
HAL Id: hal-03626466
https://hal.science/hal-03626466

Submitted on 31 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dialogue management in conversational systems: a
review of approaches, challenges, and opportunities
Hayet Brabra, Marcos Baez, Boualem Benatallah, Walid Gaaloul, Sara

Bouguelia, Shayan Zamanirad

To cite this version:
Hayet Brabra, Marcos Baez, Boualem Benatallah, Walid Gaaloul, Sara Bouguelia, et al.. Dia-
logue management in conversational systems: a review of approaches, challenges, and opportu-
nities. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14 (3), pp.783-798.
�10.1109/TCDS.2021.3086565�. �hal-03626466�

https://hal.science/hal-03626466
https://hal.archives-ouvertes.fr

1

Dialogue Management in Conversational Systems:
A Review of Approaches, Challenges, and

Opportunities
Hayet Brabra, Marcos Báez, Boualem Benatallah, Walid Gaaloul, Sara Bouguelia, Shayan Zamanirad

Abstract—Attracted by their easy-to-use interfaces and cap-
tivating benefits, conversational systems have been widely em-
braced by many individuals and organizations as side-by-side
digital co-workers. They enable the understanding of user needs,
expressed in natural language, and on fulfilling such needs by in-
voking the appropriate backend services (e.g., APIs). Controlling
the conversation flow, known as Dialogue Management, is one of
the essential tasks in conversational systems and the key to its
success and adoption as well. Nevertheless, designing scalable and
robust dialogue management techniques to effectively support
intelligent conversations remains a deeply challenging problem.
This article studies dialogue management from an in-depth
design perspective. We discuss the state of the art approaches,
identify their recent advances and challenges, and provide an
outlook on future research directions. Thus, we contribute to
guiding researchers and practitioners in selecting the appropriate
dialogue management approach aligned with their objectives,
among the variety of approaches proposed so far.

Index Terms—Conversational System, Dialogue Management,
Dialogue State Tracking, Dialogue Policy.

I. INTRODUCTION
With the noteworthy growth of digital data and services,

users need technologies that offer quick access to such data
and facilitate the interaction with these services. Conversa-
tional systems which now become more and more proliferating
in industry, academia, and society, are excellent examples
of these technologies. Indeed, they rely on human-friendly
interfaces, using natural language (e.g., text or voice), to
access complex cognitive backend, which tries to understand
user needs and serves them by invoking the proper services.
Notable examples are Siri, Google Assistant, Amazon Alexa,
Baidu, and Cortana which are with us all the time.

Conversational systems are generally categorized into two
classes [1]: (1) task-oriented systems and (2) non-task-oriented
systems. Non-task oriented dialog systems focus on open
domain conversations with no specific task to accomplish like
chit-chat messages. In contrast, task-oriented systems allow
users to accomplish tasks (e.g., maintain schedules, organise
projects, booking flight) using information provided by users
during conversations. This article focuses on task-oriented con-
versational systems. No matter what the category, one of the

H. Brabra, M. Báez and S. Bouguelia are with LIRIS – University of
Claude Bernard Lyon 1, Villeurbanne, France .
E-mail: {hayet.brabra, marcos.baez, sara.bouguelia}@univ-lyon1.fr

B. Benatallah and S. Zamanirad are with the University of New South
Wales, Sydney, Australia.
E-mail: b.benatallah@unsw.edu.au; shayanz@cse.unsw.edu.au

W. Gaaloul is with the Computer Science Department, SAMOVAR, Tele-
com SudParis, Evry, France.
E-mail: walid.gaaloul@telecom-sudparis.eu

critical aspects in the development of conversational systems
is the design of a dialog management component that is able
to ensure robust, intelligent, and engaging conversations [2],
[3]. This is because of the paramount and diverse roles that it
plays, which especially include (i) tracking of information that
is entered implicitly or explicitly by users, (ii) understanding
conversation context and resolving ambiguity, (iii) controlling
the conversation flow between users and system, (iv) commu-
nicating with external services/databases and finally (v) iden-
tifying system actions to fulfill the ultimate user goal. Despite
many years of research, both the scientific and industrial world
still struggle to understand which dialog management (DM)
approaches are suitable for the type of conversational system
they seek to offer [4]. Moreover, designing effective dialog
management remains a deeply challenging problem [3], [5].

In this article, we seek to accelerate the fundamental under-
standing of DM from an in-depth design perspective. Previous
surveys mostly focused [1], [6], [7], [8], [9] on (i) providing
background related to understanding conversational systems
(e.g., overview of the entire system architecture) and (ii)
exploring and analyzing their design models/techniques from a
general perspective (e.g., explaining the application of Markov
chain model) without considering particularly the dialogue
management component. Other aspects that are studied deeply
in recent years are related to the dialogue corpora [10], evalua-
tion [11], and user interface features [12] of conversational sys-
tems. The closest to our work is the short survey by Harms et
al. [4], where they survey dialog management approaches, but
taking a different analysis point of view to focus on capabilities
(e.g., learning, error handling) and practical aspects (e.g., tool
availability, dependencies) mostly in commercial solutions. In
contrast, to Harms’s and the aforementioned works, the present
survey takes a comprehensive look at past and emerging design
approaches to DM, following an analytical framework that
considers relevant design aspects of DM.

We analyze and characterize existing approaches for DM,
based on the analysis of a wide range of literature and a
selection of bots development platforms. We discuss their
advances and limitations and we define opportunities for future
research directions. We noted that each DM approach has its
strengths and weaknesses and are tailored, in most cases, to be
used in a particular context – all of which are relevant design
considerations for choosing a dialog management approach.
Hence, in characterizing current approaches in terms of mean-
ingful dialog management design attributes, our work would
contribute to guiding researchers and practitioners in selecting

2

Natural language

generation (NLG)

Dialog State Tracker

Dialog Policy

State

space

Action

space

Dialog manager (DM)

User

4 - Action a {

Request (departure_date,

return_date) }

2 - u { Intent: flight-booking

Slots: [departure_city: Lyon

destination_city: Sydney]

Dialog-act: Request }
Natural language

understanding (NLU)

3 - Dialog state s {

Intent: flight-booking

departure_city: Lyon

destination_city: Sydney

departure_date: ?

return_date: ? }

I would like to book a flight

from Lyon to Sydney

1 - User utterance

5 - System response

Could you precise your

departure and return dates?

External resources

(APIs, Databases,

Knowledge graphs...etc.)

Fig. 1: Dialog manager and its information flow

the appropriate approach aligned with their objectives, among
the variety of DM approaches proposed so far.

II. PROBLEM FUNDAMENTALS AND DIMENSIONS
This section first articulates the fundamentals to understand

dialogue management and presents then the set of dimensions
that we consider to analyze the different approaches.

A. Dialogue Management
Fig.1 depicts the role of the dialogue management com-

ponent (or simply dialogue manager) and its interaction flow
with the common conversational components according to the
pipeline architecture [1], which has been widely adopted by
most traditional conversational systems and still used underly-
ing modern commercial and research systems [13]. In its sim-
plest form, an interaction with a conversational agent involves
a user input in natural language or user utterance, followed
by the system response, in what is called a conversation turn.
In each turn, the conversational system first uses the Natural
Language Understanding (NLU) component [14] to convert
the user utterance (e.g., “I would like to book a flight from Lyon
to Sydney”) into a structured representation u that is typically
encoded using three main types of information: Intent, entities
and dialogue acts. An intent refers to users’ goal/task, which
a conversational system should be able to respond to (e.g.,
“flight-booking”). Entities, often called slots, describe the
parameter(s) needed to fulfill the intent (e.g.,“Departure city:
Lyon”). Dialogue acts are hidden actions in user utterances
to indicate whether the user is making a statement, asking a
question, among others [14] (e.g., “Request()”).

All this information is fed into the so-called Dialogue State
Tracking (DST) model which is a function that maps a given
structured representation u into a suitable state, known widely
as a dialogue state s, from the state space of the conversational
system. The dialogue state s keeps track all information that
the conversational system requires to make its decision about
how to answer the user. For example, in the flight-booking
domain, the dialog state might indicate the user’s intent, such
as flight-booking, its main slots such as a preferred travel
class, departure city, etc. , and which information has been
confirmed and which not. To maintain the dialog state, the
DST model may leverage information entered explicitly by
the user or implicitly as a result of exploiting the conversation

Fig. 2: Dialogue management approaches

context.

Based on the dialogue state, the decision of the next system
action is taken by a second model recognized as Dialogue
Policy (DP). DP model can be viewed as a function that
maps a given dialogue state into an appropriate action (usually
represented as a dialogue act) from the action space of the
conversational system. For example, in the flight-booking
domain, the action space might be constrained to four actions:
Request, Confirm, Query, Execute. Request asks the user
for missing information (e.g., Request (departure date, re-
turn date). Confirm clarifies the intent and/or the slots with the
user (e.g., Confirm (departure city=”Lyon”)). Query gets a list
of flights and informs the user (e.g. Inform(flight=”TR3253”,
departure time=”10am”)). Execute submits a booking request
once all information is provided. Finally, based on the outcome
of DP (e.g., Request (departure date, return date)), the Natural
Language Generation (NLG) component [14] produces an
appropriate response (e.g., “Could you precise your departure
and return dates?”) to the user.

Although we have adopted the pipeline architecture as a
reference in this paper because of its simple interpretation
and nuanced distinction of components, it is worth noting
that there are a wide variety of system architectures that have
been proposed both in research labs or industry. Under these
architectures, as will be explained later, we can find that (i)
DST and NLU, (ii) DST and DP, (iii) or even all the four
components are merged into one module.

3

B. Analysis Dimensions
In this article, we study the dialog management component

from a design standpoint, analyzing the various approaches
that have emerged in the literature. In doing so, we consider the
following dimensions that guide our discussion and analysis:

• Dialogue state: This dimension identifies how dialog
state is represented, what information it includes, whether
it is handcrafted by engineers or learned from data.

• Dialogue state tracking: This dimension identifies how
the dialog state is determined.

• Dialogue policy: This dimension identifies how the next
action is determined.

• Context support: Context is defined as any pertinent
information that is leveraged to understand user needs
and satisfy them appropriately. This dimension focus on
analysing the extent of context support in DM using three
contextual features, namely, Conversation history, User
profile, and External knowledge. It assesses how well
these features are covered and how they are supported.

III. DIALOGUE MANAGEMENT APPROACHES
Based on the analysis of a wide range of literature and a

selection of bots development platforms, we uncovered three
main approaches that have been adopted to implement the DM
models (i.e., DST and DP). These approaches are illustrated
in Fig. 2 and summarized in Table I and II according to the
dimensions of analysis.

A. Handcrafted approaches
Handcrafted approaches rely on programs or/and models

that are fully specified by developers or domain experts to
track the dialogue state and define the policy. We distinguish
between four kinds of handcrafted approaches, namely Rule-
Based, Finite State-Based, Activity-Based, and Frame-Based.

