)

(
Q∑
n=1

µ(LB,n)

)2

.

(B): Assume that there exists C > 1 such that for any open ball B, there exists
a sub-sequence of (Bn)n∈N (Ln,B)n∈N with, for any n ∈ N, Ln,B ⊂ B,
satisfying (19) and (20), then µ(lim supn→+∞Bn) = 1, so that, for any
κ > 1, (κBn)n∈N is µ-a.c.
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One now states the main result about extraction of sub-sequences of balls of this
article.

Theorem 2.3. Let µ ∈M(Rd) Let (Bn)n∈N be a sequence of balls of Rd.

(1) If (Bn)n∈N is µ-a.c, then there exists a µ-a.c sub-sequence (Bφ(n))n∈N which
is weakly redundant.

(2) If there exists v < 1 such that µ(lim supn→+∞ vBn) = 1, then there exists
a µ-a.c sub-sequence (Bφ(n))n∈N verifying

(9) dimH(µ) ≤ lim inf
n→+∞

log µ(Bφ(n))

log |Bφ(n)|
≤ lim sup

n→+∞

log µ(Bφ(n))

log |Bφ(n)|
≤ dimP (µ).

Remark 2.4. Theorem 2.3 implies in particular that if the sequence of balls
(Bn)n∈N verifies µ(lim supn→+∞ vBn) = 1, for some v < 1, it is possible to ex-
tract a µ-a.c sub-sequence verifying items (1) and (2).

Section 3.3 and Section 4 are respectively dedicated to the proof of Theorem 2.1
and Theorem 2.3.

Section 5 provides some explicit applications of Theorem 2.3.
In the last section, Section 6, one proves Theorem 2.6 and some final remark

are given about Corollary 2.7.

2.3. Application to the study of the optimality of lower-bounds in ob-
tained via mass transference principles.

2.3.1. An upper-bound for ubiquity Theorem in the self-similar case. In this sec-
tion, one shows how the previous extraction theorem can be used to investigate
optimal bounds in inhomogeneous mass transference principles. Let us recall first
the definition of the following geometric quantity, introduced in [9].

Definition 2.5. Let µ ∈ M(Rd), and s ≥ 0. The s-dimensional µ-essential
Hausdorff content at scale t ∈ (0,+∞] of a set A ⊂ B(Rd) is defined as

(10) Hµ,s
t (A) = inf {Hs

t (E) : E ⊂ A, µ(E) = µ(A)} .

Let us also recall the definition of a self-similar measure.

Definition 2.6. A self-similar IFS is a family S = {fi}mi=1 of m ≥ 2 contracting
similarities of Rd.

Let (pi)i=1,...,m ∈ (0, 1)m be a positive probability vector, i.e. p1 + · · ·+ pm = 1.
The self-similar measure µ associated with {fi}mi=1 and (pi)

m
i=1 is the unique

probability measure such that

(11) µ =
m∑
i=1

piµ ◦ f−1
i .

The topological support of µ is the attractor of S, that is the unique non-empty
compact set K ⊂ X such that K =

⋃m
i=1 fi(K).

The existence and uniqueness of K and µ are standard results [15]. Recall that
due to a result by Feng and Hu [12] any self-similar measure is exact dimensional.

Our goal is to investigate whether the lower-bound given by the following theo-
rem, proved in [9], is sharp.
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Theorem 2.5. Let µ ∈ M(Rd) be a self-similar measure and B = (Bn)n∈N be a
µ-a.c. sequence of closed balls of Rd centered in supp(µ). Let U = (Un)n∈N be a
sequence of open sets such that Un ⊂ Bn for all n ∈ N, and 0 ≤ s ≤ dim(µ). If,
for every n ∈ N large enough, Hµ,s

∞ (Un) ≥ µ(Bn), then

dimH(lim sup
n→+∞

Un) ≥ s.

One now states the main result of this section.

Theorem 2.6. Let µ ∈ M(Rd) be a self-similar measure, K its support and
(Bn)n→+∞ be a weakly redundant sequence of balls of Rd verifying |Bn| → 0. Let
(Un)n∈N be a sequence of open sets satisfying Un ⊂ Bn. For any 0 ≤ s < dim(µ)
such that, for all large enough n ∈ N, Hµ,s

∞ (Un) ≤ µ(Bn),

(12) dimH(lim sup
n→+∞

Un ∩K) ≤ s.

Note that if, for any n ∈ N, the ball Bn intersects K, lim supn→+∞ Un ∩ K =
lim supn→+∞ Un.

Theorem 2.5 and Theorem 2.6 yields the following useful corollary.

Corollary 2.7. Let µ ∈ M(Rd) be a self-similar measure. Let (Bn)n∈N be a
weakly redundant µ-a.c sequence of balls satisfying |Bn| → 0 and Bn ∩K 6= ∅ for
any n ∈ N.

Let (Un)n∈N be a sequence of open sets satisfying that, for any n ∈ N, Un ⊂ Bn.
Assume that there exists s0 such that

• for any s < s0, for n large enough, Hµ,s
∞ (Un) ≥ µ(Bn),

• for any s > s0, for n large enough, Hµ,s
∞ (Un) ≤ µ(Bn).

Then by Theorem 2.5 and Theorem 2.6,

dimH(lim sup
n→+∞

Un) = s0.

Remark 2.8. It is easily seen from the proof that the condition Hµ,s
∞ (Un) ≤ µ(Bn)

in Theorem 2.6 can be weakened into lim infn→+∞
logHµ,s∞ (Un)

log µ(Bn)
≥ 1.

2.3.2. Application in the case of balls and rectangles. We can now show in which
sense, in view of Theorem 2.3, Theorem 2.5 is sharp by applying Corollary 2.7 to
the specific cases where the sets Un are balls or rectangles.

Corollary 2.9. Let µ ∈ M(Rd) be a self-similar measure of support K and
B = (Bn)n∈N be a sequence of balls centered in K satisfying |Bn| → 0 and
µ
(

lim supn→+∞Bn

)
= 1. Then [9],

dimH(lim sup
n→+∞

Bδ
n) ≥ dim(µ)

δ
.

Assume furthermore that B is weakly redundant and lim supn→+∞
log µ(Bn)
log(|Bn|) = dim(µ),

then for every δ ≥ 1,

dimH(lim sup
n→+∞

Bδ
n) =

dim(µ)

δ
.
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Corollary 2.10. Let µ be a self-similar measure verifying that its support, K,
is the closure of its interior. Let 1 ≤ τ1 ≤ ... ≤ τd, τ = (τ1, ..., τd) and (Bn :=
B(xn, rn))n∈N be a sequence of balls of Rd satisfying rn → 0, µ(lim supn→+∞Bn) =

1. Define Rn = R̊τ (xn, rn), where Rτ (xn, rn) = xn +
∏d

i=1[−1
2
rτin ,

1
2
rτin ]. Then [9]

(13) dimH(lim sup
n→+∞

Rn) ≥ min
1≤i≤d

®
dim(µ) +

∑
1≤j≤i τi − τj
τi

´
.

Assume furthermore that (Bn)n∈N is weakly redundant and limn→+∞
log µ(Bn)
log |Bn| =

dim(µ), then

(14) dimH(lim sup
n→+∞

Rn) = min
1≤i≤d

®
dim(µ) +

∑
1≤j≤i τi − τj
τi

´
.

Remark 2.11. • Corollaries 2.9 and 2.10 are direct consequences of second
item of Remark 5.1 and Remark 5.3 in [9], together with Corollary 2.7
(applied to, respectively, s0 = dim(µ)

δ
and s0 = s(µ, τ)).

• Note that, by Theorem 2.3 combined with Corollary 2.9 and Corollary 2.10,
for any sequence of balls (Bn)n∈N satisfying µ

(
lim supn→+∞

1
2
Bn

)
= 1 (µ a

self-similar measure satisfying the of hypothesis of Corollaries 2.9 or 2.10
for µ), it is always possible to extract a µ-a.c sub-sequence of balls so that
the Hausdorff dimension of the limsup set associated with corresponding
Un’s is the bound stated in [9] and recalled in those corollaries. This in
particular proves that those bounds are sharp.

