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DISCRIMINANTS OF THETA-REPRESENTATIONS

VLADIMIRO BENEDETTI AND LAURENT MANIVEL

Abstract. Tevelev has given a remarkable explicit formula for the discrimi-
nant of a complex simple Lie algebra, which can be defined as the equation of
the dual hypersurface of the minimal nilpotent orbit, or of the so-called ad-
joint variety. In this paper we extend this formula to the setting of graded Lie
algebras, and express the equation of the corresponding dual hypersurfaces in
terms of the reflections in the little Weyl groups, the associated complex reflec-
tion groups. This explains for example why the codegree of the Grassmannian
G(4, 8) is equal to the number of roots of e7.

1. Introduction

Projective duality is a very classical construction in projective geometry that has
been studied extensively in various contexts (see [GKZ94] and references therein),
from the 19th century Plücker formulas for plane curves, to the exciting modern
developments of homological projective duality [Ku07]. Recall the classical defi-
nition: for X ⊂ Pr an embedded projective variety, the dual variety X∨ ⊂ P̌r is
the closure of the set of hyperplanes that are tangent to X at some smooth point.
This is a true duality in the sense that (X∨)∨ = X , although the dual variety is in
general a hypersurface. It is not always easy to decide when this is not the case, i.e.
when the dual variety is degenerate. When the dual variety is a hypersurface, it is
notoriously difficult to find an equation, or even to compute explicitly the degree
of such an equation, which we call the codegree of X (another classical terminology
for this number is the class of X).

The Katz-Kleiman formula [GKZ94, Theorem 3.4 and Formula 3.19] provides an
expression for the codegree in terms of the Chern classes of X and the hyperplane
class λ, namely

deg(X∨) =

∫

X

c(ΩX)

(1− λ)2
,

with the convention that deg(X∨) = 0 exactly when the dual variety X∨ is not a
hypersurface. (When the dual variety is degenerate, a variant of this formula allows
to compute its dimension, and its genuine degree [GK93]). Although simple and
beautiful, this formula is difficult to put in practice in general; even worse, it often
expresses the codegree as an alternate sum of big integers, and it is not always easy
even to decide whether the result is positive, or zero.

The Katz-Kleiman formula was nevertheless applied to Grassmannians in [La81],
yielding an ”explicit” formula given as a big sum of Vandermonde determinants with
alternating signs. Using this formula, Lascoux computed that

deg(G(3, 9)∨) = 120, deg(G(4, 8)∨) = 126.
1
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Of course, this leaves completely open the question of finding explicit equations for
the dual varieties of Grassmannians (for G(3, 9) and G(4, 8), this is discussed in
[HO22]).

A class of varieties whose projective duals admit a remarkably explicit description
is that of adjoint varieties of simple complex Lie groups. For each such group G,
with Lie algebra g, the adjoint variety is defined as the unique closedG-orbitXad(g)
inside P(g). Its dual variety is a hypersurface whose equation is often called the
discriminant of g. An elegant explicit formula for this discriminant was given by
Tevelev [Te05], which through the Chevalley restriction theorem reduces to a simple
combinatorial formula in terms of the root system. In particular, the degree of the
discriminant is simply given by the number of long roots.

For the other homogeneous varieties, the situation is much less clear. The ques-
tion of deciding which ones have degenerate duals was discussed in [KM87]. A
positive formula for the codegree was given in [DCW97], but it seems difficult to
make it explicit. More recently, localization techniques in equivariant cohomology
were used in [FNR08] to obtain the degrees of the discriminants as explicit but
complicated sums of rational numbers. Typically, formula (5.1) in loc. cit. is

deg(G(k, n)∨) =
2k

n+ 1

∑

S

∏

i∈S,j /∈S

ℓ(S) + j − i

i− j
,

where the sum is over the sets S of k integers between 1 and n, and ℓ(S) =
∑

s∈S s.
These techniques provide nevertheless no insight on the discriminants themselves.

The reader may have noticed that the codegrees 120 of G(3, 9) ⊂ P(∧3C9) and
126 of G(4, 8) ⊂ P(∧4C8) are familiar numbers in Lie theory: the latter is the
number of roots of E7, the former is the number of positive roots in E8. It is a
remarkable fact that these two exceptional Lie algebras admit the simple models

e7 = sl8 ⊕ ∧4C8, e8 = sl9 ⊕ ∧3C9 ⊕ ∧6C9.

This suggests that Tevelev’s formula for the discriminants could admit an extension
to the setting of graded Lie algebras, a topic which was developped with great suc-
cess, in particular by the Russian school, starting from the late sixties, in parallel
with the theory of Kac-Moody algebras [Ka69, V76]. For G(3, 9) and G(4, 8) this
connection was already observed in [HO22]. Here we study the general situation
and show how to extend Tevelev’s formula in the graded setting, for g =

⊕

i∈Zm
gi

a cyclically graded simple Lie algebra. Equivalently, g admits a Lie algebra auto-
morphism θ, acting on gi by multiplication by ξi for some m-th root of unity ξ.
Our main result is the following.

Theorem 1.1. Suppose that m = 2, 3 or 5, that the θ-corank is zero, and that g0
is semisimple and acts irreducibly on g1. Then the dual variety of the unique closed
orbit in P(g1) has an explicit equation, given on a Cartan subspace by a product of
roots.

We refer to Section 5.2 for a more precise statement. The product of roots to
be considered depends on the so-called little Weyl group of the graded Lie algebra,
which is a complex reflection group; the roots in question define the reflection
hyperplanes of the complex reflections in the Weyl group, at least on a Cartan
subspace; the equation of the dual variety is then completely determined because
of Vinberg’s graded version of the Chevalley restriction theorem. The notion of
θ-corank is explained in Section 3.3 The restrictive hypothesis of the Theorem are
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justified in Section 6.3 For example, there are some natural gradings to consider for
which m = 4 or m = 6, but for which the dual variety of the closed orbit in P(g1)
is not a hypersurface.

Outline of the paper. We start in Section 2 with some very classical prelimi-
naries about complex simple Lie algebras, and we explain in Section 3 how they
extend to the graded setting. Section 4 focuses on the associated Weyl groups,
which in the graded setting are only complex reflection groups in general; we ex-
plain how to produce complex reflections explicitly. This allows to write down an
equation of the dual variety in Section 5, and prove the main Theorem. In Sec-
tion 6 we discuss the relevant examples, either exceptional or classical. Finally, in
the independent Section 7 we briefly explain how to extend Lascoux’s formula to
Lagrangian Grassmannians and spinor varieties.

Acknowledgements. We acknowledge support from the ANR project FanoHK, grant
ANR-20-CE40-0023. The first author is partially supported by the EIPHI Graduate
School (contract ANR-17-EURE-0002)

2. Preliminaries on Lie algebras

2.1. Simple Lie algebras. Graded Lie algebras are generalizations of Lie algebras,
so let us start with the latter and recall a few basic facts. If g is a simple complex
Lie algebra, a Cartan subalgebra h ⊂ g is a maximal abelian subspace made of
semisimple elements. Since the elements of h commute, they can be diagonalized
simultaneously, and one gets a decomposition

g = h⊕
⊕

α∈R(g)

gα,

where R(g) ⊂ h∨ is the set of roots, such that [h, x] = α(h)x for any x ∈ gα and
any h ∈ h. Each root space gα is one-dimensional.

The linear span of R(g) is h∨ and one can extract basis of h∨ from R(g), made of
simple roots. Among other properties, if α1, . . . , αn is such a basis of simple roots,
any root α ∈ R(g) can be written as α =

∑

i n
α
i αi, where the nα

i ’s are integers,
either all non-negative or all non-positive. For any root α, −α is also a root and
there exists hα ∈ h such that g−α ⊕ Chα ⊕ gα ∼= sl2.