1) Rule-Based
The most traditional approach to DM is to adopt handcrafted

rules [15], [16], [17], [18], [19], [20]. In this approach, bot
developers define the dialogue state as well as the policy by
encoding a set of rules. The simplest modeling of these rules is
structuring them in the form of pattern/response pairs, which
perform NLU, DM, and NLG tasks at once by taking the user
utterance and producing the corresponding response. In this
respect, various languages have been adopted to specify such
rules. A notable example is the Artificial Intelligence Markup
Language (AIML) [21]. AIML is built around two core units:
categories and topics. Categories are blocks of rules, each
one consisting of a (i) pattern defining user input (e.g. “Hi
bot”), and (ii) template defining the corresponding response
(e.g. “Hi human”). Topics, on the other hand, are collections
of categories. ELIZA [22], PARRY [23] and ALICE [21]
are the first generation of conversation systems that leverages
this language. The main drawback of AIML is that it is too
verbose, as it requires a lot of rules to perform even simple
tasks [24]. Other rule-based languages include Rivescript1 and
Chatscript2. They provide an easy-to-understand syntax and
extensive additional features compared to AIML.

1https://www.rivescript.com/
2https://github.com/ChatScript/ChatScript

In the above approaches, the DST and DP are reduced to
a simple pattern matching that is bound directly to user utter-
ance. Alternatively, more sophisticated rules [25], [20] consist
of preconditions (PRE) and actions (POST) that make use of
NLU outputs (i.e., generally is the 1-best NLU interpretation
results [26]) to track the dialogue state and decide on the next
action to perform. An important advantage of a rule-based
approach is that it is easy to implement and does not require
any training data, which is a benefit for quick bootstrapping. It
also offers an easy way for developers to incorporate domain
knowledge. Despite that, they lack flexibility and require
considerable effort from developers to encode rules. As the
number of rules grows, finding overlaps and conflicts between
rules causes a laborious maintenance cost.

Context support
Conceptually, rule-based approaches have the ability to

incorporate information from user profiles (e.g., gender, lo-
cation, favorite songs, etc.) either to update dialogue state
with more personalized information and decide system ac-
tion that will adequately satisfy their preferences. However,
user profile information has been only supported by a few
approaches [15], [18]. Furthermore, most of the rule-based
approaches act only on the last conversation turn when de-
riving their decisions, making them only tailored in pair-
wise utterance exchanges. Whereas, a handful of approaches
[27], [15], [16], [20] has considered dialog history to handle
missing information in the dialogue state. Both features (i.e.,
user profile and dialog history) have been hard-coded into
the DST and DP models which naturally come at a high
development cost and limited scalability.

2) Finite State-Based
In this approach, the DST and DP are exposed as a single

module modeled using a finite-state model that provides a set
of a predefined sequence of steps representing the dialogue
state at any point during the conversation [2], [28], [29]. Each
state is restricted to a prescribed number of transitions to other
states and defines the set of actions that the conversational
system can/should perform in a given situation. For example,
it may ask the user to answer a question or execute the task
that the user wants. Transitions are triggered as a result of
recognizing a pattern that matches a user utterance. Fig. 3
shows an example of a finite state-based DM modeled using
a state machine, for a “flight booking” scenario. For example,
when the system is in “One-way trip” state, there are two
transitions available based on what the user will answer: (i)
“Yes” moves to “Get final confirmation” state, (ii) “No” moves
to “Ask for return date”. Indeed, the finite state-based approach
generally involves handcrafted rules to determine the current
state of dialogue and move between states. Notable research
systems following this approach include AVA [30], IRIS [31],
Devy [32] and DIASY [33] and DialogOS [34].

Generally, the finite state-based approach has the same
advantages and limitations as a rule-based. However, it comes
with other shortcomings such as versatility and robustness in
situations where a user does not follow predefined sequences
of states [24]. Considering the FSM example (Fig. 3, if a user’s
initial utterance carries all the required information (e.g. “I
want to book a one-trip flight from Lyon to Sydney for the

https://www.rivescript.com/
https://github.com/ChatScript/ChatScript

4

Origin? Destina-
tion?

Departure
Date?

One-way
trip?

Return
date?

Get final
confirma-

tion

Origin
matched!

Destination
matched!

DepDate
matched!

RetDate
matched!

Rejection
matched!

Confirmation

matched!

...

Fig. 3: DM model defined using a finite state machine (FSM)

next Monday”) or at least part of it (e.g. “I want to book
a one-trip flight to Sydney?”), the dialogue manager cannot
handle such a situation because it is programmed to ask for
the information one by one by following the defined sequence
of states (e.g. origin → destination → date→ type of trip).

Context support
In FSM-based category, IRIS [31], Devy [32] and DIASY

[33] are the notable approaches that provide context support
through modeling of conversation history and/or user profile
features. These features are used to infer the missing slot
values in the dialog state. DAISY supports the dialog history
by storing all steps that it may take and already fulfilled slots
to solve a typical data science task, (e.g. model retraing). This
allows DAISY to solve a similar task in the future without
the data scientist involvement. IRIS supports the conversation
history by defining a set of named variables to save the result
of each dialog task for future use by other tasks. In doing
this, IRIS aimed to support the so-called anaphora, one of the
most important interaction patterns that characterizes human
language, which denotes expressions that depend on previous
expressions. For example, after executing a task that has just
returned a result (e.g. sum of two numbers), a user can ask
IRIS to “multiply that in 2” where “that” refers to the output
of the previous task. Instead of hard-coding history variables
within the FSM, IRIS dedicates an internal API to dynamically
add new named variables as the conversation progresses. Devy
relies on a domain-specific model implemented using a pull-
based architecture to support both dialog history and user
profile features. User profile comprises development-related
information (e.g., active project, issues, code reviewers, etc.)
extracted from the developer activities and computer during
the conversation. The aim is to infer the required slots for per-
forming development actions without developer involvement.

3) Activity-Based
The activity-based approach allows the development of DM

model (i.e. the DST and DP is exposed as single module) by
leveraging the basic concept of workflows, namely activities,
triggers and actions. While the FSM approach is a declarative
approach that provides a high-level specification of the dialog
manager behavior in terms of possible states that may occupy
during the conversation, the activity-based model is a procedu-
ral approach that provides a concrete implementation of dialog
manager by precisely specifying the workflow that it may go
through during the conversation. Various platforms including
Chatfuel3, FlowXO 4, and ManyChat5, facilitate the definition
of these workflows by providing design canvas along with

3https://chatfuel.com/
4https://flowxo.com/
5https://manychat.com/

visual elements (e.g. Carousel, Quick Reply, Text, etc.). Recent
research work leveraging on the activity-based approach is
[35] which relies on a business process model described using
BPMN notation. This model is then transformed into DM rules
defined in AIML to build a conversational system that guides
the process actors through the process steps.

Context support
Conversation history and user profile are the main con-

sidered features by the activity-based approaches adopted by
ManyChat, Chatfuel and FlowXO. The aim is either to fill
missing slots or decide more personalized actions, e.g., provide
a recommendation about a product. With regard to the user
profile feature, there are two sources from which related
information can be gathered, namely user-bot conversations
and the social media profiles (e.g. Facebook) of the user.
Furthermore, to define which information needs to be collected
from both conversation history and user profile, the common
adopted approach is that the bot developer has to manually
create a set of attributes using the provided GUIs or APIs.

4) Frame-Based
The frame-based approach relies on a domain ontology that

defines a set of frames [29], each specifying the required
information that the conversational system is designed to
acquire from the user in order to fulfill a given dialog task
(e.g., play music). A predefined frame may include a dialog
domain (e.g., Music), an intent (e.g., Play Music), and a
collection of required slots (e.g., Genre, Musician). Histori-
cally, the frame-based approach was first introduced in 1977
in the influential Genial Understander system (GUS) [36].
Other traditional systems include WITAS [37] and COMIC
[38]. Under these systems, the dialog state represents the
current state of the frame (e.g., which slots have been filled
and which haven’t), whereby the DST model determines it
by exploiting NLU outputs that are usually obtained using
handcrafted rules. The DP, on the other hand, is quite simple
as it lies in asking questions until the completion of the
whole frame and then reporting back the results of the action
associated with the frame to the NLG. This latter relies on
a template-based generation to produce the final answer to
the user [29]. The growing interest in using the frame-based
approach, on the other hand, pushed the industry to create
VoiceXML, which has become later one of the W3C voice-
related specifications. VoiceXML has been widely adopted
to implement frame-based dialogs within the speech industry
and supported with opensource and commercial platforms 6.
Compared to FSM and activity-based approaches, the frame-
based affords more flexibility thanks to its ability to efficiently
process over-informative inputs from users while allowing
them to fill in the slots in different orders and different
combinations. This, on the other hand, requires sophisticated
DP algorithms in order to determine the next system action
or question based on a set of features, including mainly the
user’s previous utterance, slots to be filled, and a number of
priorities devoted to dialog control. In addition, considerable
testing efforts are needed to ensure that the system would not
ask an inappropriate question under any conditions unforeseen

6https://www.voip-info.org/voicexml/

https://chatfuel.com/
https://flowxo.com/
https://manychat.com/
https://www.voip-info.org/voicexml/

5

at design time. Despite that, the frame-based approach is
still until now underlying modern conversation systems like
Apple’s Siri, Amazon’s Alexa, and the Google Assistant [29].
In addition, there are many commercial systems that provided
similar capabilities to VoiceXML to implement frame-based
DM models, including the user-definable skills in Amazon
Alexa, the actions in Google Assistant and DialogFlow. The
difference compared to the traditional frame-based approaches
lies in using machine learning approaches to NLU tasks and
adding control models in addition to the frames. The control
models can be designed by mean of the FSM or workflow
models, which may avoid bot developers to specify complex
dialog policies.

Context support
Context in traditional frame-based systems is supported

mainly for resolving anaphora pattern (e.g., GUS [36], WITAS
[37]) and inferring slot values from previously encountered
slots (e.g., GUS). Both conversation history and user profile
are the main features that have been considered for context
understanding. They supported using reasoning procedures
and models handcrafted by bot developers. Modern systems,
including Amazon Alexa, the actions in Google Assistant and
DialogFlow, on the other hand, offer developers with more
sophisticated, easy-to-use and powerful IDEs and libraries
to support the management of context and expand it to
integrate external knowledge, such as knowledge graphs (e.g.,
Home Graph in actions for Google Assistant) in addition to
conversation history and user profile.

B. Data-driven approaches
In contrast to handcrafted approaches where the DM logic

has to be defined by hand, data-driven approaches were
proposed to learn the dialog state and policy from data. They
involve mainly machine learning (ML) approaches, including
supervised learning (SL) and reinforcement learning (RL). The
supervised approach learns from a pure corpus of labeled data,
whereas reinforcement approach focuses on optimizing the
learning by a trial-and-error process governed by a series of
reinforcements (i.e., rewards or punishments).

1) Supervised learning
A variety of SL models have recently been applied to

the DST, DP, or both as a single module exposed either
independently from NLU and NLG components or jointly
leading to the emergence of so-called end-to-end conversation
systems.