• In the case of the Lebesgue measure, it is always verified that limn→+∞
log µ(Bn)
log |Bn| =

dim(µ). As a consequence, the lower-bound provided by Theorem 2.5 (which
is established in [17]) in the case of balls or rectangles is precisely the di-
mension of lim supn→+∞ Un as soon as the sequence (Bn) is weakly redun-
dant. More explicitly, given a weakly redundant sequence of balls (Bn)n∈N of
[0, 1]d satisfying |Bn| → 0 and Ld(lim supn→+∞Bn) = 1, for any sequence
rectangles associated with a vector τ as in Theorem 2.10, one has

dimH(lim sup
n→+∞

Rn) = min
1≤i≤d

®
d+

∑
1≤j≤i τi − τj
τi

´
.

Section 3 is dedicated to the proof of Theorem 2.1. In the next section, Section
4, Theorem 2.3 is established. Then some explicit examples of application of
Theorem 2.3 are given in Section 5.

In the penultimate section, Section 6, Theorem 2.6 is proved.
The last section, Section 7, draws some conclusions and gives some perspectives

about the results established in this article.

3. Proof of Theorem 2.1

3.1. A useful modified version of Besicovitch covering Lemma. One fo-
cuses on a modified version of Besicovitch’s covering Lemma.

Proposition 3.1. For any 0 < v ≤ 1, there exists Qd,v ∈ N?, a constant depending
only on the dimension d and v, such that for every E ⊂ [0, 1]d, for every set
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F =
{
B(x, r(x)) : x ∈ E, r(x) > 0

}
, there exists F1, ...,FQd,v finite or countable sub-

families of F such that:

• ∀1 ≤ i ≤ Qd,v, ∀L 6= L′ ∈ Fi, one has 1
v
L ∩ 1

v
L′ = ∅.

• E is covered by the families Fi, i.e.

(15) E ⊂
⋃

1≤i≤Qd,v

⋃
L∈Fi

L.

The case v = 1 corresponds to the standard Besicovich’s covering lemma (see
[20], Chapter 2, pp. 28-34 for instance).

A first step toward Proposition 3.1 is the next lemma, that allows to split a given
family of "weakly" overlapping balls into a finite number of families of disjoint balls.

Lemma 3.2. Let 0 < v < 1 and B = (Bn)n∈N be a countable family of balls such
that limn→+∞ |Bn| = 0, and for every n 6= n′ ∈ N, vBn ∩ vB′n = ∅.

There exists γd,v + 1 (γd,v being the constant appearing in Lemma 3.3 below)
sub-families of B, (Fi)1≤i≤γd,v+1, such that:

• B =
⋃

1≤i≤γd,v+1Fi,
• ∀ 1 ≤ i ≤ γd,v + 1, ∀L ∩ L′ ∈ Fi, one has L ∩ L′ = ∅.

Proof. The proof is based on the following lemma, whose proof can be found in
[20], Lemma 2.7, pp.30 - there, the result is obtained for v = 1/2 but the proof
remains valid for any v < 1.

Lemma 3.3. For any 0 < v ≤ 1 there exists a constant γv,d > 0 depending
only on v and the dimension d only, satisfying the following: if a family of balls
B = (Bn)n∈N and a ball B are such that

• ∀ n ≥ 1, |Bn| ≥ 1
2
|B|,

• ∀ n1 6= n2 ≥ 1, vBn1 ∩ vBn2 = ∅,
then B intersects at most γv,d balls of B.

The families F1, ...,Fγd,v+1 are built recursively.
For k ∈ N, call G(k) =

{
L ∈ F : 2−k−1 < |L| ≤ 2−k

}
. Notice that, because

limn→+∞ |Bn| = 0, each G(k) is empty or finite.
Observe first that for every k ∈ N and every ball B ∈ G(k), and every pair of balls

B1 6= B2 ∈
⋃
k′≤k G(k′)\{B}, one has vB1∩vB2 = ∅ and for i = 1, 2, |Bi| ≥ |B|

2
. By

Lemma 3.3, this implies that B intersects at most γd,v balls of
⋃
k′≤k G(k′) \ {B}.

To get Lemma 3.2, we are going to sort the balls of
⋃
k′≤k G(k′) recursively on k

into families F1, ...,Fγd,v+1 of pairwise disjoint balls. At each step, a new ball B
will be added to one of those families of balls Fi and the resulting family, Fi

⋃
{B}

will be denoted again by Fi.

Let k0 be the smallest integer such that G(k0) is non-empty. Consider an arbitrary
L0 ∈ G(k0). By Lemma 3.3, L0 intersects n0 ≤ γd,v other balls of G(k0), that are
denoted by L1, ..., Ln0 . The sets Fi are then set as follows:

• ∀ 1 ≤ i ≤ n0, Fi = {Li},
• ∀ n0 + 1 ≤ i ≤ γd,v, Fi = ∅,
• Fγd,v+1 = {L0} .
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Further, consider L̃ /∈
⋃

0≤i≤n0
{Li} (whenever such an L̃ exists). The same

argument (Lemma 3.3) ensures that L̃ intersects at most γd,v balls of G(k0).
In particular there must exists 1 ≤ i ≤ γd,v + 1 such that for every L ∈ Fi,

L̃∩L = ∅. Choosing arbitrarily one of those indices i, one adds L̃ to Fi := L̃
⋃
Fi

(we keep the same name for this new family).

The same argument remains valid for any other ball L′′ /∈
⋃

1≤j≤γd,v+1

⋃
L∈Fj {L}.

Hence, proceeding recursively on all balls of G(k0) allows to sort the balls of G(k0)

into γd,v + 1 families (Fi)1≤i≤γd,v+1 of pairwise disjoint balls.

Next, let k1 be the smallest integer such that k1 > k0 and G(k1) is non empty,
take an arbitrary L(1)

0 ∈ G(k1). It is trivial to check that the family G(k0)∪G(k1) and
the ball L(1)

0 satisfy the conditions of Lemma 3.3. Subsequently, L(1)
0 intersects at

most γd,v balls of G(k0)
⋃
G(k1), and there must exist an integer 1 ≤ i0 ≤ γd,v + 1

such that L(1)
0 ∩

⋃
L∈Fi0

L = ∅. As before, we add this ball L(1)
0 to the family Fi0 .

Consider L̃ ∈ F (k1) such that L̃ /∈
⋃

1≤i≤γd,v+1Fi (whenever such a ball exists).
The exact same argument shows the existence of an integer 1 ≤ ĩ ≤ γd,v + 1 such
that L̃ intersects at most γd,v balls of G(k0)

⋃
G(k1). One adds L̃ to the family F ĩ,

which remains composed only of pairwise disjoint balls.
One applies this argument to every ball of F (k1), hence finally sorting the balls

of F (k0) ∪ F (k1) into γd,v + 1 families of pairwise disjoint balls, as requested.

It is now easily seen that one can proceed recursively on k ≥ k0, ending up with
the families F1, ...,Fγd,v+1 fulfilling the desired properties. �

We are now ready to prove Proposition 3.1.

Proof. Fix E ⊂ [0, 1]d and F =
{
B(x, r(x)) : x ∈ E, r(x) > 0

}
.

One applies Besicovich’s theorem (i.e. Proposition 3.1 with v = 1) to F ={
B(x, r(x)) : x ∈ E r(x) > 0

}
. This provides us with a finite set of families of

balls G1, ...,Gγd,1+1 composed of pairwise disjoint balls satisfying (15), i.e. E ⊂⋃
1≤i≤Qγd,1+1

⋃
L∈Gi L.

For every 1 ≤ i ≤ Qγd,1+1, one sets G(v)
i =

{
1
v
L : L ∈ Gi

}
, i.e. the sets of balls

with same centers as Gi but with radii multiplied by v−1 > 1. Notice that by
construction, ∀ 1 ≤ i ≤ Qγd,1+1, ∀L 6= L′ ∈ G(v)

i , one has vL ∩ vL′ = ∅. Hence,
Lemma 3.2 yields γd,v + 1 sub-families (G(v)

i,j )1≤j≤γd,v+1 of G(v)
i such that:

• ∀ 1 ≤ j ≤ γd,v + 1, ∀ L 6= L′ ∈ G(v)
i,j , one has L ∩ L′ = ∅,

• G(v)
i =

⋃
1≤j≤γd,v+1 G

(v)
i,j .

Finally, we set for every 1 ≤ i ≤ Qd,1 and 1 ≤ j ≤ γd,v + 1

Fi,j =
¶
vL : L ∈ G(v)

i,j

©
and Fi =

⋃
1≤j≤γd,v+1

Fi,j.