2.2. Invariants. Given h ⊂ g one defines the Weyl group W = W (R(g)) as
NG(h)/ZG(h), where NG(h) is the normalizer of h in G, and ZG(h) its central-
izer. This is a finite group W generated by reflections sα, α ∈ R(g), which fix the
hyperplane orthogonal to α and send α to −α (g and g∨ being identified via the
Killing form). The Weyl group W permutes the roots in R(g), and acts transitively
on the set of roots of a given length (in the simply laced case all roots have the
same length, and by convention they will be considered as long; otherwise there
are two classes, long and short roots). A celebrated result, usually referred to as
Chevalley’s restriction theorem, is the following:

Theorem 2.1 (Chevalley). The natural restriction morphism gives an isomorphism
of invariant rings

C[g]G = C[h]W .

Moreover C[h]W is a polynomial algebra.
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The second statement in the theorem holds, more generally, exactly for those
finite subgroups of GLn which are complex reflection groups, i.e. the finite groups
generated by complex reflections.

2.3. Tevelev’s duality formula. If G denotes the adjoint group of the simple Lie
algebra g, recall that the adjoint variety of g is the (unique) closed G-orbit inside
P(g). Tevelev [Te05] shows that the projective dual variety (inside P(g∨) ∼= P(g),
which are isomorphic by the Killing form) of the adjoint variety is an irreducible hy-
persurface Dg, usually called the d iscriminant of g, and given by some G-invariant
polynomial Dg ∈ C[g]G (defined up to constant). By Chevalley’s restriction theo-
rem, Dg is completely determined by its restriction to h, for which Tevelev provides
a simple expression.

Theorem 2.2 (Tevelev). The dual variety of the adjoint variety X ⊂ P(g) is the
hypersurface Dg defined by the G-invariant polynomial Dg such that

Dg|h :=
∏

α∈R(g)l

α,

where R(g)l is the set of long roots.

Remark 2.3. Tevelev’s result is actually slightly more general. Indeed it shows
that the dual variety of the orbit closure of the short root spaces inside P(g) is also
a hypersurface defined by a G-invariant polynomial Dg,s whose restriction to h is
given by

Dg,s|h :=
∏

α∈R(g)s

α,

where R(g)s is the set of short roots. Notice that in this case the orbit in question
is not closed.

The main goal of this paper is to extend this statement to the graded setting.

3. Cyclically graded Lie algebras

For this section we follow essentially [V76]. Let m be a positive integer and Zm

denote the cyclic group of order m. A Zm-graded Lie algebra is a Lie algebra g

with a grading g =
⊕

i∈Zm
gi such that [gi, gj ] ⊂ gi+j . To any such grading, one

can associate an automorphism θ of order m of g, acting on gi by multiplication by
ξi, where ξ is a primitive m-th root of unity. Conversely, the grading can of course
be recovered from the automorphism.

The connected component G0 of the θ-invariant subgroup Gθ has Lie algebra
g0. It acts on any gi since [g0, gi] ⊂ gi. We will be mostly interested in the
G0-representation g1, which is called a θ-representation.

3.1. Inner gradings. A first class of examples correspond to the case where θ is an
inner automorphism of a simple Lie algebra g. Choose a root αi in a basis α1, . . . , αn

of simple roots in R(g). Recall that any root α ∈ R(g) can be decomposed as
α =

∑

j n
α
j αj . If m is the maximal possible value of nα

i , one defines a Zm-grading
on g by letting

gj := δj,0h⊕
⊕

α|nα
i =j mod m

gα.
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In this case g0 is semisimple, thus uniquely defined by a Dynkin diagram which can
be described as follows. Let ∆ be the Dynkin diagram of g (each node corresponding

to a simple root), and ∆̂ the corresponding affine diagram. The Dynkin diagram

of g0 is then ∆̂ \ {αi}. Moreover (note that h is a Cartan subalgebra of g0), αi is a
highest weight of the irreducible G0-representation g1.

Remark 3.1. This construction depends on the choice of a single node (or root)
αi. Notice that a grading could also be defined by the choice of more than one node
(with some non-negative multiplicities); however, in the following, we will be mainly
interested in graded Lie algebras such that g0 is semisimple, and those arise only
when one chooses one single node (see [V76]).

3.2. Kac’s classification. Even when θ comes from an outer automorphism of g,
Kac [Ka69] was able to show that there exists an extended Dynkin diagram (playing

the role played by ∆̂ for inner automorphisms) from which one can recover g0 and
g1 exactly as before. These extended Dynkin diagrams are given in [V76]. They
exist only for Lie algebras admitting outer automorphisms and are of the following

types: A
(2)
n , D

(2)
n , E

(2)
6 , D

(3)
4 , where the superscript in parenthesis denotes the order

of θ modulo inner automorphisms. We include these diagrams just below, as well
as the affine Dynkin diagrams that correspond to inner automorphisms. In analogy
to the inner automorphism case, each node plays the role of the root αi above, and
the index near the node plays the role of the corresponding integer m.

A
(1)
n−1 =

1

1 1 1 1
, B

(1)
n−1 =

1

1 2 2 2 2
, C

(1)
n−1 =

1 2 2 2 2 1
,

D
(1)
n−1 =

1

1 2 2

1

1
, F

(1)
4 =

1 2 3 4 2
, G

(1)
2 =

1 2 3
,

E
(1)
6 =

1

1

2

2 3 2 1
, E

(1)
7 =

1 2

2

3 4 3 2 1
, E

(1)
8 =

12

3

4 6 5 4 3 2
,

A
(2)
2 =

4 2
, A

(2)
2n−2 =

4 4 4 4 4 2
, A

(2)
2n−3 =

2

2
4

4 4 4 4 2
,

D
(2)
n =

2 2 2 2 2 2
, E

(2)
6 =

2 4 6 4 2
, D

(3)
4 =

3 6 3
.

3.3. Invariants. Remarkably, Chevalley’s restriction theorem can be extended to
the graded setting.

Definition (Cartan subspace, little Weyl group). A maximal subspace c ⊂ g1
containing only semisimple and commuting elements of g is called a Cartan sub-
space. All Cartan subspaces are conjugate under G0, hence of the same dimen-
sion, called the θ-rank of g [V76]. Letting N0(c) := {g ∈ G0 | g(c) = c} and
Z0(c) := {g ∈ G0 | g|c = idc}, the Weyl group of the graded Lie algebra is de-
fined as Wθ := N0(c)/Z0(c). It is usually referred to as the little Weyl group (see
[GLRY12, Section 7]) to distinguish it from the Weyl group of g.

Theorem 3.2 (Vinberg). The natural restriction morphism gives an isomorphism
of invariant rings

C[g1]
G0 = C[c]Wθ .

Moreover C[c]Wθ is a polynomial algebra.



6 VLADIMIRO BENEDETTI AND LAURENT MANIVEL

Definition (θ-torus, θ-corank). Let g be a simple Zm-graded Lie algebra of rank r
and θ-rank = r1. Following [V76], the smallest algebraic subalgebra of g containing
a given Cartan subspace c ⊂ g1 is a Lie subalgebra t which is the Lie algebra of a
torus T ⊂ G of dimension dim(T ) = r1ϕ(m), where ϕ is Euler’s function. More
precisely, one shows that t =

⊕

(i,m)=1 ti, where ti = t∩gi, and in this decomposition

each term has dimension r1. The torus T is the θ-torus associated to c, and can be
recovered as the closure of exp(c), where exp : g → G is the exponential map. In
particular r1ϕ(m) ≤ r. We define the θ-corank of g as the integer r − r1ϕ(m).

4. Simple Lie algebras with prime grading and maximal θ-rank

From now on we assume that m is prime and that the θ-corank of g vanishes;
we say in that case that g has maximal θ-rank. Under these conditions, the rank
of g is equal to (m− 1)r1, where r1 is the θ-rank.