Dialogue state tracking
The earliest SL approaches to DST rely on statistical learn-

ing algorithms, including conditional random fields [39], [40]
and maximum entropy models [41], [42], [43] which often
depend on the NLU outputs to define the dialog state in term of
slot-value pairs. These approaches heavily rely on handcrafted
features to learn dialog state representations. More recently, a
wide spectrum of research has been relying on neural-based
approaches, which started to receive more attention, especially
with the adoption of deep learning (DL) models that have
significantly contributed to DST performance improvement.
Most of these approaches consider merging NLU and DST into
a single model that acts directly on user utterances to update
the dialog state. One benefit of this merging is that it removes

the information loss and error propagation at the NLU stage
and requires fewer labeled data since there is no need to learn
independent parameters for each model. Notable DL models
were initially adopted to DST are multi-layer perceptrons
(MLP) [44], [45], recurrent neural networks (RNN) [46], [47],
and convolutional neural networks (CNN) [45]. They are used
to learn feature representations for user/system utterances as
well as the associated slots/values. An illustrative example
(refers to Fig. 4) is the Neural Belief Tracker proposed by
Mrkšić et al. [45] which provides a binary decision for each
slot-value pair candidate. The model has been tested with tow
DL models (MLP and CNN), both of which build upon pre-
trained collections of word embedding vectors and outputs
embedding for each input (i.e., the user utterance, the dialogue
acts related to the last system output, and a single candidate
slot-value pair). The three obtained embeddings then interact
among themselves in order to produce the interaction summary
vectors which then go through a binary softmax layer to
produce the final decision about the candidate slot-value pair.

System Output User Utterance Candidate Pair(s)

Would you like Indian food? No, how about Farsi food?
...food: Indian,
 food: Persian
 food: Czech

Context Representation: [t] Utterance Representation: [r] Candidate Representation: [c]

Context Modelling: [m] Semantic Decoding: [d]

Binary Decision Making: [y]

gating mechanism

Fig. 4: Architecture of the NBT Model [45]
More effective DL approaches to DST immensely involved

memory-enhanced NN architectures. Gate RNNs, such as
Long-Short Term Memory (LSTM) [48], [49], [50] and the
networks based on Gated Recurrent Unit (GRU) [50], [51]
are adopted in order to capture long-term dependencies in
dialog history, resulting in an accurate update of dialog state.
MemN2N known as a NN with a recurrent attention mecha-
nism over a large external memory is another memory-based
approach adopted to the DST task framed as a machine reading
problem. Having an attention mechanism allows the model
to consider only the most important information from the
dialogue history while ignoring others. The main advantage of
memory-based approaches is the fact that the dialogue state
is affected by the long-term features of previous utterances.
Therefore, the resultant tracking results are expected to keep
the consistency of the topic with previous conversations while
efficiently exploiting context to gather information for the
dialog state.

More recent DL models [52], [53] adopted graph neural
networks with attention mechanisms to incorporate slot rela-
tions (e.g., similarity, co-occurrence) in DST, as a solution
to alleviate the data sparsity problem. In [52], the authors
introduced graph attention matching networks that encode the
slot relation graph and user/system utterances, and output slot
representation vectors. These vectors along with previous con-
versation states are then taken by a recurrent graph attention
network (GAT) with GRU units to update the dialog state.

6

GAT represents a variant of graph neural networks, which in
turn are deep neural networks associated with graphs.

The above DST approaches can fall into two categories: Pre-
defined ontology-based [39], [40], [41], [42], [43], [44], [45],
[46], [47], [48], [49], [52] and Open-vocabulary candidate-
generation [50], [54], [53], [51]. The former assumes that a
predefined ontology is provided in advance to define all slots
and their values in each domain. Thus, the dialogue state is
represented as a binary/multinomial distribution over the value
set for each slot, pre-specified in the ontology. While these
approaches have been shown to be accurate as they reason
over a known candidate set of each slot, their applicability
in practice is still threatened and depends on the ontology
coverage. Since the set of possible values is typically dynamic
(e.g., movies or usernames) and unbounded (e.g., date or
location), defining such an ontology that covers all entries
is challenging [55], [54], [53]. Open-vocabulary approaches,
on the other hand, estimate the slot value candidates from
conversation history and/or language understanding outputs,
without any predefined ontology. This provides a key step
toward a DST with zero-shot generalization, whereby adding
new intents, slots or even domains do not require the need for
collecting new data or even retraining. Such an objective is
now dominating the research attention and was the focus of the
recent dialogue system technology challenge (DSTC8) [56] .

Dialogue policy
There are two approaches to applying SL for the DP.

The first one mainly implements a DP model as a pipelined
module, trained independently of DST and NLU modules. In
this approach, the DP often takes as input the dialogue state
from the DST model or in some cases acts directly on the NLU
results to output the next system action. The most widely used
SL models to implement a DP are NNs,[57], Bidirectional
LSTM (BLSTM), CNN or a combination of the two above
(i.e., BLSTM/CNN) [58], [59]. For example, the model in
[58], as shown in Fig. 5a, represents a DP as a NN with one
hidden layer and an output layer consisting of two softmax
partitions and six sigmoid partitions. Regarding the softmax
outputs, the first one is for predicting the dialogue act among
five dialogue acts (request, offer, confirm, select, bye) while
the second for predicting the associated slots (e.g., price-range,
area), whose values require information from the user. The
sigmoid partitions are for offer slots, whose values are made
by the system.

The second approach is to implement a DP as an end-to-end
model that reads directly from a user utterance and produces a
system action. The sequence-to-sequence model, also known
as Seq2Seq, is the main model used in this approach. Such
a model is based on the encoder-decoder architecture which
takes a sequence as input and generates another sequence as
output. In a conversational system, the source sequence is a
user utterance along with a dialogue history, and the target
sequence is a corresponding action (e.g., API call, database
query). The seq2seq model is initially implemented using
RNN with LSTM cells, where the hidden state of RNN is
utilized as the representation of a dialogue state. This model
is later augmented with an attention mechanism to improve its
ability to handle long-term dependency [60], [61]. Using end-

(a)

(b)
Fig. 5: Dialogue policy: (a) As DST-depend model [58]; (b)

As end-to-end model [3]

to-end memory networks is another alternative to build end-
to-end models for a DP. A notable example is the DP model
proposed by Zhang et al [3]. The model, as shown in Fig.
5b, relies on three memories (i.e., slot-value memory, external
memory, control memory) with shared read/write functions
and augmented with an attention mechanism. It takes as input
the embedding of the current user utterance and the previous
system response and predicts the next system action in the
form of a dialogue act like “query(cuisine=chinese)”. Com-
pared to the pipelined policy, the key advantage of the end-to-
end approach is inferring the representation of the dialog state
which avoids the design of its related features. However, this
requires a lot of training data that may be expensive to collect.
Moreover, in both approaches, since the DP is trained using
supervised learning, the effects of selecting an action on the
future course of the dialogue are not considered, which may
lead to a behavior that is not necessarily optimal. In addition,
the DP does not expose the ability to recover from its own
mistakes or users’ feedback. Such a feature can be added to
the DP by training it using RL, as will be explained in section
III-B2.

Context support
Conversation history has been widely considered by SL

approaches as a key feature for context understanding. Its
support varies from one approach to another. While some SL
approaches [40], [41], [42], [44], [45] assume that considering
the last conversation turn preceding the current one as con-
versation history is enough to understand the context, others
[39], [43], [46], [47], [55], [3], [49], [62] leverage on the whole

7

history from the first conversation turn up to the last one. There
are three commonly used methods for modeling conversation
history. The first consists of concatenating all the utterances
in the dialogue [48], [61] which represents one of the reasons
that result in increased computation time. Addressing this
issue, the second method [39], [40], [43], [46], [47], [55], [3],
[49], [62] lies in capturing particular features such previous
user/system dialogue acts or by considering only the previous
dialog state. For both methods, SL models including Memory
networks and embedding techniques have been shown very
effective for modeling history features and reasoning over
them. The third method has been recently adopted by [63],
which leverages the graph structural information in dialogue
history to accurately capture its semantics. Herein, the off-the-
shelf Spacy tool is used to extract the dependency relations
among the dialogue history words and a new recurrent cell
architecture is introduced to enable representation learning on
graphs.

In addition to the conversation history, some of the recent
SL approaches [53] go a step forward by effectively leveraging
knowledge on conversation domains. This has been done
by considering potential relationships between slots across
different conversation domains so that their values can be
transferred between similar slots (e.g., the address slot value in
a restaurant domain could be transferred to the destination slot
for a taxi domain). Within these approaches, Graph attention
networks, knowledge graphs and embedding methods are used
to automatically build relationships between slots. On top
of these models, inference mechanisms are applied to infer
relevant knowledge that is required for DST and DP tasks.
Furthermore, some approaches [64], [65] attempted to leverage
further domain-specific or general knowledge extracted from
either structured or unstructured data. For instance, the work of
[65] proposes to encode user utterances using feature vectors
with associative knowledge, exploiting information extracted
by inference on a knowledge graph built from Wikidata. These
feature vectors are then taken by a neural-based DST model
to improve its predictions over slot-values pairs that are not
mentioned explicitly in user utterances.

2) Reinforcement learning
RL approach treats DM as an optimization problem,

whereby its performance is continuously improved over time
through experiencing with users. RL-based DM is typically
modeled as Markov Decision Process [66], [13], [2], where the
dialogue manager acts as an agent traveling through a network
of dialogue states interconnected with transition probabilities.
In simple term, at each conversation turn t, the dialogue
manager is in a given state (e.g., S1), takes action (e.g.,
request (origin city, date, time)), transitions to a new state
s’ (e.g., S2) with a probability (e.g., P= 0.80) and receives
a reward (e.g., R = 200). Typically, the reward is defined
using a function that captures a set of dimensions, including
accomplishment of the task, user satisfaction, efficiency of
interaction, dialog duration, etc. For instance, in the movie-
recommendation dialogue system proposed by Zarandi et al.
[67], the system gets a large positive reward (+10) if it
correctly fulfills the user request, a large negative reward (-
12) otherwise, and a small penalty (i.e., negative reward) for

confirmation (-3) and elicitation (-6) questions to prevent the
system re-confirming numerous times than needed. In addition,
it receives a small positive reward (+1) if the user leaves
the conversation after a successful execution and a medium
negative reward(-5) otherwise.

Another important approach to model RL-based DM is
the Partially Observable Markov decision process (POMDP).
Compared to MDP that relies on the assumption that the
dialogue state is fully observable (i.e., is always known to
the system with certainty), POMDP caters for unobserved
dialogue states [68], [69], [70]. This makes it able to deal with
uncertainties in user utterances [71], [68]. More particularly,
the dialogue state is defined as a distribution over all possible
states, including the wrong ones arising from an incorrect
interpretation or misunderstanding of user utterances.