These sets verify that:
• ∀ 1 ≤ i ≤ Qd,1, ∀ 1 ≤ j ≤ γd,v + 1, ∀L 6= L′ ∈ Fi,j, 1

v
L ∩ 1

v
L′ = ∅ (because

the balls of Gi,j are pairwise disjoint),
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• E ⊂
⋃

1≤i≤Qd,1 Gi =
⋃

1≤i≤Qd,1

⋃
1≤j≤γd,v+1Fi,j.

This proves the statement and the fact that Qd,v = Qd,1.(γd,v + 1). �

3.2. Consequences of the µ-asymptotic covering property. One first shows
that the constant C in Definition 2.4 can be replaced by 1 if infinite subsequences
of balls are authorized. In fact Definition 2.4 ensures that any open set can be
covered (with respect to the µ-measure) by disjoint balls Bn of arbitrary large
indices.

Lemma 3.4. Let µ ∈ M(Rd) and B = (Bn := B(xn, rn))n∈N be a µ-a.c sequence
of balls of Rd with limn→+∞ rn = 0.

Then for every open set Ω and every integer g ∈ N, there exists a subsequence
(B

(Ω)
(n) ) ⊂ {Bn}n≥g such that:

(1) ∀n ∈ N, B(Ω)
(n) ⊂ Ω,

(2) ∀ 1 ≤ n1 6= n2, B
(Ω)
(n1) ∩B

(Ω)
(n2) = ∅,

(3) µ
Ä⋃

n≥1B
(Ω)
(n)

ä
= µ(Ω).

In addition, there exists an integer NΩ such that for the balls (B
(Ω)
(n) )n=1,...,NΩ

, the

conditions (1) and (2) are realized, and (3) is replaced by µ
Ä⋃NΩ

n=1 B
(Ω)
(n)

ä
≥ 3

4
µ(Ω).

The last part of Lemma 3.4 simply follows from item (3) and the σ-additivity
of µ.

Proof. The idea consists in covering Ω by pairwise disjoint balls amongst those
balls of B, such that their union has measure at least Cµ(Ω), then in covering the
complementary of the union of those balls in Ω (that is still open) with at least a
proportion C of its measure, and so on.

More precisely, this is achieved as follows:

• Step 1: By application of Definition 2.4 to Ω0 := Ω and g ∈ N, there
exists C > 0 and some integers g ≤ n1 ≤ ... ≤ nN0 so that the family of balls
F0 :=

¶
Bni := B

(0)
i

©
1≤i≤N0

is pairwise disjoint and µ(
⋃

1≤i≤N0
Bni) ≥ Cµ(Ω).

• Step 2: Setting Ω1 = Ω \
⋃
L∈F0

L, applying Definition 2.4 to Ω1 with the
integer g provides us with a family F1 of pairwise disjoint balls B(1)

1 , ..., B
(1)
N1
∈

{Bn}n≥g such that ∀ 1 ≤ i ≤ N1 B
(1)
i ⊂ Ω1 and

µ(
⋃

1≤i≤N2

B
(1)
i ) ≥ Cµ(Ω1).
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One sets F1 = F0

⋃
F1. One sees that

µ

( ⋃
L∈F1

L

)
= µ

( ⋃
L∈F0

L

)
+ µ

( ⋃
L∈G1

L

)

≥ µ

( ⋃
L∈F0

L

)
+ C

(
µ(Ω)− µ

( ⋃
L∈F0

L

))

≥ (1− C)µ

( ⋃
L∈F0

L

)
+ Cµ (Ω)

≥ (C + C(1− C))µ(Ω).

Observe that the balls of F0 and F1 are disjoint by construction.

• Following steps : Proceeding recursively, and applying the exact same ar-
gument as above, one constructs an increasing sequence of families (Fi)i∈N and a
decreasing sequence of open sets Ωi such that:

• ∀ i ∈ N, L ∈ {Bn}n≥g and ∀L ∈ Fi, L ⊂ Ωi ⊂ Ω,

• ∀ i ∈ N, ∀L 6= L′ ∈ Fi, L ∩ L′ = ∅,
• ∀ i 6= j ∈ N, ∀L ∈ Fi and ∀L ∈ Fj, L ∩ L′ = ∅,
• ∀ i ∈ N, µ

(⋃
L∈Fi L

)
≥ µ(Ω)

∑
1≤k≤iC(1− C)k−1.

Finally, setting F =
⋃
i∈NFi, one sees that F is constituted by pairwise disjoint

balls chosen amongst {Bn}n≥g satisfying

(16) µ(Ω) ≥ µ

(⋃
L∈F

L

)
≥ µ(Ω)

∑
k≥1

C(1− C)k−1 = µ(Ω),

so that F fulfills the conditions of Lemma 3.4. �

An easy consequence is the following.

Corollary 3.5. Let µ ∈ M(Rd) and (Bn)n∈N be a µ-a.c sequence of balls. Then
for any Borel set E, for any g ∈ N, there exists a sub-sequence of balls (B

(E)
(n) ) ⊂

{Bn}n≥g such that:

(1) ∀1 ≤ n1 6= n2, B
(E)
(n1) ∩B

(E)
(n2) = ∅,

(2) µ
(⋃

n∈NB
(E)
(n) ∩ E

)
= µ(E),

(3) µ
(⋃

n∈NB
(E)
(n)

)
≤ µ(E) + ε,

Proof. By outer regularity, there exists an open set Ω such that E ⊂ Ω andm(Ω) ≤
µ(E) + ε. Applying Lemma 3.4 to Ω, the sequence (Bn)n∈N fulfills the condition of
Corollary 3.5. �
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3.3. Proof of Theorem 2.1. (1) Assume first that B = (Bn)n∈N is µ-a.c, and
let us prove that µ(lim supn→+∞Bn) = 1.

For every g ∈ N, applying Lemma 3.4, there exists a sub-family of balls, Fg ⊂
{Bn}n≥g such that µ(

⋃
L∈Fg L) = µ(Rd) = 1. In particular, µ(

⋃
n≥g Bn) = 1 for

every g ≥ 1, and µ(lim supn→+∞Bn) = µ(
⋂
g≥1

⋃
n≥g Bn) = 1.

(2) Suppose next that there exists v < 1 such that µ(lim supn→+∞ vBn) = 1,
and let us show that B is µ-a.c.

Let Ω be an open set in Rd. Our goal is to find a constant C such that the
conditions of Definition 2.4 are realized.

Let E = Ω∩lim supn→+∞ vBn. For every y ∈ E, consider an integer ny ≥ g large
enough so that y ∈ vBny andB(y, 2rny) ⊂ Ω. This is possible since limn→+∞ rn = 0.

Since y ∈ vBny , one has

(17) B(y, (1− v)rny) ⊂ Bny ⊂ B(y, (1 + v)rny) ⊂ B(y, 2rny),

and the family F =
{
B(y, (1− v)rny) : y ∈ E

}
covers E by balls centered on E.

Applying Proposition 3.1 with constant v′ = 1−v
2
< 1 allows to extract from F

finite or countable sub-families F1, ...,FQd,v′ such that:

• ∀1 ≤ i ≤ Qd,v′ , L 6= L′ ∈ Fi, one has 1
v′
L ∩ 1

v′
L′ = ∅.

• E is covered by the families Fi, i.e. (15) holds true.

Now, µ(Ω) = µ(E) ≤ µ
Ä⋃Qd,v′

i=1

⋃
L∈Fi L

ä
. There must exist 1 ≤ i0 ≤ Qd,v′ such

that

µ

Ñ ⋃
L∈Fi0

L

é
≥ 1

Qd,v′
µ(E) =

1

Qd,v′
µ(Ω).

There exist L1, L2, ... LN balls of Fi0 such that

µ

( ⋃
1≤k≤N

Lk

)
≥ 1

2Qd,v′
µ(Ω),

Notice the following facts:

• ∀1 ≤ i ≤ Qd,v′ , every L ∈ Fi is naturally associated with some y ∈ E and
some ball Bny , with L ⊂ Bny ⊂ Ω,
• ∀1 ≤ i ≤ Qd,v′ , if L ∈ Fi is associated with y ∈ E and Bny and L′ ∈ Fi is
associated with y′ ∈ E and Bny′

, then 1
v′
L ∩ 1

v′
L′ = ∅ implies by (17) that

Bny ∩Bny′
= ∅.