Graded simple Lie algebras of maximal θ-rank. The action of G0 on g1 is
given by ρ1 : G0 → GL(g1). Graded Lie algebras such that ρ1(G0) is semisimple
were classified in [V76]; these are the graded algebras constructed by choosing one
single root from one of the extended diagrams. In Table 1 we reported all such
graded algebras with prime grading such that θ-corank = 0. For the exceptional

cases (included D
(3)
4 ) the result is obtained just by using Vinberg’s results in [V76],

so let us explain the few classical ones. Notice that all the nodes in the classical
cases have index either equal to 1, 2 or 4; thus the only nodes we will take into
account are those with index equal to 2, and they will correspond to some well-
known symmetric spaces (m = 2).

B
(1)
n−1: The choice of one of the roots with index 2 gives a grading of so2n−1 such

that (so2n−1)0 = so2p × so2q+1 and (so2n−1)1 = C2p ⊗ C2q+1, with q =
n − 1 − p and 2 ≤ p ≤ n − 1. This corresponds to the symmetric space
denoted by SO(2p+2q+1)/ SO(2p)× SO(2q+1) in [He01], and its θ-rank
is equal to min{2p, 2q + 1}. Since the rank in this case is n − 1, we have
θ-corank = 0 if and only if either 2p = n− 1 = 2q or 2p = n = 2q + 2;

C
(1)
n−1: The choice of one of the roots with index 2 gives a grading of sp2n−2 such

that (sp2n−2)0 = sp2p× sp2q and (sp2n−2)1 = C2p⊗C2q, with q = n− 1−p
and 1 ≤ p ≤ n − 2. This corresponds to the symmetric space denoted by
Sp(p + q)/ Sp(p) × Sp(q) in [He01], and its θ-rank is equal to min{p, q}.
Since the rank in this case is n− 1, θ-corank = 0 is never satisfied;

D
(1)
n−1: The choice of one of the roots with index 2 gives a grading of so2n−2 such

that (so2n−2)0 = so2p× so2q and (so2n−2)1 = C2p⊗C2q, with q = n− 1− p
and 2 ≤ p ≤ n − 3. This corresponds to the symmetric space denoted
by SO(2p + 2q)/ SO(2p) × SO(2q) in [He01], and its θ-rank is equal to
min{2p, 2q}. Since the rank in this case is n − 1, we have θ-corank = 0 if
and only if 2p = 2q = n− 1;

A
(2)
2n−2: The choice of the only root with index 2 gives a grading of sl2n−1 such

that (sl2n−1)0 = so2n−1 and (sl2n−1)1 = S〈2〉C2n−1. This corresponds to
the symmetric space denoted by SU(2n− 1)/ SO(2n− 1) in [He01], and its
θ-rank is equal to 2n − 2. Since the rank in this case is 2n − 2, we have
θ-corank = 0;
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A
(2)
2n−3: The choice of the last root with index 2 gives a grading of sl2n−2 such that

(sl2n−2)0 = so2n−2 and (sl2n−2)1 = S〈2〉C2n−2. This corresponds to the
symmetric space denoted by SU(2n− 2)/ SO(2n− 2) in [He01], and its θ-
rank is equal to 2n− 3. Since the rank in this case is also 2n− 3, we have
θ-corank = 0.

The choice of one of the first two roots with index 2 gives a grading
of sl2n−2 such that (sl2n−2)0 = sp2n−2 and (sl2n−2)1 = ∧〈2〉C2n−2. This
corresponds to the symmetric space denoted by SU(2n − 2)/ Sp(n − 1) in
[He01], and its θ-rank is equal to n− 2. So θ-corank = 0 is never satisfied;

D
(2)
n : The choice of one of the roots gives a grading of so2n such that (so2n)0 =

so2p+1 × so2q+1 and (so2n)1 = C2p+1 ⊗ C2q+1, with q = n − 1 − p and
0 ≤ p ≤ n − 1. This corresponds to the symmetric space denoted by
SO(2p+2q+2)/ SO(2p+1)× SO(2q+1) in [He01], and its θ-rank is equal
to min{2p+1, 2q+1}. Since the rank in this case is n, θ-corank = 0 if and
only if 2p+ 1 = 2q + 1 = n.

4.1. Homogeneous decomposition. Let c ⊂ g1 be a Cartan subspace, with as-
sociated θ-torus T and Lie(T ) = t =

⊕m−1
i=1 ti. Since the θ-corank vanishes, T

is a maximal torus in G. The corresponding decomposition g = t ⊕
⊕

α∈R(g) gα
is not θ-stable, though. Our aim in this section is to construct a θ-homogeneous
decomposition.

The decomposition. For α ∈ R(g), let us decompose α =
∑m−1

i=1 αi, where αi =
α|ti .

Lemma 4.1. αi 6= 0 for any 1 ≤ i ≤ m− 1.

Proof. Suppose for instance that α1 = 0. Then c = t1 ⊂ α⊥ ⊂ t. But α⊥ is an
algebraic subalgebra of g (meaning that it is the Lie algebra of a subtorus of T ).
Since t is the smallest algebraic subalgebra containing c, we get a contradiction. �

Consider then x ∈ gα. By decomposing x =
∑

i xi, one can check that for any
t ∈ t, [t, θ(x)] = (θ(α)(t))x, where θ(α) =

∑

j ξ
jαj . Thus θ acts on the roots of g,

each orbit having cardinality m. Note also that all the roots in a given θ-orbit have
the same length. Indeed, since gi is orthogonal to gj with respect to the Killing
form when i+ j 6= 0, one has (α, α) =

∑

i∈Zm
(αi, α−i) = (θ(α), θ(α)).

Let [R(g)] denote the set of θ-orbits in R(g). Then

g = t⊕
⊕

[α]∈[R(g)]

g[α]

is a homogeneous decomposition of g, where g[α] :=
⊕

i gθi(α).

Lemma 4.2. g[α] =
⊕

0≤i≤m−1 g[α],i, where gg[α],i
:= g[α] ∩ gi is one-dimensional.

Proof. Consider x =
∑

j xj ∈ gα, with xj ∈ gj . Since α1 6= 0 and [g1, gj] ⊂ [gj+1],

for t ∈ c = t1 one obtains that [t, x] =
∑

j α1(t)xj+1, and thus xj 6= 0 for 0 ≤ j ≤

m− 1. Then, by computing θi(x) explicitly, one verifies that g[α],j = Cxj . �

Similarly, one can prove the following:

Lemma 4.3. Let tα =
∑m−1

i=1 tαi
be the coroot in t of α =

∑m−1
i=1 αi. Then

(

⊕

l

tθl(α)

)

∩ gi = Ctαi
.
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4.2. Minimal invariant θ-systems. Any root space is naturally contained in a
copy of sl2 in g. Here we consider the homogeneous version of this statement: for
any [α] ∈ [R(g)], we consider the smallest subalgebra s[α] of g containing g[α]. It
must be θ-invariant and thus we get an induced grading on it. We will show that in
the simplest cases, i.e. when m = 2, 3 or 5, this is a simple Lie algebra isomorphic
to sl2, sl3 or sl5 respectively. This will correspond to a decomposition of R(g) into
θ-invariant root subsystems of type A1, A2 or A4.

m = 2. Here α = α1 and θ(α) = −α1. Therefore s[α] ≃ sl2 is generated by gα, g−α

and [g−α, gα] = Ctα, where tα is the coroot corresponding to α.

m = 3. In this case α = α1 +α−1 and θ(α) = ξα1 + ξ2α−1, where ξ is a 3rd root of
unity; α and θ(α) have the same length (α, α) = 2(α1, α−1). One computes that

〈θ(α), α〉 := 2
(α, θ(α))

(α, α)
= 2

(ξ + ξ2)(α1, α−1)

2(α1, α−1)
= −1.