Dialogue state tracking
Past approaches to DST in MDP and POMDP models

have widely focused on applying Bayesian inference (BI) to
determine the dialogue state. More precisely, given an existing
dialogue state, the last system action and a set of observations
(for instance, the N-best lists of user dialogue acts), the most
basic dialogue state trackers (e.g., [72], [73]) enumerate all
possible dialogue states and scoring them according either to
a probability formulation proposed by Kaelbling et al. [74] or
its variants. However, it has been found that these approaches
have quickly led to intractable issues resulting from a large set
of states [69], [26]. Addressing these concerns, approximations
methods including N-best [75], [76] and Factored Bayesian
network [77] [78] approaches, have been proposed, exploiting
domain-specific properties of dialogue task to reduce the
tracking state space. Other DST alternatives include either
simple rules [79] as in handcrafted conversational systems
explained earlier, or probabilistic rules [27] that are defined
as domain-independent rules augmented with basic probabil-
ity operations. Compared to the previously explained rules
(refer to Section III-A1), probabilistic rules take as input all
hypotheses suggested in the N-best interpretation list of the
user utterance and output a dialogue state in the form of
a distribution over possible states, i.e., slot-value pairs. To
update such a distribution, these rules exploit dialogue acts
related to the last user utterance and preceding system action.
Although considering all N-best list interpretations can deal
either with uncertainties or recognition errors if happen, these
probabilistic formulas designed by hand, require careful tuning
and does not benefit or learns from dialogue data [26].

More recently, deep learning models [80], [81], [82] have
been applied, which use a compact representation of a set of
features learned automatically to represent the dialogue state.
For instance, at each conversation turn the dialogue state in
[81] is represented with a feature vector, consisting of the
following: (i) act and slots corresponding to the user action,
act and slots corresponding to the last system action; (iii) a
bag of slots corresponding to all previously filled slots; (iv)
other features like current turn count, etc.

Dialogue Policy
Whether the DM is modeled by MDP or POMDP, the

ultimate objective of RL is to find the optimal policy that
maximizes the expected (discounted) cumulative reward. There

8

are two popular classes of RL algorithms [66]: value-based and
policy gradient methods.

Value based methods are based on the idea of modeling the
optimal policy using the so-called Q-value function Qπ(s, a)
7. More precisely, the Q-value function provides the average
discounted long-term reward if a specific action a is taken
given a dialogue state s and then a policy π is followed
thereafter. Basic approaches [83], [84], [85] known as exact
algorithms rely on observing the set of states, actions, and
rewards and then compute the value function to estimate
the optimal policy. However, it has been shown that exact
algorithms quickly lead to an intractable problem. Therefore,
sophisticated approaches [79], [80], adopting approximation
algorithms, have been proposed to overcome this issue. The
underlying idea is to use a set of state features to generalize
the estimation of the Q-value at states that have similar
features. For example, Xu et al. [79] propose a dialogue policy
model that makes use of a neural network function [86] to
approximate the Q-value function.

Policy gradient methods try to optimize the policy directly,
without having to learn the Q-value function. Here, the policy
itself is directly parameterized by θ ∈ R which is the
corresponding coefficient vector to be learned from data 7.
REINFORCE [87] is a popular example of such a policy
gradient method, which has been already used to learn a task-
oriented dialogue policy that adapts to new user behaviors
unseen during training [88].

In a recent empirical study that compares the most represen-
tative RL algorithms using the PyDial framework [66], it has
been shown that value-based methods have a higher learning
rate in domains with a small action and state spaces, whereas
policy-based methods can scale robustly to larger state and
action spaces [66]. Furthermore, for having efficient policy
learning, the earlier implementation of both methods required
manual features for the state and action-space representation
and involved either using summary state and action spaces or
restricting the set of possible actions which in turn requires
expert domain knowledge [89]. Consequently, many research
works [90], [91], [89], [81] have applied deep learning models
to enhance the performance of both RL methods, without
resorting to feature-engineering. This leads to a new approach
known as deep reinforcement learning (DRL). For instance, in
value-based methods, the core idea of the DRL is to adopt deep
neural models such as MLP, CNN, or RNN to approximate the
Q-value function [13]. These improvements, however, made
RL methods only able to support simple conversations because
they basically operate in flat state-action space, hence they
have been known as flat RL methods. In fact, according to
numerous studies [92], [93], flat RL methods are not able to
learn well and be data-efficient in large domains and especially
where the conversation tasks are complex.

These challenges motivate the study of the so-called Hierar-
chical RL [94] which is now being actively explored in order
to avoid the curse of state/action space. Fundamentally, HRL
provides a principled approach for learning dialogue policies

7Mathematical foundations related to RL are out of scope of this survey,
and the interested reader can refer to [13] for more details

over complex conversation tasks by decomposing complicated
conversation tasks (e.g., travel planning) into a sequence
of sub-tasks (e.g., book-flight-ticket, book-hotel, etc.), and
managing those sub-tasks at the same time. In such a setting,
the dialogue policy can be designed across multiple layers
following the task hierarchy levels. For instance, in the recent
work of Peng et al [92], the dialogue policy has two layers: a
top-level layer selects which subtasks to complete, and a low-
level layer chooses primitive actions to execute the selected
subtask. For the whole dialogue management problem, it is
mostly framed using the mathematical framework of options
over MDPs, where options generalize primitive actions to
higher-level actions.

Although the RL-methods, including DRL and HRL have
superior potentials than traditional methods, including SL and
rule-based, they suffer from data requirement problem since
they require many interaction samples to optimize the policy
learning. Interacting with simulated users to obtain these
samples has been adopted widely, providing an inexpensive
solution compared to the interaction with real humans. Hence,
extensive research has been made toward building realistic
user simulators that intend to approximate real users’ behav-
iors in conversation. Diverse approaches have been emerged,
including agenda-Based (e.g, [95]) and data-driven (e.g.,[96].
Consequently, many user simulators have been publicly made
available, including [97], [98] and ones instantiated in open-
source dialog system development platforms such as PyDial
and CONVLAB as interesting examples.

Despite the immense effort on user simulation, building
a human-like simulator still a key challenging task [99]. In
addition, simulated users may not cover entirely the behavior
of end-users will be using the system. Thus, using a hybrid
approach, where the DP is initially trained with simulated
users and then fine-tuned with human users, has been shown
convenient in many initiatives (e.,g, [100]. Furthermore, more
sophisticated strategies exploiting both user types have been
emerged. One common strategy is to integrate planning into
DP learning, as in Dyna-Q (DDQ) framework [101]. Specifi-
cally, DDQ incorporates an environment model into the dialog
system, known as the world model which can simulate the
real user behaviors and generate simulated experiences. During
DP learning, real user experiences are utilized for (1) training
the world model and generate simulated experiences, and (2)
improving the DP as well. Simulated experiences are then
used to further improve the DP via indirect RL (planning).
The earned benefit is allowing efficient DP learning by using
only a small number of real user interactions. More effective
approaches in this context are aimed either to obtain high-
quality simulated experiences or find a balance between real
user experiences and simulated ones, by incorporating heuris-
tics, discriminators, and active learning into the planning step
[102], [99]. Furthermore, with the aim of improving the DP
learning speed, many RL approaches have initialized the DP
to be reasonable before switching to online interaction with
real or simulated users. This can be done by using either SL
[5], [80] on available corpus or dialogues generated [103]as a
result of running an agent-backend with a rule-based policy.

9

TABLE I: Summary of DM approaches with respect to Dialogue state, DST and DP dimensions
M

et
ho

d

Sub-Method(s)
Dimensions

Dialogue state Dialogue state tracking Dialogue policy

H
an

dc
ra

ft
ed

R
-B

as
ed pattern/

response
Not represented - Purely handcrafted

rules
Pre/Post Purely handcrafted rules

SM-Based User intent with slot-value pairs SM with handcrafted rules
Activity-Based Activity-Based model with handcrafted rules
Frame-Based Frame-Based model with handcrafted rules

D
at

a-
D

riv
en

SL Models

Mostly represented as Bi-
nary/multinomial distribution over
multiple states, each consists of a set of
slot-value pairs

Statistical models
Deep Learning models

DST-Depend Policy: Deep Learning
models
End-to-end model: Seq2Seq models,
Memory networks

R
L

m
od

el
s

Mostly represented as Multinomial distri-
bution over multiple possible states, each
consists of a set of slot-value pairs
Rarely represented as a compact repre-
sentation of a set of features especially
in DRL

Bayesian inference models
Handcrafted rules
Deep Learning models

Value-based methods
Policy gradient methods

Flat RL

HRL

Hybrid models

Either represented as a true state consist-
ing of slot-value pairs or a multinomial
distribution over multiple possible states

Combining a rule based and a SL
based model
Combining multiple SL models

Combining a SL model with domain
knowledge and rules
Combining multiple SL/Rule-based mod-
els

Context support
Similar to SL approaches, conversation history is the main

feature that has been widely considered by RL-based ap-
proaches. Many RL-based approaches [73], [104], [88], [93],
[92], [79], [105], [82], [89], [90] to DST and DP support short-
term history as they leverage information only from the last
conversation turn. This renders them only tailored for single-
turn conversation. Indeed, the success of such approaches is
based on the fact that the user always provides utterances along
with all required information the DST/DP needs. Otherwise,
the DP is supposed to explicitly request any missing informa-
tion from the user making the conversation less natural and
not intelligent. Despite that, there are many others that support
long-term history by taking either the previous dialog state
[77], [72], [76], [78], [75], [27] or a set of particular features
[83], [80], [81] (especially all the previously filled slots and
past system actions) in the tracking of the current dialogue
state. Although this contextual information is exploited mainly
to improve the task of DST, the DP is naturally influenced
since it acts on a context-aware dialogue state which results
in deciding more personalized actions. In addition to the
conversation history, leveraging domain-specific knowledge
has been also considered by some RL approaches such as [91],
where graph structure between the slots and their domains are
integrated into the DP learning.

C. Hybrid approaches
The hybrid approach to DM rests on the idea of combining

multiple approaches either handcrafted or data-driven in order
to capitalize on the benefits of each.