The first fact implies that there exist N integers n1, ..., nN such that Bnk ⊂ Ω and

µ

( ⋃
1≤k≤N

Bnk

)
≥ 1

2Qd,v′
µ(Ω),

The second fact implies that these balls Bnk , k = 1, ..., N are pairwise disjoint.
This exactly proves that B is µ-a.c.
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3.4. A version of Borel-Cantelli Lemma. In this manuscript, one mainly fo-
cuses on establishing Hausdorff dimension of limsup sets knowing that a certain
limsup set of balls has full measure. In many situation, proving that those limsup
sets have full measure is straightforward. When it is not, it is convenient to have
a tool at our disposal to be able to determine whether or not it is the case. In the
case where the measure involved is doubling is treated by Beresnevich-Velani.

Theorem 3.6 ([5]). Let µ ∈M(Rd) be a doubling measure and (Bn)n∈N a sequence
of balls centered in supp(µ) such that |Bn| → 0. Then µ(lim supn∈NBn) = 1 ⇔
∃C > 1 such that for any open ball B centered on supp(µ), there exists a sub-
sequence (LB,n)n∈N of (Bn)n∈N satisfying:

• LB,n ⊂ B,

•
∑+∞

n=0 µ(LB,n) = +∞,
• for infinitely many Q ∈ N,

(18)
Q∑

s,t=1

µ(LB,s ∩ LB,t) ≤
C

µ(B)

(
Q∑
n=1

µ(LB,n)

)2

.

Thanks to Theorem 2.1, one can complete this Theorem and remove the doubling
assumption.

Proposition 3.7. Let (Bn)n∈N be a sequence of closed balls satisfying |Bn| → 0
and µ ∈M(Rd) be a probability measure.
(A): Assume that (Bn)n∈N is µ-a.c, then, there exists C > 1 such that for any

open ball B, there exists a sub-sequence of (Bn)n∈N, (Ln,B)n∈N satisfying,
for any n ∈ N, LB,n ⊂ B and

(19)
∑
n≥0

µ(LB,n) = +∞

and for infinitely many Q,

(20)
Q∑

s,t=1

µ(LB,s ∩ LB,t) ≤
C

µ(B)

(
Q∑
n=1

µ(LB,n)

)2

.

(B): Assume that there exists C > 1 such that for any open ball B, there exists
a sub-sequence of (Bn)n∈N (Ln,B)n∈N with, for any n ∈ N, Ln,B ⊂ B,
satisfying (19) and (20), then µ(lim supn→+∞Bn) = 1, so that, for any
κ > 1, (κBn)n∈N is µ-a.c.

Proof. Item A is proved in [5] (this part of the proof does not use the doubling
property of the measure in [5]). Moreover, it is also proved in [5] that, if there
exists C > 0 such that for any open ball B, there exists a sub-sequence of (Bn)n∈N
(Ln,B)n∈N with, for any n ∈ N, Ln,B ⊂ B, satisfying (19) and (20), then

µ(lim sup
n→+∞

Bn ∩B) ≥ 1

C
µ(B).

The following lemma combined with Theorem 2.1 finishes the proof of Proposition
3.7.

Lemma 3.8. Let E ⊂ Rd. Assume that there exists 0 < c < 1 such that for any
open ball B, µ(E ∩B) ≥ cµ(B), then µ(E) = 1.
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Proof. Assume that µ(E) < 1 and set A = Rd \ E. By hypothesis, µ(A) > 0.
Let us recall the following density-lemma (which holds in metric sapces in which

Besicovitch’s theorem holds).

Lemma 3.9. [7] Let m ∈M(Rd), 0 < c < 1 and A be a Borel set with m(A) > 0.
For every r > 0, set

(21) A(r) = {x ∈ A : ∀r̃ ≤ r, m(B(x, r̃) ∩ A) ≥ c.m(B(x, r̃))}
Then

(22) m

(⋃
r>0

A(r)

)
= m(A).

By Lemma 3.9, there exists an open ball B such that µ(B) > 0 and

µ(B ∩ A) ≥ (1− c

2
)µ(B).

This yields
µ(E ∩B ∩ A) = µ(E ∩B) + µ(A ∩B)− µ ((E ∩B) ∪ (A ∩B))

≥ (c+ 1− c

2
− 1)µ(B) =

c

2
µ(B) > 0,

which implies µ(E ∩ A) > 0, which is a contradiction. �

Taking c = 1
C
and applying Lemma 3.8 finishes the proof of Proposition 3.7. �

Remark 3.10. A version of Proposition 3.7 might also be useful in more general
metric spaces. The only geometric property we used to prove Proposition 3.7 is
actually Proposition 3.1 (which also implies Lemma 3.9), so that Proposition 3.7
actually holds in any direction-limited spaces as defined in [11].

4. proof of Theorem 2.3

The following section is dedicated to the study of the properties one can ask an
µ-a.c sequence (Bn)n∈N to verify, up to an µ-a.c extraction.

The concept of conditioned ubiquity was introduced by Barral and Seuret in [1].
It consists in asking the balls of the sequence (Bn) to verify some specific proper-
ties with respect to the measure µ. When investigating the Hausdorff dimension
of some sets (Un)n∈N, where Un ⊂ Bn, in practical cases (when the measure carries
some self-similarity), it turns out that when a lower-bound is found for (Un)n∈N
using the fact that the sequence (Bn)n∈N is of limsup of full µ-measure, it is of-
ten quite easy to prove that lim supn→+∞ Un has precisely the expected measure
provided that the sequence (Bn) verifies some specific properties with respect to
µ.

Note that in full generality, understanding the optimality of a bound as men-
tioned above, means understanding very finely the behavior of the measure µ on
the sets Un (the sequence (Bn) being µ-a.c). It will be proved in this article that,
under mild conditions on the sequence (Bn)n∈N, it is always possible to give a
natural upper-bound for dimH(lim supn→+∞ Un). This upper-bound turns out to
be optimal when the measure carries enough self-similarity (in particular it works
for quasi-Bernoulli measures or fully supported self-similar measures).
In this section, the balls (Bn)n∈N are supposed to be pairwise distinct

and such that |Bn| →
n→+∞

0.
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4.1. Extraction of weakly redundant µ-a.c subsequences. The main result
of this section is stated here.

Proposition 4.1. Let µ ∈ M(Rd) and (Bn)n∈N be a µ-a.c sequence of balls
limn→+∞ |Bn| = 0. There exists a subsequence (Bψ(n))n∈N of (Bn)n∈N which is
weakly redundant and µ-a.c.

Proof. Let gk ∈ N be large enough so that ∀n ≥ gk, |Bn| ≤ 2−k. By Proposition
3.4, applied with the sequence (Bn)n∈N, Ω = Rd for any k ∈ N, there exists a
sub-sequence (B(n,k)) of {Bn}Nn≥gk satisfying

(1) ∀1 ≤ n1 6= n2, B(n1,k) ∩B(n2,k) = ∅,

(2) µ
(⋃

n∈NB(n,k)

)
= 1.

Define Bψ = (Bψ(n))n∈N as the sub-sequence of balls corresponding to
⋃
k∈N
{
B(n,k)

}
n∈N .

Since the following inclusion holds

(23)
⋂
k∈N

⋃
n∈N

B(n,k) ⊂ lim sup
n→+∞

Bψ(n),

by item (2) one has
µ(lim sup

n→+∞
Bψ(n)) = 1.

Note that, for all k ∈ N, all B ∈
{
B(n,k)

}
n∈N, |B| ≤ 2−k. Following the notation

of Definition 2.3, for any k ∈ N, Tk(Bψ) can contain only balls of the sequence
of the k first families

{
B(n,k)

}
n∈N, which are composed of pairwise disjoint balls.

This proves that Tk(Bψ) can be sorted in at most k+1 families of pairwise disjoint
balls. In particular, Bψ is weakly redundant.

It remains to show that (Bψ(n))n∈N is µ-a.c.
Let Ω be an open set and g ∈ N. One will extract from Bψ a finite number of

balls satisfying the condition of Definition 2.4.
There exists k0 so large that, µ

( {
x ∈ Ω(x, 2−k0+1)

} )
≥ 3µ(Ω)

4
for any k ≥ k0,{

B(n,k)

}
n∈N ⊂

{
Bψ(n)

}
n≥g and µ(lim supn→+∞Bψ(n) ∩ Ω) ≥ 3µ(Ω)

4
. Setting“E =

ß
x ∈ lim sup

n→+∞
Bψ(n) ∩ Ω : B(x, 2−k0+1) ⊂ Ω

™
,

it holds that
µ(“E) ≥ 1

2
µ(Ω).

