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In this contribution the usage of the Parareal method is proposed for the time-parallel solution of the eddy current problem. The method is adapted to the particular challenges of the problem that are related to the differential algebraic character due to non-conducting regions. It is shown how the necessary modification can be automatically incorporated by using a suitable time stepping method. The paper closes with a first demonstration of a simulation of a realistic four-pole induction machine model using Parareal.

I. INTRODUCTION

T HE numerical simulation of the eddy current problem in time domain is computationally expensive due to implicit time stepping. This is particularly challenging if long time periods have to be considered as for example when the start-up of an electrical machine is simulated, possibly with surrounding circuitry [START_REF] Tsukerman | Finite element differential-algebraic systems for eddy current problems[END_REF]. Most implementations, as in GetDP [START_REF] Geuzaine | GetDP: a general finite-element solver for the de Rham complex[END_REF], use loworder time stepping schemes as for example the θ-method, [START_REF] Hairer | Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems[END_REF]. On the other hand, higher order time integration methods, e.g. [START_REF] Nicolet | Implicit Runge-Kutta methods for transient magnetic field computation[END_REF], [START_REF] Benderskaya | Embedded Runge-Kutta methods for field-circuit coupled problems with switching elements[END_REF], have been proposed but are rarely used in practice. Recently, explicit methods gained interest as computational hardware architectures seem to favor those algorithms [START_REF] Außerhofer | Discontinuous Galerkin finite elements in time domain eddy-current problems[END_REF], [START_REF] Schöps | Higher order half-explicit time integration of eddy current problems using domain substructuring[END_REF], [START_REF] Dutiné | Explicit time integration of transient eddy current problems[END_REF]. Another approach is time domain parallelization [START_REF] Gander | 50 Years of Time Parallel Time Integration[END_REF]. For example the reformulation of the time stepping process as one big system of equations has been proposed in [START_REF] Takahashi | Time-domain parallel finite-element method for fast magnetic field analysis of induction motors[END_REF]. However, it requires to rewrite the time-stepping code.

In this contribution the usage of the (non-intrusive) Parareal method [START_REF] Lions | A parareal in time discretization of PDEs[END_REF], [START_REF] Gander | Nonlinear Convergence Analysis for the Parareal Algorithm[END_REF] is proposed and its application to a real world electrical engineering problem, i.e., an electrical machine, is shown. Furthermore, the method is adapted to the particular challenges of space discretized eddy current problems related to the differential algebraic character of the equation. The Parareal method has already been applied to wide range of problems in mathematics and in physics. These problems include for example linear and nonlinear parabolic problems [START_REF] Liu | A parareal waveform relaxation algorithm for semi-linear parabolic partial differential equations[END_REF], molecular dynamics [START_REF] Baffico | Parallelin-time molecular-dynamics simulations[END_REF], stochastic differential equations [START_REF] Engblom | Parallel in time simulation of multiscale stochastic chemical kinetics[END_REF], Navier Stokes [START_REF] Trindade | Parallel-in-time simulation of the unsteady Navier-Stokes equations for incompressible flow[END_REF], quantum control [START_REF] Maday | Monotonic parareal control for quantum systems[END_REF].

This paper is structured as follows: after this introduction, Section II discusses the modeling and the differential algebraic character of the system. Section III introduces the Parareal algorithm and its adaption. Finally, the numerical results are presented in Section IV. Conclusions are given in Section V. 

Γ = ∂Ω Ω s Ω Ω σ

II. MODELING AND DISCRETIZATION

When disregarding displacement currents, and introducing the magnetic vector potential A as unknown, one obtains the eddy current problem in A -formulation

σ∂ t A + ∇ × (ν∇ × A) = J s (t) (1) 
on the domain Ω × I and I := (t 0 , t end ], see Fig. 1. The problem is well posed when supplying a gauge condition, suitable boundary conditions, e.g. Dirichlet n × A| Γ = 0 where Γ = ∂Ω and an initial value A( r, t 0 ) = A 0 ( r) with r ∈ Ω. The material is described by the conductivity σ and nonlinear reluctivity ν; the current density J s = k χ s,k i k is given by strandedconductor winding functions χ s,k , which homogeneously distribute the currents i k .