Dialogue state tracking
Attempts that have been made for hybrid DST models can

be summarized into two key ideas: (i) combining a rule-based
model with a SL model (ii) combining multiple SL models.
The first ideas (i) in turn is performed using two possible ways.
The straightforward possibility relies on applying a rule-based
model in parallel with the SL model and taking the outputs
union of both as a final dialogue state. The hybrid DST model
proposed by [106] is an example of such approach which rely

TABLE II: Summary of DM approaches with respect to the
context features

Feature Approaches
C

on
ve

rs
at

io
n

hi
st

or
y

Rule-based:[15], [16], [20], [27] ;
FSM-Based:[33], [32], [31];
Activity-based: ManyChat, Chatfuel and FlowXO;

Frame-Based: [37], [36], Amazon Alexa, Google actions,
DialogFlow;
SL-based: [40], [41], [42], [44], [45], [39], [43], [46], [47],
[55], [3], [49], [62];
RL-based: [88], [93], [92], [79], [105], [82], [89], [90], [77],
[72], [76], [78], [75], [27], [83], [80], [81] ;
Hybrid: [106], [107], [108], [54], [109], [110]

User
profile

rule-based: [15], [18];
FSM-Based: [32];
Activity-based: ManyChat, Chatfuel and FlowXO;
Frame-Based: [37], [36], Amazon Alexa, Google actions,
DialogFlow;

External
knowledge

Frame-Based: Google actions, Amazon Alexa, DialogFlow;
SL-based: [53], [65], [64];
RL-based: [91];
Hybrid: [107];

on support vector machine (SVM) classifiers per slot-value
pair as a SL model and a rule-based model. The latter includes
a set of rules most of them are automatically generated using
general rule templates and then selected according to their
state tracking precision on the training dataset. The second
possibility allows the rule-based model to be improved using
training data by including a set of parameters that can be
learned by any ML model. An example of this approach is
the hybrid DST model of Vodolán et al. [109], [110], which
defines a set of rules to update the probability distribution re-
lated to the dialogue state, where the probability for each slot is
parameterized by two parameters. These latter have been learnt
automatically using an LSTM network. All those approaches
have been proven effective for DST with results outperformed
the performances of rule-based and ML models if applied
separately. But these results, while encouraging, have been
achieved within datasets of less challenging conversation, as
they consider only one domain whose slots and values are
fixed in an ontology in advance. Therefore, it is still not clear

10

whether these approaches will still robust and scalable against
complex conversations that go beyond multiple domains and
characterized by a dynamic change of slots. Also, the fact
that DST is limited to the vocabulary used by the ontology to
denote slots and their values make these approaches not able
to deal with natural language variation. This shows clearly the
inability of these approaches to track unseen slot-value pairs.

The second idea relies on combining multiple SL models.
Most of leading SL-based hybrid approaches have attempted to
combine the benefits of both using predefined ontology-based
methods and open-vocabulary methods that either dynamically
generate a candidate set of slot values or pointing them directly
from input utterances. Examples include [54], [111], [112],
[113], [114], [115]. The aim is to allow DST over unknown
slot values that are not defined in a domain ontology. For
instance, Hyst [54] proposed by Amazon learns for each slot
the optimal DST method that has the highest accuracy between
ontology-based DST model and open-vocabulary DST model.
In doing this, it seeks to mitigate the scalability issue suffered
from the ontology-based method and the low performance of
the open Vocabulary method in certain cases.

The other hybrid approaches relied on ensemble-learning
(EL), where the output of many DST models is synthesized to
improve performance beyond any single model. The simplest
EL method is score averaging, where the final DST output
is obtained by averaging the output distributions of multiple
trackers [116]. Its key advantage is that it does not require extra
training data. A notable example is the RNN-based DST model
proposed by Henderson et al. [46], where outputs of at least
6 individual RNNs trained with varying hyper-parameters are
averaged to give the final distributions. The other considered
EL method is known as Stacking (used in [116], [65]), where
the outputs of the constituent DST models are fed to a new
classifier that makes a final prediction, requiring a validation
set for training. Both methods have been investigated in the
DSTC2 [116] which demonstrated that the most accurate DST
can be achieved by combining multiple trackers.

Dialogue Policy
There are two methods commonly adopted to learn the

dialogue policy using a hybrid approach. The first method
consists of integrating a SL model with handcrafted domain
knowledge and rules. Hybrid Code Networks proposed by
Williams et al. [107] is an example of such approach. Here,
the DP is modeled using a RNN model augmented with
handcrafted constraints and rules via software and action
templates. The motivation behind this is that some simple
operations like sorting a list of database results would be better
implemented in a few lines than using thousands of dialogs to
learn them. In addition, in some cases, programmed constraints
are essential to identify the permitted actions among which
the policy can choose. For example, in the dialing domain
scenario, if a target phone number has not yet been identified,
the API action to place a phone call may be masked [107].

The second method relies on applying multiple DP models
simultaneously, whereby the next system action is decided
by the policy model that predicts it with the highest con-
fidence. RASACore [108] is an example of such a method
that utilizes multiple dialogue policies, including rule-based,

neural networks, and embedding models. Although all these
policies are well packaged into software modules that can
be reused easily by interested parts, their parallel execution
may engender additional cost in terms of processing time and
resources.

Context support
Similar to ML approaches, including SL and RL, hybrid

approaches [106], [107], [108], [54] support the modeling of
context, mostly, by leveraging the conversation history feature.
An LSTM model over past user utterances and system replies
is commonly used to encode the conversation history because
of its ability to model long-term dependency or in another term
can remember information across several turns. Moreover,
other hybrid approaches [109], [110] utilize the current turn
along with the previous dialogue state as input each time they
update the new dialogue state so that it implicitly considers
information from previous turns. This has been adopted to
simplify the learning process of a dialog state that is aware of
context without considering the entire conversation history.

IV. SUMMARY AND FUTURE DIRECTIONS
In this section, we summarise DM approaches by discussing

their key strengths and shortcomings (Table III) and then
identify opportunities for future research directions.

A. Summary
Handcrafted approaches provide a straightforward way to

design dialogue management that helps for the rapid prototyp-
ing of conversational systems. They are especially suitable for
conversation scenarios with clearly-defined flow and goals and
for domains concerned with strict adherence to business rules.
For example, in domains like security, safety, and healthcare,
conversational systems have to be able to adequately predict
the expected and unexpected usage scenarios. An important
feature of Handcrafted approaches, especially the activity-
based/SM-based models, is the conversation flow traceability,
which helps to track the interpretation of each user input
and system actions for further fixes/improvements. Without
being surprised, these approaches, however, suffer from poor
domain portability and naturally comes at a high development
cost as a lot of handcrafted features including DST/DP rules,
state/action spaces, and interaction models are required.

In addition, the fact that DST model maintains a single
hypothesis for the dialogue state makes the handcrafted ap-
proaches not robust when facing unforeseen user inputs or
confronted with NLU recognition errors. In such situations,
the DP often decides to reply by “I didn’t understand” to push
users either to rephrase their inputs or start a new interaction.
This is one of the reasons that can lead to the frustration of
the user which may cause her to abandon the interaction.

Data-driven approaches, including SL and RL based mod-
els, reduce the development and maintenance cost of DM by
automatically learning the dialogue state and policies [2], at
the expense of the effort to get training data. In particular, the
adoption of deep neural models along with word embedding
techniques in DST notably facilitates the learning of dialogue
state features (such as slots, slot values, history variables),
which avoids defining a full ontology in advance, or even ob-
viating it completely. Thus, the scalability of DST is improved
in the sense that it is able to deal with changing dialogue

11

TABLE III: Summary of strengths and weaknesses of DM approaches

Method Sub-Method(s) Pros Cons

H
an

dc
ra

ft
ed

All methods

Are easy to implement and incorporate do-
main/business knowledge
Do not require any training data
Enable the conversation traceability

Have high development and maintenance cost
Have limited scalability and robustness
Do not consider user feedbacks to adapt the dialogue
policy

D
at

a-
D

riv
en

SL Models

Learning of state and action spaces and their features
can be fully automated
Able to deal with the natural language variations
Require less effort to be adapted to new domains

Require acquiring sufficient and high-quality training
data
Do not consider user feedbacks to adapt the dialogue
policy

R
L

m
od

el
s

Flat RL Robust and able to deal with uncertainty in user
utterances
Can adapt to different user behaviors
Feature-engineering of state/action spaces can be
alleviated with the adoption of DL models

Limited to small-scale conversation domains
Require acquiring sufficient and high-quality training
data

HRL

Requires domain-specific knowledge to specify good
task hierarchies
Require acquiring sufficient and high-quality training
data

H
yb

ri
d

m
od

el
s Rule/ML model Reduce the learning complexity and the amount of

training data
Provide control over conversation flow

Feature-engineering of state/action spaces
Suffer from poor domain portability

Multiple
Rule/ ML
models

Improve performance Require powerful resource settings, sufficient and
high-quality training data, and development effort

domains involving the addition of new slots and values that
are not in the training set. However, it has to be noted that
many DST models do not consider intent in the state tracking,
which makes the exploration of slot-value pairs be performed
in a large search space. Tracking first the intent will give the
DST model the opportunity to have a prior prediction on slot-
value pairs it looks for, therefore making its task much easier
without involving complex computations that typically result
in slower learning. Furthermore, regarding SL-based models
to DP, they implemented either as a DST-depend model that
requires an explicit representation of the dialogue state or as
an end-to-end model that reads directly from a user utterance
and produces a system action. A DP as DST-depend model
has the separation of concerns advantages (e.g., the errors that
it may face with are clear and can be easily resolved), but
it suffers from the strong dependence on the quality of the
DST model. In addition, many SL-based works implemented
such a model assume a fixed set of actions. Whereas, by
adopting Seq2Seq models or end-to-end memories, the end-
to-end DP approach dispenses the need for any handcrafting
of state and action spaces. This approach, however, heavily
relies on the quantity and quality of data and does not provide
clear integration of API invocations. In both approaches, the
DP has been trained using supervised learning, thus it does
not have the capability to be adapted to accommodate user
feedback during interaction.

Such an issue is widely resolved using RL since it offers
the possibility to improve policy performance over time by
acting on reward/punishment signals that can be either elicited
or obtained explicitly from users. In this approach, the DM
problem is cast either by MDP or POMDP while the DST can
be done using multiple models including rule-based, BI, and
DL models. DL models outperform the performance of Rule-
based/BI models and offer a DST without resorting to features
engineering. Based on the dialogue state, the policy selects
the next action using either value-based methods or policy-
based methods. Recently, these methods integrated with DL
models giving rise to the Deep RL approach. Such integration

notably alleviates the effort of feature engineering related
to state/actions and facilities the policy learning on original
state and action spaces instead of using summary spaces
as in the traditional RL methods. More interestingly, the
application of HRL empowers these methods to be applied to
complicated conversation tasks that span across multiple topics
and domains. The success of this approach, however, highly
requires specifying a good task hierarchy that still requires
domain-specific knowledge and careful engineering [117].

Hybrid approaches involving diverse combinations of hand-
crafted and data-driven models can be considered as an impor-
tant step to improve the performance of DM and increase its
capability to generalize. In particular, approaches combining
ML model with a set of rules grant more flexibility to
application developers to control conversation flow and ensure
that it is adequately aligned with business rules. In addition, it
has been proven that they can reach performances comparable
to purely ML models with less training data. While such a
hybrid approach may require an amount of developer effort, it
can be seen as very useful in practical settings where collecting
realistic dialogues for a new domain can be expensive. On the
other hand, approaches combining multiple ML/rule models
can provide a potentially stronger DM solution. However,
applying multiple ML models at the same time may amplify
the need for training data and powerful resource settings.