Recalling (23), for every x ∈ “E, consider Bx, the ball of
{
B(n,k0)

}
n∈N con-

taining x. Note that, because for B ∈
{
B(n,k0)

}
n∈N, |B| ≤ 2−k0 , one has Bx ⊂

B(x, 2−k0+1) ⊂ Ω. Set F1 =
¶
Bx : x ∈ “E© . The set F1 is composed of pairwise

disjoint balls (by item (1) above) of
{
Bψ(n)

}
n≥g included in Ω and such that

(24) µ
( ⋃
L∈F1

L
)
≥ µ(“E) ≥ 1

2
µ(Ω).

Using the σ-additivity of µ concludes the proof. �
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4.2. Extraction of sub-sequences of balls with conditioned measure. Let
µ ∈M(Rd) and (Bn)n∈N be an µ-a.c sequence of balls.

This part aims to understand what condition can be assumed about the measure
of the ball of the sequence (Bn)n∈N in general under the µ-a.c condition.

More precisely, item (2) of Theorem 2.3 is proved.

Proposition 4.2. Let µ ∈ M(Rd). For any sequence of balls (Bn)n∈N satisfying
µ(lim supn→+∞ vBn) = 1 for some 0 < v < 1, there exists an µ-a.c sub-sequence
(Bφ(n))n∈N verifying

dimH(µ) ≤ lim inf
n→+∞

log µ(Bφ(n))

log |Bφ(n)|
≤ lim sup

n→+∞

log µ(Bφ(n))

log |Bφ(n)|
≤ dimP (µ).

Remark 4.3. For the left part of (4.2), the proof actually only uses the fact that
µ(lim supn→+∞Bn) = 1.

Let us introduce some useful sets to prove Lemma 4.5 and Lemma 4.6, which
are key in order to prove (4.2).

Definition 4.1. Let 0 ≤ α ≤ γ be real numbers, µ ∈ M(Rd), and ε, ρ > 0 two
positive real numbers. Then define
(25)
E[α,γ],ρ,ε
µ =

¶
x ∈ Rd : dim(µ, x) ∈ [α, γ] and ∀r ≤ ρ, µ(B(x, r)) ≤ rdim(µ,x)−ε

©
,

(26)
F [α,β],ρ,ε
µ =

¶
x ∈ Rd : dim(µ, x) ∈ [α, β] and ∀r < ρ, µ(B(x, r)) ≥ rdim(µ,x)+ε

©
.

and

E[α,γ],ε
µ =

⋃
n≥1

E
[α,γ], 1

n
,ε

µ and F [α,γ],ε
µ =

⋃
n≥1

F
[α,γ], 1

n
,ε

µ .(27)

The following statements are easily deduced from Definition 2.2.

Proposition 4.4. For every µ ∈M(Rd), ρ > 0, every 0 ≤ α ≤ γ and ε > 0,

µ(E[α,γ],ε
µ ) = µ({x : dim(µ, x) ∈ [α, γ]})

µ(F [α,γ],ε
µ ) = µ(

{
x : dim(µ, x) ∈ [α, γ]

}
)

and

E[α,γ],ρ,ε
µ ⊂

{
x ∈ Rd : ∀r ≤ ρ, µ(B(x, r)) ≤ rα−ε

}
(28)

F [α,γ],ρ,ε
µ ⊂

{
x ∈ Rd : ∀r ≤ ρ, µ(B(x, r)) ≥ rγ+ε

}
.

Furthermore, for α1 = dimH(µ) and γ1 = supessµ(dim(µ, x)), one has

(29) µ(E[α1,γ1],ε
µ ) = 1.

Similarly, for α2 = infessµ(dim(µ, x)) and γ2 = dimP (µ), one has

(30) µ
Ä
F [α2,γ2],ε
µ

ä
= 1.

Proof. For any x ∈ Rd, for any ε > 0, there exists rx > 0 such that, ∀r ≤ rx,
rdim(µ,x)+ε ≤ µ(B(x, r)) ≤ rdim(µ,x)−ε. This implies

F [α,γ],ρ,ε
µ ⊂

{
x ∈ Rd : ∀r ≤ ρ, µ(B(x, r)) ≥ rγ+ε

}
,
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E[α,γ],ρ,ε
µ ⊂

{
x ∈ Rd : ∀r ≤ ρ, µ(B(x, r)) ≤ rα−ε

}
,

and

E[α,γ],ε
µ = {x : dim(µ, x) ∈ [α, γ]} and F [α,γ],ε

µ =
{
x : dim(µ, x) ∈ [α, γ]

}
.

Since
µ([infessµ(dim(µ, x)), supessµ(dim(µ, x))]) = 1

and
µ([infessµ(dim(µ, x)), supessµ(dim(µ, x))]) = 1,

recalling Definition 2.2, it holds that, following the notation of Proposition 4.4,

µ
Ä
E[α1,γ1],ε
µ

ä
= µ
Ä
F [α2,γ2],ε
µ

ä
= 1.

�

Before showing Proposition 4.2, let us start by the two following Lemmas 4.5
and 4.6. The first one will be used to prove the left part of the inequality (9) while
the second one will be useful to prove the right part.

Lemma 4.5. Let µ ∈ M(Rd) and B = (Bn := B(xn, rn))n∈N be a µ-a.c sequence
of balls of Rd with limn→+∞ rn = 0.

For any ε > 0, there exists a µ-a.c subsequence (Bφ(n))n∈N of B such that for
every n ∈ N, µ(Bφ(n)) ≤ (rφ(n))

dimH(µ)−ε.

Proof. Set α = dimH(µ) and γ = suppessµ(dim(µ, x)).

Let Ω be an open set and ε > 0. By (29), µ(E
[α,γ], ε

2
µ ) = 1 and µ(Ω ∩ E[α,γ], ε

2
µ ) =

µ(Ω).
For every x ∈ Ω ∩ E[α,γ], ε

2
µ , there exists rx > 0 such that B(x, rx) ⊂ Ω and

x ∈ E[α,γ],rx,
ε
2

µ .

Recall (27) and that the sets E[α,γ],ρ,ε
µ are non-increasing in ρ. In particular there

exists ρΩ > 0 such that the set EΩ :=
{
x ∈ Ω ∩ E[α,γ],ρΩ,

ε
2

µ : rx ≤ ρΩ

}
verifies

(31) µ(EΩ) ≥ 3µ(Ω)

4
.

Let g ∈ N. Applying Lemma 3.4 to Ω, the sequence (Bn) and the measure m,
there exists NΩ as well as g ≤ n1 ≤ ... ≤ nNΩ

verifying:
(1) for every 1 ≤ i 6= j ≤ NΩ, Bni ∩Bnj = ∅,
(2) for every 1 ≤ i ≤ NΩ, 2rni ≤ ρΩ and 2α−

ε
2 ≤ r

− ε
2

ni ,
(3) µ(

⋃
1≤i≤NΩ

Bni) ≥
µ(Ω)

2
.

We may assume that µ(Bni) > 0 for every i, otherwise Bni does not play any role.
Item (3) together with (31) implies that

µ

( ⋃
1≤i≤NΩ

Bni ∩ EΩ

)
≥ µ(Ω)

4
.

Furthermore, for every 1 ≤ i ≤ NΩ verifying Bni ∩ EΩ 6= ∅, it holds that
0 < µ(Bni) ≤ (rni)

α−ε. Indeed, let x ∈ Bni ∩ EΩ. By item (2), Bni ⊂ B(x, 2rni),
and by (25) , item (2), and (28), it holds that

µ(Bni) ≤ µ(B(x, 2rni)) ≤ (2rni)
α− ε

2 ≤ (rni)
α−ε.
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Writing B′ = {Bn : µ(Bn) ≤ rα−εn }, the argument above shows that only balls
of B′ have been used to cover Ω . This is satisfied for every open set Ω, so that B′
is a sub-sequence of B satisfying the condition of Definition 2.4, which concludes
the proof of Lemma 4.5. �

Lemma 4.6. Let µ ∈M(Rd), v < 1 and B = (Bn := B(xn, rn))n∈N a sequence of
balls of Rd verifying µ(lim supn→+∞ vBn) = 1.

For all ε > 0, there exists a sub-sequence (Bφ(n))n∈N of B as well as 0 < v′ < 1
such that µ(lim supn→+∞ v

′Bφ(n)) = 1 and for all n ∈ N, one has µ(Bφ(n)) ≥
(rφ(n))

dimH(µ)+ε.

Remark 4.7. The sequence (Bφ(n))n∈N found in Lemma 4.6 is in particular µ-a.c
by Theorem 2.1.