Similarly 〈θ2(α), α〉 = −1. Therefore the roots α, θ(α), θ2(α) generate a root system
of type A2; we can choose α, θ(α) for simple roots, in which case θ2(α) = −α−θ(α)
corresponds to minus the highest root.

The subalgebra s[α] must contain gα, gθ(α), gα+θ(α), g−α, g−θ(α), g−α−θ(α) (for in-
stance [gα, gθ(α)] = gα+θ(α)). Therefore s[α] is a copy of sl3, and the direct sum of
g[α], g[−α] and Ctα ⊕ Ctθ(α). As a graded Lie algebra, (s[α], θ|sα) corresponds to
the only Z3-grading of sl3 for which dim(g0) = 2 and dim(g1) = dim(g−1) = 3.

m = 5: Here α = α1+α−1+α2+α−2 and θ(α) = ξα1+ξ4α−1+ξ2α2+ξ3α−2, where
ξ is a 5th root of unity; α and θ(α) have the same length (α, α) = 2(α1, α−1) +
2(α2, α−2), and we need to compute

〈θ(α), α〉 = 2
(α, θ(α))

(α, α)
= 2

(ξ + ξ4)(α1, α−1) + (ξ2 + ξ3)(α2, α−2)

2(α1, α−1) + 2(α2, α−2)
= 〈θ4(α), α〉

and

〈θ2(α), α〉 = 2
(α, θ2(α))

(α, α)
= 2

(ξ2 + ξ3)(α1, α−1) + (ξ + ξ4)(α2, α−2)

2(α1, α−1) + 2(α2, α−2)
= 〈θ3(α), α〉.

Since ξ+ ξ2+ ξ3 + ξ4 = −1, we have 〈θ(α), α〉+ 〈θ2(α), α〉 = −1. But for two roots
β, γ of the same length, we always have 〈α, β〉 ∈ {1, 0,−1}. So one among 〈θ(α), α〉
and 〈θ2(α), α〉 must be equal to −1 and the other to 0. We can and will assume
that 〈θ(α), α〉 = −1 and 〈θ2(α), α〉 = 0.

Then the roots α, θ(α), . . . , θ4(α) generate a root system of type A4, where
α, θ(α), θ2(α), θ3(α) can be chosen as simple roots, and θ4(α) = −α−θ(α)−θ2(α)−
θ3(α) is then minus the highest root. Thus s[α] ≃ sl5 is the direct sum of g[α], g[−α],
g[α+θ(α)], g[−α−θ(α)] and Ctα ⊕Ctθ(α) ⊕Ctθ2(α) ⊕Ctθ3(α). As a graded Lie algebra,
(s[α], θ|sα) corresponds to the only Z5-grading of sl5 for which dim(g0) = 4 and
dim(g1) = dim(g−1) = 5.

As a result of this discussion, we can partition the root system R(g) into a set
R(c) of equivalence classes, where β and γ are equivalent when s[β] = s[γ]. Each
equivalence class is of course θ-invariant. We will refer to R(c) as the set of θ-roots
of (g, θ); an element in R(c) will be denoted by α for α ∈ R(g). Notice that if α = β
then α1 is proportional to β1 inside c∨, which motivates the choice of the notation
R(c); in the following section this choice should become even clearer.
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4.3. Complex reflections from the homogeneous decomposition. Under the
previous hypothesis we want to describe the little Weyl group Wθ of (g, θ). Recall
that this is a complex reflection group. We will show now that its complex reflections
are given by reflections with respect to θ-roots of R(c).

The following result and its proof is a straightforward generalization of a state-
ment of [VE78].

Proposition 4.4. Let g be a simple graded Lie algebra with maximal θ-rank and
order m = 2, 3 or 5. For any α ∈ R(c) there exists a complex reflection wα in Wθ,
of order m, fixing α⊥

1 ⊂ c and acting on Cα1 by multiplication by ξi.

Proof. Let s[α] be the Lie subalgebra of type slm associated to α. Then θ|s[α]
is

an order-m automorphism of slm, thus an inner automorphism (recall that slm
only has outer automorphisms of order 2, and only for m ≥ 3). So there exists
g ∈ SLm ⊂ G such that θ(γ) = gγg−1 for any γ ∈ SLm. In particular θ(g) = g, so
g ∈ G0. Clearly g acts as the identity on (t∩ s[α])

⊥ ⊂ t. Thus g acts as the identity

on (t ∩ s[α])
⊥ ∩ g1 = α⊥

1 ⊂ c, and it acts by multiplication by ξi on Cα1. Thus the
class of g modulo Z0(c) defines a complex reflection wα inside Wθ. �

In order to show that we get all the complex reflections inside Wθ, we will
use the explicit description of Wθ given in [V76] for the cases we are interested
in. We report in Table 1 those algebras with θ-corank = 0, ρ1(G0) semisimple
and order m = 2, 3 or 5, with the corresponding little Weyl group. The type
of g is the type of the Dynkin diagram of g, with an additional superscript in
parenthesis denoting the order of θ modulo the inner automorphisms of g. By S±

2n

(respectively S2n+1) we denoted the two spinor representations for the group Spin2n
(resp. Spin2n+1). By ∧〈4〉C8 we denoted the Sp8-representation associated to the

fundamental weight corresponding to the long simple root. By S〈2〉Cm we denoted
the SOm-representation associated to twice the fundamental weight of the first root
(in Bourbaki’s notation). As in [V76] a little Weyl group is denoted by its ordering
in Shephard-Todd’s classification in [ST54] when a clearer explicit description is
not available (for instance when m = 2 Wθ is isomorphic to the Weyl group W (T )
of the simple Lie algebra g of type T ). In the last column we also included the
complex reflections in the little Weyl group: by the notation jk we mean that there
are k reflections of order j, which therefore define k/(j − 1) fixed hyperplanes.

Proposition 4.5. Let g be a simple graded Lie algebra with maximal θ-rank and
order m = 2, 3 or 5 such that ρ1(G0) is semisimple. Then the complex reflections
inside Wθ are those described in Proposition 4.4.

Proof. We just check that we get the correct number of complex reflections from
Proposition 4.4. In order to determine the cardinality of R(c), we proceed as follows.
For any root α ∈ R(g), decompose the corresponding coroot hα ∈ t as hα =

∑

i hα,i,

hα,i ∈ ti. Let hα denote the Lie algebra associated to the torus exp(Chα,1). This is
a Cartan subalgebra of s[α], and hα∩g1 = Cα1. Therefore if m = 2, 3, 5 one can find
inside hα a root subsystem of R(g) of type A1, A2, A4. Each of the roots in such a
subsystem is a representative of α ∈ R(c). If we exclude the case G2 with m = 3
(because G2 contains two subsystems of type A2, with roots of different lengths,
generating the same Cartan subalgebra), we see that any element α inside R(c)
defines a line Cα1 ⊂ c, and that Cα1 = Cβ1 if and only if hα = hβ , or equivalently

α = β.
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Table 1. Simple graded Lie algebra with θ-corank = 0 and order
m = 2, 3 or 5 such that ρ1(G0) is semisimple