Finally, with regard to the Context support, we observed that
SL and RL approaches have provided advanced capabilities
than handcrafted approaches since contextual information and
dependencies among them are learned automatically. Although
moderns commercial systems like Amazon Alexa, Google
actions, DialogFlow, and many others provide bot developers
with sophisticated and easy-to-use IDEs, designing context-
aware dialog managers remains a challenging task. It requires
very good expertise especially if the conversation scope may
span across multiple domains. Additionally, regarding the se-
lected context features, we noted that the conversation history
has been the widely covered feature in the selected DM state-
of-art approaches. Leveraging the conversation history has

12

proven essential to hold complex and multi-turn conversations,
as processing missing information in the dialogue state may
require the DST model to go beyond multiple previous turns
up to the last turn. Leveraging knowledge from user profiles,
on the other hand, has been mostly considered by commercial
frame-based and activity-based systems. Leveraging external
knowledge, including domain-specific or general knowledge
was the less covered feature.Although our survey focuses on
context support in DST and DP tasks within task-oriented
dialog systems, it should be noted that the use of external
knowledge to effectively understand context has received
more considerable attention in non-task-oriented conversation
systems, including question answering and recommendation
systems. Many of those systems are developed using end-to-
end models [118], [119], [120], with the aim of generating
more informative and engaging responses. Three approaches,
including RNN, MemNN and Transformer based models, have
been shown to be useful for supporting external knowledge
[121].

B. Future directions
Despite the aforementioned achievements, designing and

engineering scalable and robust dialogue management tech-
niques that offer human-like conversational prowess remains a
deeply challenging problem. Next, we highlight some possible
research directions:

• Automated generation and formal verification of DM
models. Handcrafted DM approaches are still the suitable
choices for conversations where user Inputs/options can
be known a prior and in general for any application do-
main where determinism property is required. However,
current approaches suffer from high development and
maintenance costs. Therefore, having automated mech-
anisms that better leverage existing resource models such
as ontologies, knowledge graphs, business processes, etc.,
is a key step toward semi or even fully automated gen-
eration of handcrafted DM models. Furthermore, formal
verification of such models may still be required to ensure
their reliability.

• Supporting more complex conversation tasks. Solving
complicated conversation tasks that span across multiple
topics and domains is currently an active field of research.
While HRL approaches have shown promising results in
dealing with such an issue, they require expert knowledge
to design the hierarchical structure of tasks. Thus, learn-
ing the natural hierarchy of tasks automatically represents
a key research directive that can contribute to facilitating
the effective adoption of the HRL. Furthermore, the same
conversation task can involve executing different API
calls due to the variability in user requirements, e.g.,
preferences for quality of service like price or others
vary from one user to another. In this context, there is
a need to strengthen dialogue management with flexible
mechanisms that able to dynamically discover and select
API/Services that adequately match with user require-
ments.

• Handling conversation breakdowns. Problems includ-
ing misunderstandings, inappropriate responses, disagree-
ments, complaints, rejection of offers represent persistent

concerns that may cause breakdowns in conversations
and therefore may negatively impact the user experience.
Conversational systems are still not able to deal with
these breakdowns due to the ambiguous nature of nat-
ural language and the large variation of user utterances.
Therefore, it is essential to endow dialogue management
techniques with effective strategies that are able to iden-
tify potential breakdowns in conversation when occur and
repair them automatically.

• Data control and quality. The success of data-Driven
and hybrid approaches highly dependent on the availabil-
ity of high-quality training data, which still an open issue.
Acquiring high-quality training data requires effective
methodologies and processes for selecting, pipelining,
tuning, and controlling data acquisition tasks. This repre-
sents a key research area that can affect the performance
of dialogue management and therefore enhancing the
quality of conversational systems.

• Towards explainable conversations. Explainability is an
important aspect to make the conversation more human-
like [122]. In this context, the dialog management com-
ponent should be able to explain their decisions and
behaviors. This is not only useful in allowing developers
to inspect their models, but also in offering higher trans-
parency to end-users, allowing them to inquire about the
reasons behind the decisions of a conversational system.

Acknowledgement. This work was supported by the PI-
CASSO (IDEX/FEL/2018/01 - 18IA102UDL) project at
LIRIS lab.

REFERENCES
[1] H. Chen, X. Liu, D. Yin, and J. Tang, “A survey on dialogue systems:

Recent advances and new frontiers,” SIGKDD Explor. Newsl., vol. 19,
no. 2, p. 25–35, 2017.

[2] M. McTear, Z. Callejas, and D. Griol, The Conversational Interface:
Talking to Smart Devices, 1st ed. Springer Publishing Company,
Incorporated, 2016.

[3] Z. Zhang, M. Huang, Z. Zhao, F. Ji, H. Chen, and X. Zhu, “Memory-
augmented dialogue management for task-oriented dialogue systems,”
ACM Transactions on Information Systems (TOIS), 2019.

[4] J. G. Harms, P. Kucherbaev, A. Bozzon, and G. J. Houben, “Approaches
for dialog management in conversational agents,” IEEE Internet Com-
puting, vol. 23, no. 2, pp. 13–22, 2019.

[5] P. Su, P. Budzianowski, S. Ultes, M. Gasic, and S. J. Young, “Sample-
efficient actor-critic reinforcement learning with supervised data for
dialogue management,” in 18th SIGdial, 2017.

[6] Z. Peng and X. Ma, “A survey on construction and enhancement
methods in service chatbots design,” CCF Transactions on Pervasive
Computing and Interaction, 2019.

[7] S. A. Abdul-Kader and D. J. Woods, “Survey on chatbot design
techniques in speech conversation systems,” International Journal of
Advanced Computer Science and Applications, vol. 6, no. 7, 2015.

[8] S. Hussain, O. Ameri Sianaki, and N. Ababneh, “A survey on conver-
sational agents/chatbots classification and design techniques,” in Web,
Artificial Intelligence and Network Applications, 2019, pp. 946–956.

[9] K. Ramesh, S. Ravishankaran, A. Joshi, and K. Chandrasekaran, “A
survey of design techniques for conversational agents,” in Information,
Communication and Computing Technology, 2017.

[10] I. V. Serban, R. Lowe, P. Henderson, L. Charlin, and J. Pineau, “A
survey of available corpora for building data-driven dialogue systems:
The journal version,” Dialogue and Discourse, vol. 9, no. 1, pp. 1–49,
2018.

[11] J. Deriu, A. Rodrigo, A. Otegi, G. Echegoyen, S. Rosset, E. Agirre, and
M. Cieliebak, “Survey on Evaluation Methods for Dialogue Systems,”
CORR, no. 1, 2019.

[12] A. Fadhil and G. Schiavo, “Designing for health chatbots,” CoRR, vol.
abs/1902.09022, 2019.

13

[13] J. Gao, M. Galley, and L. Li, “Neural approaches to conversational
AI,” Foundations and Trends in Information Retrieval, 2018.

[14] D. Jurafsky, Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech
Recognition, third edition draft ed., 2019.

[15] C. Smith, N. Crook, J. Boye, D. Charlton, S. Dobnik, D. Pizzi,
M. Cavazza, S. Pulman, R. S. de la Camara, and M. Turunen, “In-
teraction strategies for an affective conversational agent,” in Intelligent
Virtual Agents, 2010.

[16] G. R. Sankar, J. Greyling, D. Vogts, and M. C. du Plessis, “Models
towards a hybrid conversational agent for contact centres,” in Proceed-
ings of the Annual Research Conference of the South African Institute
of Computer Scientists and Information Technologists on IT Research
in Developing Countries: Riding the Wave of Technology, 2008, p.
200–209.

[17] C. Chakrabarti and G. F. Luger, “A semantic architecture for artificial
conversations,” in The 6th International Conference on Soft Computing
and Intelligent Systems, and The 13th International Symposium on
Advanced Intelligence Systems, 2012, pp. 21–26.

[18] R. E. Banchs, R. Jiang, S. Kim, A. Niswar, and K. H. Yeo, “AIDA:
Artificial intelligent dialogue agent,” in Proceedings of the SIGDIAL
2013 Conference, 2013, pp. 145–147.

[19] J. Boye, “Dialogue management for automatic troubleshooting and
other problem-solving applications,” in 8th SIGDial workshop on
discourse and dialogue, 2007.

[20] D. Bohus and A. I. Rudnicky, “Ravenclaw: dialog management using
hierarchical task decomposition and an expectation agenda,” in INTER-
SPEECH, 2003.

[21] R. Wallace, The elements of aiml style. ALICE A. I. Foundation,
2003.

[22] J. Weizenbaum, “Eliza — a computer program for the study of natural
language communication between man and machine,” Commun. ACM,
vol. 26, no. 1, p. 23–28, 1983.

[23] K. M. Colby, Human-Computer Conversation in A Cognitive Therapy
Program. Springer US, 1999, pp. 9–19.

[24] M. F. McTear, “Spoken dialogue technology: Enabling the conversa-
tional user interface,” ACM Comput. Surv., vol. 34, no. 1, p. 90–169,
2002.

[25] C. Thorne, “Chatbots for troubleshooting: A survey,” Language and
Linguistics Compass, vol. 11, 2017.

[26] J. D. Williams, A. Raux, and M. Henderson, “The dialog state tracking
challenge series: A review,” D&D, vol. 7, pp. 4–33, 2016.

[27] Z. Wang and O. Lemon, “A simple and generic belief tracking
mechanism for the dialog state tracking challenge: On the believability
of observed information,” in Proceedings of the SIGDIAL Conference.
Metz, France: Association for Computational Linguistics, 2013, pp.
423–432.

[28] D. Burgan, “Dialogue systems & dialogue management,” DST Group
Edinburgh: Edinburgh, Australia, Tech. Rep., 2017.

[29] D. Jurafsky and J. H. Martin, Speech and Language Processing:
Chatbots & Dialogue Systems, third draft ed., 2020. [Online].
Available: https://web.stanford.edu/∼jurafsky/slp3/

[30] R. J. L. John, N. Potti, and J. M. Patel, “Ava: From data to insights
through conversations,” in CIDR-8th Biennial Conference on Innovative
Data Systems Research, 2017.

[31] E. Fast, B. Chen, J. Mendelsohn, J. Bassen, and M. S. Bernstein, “Iris:
A conversational agent for complex tasks,” in Proceedings of the CHI
Conference on Human Factors in Computing Systems. Association
for Computing Machinery, 2018, p. 1–12.

[32] N. Bradley, T. Fritz, and R. Holmes, “Context-aware conversational de-
veloper assistants,” in 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE). IEEE Computer Society, 2018, pp.
993–1003.

[33] R. J. Leo John, J. M. Patel, A. L. Alexander, V. Singh, and N. Ad-
luru, “A natural language interface for dissemination of reproducible
biomedical data science,” in MICCAI-Medical Image Computing and
Computer Assisted Intervention. Springer International Publishing,
2018, pp. 197–205.

[34] A. Koller, T. Baumann, and A. Köhn, “Dialogos: Simple and extensible
dialog modeling,” Fachbereich Informatik, 2018.