Proof. Let α = infessµ(dim(µ, x)) and γ = dimP (µ). Let ε > 0 and v < v′ < 1.
By (30) and Theorem 2.1, µ(lim supn→+∞ vBn ∩ F

[α,γ], 3ε
2

µ ) = 1. For all x ∈
lim supn→+∞ vBn ∩ F

[α,γ], 3ε
2

µ , there exists rx > 0 small enough so that

(32) r
ε
2
x ≤ (v′ − v)

γ+ 3ε
2 and ∀0 < r ≤ rx, µ(B(x, r)) ≥ rγ+ 3ε

2 .

Since x ∈ lim supn→+∞ vBn, for all n ∈ N, there exists nx ≥ n such that
x ∈ vBnx and (v′ − v)rnx ≤ rx. Note that B(x, (v′ − v)rnx) ⊂ v′Bnx . This implies
the following inequalities:

µ(Bnx) ≥ µ(v′Bnx) ≥ µ(B(x, (v′ − v)rnx) ≥ ((v′ − v)rnx)
γ+ 3ε

2 ≥ rγ+2ε
nx .

Set Bγ,2ε = {Bn : µ(Bn) ≥ rγ+2ε
n }. One just showed that

lim sup
n→+∞

vBn ∩ F [α,γ], ε
2 ⊂ lim sup

B∈Bγ,2ε
v′B.

This proves that µ(lim supB∈Bγ,2ε v
′B) = 1.

Since ε > 0 was arbitrary, the results also holds with ε
2
, which proves Lemma

4.6. �

We are now ready to prove Proposition 4.2.

Proof. Set α = dimH(µ) and β = dimH(µ).
Let us fix (εn)n∈N ∈ (R∗+)N verifying limn→+∞ εn = 0.
The strategy of the proof consists in constructing recursively coverings of the

cube Rd by using Lemma 4.5 and Lemma 4.6 and a diagonal argument (on the
choice of ε) at each step.

More precisely, at step 1, one will build a family of balls (F1,i)i∈N verifying:
• for all i, j ≥ 1, ∀L ∈ F1,i, ∀L′ ∈ F1,j such that L 6= L′, one has L∩L′ = ∅,
• for all i ≥ 1, F1,i is a finite sub-family of {Bn}n≥1 ,

• for all i ≥ 1, for all L ∈ F1,i, |L|β+εi ≤ µ(L) ≤ |L|α−εi ,

• µ
Ä⋃

i∈N
⋃
L∈F1,i

L
ä

= 1.

Note that for each i ∈ N, only a finite number of balls L ∈ F1 :=
⋃
j∈NF1,j

verifies (for that εi naturally associated with those balls) |L|β+εi ≤ µ(L) ≤ |L|α−εi .
At step 2, a family of balls (F2,i)i∈N will be constructed such that:

• for all i, j ≥ 1, L ∈ F2,i, L′ ∈ F2,j, L 6= L′ = ∅,
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• for all i ≥ 1, F2,i is a finite sub-family of {Bn}n≥2 ,

• for all i ≥ 1, for all L ∈ F2,i, |L|β+εi+1 ≤ µ(L) ≤ |L|α−εi+1 ,
• one has

(33) µ

Ñ⋃
i∈N

⋃
L∈F2,i

L

é
= 1.

Write F2 =
⋃
i≥1F2,i. Note that the family of balls F2 verifies, by construction,

that any L ∈ F2 the natural εi associated with L is never equal to ε1, so that only
some balls constructed in step 1 are associated with ε1 .

The other steps are achieved following the same scheme.
The construction is detailed below:

Step 1:

Let Ω1,1 = Rd.

Sub-step 1.1:

By Lemma 4.5 and Lemma 4.6 applied to ε = ε1, there exists a µ-a.c sub-
sequence (Bψ1,1(n))n∈N, satisfying, for every n ∈ N,

|Bψ1,1(n)|β+ε1 ≤ µ(Bψ1,1(n)) ≤ |Bψ1,1(n)|α−ε1 .
By Lemma 3.4 applied to Ω1,1, the sequence (Bψ1,1(n))n∈N and g = 1, there exists
an integer N1,1 as well as some balls L1,1,1, ..., L1,1,N1,1 ∈ {Bn}n≥1 verifying:

• for all 1 ≤ i < j ≤ N1,1, L1,1,i ∩ L1,1,j = ∅,
• for all 1 ≤ i ≤ N1,1, |L1,1,i|β+ε1 ≤ µ(L1,1,i) ≤ |L1,1,i|α−ε1 ,
• µ(

⋃
1≤i≤N1,1

L1,1,i) ≥ 1
2
.

Set F1,1 = {L1,1,i}1≤i≤N1,1
.

Sub-step 1.2:

Let Ω1,2 = Ω1,1 \
⋃
L∈F1,1

L.

By Lemma 4.5 and Lemma 4.6 with ε = ε2, there exists a µ-a.c sub-sequence
(Bψ1,2(n))n∈N satisfying

|Bψ1,2(n)|β+ε2 ≤ µ(Bψ1,2(n)) ≤ |Bψ1,2(n)|α−ε2 .
One applies Lemma 3.4 to the open set Ω1,2, the sub-sequence of balls (Bψ1,2(n))n∈N

and g = 1. There exists N1,2 ∈ N such that L1,2,1, ..., L1,2,N1,2 verifies:
• for all 1 ≤ i < j ≤ N1,2, L1,2,i ∩ L1,2,j = ∅,
• for all 1 ≤ i ≤ N1,2, |L1,2,i|β+ε2 ≤ µ(L1,2,i) ≤ |L1,2,i|α−ε2 ,
• µ(

⋃
1≤i≤N1,2

L1,2,i) ≥ 1
2
µ(Ω1,2).

The family F1,2 is defined as F1,2 = {L1,2,i}1≤i≤N1,2
.

Proceeding iteratively as Sub-step 1.1 and Sub-step 1.2, for any i ∈ N, at Sub-
step 1.i a family of balls (F1,i)i∈N is constructed so that it verifies:

• for all i, j ≥ 1, L ∈ F1,i, L′ ∈ F1,j, if L 6= L′, then L ∩ L′ = ∅,
• for all i ≥ 1, F1,i is a finite subset of {Bn}n≥1 ,

• for all i ≥ 1, for all L ∈ F1,i, |L|β+εi ≤ µ(L) ≤ |L|α−εi ,
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• µ
Ä⋃

i∈N
⋃
L∈F1,i

L
ä

= 1.

Recall that, to justify the last item, this recursive scheme allows to cover Rd, up
to a set of µ-measure 0 (the argument is similar to the one developed at the end
of the proof of Lemma 3.4 to obtain (16)).

Set F1 =
⋃
i≥1F1,i. With each ball L ∈ F is naturally associated a positive real

number ε(L), such that ε(L) = εi if L ∈ F1,i.
Let us notice that the construction of the family F2 does not rely on the existence

of the family F1, so that the families Fk can actually be built independently,
following the same scheme, as described below.

Step k:

As in step 1, one constructs a family of balls (Fk,i)i≥1 verifying:
• for all i, j ≥ 1, L ∈ Fk,i, L′ ∈ Fk,j, L 6= L′, L ∩ L′ = ∅,
• for all i ≥ 1, Fk,i is a finite subset of {Bn}n≥k ,

• for all i ≥ 1, for all L ∈ Fk,i, |L|β+εi+k ≤ µ(L) ≤ |L|α−εi+k ,
• one has

(34) µ

Ñ⋃
i∈N

⋃
L∈Fk,i

L

é
= 1.

Set Fk =
⋃
i≥1Fk,i and F =

⋃
k≥1Fk.

Denote by (Bφ(n))n∈N the sub-sequence of balls that constitutes the family F .
By construction, for all i ∈ N, only a finite number of balls L ∈ F verifies

ε(L) = εi (and |L|β+εi ≤ µ(L) ≤ |L|α−εi). In particular, for all ε > 0, there exists
N large enough so that, for every n ≥ N , εn ≤ ε. Similarly, there exists N ′ ∈ N
so large that for every n′ ≥ N ′,

|Bφ(n′)|β+ε ≤ µ(Bφ(n′)) ≤ |Bφ(n′)|α−ε.
It follows that

α− ε ≤ lim inf
n→+∞

log µ(Bφ(n))

log |Bφ(n)|
≤ lim sup

n→+∞

log µ(Bφ(n))

log |Bφ(n)|
≤ β + ε.

Letting ε→ 0 shows that

dimH(µ) ≤ lim inf
n→+∞

log µ(Bφ(n))

log |Bφ(n)|
≤ lim sup

n→+∞

log µ(Bφ(n))

log |Bφ(n)|
≤ dimH(µ).