A. Discretization by Finite Elements

Equation ( 1) is reformulated in the following weak form:

find A ∈ H 0 (curl, Ω) such that Ω w • σ∂ t A + ∇ × w • (ν∇ × A) dΩ = Ω w • J s dΩ Figure 2
. Mesh view of the four-pole induction machine model "im 3kw" from the GetDP library [START_REF] Geuzaine | GetDP: a general finite-element solver for the de Rham complex[END_REF] as described in [START_REF] Gyselinck | Multi-slice FE modeling of electrical machines with skewed slots-the skew discretization error[END_REF].

for all w ∈ H 0 (curl, Ω). Discretization by a finite set of edge elements [START_REF] Monk | Finite Element Methods for Maxwell's Equations[END_REF] A( x, t) ≈ n i=1 w i ( x) a i (t) yields for the induction machine "im 3kw", cf. Fig. 2, the following system of differential algebraic equations (DAEs)

M σ d t a(t) + K ν a(t), θ(t) a(t) = j s (t) (2) 
where a(t) ∈ R n is the vector of (line-integrated) magnetic vector potentials, M σ ∈ R n×n denotes the (singular) mass matrix representing the conductivities and j s (t) ∈ R n describes the discretized source current density. Finally, K ν (a, θ) ∈ R n×n is the curl-curl matrix which depends on rotor angle and flux. Movements are considered by the moving band approach [START_REF] Ferreira Da Luz | Analysis of a permanent magnet generator with dual formulations using periodicity conditions and moving band[END_REF] determined by the mechanical equation

d t θ(t) = ω(t) and Id t ω(t) + κθ(t) = T a(t) (3) 
with initial values θ(t 0 ) = θ 0 and ω(t 0 ) = ω 0 , where ω is the angular velocity, I the inertia, κ the torsion coefficient and T defines the mechanical excitation given by the magnetic field. Let us address in the following the current driven coupled problem ( 2) and (3) as

Md t u(t) + K u(t))u(t) = f (t) (4) 
with unknown u = [a , θ, ω] and the obvious definitions for M, K and f .

B. Differential algebraic equations

The solution of the DAE ( 1) is straightforward since the system is an index-1 DAE [START_REF] Bartel | Structural analysis of electrical circuits including magnetoquasistatic devices[END_REF], [START_REF] Nicolet | Implicit Runge-Kutta methods for transient magnetic field computation[END_REF]. It can be treated with standard techniques, while higher index problems are increasingly more difficult to solve [START_REF] Hairer | Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems[END_REF].

Let M + be the Moore-Penrose pseudo inverse of M such that P = M + M and Q = I -P denote projectors decomposing the vector potential u i = u(t i ) at each time instance into its differential and algebraic components, respectively

u i = Pu i,σ + Qu i,0 .
When solving (2) for given currents i i = i(t i ), only initial conditions for the differential components u 0,σ may be prescribed. The algebraic components u 0,0 must be consistently determined by solving the constraint

Q K ν Qu 0,0 = Q X s i 0 -Q K ν Pu 0,σ .
(5) However, when using the implicit Euler method to solve an initial value problem with inconsistent data, i.e, u 0,σ and u 0,0 do not fulfill ( 5), a projection is automatically carried out: the time stepping instruction for t i to t i+1 = t i + δt

T 0 T 1 T 2 T 3 T 4 T 5 a i (t)
1 δt M + K u i+1 u i+1 = f i+1 + 1 δt Mu i (6) 
ignores inconsistent algebraic components after the first step due to the term Mu i = MPu i = Mu i,σ . This is generally not the case for higher index DAEs and other time-stepping schemes, see e.g. [START_REF] Bartel | Structural analysis of electrical circuits including magnetoquasistatic devices[END_REF].

The implicit Euler method is a numerical implementation of the solution operator F :

I × I × R n → R n such that u i = F(t i , t 0 , u 0 )
which propagates u 0 through time. Let us define another coarse propagator denoted by G : I×I×R n → R n of lower precision, e.g., implicit Euler with a time step ∆t δt.