[35] J. Singh, M. H. Joesph, and K. B. A. Jabbar, “Rule-based chabot for
student enquiries,” Journal of Physics: Conference Series, vol. 1228,
2019.

[36] D. Bobrow, R. Kaplan, M. Kay, D. Norman, H. S. Thompson, and
T. Winograd, “Gus, a frame-driven dialog system,” Artif. Intell., vol. 8,
pp. 155–173, 1977.

[37] O. Lemon, A. Bracy, A. Gruenstein, and S. Peters, “The witas multi-
modal dialogue system i,” in INTERSPEECH, 2001.

[38] R. Catizone, A. Setzer, and Y. Wilks, “Multimodal dialogue
management in the COMIC project,” in Proceedings of the 2003
EACL Workshop on Dialogue Systems: interaction, adaptation and
styes of management, 2003. [Online]. Available: https://www.aclweb.
org/anthology/W03-2705

[39] H. Ren, W. Xu, Y. Zhang, and Y. Yan, “Dialog state tracking using
conditional random fields,” in Proceedings of the SIGDIAL Conference.
Association for Computational Linguistics, 2013, pp. 457–461.

[40] S. Lee, “Structured discriminative model for dialog state tracking,” in
Proceedings of the SIGDIAL Conference. Association for Computa-
tional Linguistics, 2013, pp. 442–451.

[41] J. Williams, “Multi-domain learning and generalization in dialog state
tracking,” in Proceedings of the SIGDIAL Conference. Association
for Computational Linguistics, 2013.

[42] ——, “A critical analysis of two statistical spoken dialog systems
in public use,” in Proceedings IEEE Workshop on Spoken Language
Technology (SLT). IEEE Spoken Language Technology Workshop,
2012.

[43] A. Metallinou, D. Bohus, and J. Williams, “Discriminative state track-
ing for spoken dialog systems,” in Proceedings of Annual Meeting of
the Association for Computational Linguistics (ACL), 2013.

[44] M. Henderson, B. Thomson, and S. Young, “Deep neural network
approach for the dialog state tracking challenge,” SIGDIAL- 14th
Annual Meeting of the Special Interest Group on Discourse and
Dialogue, Proceedings of the Conference, pp. 467–471, 2013.

[45] N. Mrkšić, D. Ó Séaghdha, T.-H. Wen, B. Thomson, and S. Young,
“Neural belief tracker: Data-driven dialogue state tracking,” in
Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Jul. 2017, pp. 1777–1788. [Online].
Available: https://www.aclweb.org/anthology/P17-1163

[46] M. Henderson, B. Thomson, and S. J. Young, “Word-based dialog state
tracking with recurrent neural networks,” in 15th SIGDIAL Conference,
2014.

[47] N. Mrkšić, D. Ó Séaghdha, B. Thomson, M. Gašić, P.-H. Su,
D. Vandyke, T.-H. Wen, and S. Young, “Multi-domain dialog state
tracking using recurrent neural networks,” in Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language
Processing. Association for Computational Linguistics, Jul. 2015,
pp. 794–799.

[48] L. Žilka and F. Jurčı́ček, “Lectrack: Incremental dialog state tracking
with long short-term memory networks,” in Text, Speech, and Dialogue.
Springer International Publishing, 2015, pp. 174–182.

[49] X. Yang and J. Liu, “Dialog state tracking using long short-term
memory neural networks,” in INTERSPEECH, 2015.

[50] A. Rastogi, R. Gupta, and D. Hakkani-Tur, “Multi-task learning for
joint language understanding and dialogue state tracking,” in Proceed-
ings of the 19th Annual SIGdial Meeting on Discourse and Dialogue,
2018, pp. 376–384.

[51] C.-S. Wu, A. Madotto, E. Hosseini-Asl, C. Xiong, R. Socher, and
P. Fung, “Transferable multi-domain state generator for task-oriented
dialogue systems,” in ACL, 2019.

[52] L. Chen, B. Lv, C. Wang, S. Zhu, B. Tan, and K. Yu, “Schema-
guided multi-domain dialogue state tracking with graph attention
neural networks,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 05, pp. 7521–7528, 2020.

[53] S. Zhu, J. Li, L. Chen, and K. Yu, “Efficient context and schema fusion
networks for multi-domain dialogue state tracking,” in Findings of the
Association for Computational Linguistics. Online: Association for
Computational Linguistics, 2020, pp. 766–781.

[54] R. Goel, S. Paul, and D. Hakkani-Tür, “Hyst: A hybrid approach for
flexible and accurate dialogue state tracking,” in Interspeech, 2019.

[55] A. Rastogi, D. Hakkani-Tur, and L. Heck, “Scalable multi-domain
dialogue state tracking,” in Proceedings of IEEE ASRU, 2017.

[56] A. Rastogi, X. Zang, S. K. Sunkara, R. Gupta, and P. Khaitan,
“Schema-guided dialogue state tracking task at dstc8,” in AAAI Dialog
System Technology Challenges Workshop, 2020.

[57] S. McLeod, I. Kruijff-Korbayova, and B. Kiefer, “Multi-task learning
of system dialogue act selection for supervised pretraining of goal-
oriented dialogue policies,” in Proceedings of the 20th Annual SIGdial
Meeting on Discourse and Dialogue. Association for Computational
Linguistics, 2019, pp. 411–417.

https://web.stanford.edu/~jurafsky/slp3/
https://www.aclweb.org/anthology/W03-2705
https://www.aclweb.org/anthology/W03-2705
https://www.aclweb.org/anthology/P17-1163

14

[58] P. Su, M. Gasic, N. Mrksic, L. M. Rojas-Barahona, S. Ultes,
D. Vandyke, T. Wen, and S. J. Young, “Continuously learning neural
dialogue management,” CoRR, 2016.

[59] T. H. Wen, D. Vandyke, N. Mrkšı́c, M. Gašı́c, L. M. Rojas-Barahona,
P. H. Su, S. Ultes, and S. Young, “A network-based end-to-end trainable
task-oriented dialogue system,” in 15th Conference of the European
Chapter of the Association for Computational Linguistics, EACL 2017
- Proceedings of Conference, vol. 1, 2017, pp. 438–449.

[60] T. Zhao, A. Lu, K. Lee, and M. Eskenazi, “Generative encoder-
decoder models for task-oriented spoken dialog systems with chatting
capability,” in Proceedings of the 18th Annual SIGdial Meeting on
Discourse and Dialogue. Association for Computational Linguistics,
2017, pp. 27–36.

[61] C. D. Manning and M. Eric, “A copy-augmented sequence-to-sequence
architecture gives good performance on task-oriented dialogue,” in
EACL, 2017.

[62] J. Perez and F. Liu, “Dialog state tracking, a machine reading approach
using memory network,” in Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics.
Association for Computational Linguistics, 2017, pp. 305–314.

[63] S. Yang, R. Zhang, and S. Erfani, “Graphdialog: Integrating graph
knowledge into end-to-end task-oriented dialogue systems,” arXiv
preprint arXiv:2010.01447, 2020.

[64] L. Zhou and K. Small, “Multi-domain dialogue state tracking as dy-
namic knowledge graph enhanced question answering,” arXiv preprint
arXiv:1911.06192, 2019.

[65] Y. Murase, Y. Koichiro, and S. Nakamura, “Associative knowledge
feature vector inferred on external knowledge base for dialog state
tracking,” Computer Speech & Language, vol. 54, pp. 1–16, 2019.

[66] I. Casanueva, P. Budzianowski, P.-H. Su, N. Mrkšić, T.-H. Wen,
S. Ultes, L. Rojas-Barahona, S. Young, and M. Gašić, “A benchmarking
environment for reinforcement learning based task oriented dialogue
management,” in 31st Conference on Neural Information Processing
Systems, 2017.

[67] M. Fazel-Zarandi, S.-W. Li, J. Cao, J. Casale, P. Henderson, D. Whit-
ney, and A. Geramifard, “Learning robust dialog policies in noisy
environments,” arXiv preprint arXiv:1712.04034, 2017.

[68] P. Lison, “A hybrid approach to dialogue management based on
probabilistic rules,” Computer Speech and Language, vol. 34, no. 1,
pp. 232 – 255, 2015.

[69] S. Young, M. Gašić, B. Thomson, and J. D. Williams, “Pomdp-based
statistical spoken dialog systems: A review,” Proceedings of the IEEE,
vol. 101, no. 5, pp. 1160–1179, 2013.

[70] M. S. Henderson, “Discriminative methods for statistical spoken dia-
logue systems,” Ph.D. dissertation, University of Cambridge, 2015.

[71] J. D. Williams and S. Young, “Partially observable markov decision
processes for spoken dialog systems,” Computer Speech & Language,
vol. 21, no. 2, pp. 393 – 422, 2007.

[72] J. Williams, P. Poupart, and S. Young, “Factored partially observable
markov decision processes for dialogue management,” Proceedings of
the 4th Workshop on Knowledge and Reasoning in Practical Dialog
Systems, 01 2005.

[73] B. Zhang, Q. Cai, J. Mao, E. Chang, and B. Guo, “Spoken dia-
logue management as planning and acting under uncertainty,” in EU-
ROSPEECH 2001 Scandinavia, 7th European Conference on Speech
Communication and Technology, 2001, pp. 2169–2172.

[74] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and act-
ing in partially observable stochastic domains,” Artificial Intelligence,
vol. 101, no. 1, pp. 99 – 134, 1998.

[75] J. D. Williams, “Incremental partition recombination for efficient track-
ing of multiple dialog states,” in 2010 IEEE International Conference
on Acoustics, Speech and Signal Processing, 2010, pp. 5382–5385.

[76] M. Gašić and S. Young, “Effective handling of dialogue state in the
hidden information state pomdp-based dialogue manager,” ACM Trans.
Speech Lang. Process., vol. 7, no. 3, 2011.

[77] B. Thomson and S. Young, “Bayesian update of dialogue state: A
POMDP framework for spoken dialogue systems,” Computer Speech
and Language, vol. 24, no. 4, p. 562, Mar. 2010.

[78] T. H. BUI, M. POEL, A. NIJHOLT, and J. ZWIERS, “A tractable
hybrid ddn–pomdp approach to affective dialogue modeling for proba-
bilistic frame-based dialogue systems,” Natural Language Engineering,
vol. 15, no. 2, p. 273–307, 2009.

[79] G. Xu, H. Lee, M. Koo, and J. Seo, “Optimizing policy via deep
reinforcement learning for dialogue management,” in 2018 IEEE In-
ternational Conference on Big Data and Smart Computing (BigComp),
2018, pp. 582–589.

[80] T. Zhao and M. Eskenazi, “Towards end-to-end learning for dialog
state tracking and management using deep reinforcement learning,”
in Proceedings of the 17th Annual Meeting of the Special Interest
Group on Discourse and Dialogue. Association for Computational
Linguistics, 2016, pp. 1–10.

[81] Z. C. Lipton, J. Gao, L. Li, X. Li, F. Ahmed, and L. Deng, “Efficient
exploration for dialog policy learning with deep BBQ networks \&
replay buffer spiking,” CoRR, 2016.