Type of g Type of ρ1(G0) g1 m Wθ Reflections

B
(1)
2p Dp ×Bp C2p ⊗ C2p+1 2 W (B2p) 24p

2

B
(1)
2p−1 Dp ×Bp−1 C2p ⊗ C2p−1 2 W (B2p−1) 24p

2−4p+1

D
(1)
2p Dp ×Dp C2p ⊗ C2p 2 W (D2p) 24p

2−2p

A
(2)
2n−2 Bn−1 S〈2〉C2n−1 2 W (A2n−2) 22n

2−3n+1

A
(2)
2n−3 Dn−1 S〈2〉C2n−2 2 W (A2n−3) 22n

2−5n+3

D
(2)
2p+1 Bp ×Bp C2p+1 ⊗ C2p+1 2 W (D2p+1) 24p

2+2p

E
(1)
6 A2 ×A2 ×A2 C3 ⊗ C3 ⊗ C3 3 25th 324

E
(1)
7 A7 ∧4C8 2 W (E7) 263

E
(1)
8 D8 S+

16 2 W (E8) 2120

E
(1)
8 A8 ∧3C9 3 32nd 380

E
(1)
8 A4 ×A4 C5 ⊗ ∧2C5 5 16th 548

F
(1)
4 B3 ×A1 S7 ⊗ C2 2 W (F4) 224

F
(1)
4 A2 ×A2 Sym2(C3)⊗ C3 3 5th 316

G
(1)
2 A1 ×A1 Sym3(C2)⊗ C2 2 W (G2) 26

E
(2)
6 C4 ∧〈4〉C8 2 W (E6) 236

D
(3)
4 A2 Sym3(C3) 3 4th 38

Therefore, (except for G2 with m = 3, a case that can be treated separately),
we can compute the number of distinct reflections constructed in Proposition 4.4.
They are all of order m, and for each element in R(c) we obtain m − 1 distinct
reflections whose fixed hyperplane is the same. The cardinality of R(c) is therefore
equal to |R(g)|/m(m− 1), and we check from [ST54] that this matches the number
of hyperplanes fixed by reflexions inside Wθ for all the cases appearing in Table
1. �

Remark 4.6. Notice that when m = 2 we are looking at A1-subsystems, and thus
it is not surprising that the little Weyl group in this case is exactly equal to the
Weyl group of the ambient Lie algebra.

5. Projective duality

We suppose again in this section that g is an exceptional simple graded Lie alge-
bra with maximal θ-rank and order m = 2, 3 or 5, such that ρ1(G0) is semisimple.
Since g1 is irreducible it contains a minimal (non trivial) nilpotent orbit. Start with
a minimal orbit inside s[α] ∼= slm for some α ∈ R(c). Recall that s[α],0 = s[α] ∩ g0 is
a Cartan subalgebra of s[α]. Let

s[α] = s[α],0 ⊕
⊕

a∈R(Am−1)

s[α],a

be the corresponding root decomposition. From the discussion in Section 4.1, we
know that s[α],1 is the direct sum of the root spaces s[α],ai

, i = 1, . . . ,m − 1, for
a1, . . . , am−1 a basis of simple roots in R(Am−1), and of the root space sα,−

∑
i
ai
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corresponding to minus the highest root in R(Am−1). We will study the G0-orbit
of a nilpotent element 0 6= e ∈ s[α],ai

for a certain i.

5.1. An invariant hypersurface. For α ∈ R(c), consider α−1 = α|g
−1

∈ t∨−1.
The polynomial

D :=
∏

u∈Wθ(α−1)

u

is a Wθ-invariant homogeneous polynomial in C[c−1]. By Vinberg’s extension of
the Chevalley restriction theorem, this corresponds to a G0-invariant polynomial
in C[g−1], which we will still denote by D, hence to an invariant hypersurface
D = {D = 0} ⊂ P(g−1).

The inclusion C[t−1]
Wθ ⊂ C[t−1] corresponds to the projection t−1 → t−1/Wθ,

which sends the hyperplane {α−1 = 0} to an irreducible hypersurface. So D as well
must be an irreducible hypersurface in P(g−1).

Conjugacy classes of reflections. The definition of D only depends on the Wθ-
conjugacy class of the hyperplane α⊥

−1. As shown in Proposition 4.4 this hyperplane
is the invariant hyperplane of the complex reflection wα. In the case of Weyl groups
(and thus when m = 2), the situation is well known: if the Dynkin diagram of the
corresponding root system is simply laced, there is only one conjugacy class of
reflections and hyperplanes, each element of the class corresponding to a positive
root of the root system; if the Dynkin diagram of the corresponding root system
is not simply laced, there are two conjugacy classes of reflections and hyperplanes,
corresponding to positive long roots or positive short roots.

In general, for exceptional complex reflection groups, there can be at most three
conjugacy classes of hyperplanes and reflections. In [BCM18] it is shown for instance
that the 4th, 16th, 25th and 32nd group in Shephard-Todd’s list have only one
conjugacy class of reflections, while the 5th group in Shephard-Todd’s list has two.
Apart from the 5th group case, since we know the total number of reflections in
each complex reflection group (and the total number of long or short roots when
m = 2 and the Dynkin diagram is not simply laced), we can deduce the degree of
D in all the cases appearing in Table 1. Indeed, the degree of D will be equal to

deg(D) = m |{wg(α) | g ∈ Wθ}|,

where |{wg(α) | g ∈ Wθ}| is the cardinality of the set of reflections conjugate to
wα. For the 5th group case, the two conjugacy classes of reflections correspond to
the two types of A2-root subsystems (which correspond to θ-subsystems and hence
reflections, since in this case m = 3) formed by long and short roots of F4; there
is an equal number of short and long roots in F4 and there is an equal number of
long and short A2-root subsystems.

In Table 5.1 we reported the degrees of the polynomial D when the graded Lie
algebra is among those appearing in Table 1. For the non simply laced case, we
denoted by αl the conjugacy class of long roots and by αs the conjugacy class of
short roots; for the 5th group, we denoted similarly the two conjugacy classes of
reflections by αl and αs.

5.2. The main statement. The strategy of the proof (which is essentially the
same as the one used by Tevelev to prove Theorem 2.2) is to compute the set of
hyperplanes containing the tangent space at e ∈ g1 of the orbit G0e; then, via the
action of G0, one recovers the dual variety of the closure of G0[e] ⊂ P(g1).
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Wθ, root W (A2n−2), α W (B2p), αl W (B2p), αs W (E6), α 32nd, α

deg(D) (2n− 1)(2n− 2) 4p(2p− 1) 4p 72 120

Wθ, root W (A2n−3), α W (D2p+1), α W (B2p−1), αs W (E7), α 16th, α

deg(D) (2n− 2)(2n− 3) 4p(2p+ 1) 4p− 2 126 60

Wθ, root W (B2p−1), αl W (D2p), α 25th, α W (E8), α 4th, α

deg(D) 4(p− 1)(2p − 1) 4p(2p− 1) 36 240 12

Wθ, root W (G2), αl or αs 5th, αl or αs W (F4), αl or αs

deg(D) 6 12 24

Table 2. Degree of the polynomial D

Proposition 5.1. [V76, Proposition 5] The tangent space to the orbit of an element
e ∈ g1 is the orthogonal complement to the centralizer of e in g−1. In other words

T⊥
G0e,e = z−1(e) := {x ∈ g−1 | [x, e] = 0}.

The following theorem is our generalization of Tevelev’s formula.

Theorem 5.2. Let g be a simple graded Lie algebra with maximal θ-rank and order
m = 2, 3 or 5. Let α ∈ R(c), where c is a Cartan subspace of g, and s[α] ⊂ g the
corresponding θ-subsystem. Let e be a nilpotent element inside s[α] ∩ g1 contained
in a root space for the Cartan subalgebra s[α] ∩ g0 of the simple Lie algebra s[α].
Then

(G0[e])
∨ = D ⊂ P(g1)

∨.

Remark 5.3. A posteriori G0[e] does not depend on the choice of e, but only
on the choice of α. Indeed D only depends on the Wθ-orbit of α−1, and D∨ =

((G0[e])
∨)∨ = G0[e].

Remark 5.4. Recall that Tevelev’s result actuallyholds for two orbit closures (in
the non simply laced case) inside the adjoint representation. The first one is the
(closed) orbit of the root spaces associated to long roots; the second one, in the non
simply laced case, is the orbit closure of the root spaces associated to short roots.
Similarly, Theorem 5.2 holds in general for two orbit closures: the one associated
to αl and the one associated to αs (at least when there are two conjugacy classes
of reflections in the little Weyl group; otherwise there is only one conjugacy class
α = αl, see Table 5.1). As we will show in Proposition 6.1, the orbit closure
associated to αl gives the closed orbit in g1.