III. THE PARAREAL METHOD

Let us split the total time interval into smaller intervals I j := (T j-1 , T j ] with t 0 = T 0 < T 1 < . . . < T N = t end according to the number of CPUs N available. On each interval, one defines the equation ( 4) with initial value U j-1 := u(T j-1 ), final value U j := u(T j ). Continuity at the interfaces T j is established by matching conditions, see Fig. 3 H

(U) :=            U 0 -u 0 = 0, U 1 -F(T 1 , T 0 , U 0 ) = 0, . . . U N -1 -F(T N -2 , T N -1 , U N -2 ) = 0. (7) 
In other words, the problem of matching can be considered as the unknown of a nonlinear equation H :

R N •n → R N •n in the variable U = [U 0 , ..., U j , ..., U N -1 ].

A. Interpretation as Newton's Method

The system (7) can be solved by Newton's method. It reads using the superscript (k) to account for the iterations

∂H ∂U U (k-1) (U (k) -U (k-1) ) = -H(U (k-1) ). ( 8 
)
Algorithm 1: Parareal as proposed in [START_REF] Lions | A parareal in time discretization of PDEs[END_REF].

1 init: U (k)
0 ← u 0 (for all k) and ū(0) j , ũ(0) j ← 0 (for all j); 2 set counter: k ← 1; The j-th row of the Jacobian matrix ∂H/∂U has only two entries in columns j -1 and j. It is given by

3 while k ≤ 2 or max j U (k) j -U (k-1) j > tol do 4 for j ← 1 to N do 5 solve coarse: ū(k) j ← G(T j , T j-1 , U (k) 
∂H j ∂U • = 0, . . . 0, - ∂F ∂U T j , T j-1 , • , I, 0 . . . , 0 (9) 
where I denotes the identity of dimension n. After rearranging the terms, equation ( 8) is equivalent to the explicit update formula

U (k) j = F(T j , T j-1 , U (k-1) j-1 ) (10) 
+ ∂F ∂U T j , T j-1 , U (k-1) j-1 (U (k) j-1 -U (k-1) j-1 ),
in which the linearization is approximated by the difference

≈ F(T j , T j-1 , U (k-1) j-1 ) (11) 
+ G(T j , T j-1 , U (k) j-1 ) -G(T j , T j-1 , U (k-1) j-1
) which is a Quasi-Newton method as proposed e.g. in [START_REF] Gander | Nonlinear Convergence Analysis for the Parareal Algorithm[END_REF].

Due to the splitting of the time interval, one may take advantage of the parallel architecture of modern computers to speed up the time integration similar to multiple shooting methods [START_REF] Lions | A parareal in time discretization of PDEs[END_REF]. The pseudo code of the resulting Parareal algorithm is shown in Alg. 1.

B. Discussion of the Algorithm

The algorithm solves two kinds of problems in a nested loop until convergence is reached: a cheap problem defined on a coarse time and possibly spatial grid is solved sequentially (line 5, Alg. 1) to propagate missing initial conditions and highfidelity problems are solved in parallel on the intervals I j (line 9, Alg. 1). For both problems the implicit Euler method (6) can chosen, or alternatively a higher order method.

The solution of the cheap problem at T j is denoted by

ūj = G(T j , T j-1 , U j-1 ) (12) 
which is computed by propagating the initial value U j-1 from T j-1 to T j by coarsely discretizing (2) in time, i.e., using large time steps ∆t. The solution of the high-fidelity problem is obtained by solving (2) with initial condition U j-1 using fine discretizations, i.e., small δt. This allows to rewrite the update equation [START_REF] Lions | A parareal in time discretization of PDEs[END_REF] in Alg. 1 (line 6) as

ũj = F(T j , T j-1 , U j-1 ) (13) 
U (k) j = ũ(k-1) j + ū(k) j - ū(k-1) j .
It can be shown, [12, Theorem 1], that Alg. 1 yields the correct solution until time T k after k iterations, so the correct solution is obtained after at most N iterations. This implies that Parareal does not take longer than the sequential time stepping procedure using the fine solver F from (13) if neglecting the computational costs of the coarse solution operator G. However, in this case Parareal requires up to N -times more CPU time due to its parallel processing.