[82] H. Cuayahuitl, “Simpleds: A simple deep reinforcement learning dia-
logue system,” in Dialogues with Social Robots, 2017.

[83] S. Singh, D. Litman, M. Kearns, and M. Walker, “Optimizing dia-
logue management with reinforcement learning: Experiments with the
njfun system,” Journal of Artificial Intelligence Research, vol. 16, p.
105–133, 2002.

[84] D. J. Litman, M. S. Kearns, S. Singh, and M. A. Walker, “Automatic
optimization of dialogue management,” in COLING 2000 Volume 1:
The 18th International Conference on Computational Linguistics, 2000.

[85] M. A. Walker, “An application of reinforcement learning to dialogue
strategy selection in a spoken dialogue system for email,” Journal of
Artificial Intelligence Research, vol. 12, p. 387–416, Jun 2000.

[86] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep
reinforcement learning,” CoRR, 2013. [Online]. Available: http:
//arxiv.org/abs/1312.5602

[87] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3–4,
p. 229–256, 1992.

[88] P. Shah, D. Hakkani-Tur, and L. Heck, “Interactive reinforcement
learning for task-oriented dialogue management,” in NIPS 2016 Deep
Learning for Action and Interaction Workshop, 2016.

[89] M. Fatemi, L. El Asri, H. Schulz, J. He, and K. Suleman, “Policy
networks with two-stage training for dialogue systems,” in Proceedings
of the 17th Annual Meeting of the Special Interest Group on Discourse
and Dialogue. Association for Computational Linguistics, 2016, pp.
101–110.

[90] H. Cuayáhuitl and S. Yu, “Deep reinforcement learning of dialogue
policies with less weight updates,” in INTERSPEECH, 2017.

[91] L. Chen, Z. Chen, B. Tan, S. Long, M. Gasic, and K. Yu, “Agent-
graph: Toward universal dialogue management with structured deep
reinforcement learning,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 27, pp. 1378–1391, 2019.

[92] B. Peng, X. Li, L. Li, J. Gao, A. Celikyilmaz, S. Lee, and K.-F. Wong,
“Composite task-completion dialogue policy learning via hierarchical
deep reinforcement learning,” in Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 2017, pp. 2231–2240.

[93] P. Budzianowski, S. Ultes, P.-H. Su, N. Mrkšić, T.-H. Wen,
I. Casanueva, L. M. Rojas-Barahona, and M. Gašić, “Sub-domain
modelling for dialogue management with hierarchical reinforcement
learning,” in Proceedings of the 18th Annual SIGdial Meeting on
Discourse and Dialogue, 2017, pp. 86–92.

[94] A. Barto and S. Mahadevan, “Recent advances in hierarchical rein-
forcement learning,” Discrete Event Dynamic Systems: Theory and
Applications, vol. 13, 2003.

[95] J. Schatzmann and S. Young, “The hidden agenda user simulation
model,” IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 17, no. 4, pp. 733–747, 2009.

[96] I. Gür, D. Hakkani-Tür, G. Tür, and P. Shah, “User modeling for
task oriented dialogues,” in 2018 IEEE Spoken Language Technology
Workshop (SLT). IEEE, 2018, pp. 900–906.

[97] X. Li, Z. C. Lipton, B. Dhingra, L. Li, J. Gao, and Y.-N. Chen,
“A user simulator for task-completion dialogues,” arXiv preprint
arXiv:1612.05688, 2016.

[98] E. Ie, C.-w. Hsu, M. Mladenov, V. Jain, S. Narvekar, J. Wang, R. Wu,
and C. Boutilier, “Recsim: A configurable simulation platform for
recommender systems,” arXiv preprint arXiv:1909.04847, 2019.

[99] J. Gao, M. Galley, L. Li et al., “Neural approaches to conversational
ai,” Foundations and Trends® in Information Retrieval, vol. 13, no.
2-3, pp. 127–298, 2019.

[100] P. Shah, D. Hakkani-Tür, B. Liu, and G. Tür, “Bootstrapping a neural
conversational agent with dialogue self-play, crowdsourcing and on-
line reinforcement learning,” in Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 3 (Industry Papers),
Jun. 2018, pp. 41–51.

http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602

15

[101] B. Peng, X. Li, J. Gao, J. Liu, K.-F. Wong, and S.-Y. Su, “Deep dyna-
q: Integrating planning for task-completion dialogue policy learning,”
arXiv preprint arXiv:1801.06176, 2018.

[102] Z. Zhang, X. Li, J. Gao, and E. Chen, “Budgeted policy learning
for task-oriented dialogue systems,” arXiv preprint arXiv:1906.00499,
2019.

[103] Z. Lipton, X. Li, J. Gao, L. Li, F. Ahmed, and L. Deng, “Bbq-networks:
Efficient exploration in deep reinforcement learning for task-oriented
dialogue systems,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, 2018.

[104] Y. Yin, L. Shang, X. Jiang, X. Chen, and Q. Liu, “Dialog state
tracking with reinforced data augmentation,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2020.

[105] G. Gordon-Hall, P. J. Gorinski, G. Lampouras, and I. Iacobacci, “Show
us the way: Learning to manage dialog from demonstrations,” in The
Eight Dialog System Technology Challenge (DSTC-8) Workshop at
AAAI, 2020.

[106] K. Sun, S. Zhu, L. Chen, S. Yao, X. Wu, and K. Yu, “Hybrid
dialogue state tracking for real world human-to-human dialogues,” in
Interspeech, 2016, pp. 2060–2064.

[107] J. D. Williams, K. Asadi, and G. Zweig, “Hybrid code networks:
practical and efficient end-to-end dialog control with supervised and
reinforcement learning,” in Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (ACL), 2017.

[108] Rasa Technologies, “The rasa core dialogue engine,” https://rasa.com/
docs/rasa/core/about/- Last accessed on 2020-03-15.

[109] M. Vodolán, R. Kadlec, and J. Kleindienst, “Hybrid dialog state tracker
with ASR features,” in Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics.
Association for Computational Linguistics, 2017, pp. 205–210.

[110] M. Vodolán, R. Kadlec, and J. Kleindienst, “Hybrid dialog state
tracker,” in Proceedings of the Machine Learning for SLU & Interaction
NIPS Workshop, 2015.

[111] J.-G. Zhang, K. Hashimoto, C.-S. Wu, Y. Wan, P. S. Yu, R. Socher, and
C. Xiong, “Find or classify? dual strategy for slot-value predictions on
multi-domain dialog state tracking,” 2020.

[112] S. Lei, S. Liu, M. Sen, H. Jiang, and X. Wang, “Zero-shot state tracking
and user adoption tracking on schema-guided dialogue,” in Dialog
System Technology Challenge Workshop at AAAI, 2020.

[113] S. Gao, A. Sethi, S. Agarwal, T. Chung, and D. Hakkani-Tur, “Dialog
state tracking: A neural reading comprehension approach,” 2019.

[114] P. Xu and Q. Hu, “An end-to-end approach for handling unknown slot
values in dialogue state tracking,” in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2018, pp. 1448–1457.

[115] Y. Wang, Y. Shen, and H. Jin, “A bi-model approach for handling
unknown slot values in dialogue state tracking,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
2020, pp. 8019–8023.

[116] M. Henderson, B. Thomson, and J. D. Williams, “The second dialog
state tracking challenge,” in Proceedings of the 15th Annual Meeting
of the Special Interest Group on Discourse and Dialogue (SIGDIAL),
Jun. 2014, pp. 263–272.

[117] Y. Flet-Berliac, “The promise of hierarchical reinforcement learning,”
The Gradient, 2019.

[118] M. Ghazvininejad, C. Brockett, M.-W. Chang, B. Dolan, J. Gao, W.-
t. Yih, and M. Galley, “A knowledge-grounded neural conversation
model,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 32, no. 1, 2018.

[119] P. Christmann, R. Saha Roy, A. Abujabal, J. Singh, and G. Weikum,
“Look before you hop: Conversational question answering over knowl-
edge graphs using judicious context expansion,” in Proceedings of the
28th ACM International Conference on Information and Knowledge
Management, 2019, pp. 729–738.

[120] X. Zhao, L. Wang, R. He, T. Yang, J. Chang, and R. Wang, “Multiple
knowledge syncretic transformer for natural dialogue generation,” in
Proceedings of The Web Conference 2020, 2020, pp. 752–762.

[121] W. Zheng and K. Zhou, “Enhancing conversational dialogue models
with grounded knowledge,” in Proceedings of the 28th ACM Interna-
tional Conference on Information and Knowledge Management, 2019,
pp. 709–718.

[122] S. Amershi and al., “Guidelines for human-ai interaction,” in Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing
Systems, 2019, p. 1–13.

Hayet Brabra received the Ph.D. degree from the
Polytechnic Institute of Paris, Palaiseau, France, in
2020.

She is a Research Fellow with Claude Bernard
University Lyon 1, France. Her research interests
include Semantic Web, Cloud Computing and Cog-
nitive Services.

Marcos Baez received the Ph.D. degree in computer
science from University of Trento, Italy, in 2012.

He is a Research Fellow with Claude Bernard
University Lyon 1, France. His research interests in-
clude Web Engineering, Crowdsourcing and Human-
AI Interaction.

Boualem Benatallah received the Ph.D. degree in
computer science from the University of Grenoble,
Grenoble, France, in 1996.

He is a Scientia Professor at UNSW Sydney.
His research interests include Web Services, Crowd-
sourcing, and Cognitive Services.

Walid Gaaloul received the M.S. and Ph.D. degrees
in computer science from the University of Lorraine,
Nancy, France, in 2002 and 2006, respectively, and
the Habilitation degree from Pierre and Marie Curie
University, Paris, France, in 2014.

He is a professor at Télécom SudParis. His re-
search interests are on Business Process Manage-
ment, Process Mining, Cloud Computing, Service
Oriented Computing.

Sara Bouguelia is currently pursuing the Ph.D.
degree with Claude Bernard University Lyon 1,
Villeurbanne, France.

Her research interests include Cognitive Services.

Shayan Zamanirad is a research fellow at
UNSW Sydney. He received his Ph.D. from
UNSW. His research interests include Cognitive
services and cloud computing. Contact him at
shayan.zamanirad@unsw.edu.au.

https://rasa.com/docs/rasa/core/about/
https://rasa.com/docs/rasa/core/about/

	Introduction
	Problem fundamentals and dimensions
	Dialogue Management
	Analysis Dimensions

	Dialogue management approaches
	Handcrafted approaches
	Rule-Based
	Finite State-Based
	Activity-Based
	Frame-Based

	Data-driven approaches
	Supervised learning
	Reinforcement learning

	Hybrid approaches

	Summary and Future directions
	Summary
	Future directions

	References
	Biographies
	Hayet Brabra
	Marcos Baez
	Boualem Benatallah
	Walid Gaaloul
	Sara Bouguelia
	Shayan Zamanirad