In view of Remark 5.4, we will denote by Dl (respectively Ds) the dual of the

G0-orbit closure G0[e] with e ∈ s[αl] (resp. e ∈ s[αs]). As a consequence we can
refine [HO22, Theorem 3.1].

Corollary 5.5. Let Dg,l ⊂ P(g) (respectively Dg,s ⊂ P(g)) denote the discriminant
of g (resp. the dual of the G-orbit closure of vectors in short root spaces). The
intersection of Dg,l (resp. Dg,s) with P(g−1) is (m− 1)Dl (resp. (m− 1)Ds).

Proof. Let ǫ ∈ {l, s}. From Tevelev’s formula we know that Dg,ǫ =
∏

u∈W (αǫ)
u,

while Dǫ =
∏

u∈Wθ((αǫ)−1)
u. Therefore Dg,ǫ|c

−1 =
∏

u∈W (αǫ)
u−1.
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By [V76, Remark after Proposition 8], the little Weyl group Wθ is equal to W θ

since the θ-rank is maximal. Thus Wθ is contained in the Weyl group W , and
any element u ∈ Wθ((αǫ)−1) is equal to β−1 for a certain root β. Moreover, all
restrictions β−1 for all roots β of fixed length are in the same Wθ-orbit since the
corresponding reflections are all conjugate in Wθ (see Section 5.1). This implies
that

Dg,ǫ|c
−1 =

∏

u∈Wθ((αǫ)−1)

(
∏

β∈W (αǫ)
β|c

−1
=u

u) =
∏

u∈Wθ((αǫ)−1)

u|{β∈W (αǫ)| β|c
−1

=u}|.

In order to conclude we need to show that, for each u ∈ Wθ((αǫ)−1), the cardinality
|{β ∈ W (αǫ) | β|c

−1 = u}| is at least m − 1; since deg(Dg,ǫ) = (m − 1) deg(Dǫ)
by an explicit check, this cardinality is constant and equal to m− 1, and the result
follows. So, let us fix u = β−1 for a certain root β of length ǫ. Then there are
m(m − 1) roots in s[β] ∼= slm. These roots are partitioned in m subsets of m − 1

roots each, each subset being the set of roots γ such that γ|c
−1 = θi(u) = ξiu, for

i = 0, · · · ,m− 1. So there are m− 1 such roots γ such that γ|c
−1 = u. �

Proof of Theorem 5.2. The dual projective variety of G0[e] ⊂ P(g1) is the closure

G0P(T⊥
G0e,e

) = G0P(z−1(e)) ⊂ P(g−1) = P(g1)
∨,

where we have used the fact that g−1 and g1 are dual under the Killing form. We
will first show that P(z−1(e)) ⊂ D, then that G0P(z−1(e))) is a hypersurface in
P(g−1). Since D is irreducible, the statement will follow.

Inclusion inside the invariant divisor. We want to show that, for any element
x ∈ z−1(e), D(x) = 0. Recall that for such an element x, if x = xs + xn is
its homogeneous Jordan decomposition in its semisimple part xs ∈ g−1 and its
nilpotent part xn ∈ g−1, then [x, e] = [xs, e] = [xn, e] = 0. Thus D(x) = D(xs),
where xs ∈ z−1(e) is semisimple. We are thus reduced to the case where x ∈ z−1(e)
is semisimple.

Clearly x ∈ t−1 ∩ z−1(e) if and only if x ∈ Ker(α), i.e. if and only if α(x) =
α−1(x) = 0. Indeed, as already noticed in the proof of Proposition 4.5, each root β
in s[α] satisfies β1 = α1, and in particular this holds for the root β whose root space

the vector e belongs to. Thus the hyperplane α⊥
−1 ⊂ t−1 is equal to z−1(e) ∩ t−1.

In general, since x is semisimple, (z(e), θ|z(e)) is a graded reductive Lie algebra;
by Vinberg’s theory, each Cartan subspace in z−1(e) is in the same conjugacy
class under Z0(e) := {g ∈ G0 | g(e) = e}. Let us check that α⊥

−1 is a Cartan
subspace of z−1(e). If this were not the case, there would exist g ∈ Z0(e) such
that Cg(x) ⊕ α⊥

−1 is a Cartan subspace of g inside z−1(e); then the Lie algebra t̃

associated to Cg(x) ⊕ α⊥
−1 would be a Cartan subalgebra of g satisfying [̃t, e] = 0,

which is a contradiction with the fact that e is nilpotent.
Since, as already remarked, all Cartan subspaces are conjugate and α⊥

−1 is a

Cartan subspace of z−1(e), there exists g ∈ Z0(e) such that g(x) ∈ α⊥
−1. Then

D(g(x)) = 0, and by the G0-invariance of D we get D(x) = 0. Therefore we can
conclude that P(z−1(e)) ⊂ D.
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Dimension count. Now we compute the dimension of P(G0(z−1(e))). Since it is
contained in D, in order to show that it is a divisor it is sufficient to show that

dim(G0(z−1(e))) ≥ dim(g−1)− 1.

First notice that dim(gi) = dim(g0) + dim(c) for i 6= 0. Indeed, recall the homo-
geneous decomposition g = t ⊕

⊕

[α]∈[R(g)] g[α]. On one hand t =
⊕

i6=0 ti with

ti = t ∩ gi and dim(ti) = dim(t1) = dim(c). On the other hand, by Lemma 4.2 we
know that g[α] =

⊕

i(g[α] ∩ gi) with dim(g[α] ∩ gi) = 1. Hence the claim. Note
moreover that the dimension of g0 is equal to |[R(g)]| = |R(g)|/m.

We will bound dim(G0(z−1(e))) from below by computing dim(G0 (̂z)) for a cer-
tain subset ẑ ⊂ z−1(e). Consider the subalgebra s[α], and e ∈ s[α] ∩ g1 a root
vector.

Lemma 5.6. z−1(e) ∩ s[α] contains a regular nilpotent element f of s[α].

Proof. Recall that a nilpotent element is regular if it belongs to the dense orbit of
the nilpotent cone. A typical example is a linear combination of the simple root
vectors, with nonzero coefficients.

In our situation, s[α] ∼= slm, the subspace s[α] ∩ g0 is a Cartan subalgebra, and

s[α] ∩ g1 =
⊕m−1

i=1 slm,ai
⊕ slm,−

∑
i ai

for a1, . . . , am−1 a simple root basis of slm.
We can choose e to be a root vector corresponding to minus the highest weight

of sα. Indeed, we chose e to belong to a root space with respect to s[α] ∩ g0,
thus e belongs to one of the slm,ai

’s or to slm,−
∑

i ai
; if for instance e belongs to

slm,aj
, then notice that aj is minus the highest root with respect to the root basis

a1, · · · , âj , . . . , am−1,−
∑

i ai.
In other words, we are choosing 0 6= e ∈ slm,−

∑
i
ai
, and then the subspace

⊕m−1
i=1 slm,−ai

⊂ s[α] ∩ z−1(e) obviously contains a regular nilpotent element. �

Such an f being chosen, consider the affine space

ẑ := {x = f + y | y ∈ α⊥
−1 ⊂ c}.

Clearly ẑ ⊂ z−1(e), dim(̂z) = dim(α⊥
−1) = dim(c) − 1 and x = f + y is the Jordan

decomposition of x (with y semisimple and f nilpotent; notice that f and y commute
since f ∈ g[α]). Then

dim(G0 (̂z)) = dim(g0) + dim(̂z)− dim(N0(̂z)) = dim(g−1)− 1− dim(N0(̂z)),

where N0(̂z) := {g ∈ G0 | g(̂z) = ẑ} has Lie algebra n0(̂z) := {g ∈ g0 | [g, ẑ] ⊂ ẑ}. So
in order to prove the theorem there remains to show that n0(̂z) = 0.