It only remains to prove that (Bφ(n))n∈N is µ-a.c.
Let Ω be an open set and g ∈ N. We find a finite family of balls {L}i∈I ⊂{
Bφ(n)

}
n≥g satisfying the conditions of Definition 2.4.

Note that, by (33),

setting E =
⋂
k≥1

⋃
L∈Fk

L, then µ (E) = 1.

Let x ∈ Ω ∩ E and rx > 0 small enough so that B(x, rx) ⊂ Ω. Consider kx ≥
φ(g) ≥ g large enough so that, for all n ≥ kx, |Bn| ≤ 2rx. Recall that Fkx ⊂
{Bn}n≥kx . Finally, let us fix k large enough so that µ(“E) ≥ µ(Ω)

2
, where “E =

{x ∈ E : kx ≤ k}. For x ∈ “E, let Lx ∈ Fk be the ball that contains x (the balls
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of Fk being pairwise disjoint, Lx is well defined) and {Li}i≥1 =
¶
Lx : x ∈ “E©. One

has
• for all 1 ≤ i < j, Li ∩ Lj = ∅,
• for all i ∈ N, Li ∈

{
Bφ(n)

}
n≥g and Li ⊂ Ω,

• µ(
⋃
i≥1 Li) ≥ µ(“E) ≥ µ(Ω)

2
.

By σ-additivity, there exists N ∈ N such that µ(
⋃

1≤i≤N Li) ≥
µ(Ω)

4
, which proves

that (Bφ(n))n∈N satisfies Definition 2.4 with C = 1
4
and is indeed µ-a.c. �

One finishes this section with the following proposition, which supports the idea
that, roughly speaking, for an α exact-dimensional measure µ and a µ-a.c sequence
of balls (Bn), considering balls (Bn)n∈N which does not verify µ(Bn) ≈ |Bn|α is
not relevant from the µ-standpoint.

Proposition 4.8. Let µ ∈M(Rd) be an α exact-dimensional measure and (Bn)n∈N
a sequence of balls satisfying |Bn| → 0. Let ε > 0. Let is also define Bε> =
{Bn : µ(Bn) ≤ |Bn|α+ε} and Bε< = {Bn : µ(Bn) ≥ |Bn|α−ε} . Then

(1) for any v < 1, µ(lim supB∈Bε> vB) = 0,

(2) µ(lim supB∈Bε< B) = 0.

Proof. (1) Suppose that there exists 0 < v < 1 such that µ(lim supB∈Bε> vB) > 0.
Then, since µ is assumed to be exact-dimensional, there exists x ∈ lim supB∈Bε> vB

such that limr→0
log µ(B(x,r))

log r
= α.

Consider rx > 0 small enough so that, for any 0 < r ≤ rx, µ(B(x, r)) ≥ rdim(µ)+ ε
2

and (1−v
2

)dim(µ)+ ε
2 ≥ r

ε
4
x . Let also n be large enough so that x ∈ Bn and |Bn| ≤ rx.

Then B(x, (1−v)
2
|Bn|) ⊂ Bn, so that

µ(Bn) ≥ µ(B(x,
1− v

2
|Bn|)) ≥ |Bn|α+ ε

2 (
1− v

2
)α+ ε

2 ≥ |Bn|α+ 3ε
4 .(35)

This contradicts the definition of Bε>.
(2) Assume that µ(lim supB∈Bε< B) > 0. Then, again, there exists x ∈ lim supB∈Bε< B

so that limr→0
logµ(B(x,r))

log r
= α. Consider rx > 0 small enough so such that, for any

0 < r ≤ rx, µ(B(x, r)) ≤ rα−
ε
2 . Consider n ∈ N large enough so that x ∈ Bn and

|Bn| ≤ rx. One has Bn ⊂ B(x, |Bn|), hence
µ(Bn) ≤ µ(B(x, |Bn|)) ≤ |Bn|α−

ε
2 .

This contradicts the definition of Bε<. �

Remark 4.9. For doubling measures, it is straightforward that item (1) can be
replaced by simply µ(lim supB∈Bε> B) = 0. It can be proved that this is also the case
for 1-average d-1 unrectifiable measures (as a consequence of [18, Theorem 2.11]).
Some self-similar measures with open set condition satisfies this property (see [18]
again for more details).

5. Some explicit examples

In this section, applications of Theorem 2.3 are given.
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5.1. Rational approximation. Let us recall the following result from Hurwitz
see [14], p 219, for more details.

Theorem 5.1. Let x ∈ [0, 1] \Q. There exists an infinite number of pairs (p, q) ∈
N× N∗ with p ∧ q = 1 and

(36)
∣∣∣x− p

q

∣∣∣ < 1√
5q2

.

An immediate corollary of Theorem 2.1, Theorem 2.3 and Theorem 5.1 is the
following:

Corollary 5.2. Let µ ∈ M([0, 1]) be any diffuse measure. Then the sequence
of balls

(
B(p

q
, 1
q2 )
)

0≤p≤q,q∈N∗,p∧q=1
is weakly redundant (see [4]) and µ-a.c. In

particular, if µ is α-exact-dimensional, for 0 ≤ α ≤ d, then there exists a se-
quence (εn)n∈N ∈ (R∗+)N with limn→+∞ εn = 0 and an infinite number of pairs

(pn, qn) ∈
(
N× {0, ..., qn}

)N
such that pn ∧ qn = 1 and( 1

q2
n

)α+εn
≤ µ

(
B
(pn
qn
,

1

q2
n

))
≤
( 1

q2
n

)α−εn
.

Moreover, writing

Bµ =

ß
B(

pn
qn
,

1

q2
n

) :
( 1

q2
n

)α+εn
≤ µ

(
B
(pn
qn
,

1

q2
n

))
≤
( 1

q2
n

)α−εn™
n∈N

,

one has
dimH(lim sup

B∈Bµ
B) = α.

5.2. Application to Random balls. Let us recall Shepp’s Theorem of Shepp
[22].

Theorem 5.3. Let (ln)n∈N ∈ (R∗+)N and (Xn)n∈N be a sequence of i.i.d uniformly
distributed random variables on [0, 1]. Then

lim sup
n→+∞

B(Xn, ln) = [0, 1]⇔
∑
n≥0

1

n2
exp(l1 + ...+ ln) = +∞.

From Theorem 2.1, Theorem 2.3 and Theorem 5.3, the following corollary is
deduced.

Corollary 5.4. For any α exact-dimensional measure µ ∈ M([0, 1]), 0 ≤ α ≤ d,
for almost any i.i.d sequence of random variables uniformly distributed on [0, 1],
(Xn)n∈N, there exists a sequence of positive real numbers (εk)k∈N with εk → 0 and
a subsequence (nk)k∈N → +∞ satisfying( 2

nk

)α+εk
≤ µ

(
B
(
Xnk ,

2

nk

))
≤
( 2

nk

)α−εk
.

Writing again

Bµ =

ß
B
(
Xnk ,

2

nk

)
:
( 2

nk

)α+εk
≤ µ

(
B
(
Xnk ,

2

nk

))
≤
( 2

nk

)α−εk™
k∈N

,

one has
dimH(lim sup

B∈Bµ
B) = α.
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5.3. Examples in dynamical systems. Let us introduce some notation.
Let m ≥ 2 and S = {f1, ..., fm} be a system of m similarities of Rd → Rd of

ratio of contraction 0 < c1 < 1, ..., 0 < cm < 1.
Let us also write Λ = {1, ..., n}, Λ∗ =

⋃
k≥0 Λk and for i = (i1, ..., ik) ∈ Λk,

• fi = fi1 ◦ ... ◦ fik ,

• Xi = fi([0, 1]d),

• ci = ci1 × ...× cik .
Let us fix also (p1, ..., pm) ∈ RN

+ a probability vector, i.e a vector verifying∑
1≤i≤m pi = 1.

Remark 5.5. Let µ defined by (11) and x ∈ KS. Then, for any k ∈ N, the balls
{B(fi(x), 2|KS|ci)}i∈Λk

coversKS. In particular, by Theorem 2.1
(
B(fi(x), 3|KS|ci)

)
i∈Λ∗

is µ-a.c.