C. Discussion of the Algebraic Equations

For the eddy current problem line 6 of Alg. 1 must be adapted to reflect the differential algebraic character, i.e.

PU (k) j = Pũ (k-1) j + Pū (k) j -Pū (k-1) j
with a subsequent solve of (5) to obtain a consistent Qu (k) j . However, when using Implicit Euler as shown in [START_REF] Außerhofer | Discontinuous Galerkin finite elements in time domain eddy-current problems[END_REF], this step is automatically taken care of. Similarly, the norm in line 3 should be adapted to only account for differential components, e.g. by considering a projection or the eddy current losses.

IV. NUMERICAL EXAMPLE

Parareal is particularly interesting for problems with multitone solutions, e.g. due to slotting as present in the machine "im 3kw" as visible in Fig. 4. This was also observed in molecular-dynamics [START_REF] Baffico | Parallelin-time molecular-dynamics simulations[END_REF]. However, speed-ups have also been observed for less favorable problems [START_REF] Gander | Nonlinear Convergence Analysis for the Parareal Algorithm[END_REF].

The algorithm was implemented in GNU Octave [START_REF] Eaton | The GNU Octave 4.0 Reference Manual 1/2: Free Your Numbers[END_REF]. GetDP is used for the simulation of the 2D model with 8308 degrees of freedom [START_REF] Geuzaine | GetDP: a general finite-element solver for the de Rham complex[END_REF], [START_REF] Gyselinck | Multi-slice FE modeling of electrical machines with skewed slots-the skew discretization error[END_REF]. They are executed on an Intel Xeon cluster with 80 × 2.00GHz cores, i.e., 8×E7-8850 and 1TB DDR3 memory.

A. Sequential Time Steppers

As sequential time stepper the implicit Euler scheme is applied for 10 electrical periods, i.e., I = (0, 0.2] s. The time grid of this simulation is refined from δt = 10 -3 s and δt = 10 -4 s to δt = 10 -5 s. The coarsest sequential simulation takes approx. 15min, while the ones with finer grids correspondingly more time, i.e., 2h and 20h, respectively. Each time step requires ca. 0.3s for matrix reassembly, Newton and solving the systems.

B. Parareal

The Parareal implementation uses OpenMP parallelized calls of GetDP. The implicit Euler method is used with time step sizes δt = 10 -5 s and ∆t = 10 -3 s for the fine and coarse problem, respectively. Fig. 5 shows the errors in comparison with the sequential reference simulation at δt = 10 -5 s. For the Parareal simulation N = 40 cores have been used. After k = 4 iterations, a relative l 2 accuracy of 10 -2 has been obtained. The sudden increase of the error after approx. T 4 can be explained by the convergence of the Parareal algorithm: it is expected to reproduce the sequential time-stepper's solution for t < T k (k = 4). The computation has a potential speed-up of N/k = 10 with respect to the reference simulation when neglecting communication costs and the coarse grid solution. The speedup is obtained since the effective length of the time interval was reduced by a factor of N = 40, but iterated k = 4 times. The parallelization allows to obtain errors below 1% within the same time that a sequential simulation needs to get errors of 100%. However, due to suboptimal implementation the actual speed-up was only ca. 3 times.

V. CONCLUSION

This paper proposes the usage of Parareal for eddy current problems and discussed necessary modification due to nonconducting regions in the computational domain. A first implementation shows quick convergence of the iterative algorithm and promises a high speed-up. Future research will investigate the optimal choice of the coarse propagator. 
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 1 Figure 1. Sketch of the computational domain of an eddy current problem
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 3 Figure 3. Jumps at the interfaces are compensated by Newton's method; coarse solution G (blue), correction via gradient (red) and fine solution F (green)

Figure 4 .

 4 Figure 4. Time stepping dynamics of the discrete magnetic vector potential
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 15 Figure 5. Relative l 2 error w.r.t. classical backward Euler (δt = 10 -5 ); dashed vertical lines show the 40 intervals of size h = 0.05 s on which the problem is solved in parallel in the case of Parareal (green)
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