Consider g ∈ N0(̂z). Since g must preserve the Jordan decomposition of any
x = f + y ∈ ẑ, we need g(f) = f and g(y) ∈ α⊥

−1. In other words N0(̂z) is the

centralizer of f inside the normalizer N0(α
⊥
−1). The Lie algebra of this normalizer

is just n(α⊥
−1) ∩ g0 = (t+ s[α]) ∩ g0 = s[α] ∩ g0, where n(α⊥

−1) := {g ∈ g | [g, α⊥
−1] ⊂

α⊥
−1}. However s[α] ∩ g0 is a Cartan subalgebra of s[α] ∼= slm. Since f is regular

nilpotent inside s[α], it is not centralized by any semisimple element and we can
finally conclude that n0(̂z) = 0. �

6. Explicit examples

6.1. Closed orbits. We will describe the varieties to which the theorem applies
for the graded Lie algebras appearing in Table 1. So g will be a simple graded Lie
algebra with θ-corank = 0 and order m = 2, 3 or 5, such that ρ1(G0) is semisimple.
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Table 3. ClosedG0-orbits inside P(g1) for the graded Lie algebras
of Table 1 and their codegrees

Type of g Type of ρ1(G0) g1 Orbit deg(D)

B
(1)
2p Dp ×Bp C2p ⊗ C2p+1 Q2p−2 ×Q2p−1 4p(2p− 1)

B
(1)
2p−1 Dp ×Bp−1 C2p ⊗ C2p−1 Q2p−2 ×Q2p−3 4(p− 1)(2p− 1)

D
(1)
2p Dp ×Dp C2p ⊗ C2p Q2p−2 ×Q2p−2 4p(2p− 1)

A
(2)
2n−2 Bn−1 S〈2〉C2n−1 v2(Q

2n−3) 2(n− 1)(2n− 1)

A
(2)
2n−3 Dn−1 S〈2〉C2n−2 v2(Q

2n−4) 2(n− 1)(2n− 3)

D
(2)
2p+1 Bp ×Bp C2p+1 ⊗ C2p+1 Q2p−1 ×Q2p−1 4p(2p+ 1)

E
(1)
6 A2 ×A2 ×A2 C3 ⊗ C3 ⊗ C3 P2 × P2 × P2 36

E
(1)
7 A7 ∧4C8 G(4, 8) 126

E
(1)
8 D8 S+

16 OG(8, 16)+ 240

E
(1)
8 A8 ∧3C9 G(3, 9) 120

E
(1)
8 A4 ×A4 C5 ⊗ ∧2C5 P4 ×G(2, 5) 60

F
(1)
4 B3 ×A1 S7 ⊗ C2 OG(3, 7)× P1 24

F
(1)
4 A2 ×A2 Sym2(C3)⊗ C3 v2(P

2)× P2 12

G
(1)
2 A1 ×A1 Sym3(C2)⊗ C2 v3(P

1)× P1 6

E
(2)
6 C4 ∧〈4〉C8 LG(4, 8) 72

D
(3)
4 A2 Sym3(C3) v3(P

2) 12

Notice however that the hypothesis ρ1(G0) semisimple is not strictly necessary in
order to apply the theorem.

List of closed orbits. In all the cases, the G0-representation g1 is irreducible and
there is a single closed (or minimal) orbit inside P(g1). In Table 3 we report the list
of these closed orbits. We denoted by OG the orthogonal Grassmannian of isotropic
subspaces with respect to a non-degenerate symmetric 2-form (if the subspaces have
maximal dimension and the ambient vector space is even dimensional, a subscript ±
will denote one of the two connected components of the family of such subspaces).
Moreover vi denotes the i-th Veronese embedding.

Orbits description. In every G0-representation of Table 1 there is a unique closed
orbit. We want now to identify it with one of the orbits whose dual is described
in Theorem 5.2 (see also Remark 5.4). We will use an argument already present in
the proof of [V76, Proposition 2]. We keep the notations of Section 5.

Proposition 6.1. Let g be an exceptional simple graded Lie algebra with maximal
θ-rank and order m = 2, 3 or 5, such that ρ1(G0) is semisimple. Suppose that α is
a long root. Let e be a nonzero nilpotent element inside s[α] ∩ g1, contained in a
root space for the Cartan subalgebra s[α] ∩ g0 of the simple Lie algebra s[α]. Then
G0[e] ⊂ P(g1) is the unique closed G0-orbit inside P(g1).

Proof. It is clear that for any element e ∈ g1, [g, e] ∩ g1 = [g0, e]. Let v ∈ Ge ∩ g1.
The tangent space at v satisfies TGe∩g1,v ⊂ [g, v] ∩ g1 = [g0, v] = TG0v,v. Since
G0v ⊂ Gv ∩ g1 = Ge ∩ g1, we deduce that in fact TG0v,v = TGe∩g1,v. Since this
holds for any point v ∈ Ge∩ g1, we conclude that Ge∩ g1 is smooth and that each
irreducible component of Ge ∩ g1 is a G0-orbit.
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Since e belongs to the root space corresponding to a long root of R(g), the orbit
G[e] ⊂ P(g) is the closed orbit of g, namely the adjoint variety. As a consequence,
the intersection G[e]∩ P(g1) is closed inside P(g1), and each of its irreducible com-
ponents is also closed. But we have just seen that each of these components is a
G0-orbit, and since there is a unique such closed G0-orbit inside P(g1), it has to
coincide with G[e] ∩ P(g1), and with G0[e] as well. �

In Table 3 we have reported the degree of D corresponding to the choice of a
long root (recall from Section 5.1 that under the hypothesis we have made, we
have defined at most two invariant divisors for each graded Lie algebra, each one
corresponding to long or - possibly - short roots); by the previous Proposition and
Theorem 5.2, D is the dual variety of the closed orbit in P(g1).

6.2. Classical cases. The classification of classical graded simple Lie algebras in-

volves the classical affine Dynkin diagrams plus the Kac diagrams of type A
(2)
n and

D
(2)
n . The coefficients of these diagrams are either m = 2 or m = 4. We have

excluded the latter case from our considerations. So under the hypothesis that
ρ1(G0) is semisimple there only remains Z2-gradings of the following type:

sl2n = sp2n ⊕ ∧〈2〉C2n, sl2n = so2n ⊕ S〈2〉C2n

and, coming either from B
(1)
n , D

(1)
n or D

(2)
n according to the parity of a and b,

soa+b = soa × sob ⊕ (Ca ⊗ Cb).

In the latter case, it is shown in [He01] that the associated θ-rank is equal to
min(a, b). We have seen that the main theorem applies when a = b or a = b ± 1
(for such a, b one can check that θ-corank=0), giving as codegree of Qa−2 × Qb−2

the integer 4
(

min(a,b)
2

)

. We expect that a similar statement should hold for any a, b,
that is

deg
(

(Qa−2 ×Qb−2)∨
)

= 4

(

min(a, b)

2

)

.

One should be able to prove this statement by some different argument. Notice that
by the Katz-Kleiman formula, this codegree is equal to four times the coefficient of
xayb in the Taylor expansion of

(1− x)a+2(1− y)b+2

(1− 2x)(1 − x− y)2(1− 2y)
.

6.3. Counterexamples. The reader may wonder whether the hypothesis that
ρ1(G0) is semisimple is really important. The simplest example for which it is
not fulfilled is, with m = 2, given by the gradings of type

sla+b = sla × slb × C⊕ (Ca ⊗ Cb)⊕ (Ca ⊗ Cb)∗.

Here g1 = (Ca ⊗Cb)⊕ (Ca ⊗Cb)∗ is not irreducible. Moreover the projectivization
P(g1) contains two closed orbits, isomorphic to Pa−1 × Pb−1, so that their projec-
tive dual varieties (when considered in their linear spans) are not hypersurfaces in
general (only for a = b). In other words, everything goes wrong in that extremely
simple example.