As a consequence of Theorem 2.3 and Lemma 5.5, one gets:

Corollary 5.6. Let µ ∈ M(Rd) be a measure defined by (11) and x ∈ KS.
There exists a µ-a.c weakly redundant sub-sequence of balls (Bn)n∈N extracted from(
B(fi(x), 3ci)

)
i∈Λ∗

such that, for all n ∈ N and for some sequence (εk)k∈N ∈ (R∗+)N

verifying εk → 0,
|Bn|dim(µ)+εn ≤ µ(Bn) ≤ |Bn|dim(µ)−εn ,

and Bµ = {Bn}n∈N satisfies

dimH(lim sup
n→+∞

Bn) = dim(µ).

6. Proofs of Theorem 2.6

The proof strongly relies on the following result proved in [9].

Theorem 6.1. Let S be a self-similar IFS of Rd. Let K be the attractor of S.
Let µ be a self-similar measure associated with S. For any 0 ≤ s < dim(µ), there
exists a constant c = c(d, µ, s) > 0 depending on the dimension d, µ and s only,
such that for any ball B = B(x, r) centered on K and r ≤ 1, any open set Ω, one
has

c(d, µ, s)|B|s ≤ Hµ,s
∞ (B̊) ≤ Hµ,s

∞ (B) ≤ |B|s and
c(d, µ, s)Hs

∞(Ω ∩K) ≤ Hµ,s
∞ (Ω) ≤ Hs

∞(Ω ∩K).(37)

For any s > dim(µ), Hµ,s
∞ (Ω) = 0.

Recall that the sequence B = (Bn)n∈N is assumed to be weakly redundant. In
such a case, for any ε > 0, following the notation involved in Definition 2.3, it
holds that∑

n≥0

|Bn|εµ(Bn) =
∑
k≥0

∑
B∈Tk(B)

|B|εµ(B) ≤
∑
k≥0

∑
1≤j≤Jk

2−kε
∑

B∈Tk,j(B)

µ(B).
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Since for every (k, j) the family Tk,j is composed of pairwise disjoint balls, this
yields

(38)
∑
n≥0

|Bn|εµ(Bn) ≤
∑
k≥0

∑
1≤j≤Jk

2−kε =
∑
k≥0

Jk2
−kε < +∞.

Now, for n ∈ N, consider a sequence of balls (Ank)k∈N, with |Ank | ≤ |Bn| and such
that Un ∩K ⊂

⋃
k≥0A

n
k . Recall Theorem 6.1 and its notations. One has.

(39) Hs
∞(Un) ≤

∑
k≥0

|Ank |s ≤ 2Hs
∞(Un) ≤ 2

c(d, µ, s)
Hµ,s
∞ (Un) ≤ 2

c(d, µ, s)
µ(Bn).

Since for each n ∈ N, Un ∩K ⊂
⋃
k≥0A

n
k , it holds that lim supn→+∞ Un ∩K ⊂

lim supk,n→+∞A
n
k . For any ε > 0, one gets∑

n≥0

∑
k≥0

|Ank |s+ε ≤
∑
n≥0

|Bn|ε
2

c(d, µ, s)
µ(Bn).

In particular, by (38),

(40)
∑
n≥0

∑
k≥0

|Ank |s+ε < +∞.

One concludes that

Hs+ε(lim sup
n→+∞

Un ∩K) ≤ Hs+ε(lim sup
k,n→+∞

Ank) < +∞.

This implies that dimH(lim supn→+∞ Un ∩K) ≤ s+ ε and ε being arbitrary,

dimH(lim sup
n→+∞

Un ∩K) ≤ s.

Remark 6.2.
• An important fact to underline here is that the convergences established in (38)
and (39) do not rely on the fact that the measure is self-similar, but hold for any
measure µ. One could state a comparable upper-bound Theorem for any measure
µ by replacing K by a Gδ set of full measure in (12).

These computations also have the following straightforward consequence for a
measure µ ∈ M(Rd) without the self-similarity assumption: Assume that, for n
large enough, Hµ,s

∞ (Un) ≤ µ(Bn). If the sequence (Un)n∈N verifies that for any ball
Bi ⊂ Un one also has Bi ⊂

⋃
k≥nA

n
k (where the balls (Ak,n)k∈N are chosen as in

the proof of Theorem 2.6), then dimH(lim supn→+∞ Un) ≤ s. In particular if this
holds for any s > s(µ,B,U), then dimH(lim supn→+∞ Un) = s(µ,B,U).

• When the self-similar measure verifies supp(µ) = [0, 1]d, the existence of s0 as in
Corollary 2.7 is ensured as soon as the shapes of the sets Un are “uniform” in n.
For instance, consider the case where µ = Ld and (Un = Rn)n∈N, where Rn is an
open rectangle associated with some vector τ = (τ1, ..., τd) defined as in Theorem
2.10. Recall that by Theorem 6.1, the Lebesgue essential Hausdorff content and the
classical Hausdorff content are equivalent. It is easily verified that, for any n ∈ N,
Hs
∞(Rn) = |Bn|gτ (s), for the mapping gτ : R+ → R+, defined as (see [17])

gτ (s) = max
1≤k≤d

{
sτk −

∑
1≤i≤k

τk − τi

}
.
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Note that gτ (s) does not depend on n. Corollary can therefore be applied with
s0 = mins:gτ (s)≥d {s}.

• Unfortunately, when such an s0 does not exist, the Hausdorff dimension of lim supn→+∞ Un
has to depend on the structure of the sequence (Un) itself.

Consider 0 < s1 < s2 ≤ d and two vectors τ1 and τ2 such that s1 = mins:gτ1 (s)≥d {s}
and s2 = mins:gτ2 (s)≥d {s} . Consider a weakly redundant sequence of balls (Bn)n∈N
of [0, 1]d and a sequence of open sets (Un)n∈N, Un ⊂ Bn satisfying:

• |Bn| → 0,

• Ld(lim supn→+∞Bn) = 1,

• for any n ∈ N, Bn ⊂ [0, 1
2
)×

∏d
i=2[0, 1] or Bn ⊂ (1

2
, 1]×

∏d
i=2[0, 1],

• for any n ∈ N such that Bn ⊂ [0, 1
2
) ×

∏d
i=2[0, 1], Un = (Rn) with Rn an

open rectangle associated with τ1 as in Theorem 2.10,

• for any n ∈ N such that Bn ⊂ (1
2
, 1]×

∏d
i=2[0, 1], Un = Rn with Rn an open

rectangle associated with τ2.

Then smallest real number such that the condition of Theorem 2.6 holds is s2,
the largest real number such that the condition of Theorem 2.5 holds is s1 and
dimH(lim supn→+∞ Un) = s2.

On the other hand, following the scheme of example 3.5 in [17], it is also possible
to construct two weakly redundant sequences of balls (Bn,1)n∈N and (Bn,2)n∈N such
that:

• |Bn,1| → 0 and |Bn,2| → 0,

• 0 < Ld(lim supn→+∞Bn,2) < 1,

• lim supn→+∞Rn,2 = ∅, where Rn,2 ⊂ Bn,2 is an open rectangle associated
with τ2,

• lim supn→+∞Bn,1 ⊂ [0, 1]d \ lim supn→+∞Bn,2 and

Ld(lim sup
n→+∞

Bn,1) = 1− Ld(lim sup
n→+∞

Bn,2).

For any n ∈ N, denote by Rn,1 ⊂ Bn,1 an open rectangle associated with
τ1.

Those properties implies that that any sequence (Bn)n→+∞ corresponding to the
family {Bn,i}n∈N,i∈{1,2} is weakly redundant and satisfies Ld(lim supn→+∞Bn) = 1.

Again, the smallest real number such that the condition of Theorem 2.10 holds
is s2, the largest real number such that the condition of Theorem 2.5 holds is s1

but this time, dimH(lim supn→+∞ Un) = s1.

7. Conclusion and perspectives

The properties stated in Theorem 2.3 (the prescribed measure and the weak
redundancy) are of course non exhaustive and maybe more can be imposed to well
chosen subsequences of µ-.a.c sequences of balls. It turns out that in the quasi-
Bernoulli case it is enough to get condition under which the lower-bound found
in [8] is also an upper-bound , but it is likely that in some other cases, one needs
to ask the sequence to verify more properties to ensure the sharpness of a certain
lower-bound. In particular, it can be proved that, under very weak hypothesis on
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a µ-a.c sequence (Bn)n∈N, given a Gδ set of full measure G, it is possible to assume
(up to an extraction) that the set G′ = lim supn→+∞Bn is a Gδ set of full measure
with G′ ⊂ G (so that one can assume that lim supn→+∞Bn is always included in
any Gδ of full measure if needed).
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