The reader may also wonder if we were right to restrict to the cases where
m = 2, 3 or 5. In the exceptional cases there are indeed a few examples with
m = 4 and m = 6 which we may briefly discuss. Assuming as before that ρ1(G0) is
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semisimple there is only one case with m = 6 to consider, which corresponds to the

triple node of the affine Dynkin diagram E
(1)
8 . Since the three arms of this diagram

have lengths 1, 2, 5, the unique closed orbit in P(g1) is P1 × P2 × P5, in its Segre
embedding. But for a Segre product of projective spaces Pn1 × Pn2 × · · · × Pnr ,
with n1 ≤ n2 ≤ · · · ≤ nr, the projective dual is a hypersurface if and only if
nr ≤ n1 + n2 + · · · + nr−1 [GKZ94, Corollary 5.10]. In particular the projective
dual of P1 × P2 × P5 is not a hypersurface!

Another interesting case with m = 4 is again attached to E
(1)
8 , this time to the

second node on its long arm, starting from the triple node. In this case the closed
orbit in P(g1) is OG(5, 10)+ × P3. Even though in this case the θ-corank vanishes,
a computation shows that:

Proposition 6.2. The projective dual of OG(5, 10)+ × P3 is not a hypersurface.

Proof. We apply the Katz-Kleiman formula for the degree (as a hypersurface) of
the dual degree of a projecive variety X . A straightforward consequence is that for
any k,

deg(X × Pk)∨ = (k + 1)

∫

X

λkc(ΩX)

(1− λ)k+2
= (k + 1) deg(X ∩ P−k)∨,

where P−k means a general codimension k linear space.
Applying this to X = OG(5, 10)+ and k = 3, we get a formula that we can

reduce to an intersection product onG(5, 10). The result turns our to be zero, which
exactly means that the projective dual of OG(5, 10)+×P3 is not a hypersurface. �

7. Lagrangian Grassmannians, spinor varieties, and perspectives

As observed in [La81], the dual degree of a Grassmannian can in principle be
computed with the help of Schubert calculus (see also [FNR08] for a more general
approach based on equivariant Schubert calculus). This observation also applies
to spinor varieties and Lagrangian Grassmannians LG(n, 2n) up to some minor
modifications.

7.1. Lagrangian Grassmannians. Let us consider the Lagrangian Grassman-
nian LG(n, 2n) parametrizing Lagrangian subspaces in C2n endowed with some
symplectic form. Recall that the cotangent bundle of this variety is just S2E,
where E denotes the tautological rank n vector bundle. Moreover, as a subvariety
of the usual Grassmannian G(n, 2n), the Lagrangian Grassmannian is defined by a
general section of ∧2E∗ (we use the same notation for the tautological bundle on
the Grassmannian and its restriction to LG(n, 2n). Its fundamental class in the
Chow ring of G(n, 2n) is therefore given by the Thom-Porteous formula, namely

[LG(n, 2n)] = ctop(∧
2E∗) = σδ(n),

the Schubert cycle defined by the partition δ(n) = (n− 1, . . . , 2, 1, 0). Applying the
Katz-Kleiman formula we get

deg(LG(n, 2n)∨) =

∫

LG(n,2n)

c(S2E)

(1 − λ)2
=

∫

G(n,2n)

c(S2E)σδ(n)

(1 − λ)2
.

This reduces the computation to a question of Schubert calculus, as announced.
There are several difficulties. First we need to be able to decompose the total Chern
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class of the symmetric square of a vector bundle in terms of its Schur classes; in other
words, we need to compute (some of) the coefficients in the universal expansion

c(S2E) =
∑

ℓ(µ)≤n

aµsµ(E).

This problem was essentially solved in [LLT89]. Plugging this into our previous
formulas we get

deg(LG(n, 2n)∨) =
∑

k≥0

(k + 1)
∑

ℓ(µ)≤n

(−1)|µ|aµ

∫

G(n,2n)

λkσµσδ(n).

In order to compute this integral, we need to decompose

λkσµ =
∑

|ν|=|µ|+k

Kµ,νσν ,

where Kµ,ν is the usual Kostka-Foulkes coefficient, and observe that by the duality
properties of the Schubert cycles, ν gives a non zero contribution only when it
coincides with the complement of δ(n) in the n× n square, that is δ(n+1). Hence
the expression:

Proposition 7.1.

deg(LG(n, 2n)∨) =
∑

ℓ(µ)≤n

(−1)|µ|

(

(

n+ 1

2

)

− |µ|+ 1

)

aµKµ,δ(n+1).

The classical properties of Kostka-Foulkes coefficients allow to restrict this sum
to partitions µ ⊂ δ(n+ 1), but this is still a large sum, with alternating signs.

Example. For n = 3 the answer is already known: the projective dual of LG(3, 6) is
a quartic (so that LG(3, 6) belongs to the conjecturally short list of smooth varieties
of dual degree four). For n = 4 the previous expression is over 42 partitions. The
result is as expected,

deg(LG(4, 8)∨) = 72.

7.2. Spinor varieties. The case of the spinor variety S2n, parametrizing one of the
families of maximal isotropic subspaces in C2n, now endowed with a non-degenerate
quadratic form, is very similar. The cotangent bundle of this variety is now ∧2E,
where E denotes again the tautological rank n vector bundle. Moreover, as a
subvariety of the usual Grassmannian G(n, 2n), the Lagrangian Grassmannian is
defined by a general section of S2E∗, so its fundamental class in the Chow ring of
G(n, 2n) is

[S2n] = ctop(S
2E∗) = 2nσδ(n+1).

In order to apply the Katz-Kleiman formula we need to recall that the Plücker line
bundle is twice the generator of the Picard group. We get

deg(S∨2n) =

∫

S2n

c(∧2E)

(1− λ/2)2
= 2n

∫

G(n,2n)

c(∧2E)σδ(n+1)

(1− λ/2)2
.

Then we need to be able to decompose the total Chern class of the skew-symmetric
square of a vector bundle in terms of its Schur classes; again there is a universal
expansion

c(∧2E) =
∑

ℓ(µ)≤n

bµsµ(E),
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also discussed in [LLT89]. Plugging this into our previous formulas we get

deg(S∨2n) =
∑

k≥0

(k + 1)
∑

ℓ(µ)≤n

(−1)|µ|bµ

∫

G(n,2n)

2n−kλkσµσδ(n+1).

This finally yields the expression:

Proposition 7.2.

deg(S∨2n) = 2−
n(n−3)

2

∑

ℓ(µ)≤n

(−1)|µ|

(

(

n

2

)

− |µ|+ 1

)

2|µ|bµKµ,δ(n).

7.3. Perspectives. In this paper we were able to extend Tevelev’s formula to
graded Lie algebras with prime grading and maximal θ-rank. Even though we
have showed that the hypothesis we have made are somehow necessary (see Section
6.3), one may still wonder whether a suitable version of Theorem 5.2 may hold in
greater generality.

Indeed, the proof of Theorem 5.2 is clearly divided in two parts, the first being
the proof of the inclusion in the divisor, and the second being the dimension bound.
We believe that the former could hold in a more general setting, for instance when
the hypothesis of maximal θ-rank is dropped. However, in order to deal with
such a situation, one should be able to understand more deeply the structure of
graded Lie algebras; for instance, it would be necessary to deduce a homogeneous
decomposition of the algebra which resembles the one we have constructed in this
paper (e.g. a decomposition in which a θ-torus appears as a factor of an explicit
Cartan subalgebra, so that the complex reflections in the little Weyl group can be
made explicit).

This generalization, together with the research for a general explicit formula for
the dual of very classical homogeneous varieties (such as orthogonal and symplectic
Grassmannians), will be the subject of future work.
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