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Abstract

Rearing temperature is correlated with the timing and speed of development in a

wide range of poikiloterm animals that do not regulate their body temperature. However,

exceptions  exist,  especially  in  species  that  live  in  environments  with  high  temperature

extremes or oscillations. Drosophila pachea is endemic to the Sonoran desert in Mexico, in

which  temperatures  and  temperature  variations  are  extreme.  We  wondered  if  the

developmental timing in D. pachea may be sensitive to differing rearing temperatures or if it

remains constant. We determined the overall timing of the  Drosophila pachea life-cycle at

different temperatures. The duration of pupal development was similar at 25°C, 29°C and

32°C, although the relative progress differed at particular stages. Thus, D. pachea may have

evolved mechanisms to buffer temperature effects on developmental speed, potentially to

ensure proper development and individual’s fitness in desert climate conditions.
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1. Introduction

Poikilotherms  animals  do  not  regulate  their  body  temperature  contrary  to

homeotherms  (Precht  et  al.,  1973) and  are  sensitive  to  environmental  temperature.

Environmental temperature in turn affects their metabolism  (Hazel and Prosser, 1974). In

particular,  it  seems  widespread  that  developmental  speed  increases  with  rearing

temperature  in  poikilothermic  species  (Abril  et  al.,  2010;  Asano  and  Cassill,  2012;  Hrs-

Brenko et al., 1977; Ikemoto, 2005; Manoj Nair and Appukuttan, 2003; Nishizaki et al., 2015;

Pechenik  et  al.,  1990;  Porter,  1988;  Sharpe  and  DeMichele,  1977;  Vélez  and  Epifanio,

1981), including various Drosophila species (David and Clavel, 1966; James and Partridge,

1995; Kuntz and Eisen, 2014; Powsner, 1935). This phenomenon is proposed to be due to

thermodynamics  of  enzymes  responsible  for  biochemical  reactions  underlying

developmental  processes  (Crapse  et  al.,  2021;  Ikemoto,  2005;  Schoolfield  et  al.,  1981;

Sharpe and DeMichele, 1977). Thermal-stress can accelerate development and has been

shown to result in an increase of developmental instability (Kristensen et al., 2003; Nishizaki

et al., 2015; Polak and Tomkins, 2013), measured as deviations of an individual’s character

from the average phenotype in the population under the same conditions  (Palmer, 1994;

Zakharov,  1992).  This  may  result  in  a  decreased  individual’s  survival  and  reproductive

fitness.  In  contrast,  a  slow  development  may  potentially  lead  to  an  increased  risk  of

predation at vulnerable stages, such as immobile pupae in holometabolous insects (Ballman

et al., 2017; Borne et al., 2021; Hennessey, 1997; Thomas, 1993; Urbaneja et al., 2006).

Furthermore, a variable timing of development among individuals of a same species might

induce  intraspecific  competition  (Amarasekare  and  Coutinho,  2014;  Frogner,  1980) as

individuals developing faster may reproduce sooner and for a longer period compared to

those  developing  more  slowly.  Different  mechanisms  have  been  found  to  regulate

developmental  timing.  The so-called  heterochronic  miRNAs,  such as  let-7  and  miR-125,

were  originally  discovered  in  Caenorhabditis  elegans  (Rhabditida:  Rhabditidae)(Ambros,

2011; Ambros and Horvitz, 1984). These miRNAs are conserved in a wide range of species,

such as Drosophila melanogaster  (Diptera : Drosophilidae)(Caygill and Johnston, 2008) or

Danio  rerio (Cypriniformes:  Cyprinidae)(Ouchi  et  al.,  2014),  as  well  as in  mammals  and

plants  (Ambros,  2011).  They  act  at  post-transcriptional  level  to  regulate  cellular  mRNA

levels,  and  have  been  found  to  control  the  developmental  timing,  cell  fate  and  cell

differentiation. Hormones are also known to be important regulators of developmental timing.

In  D.  melanogaster,  each  of  the  developmental  transitions  are  regulated  by  ecdysone

pulses,  and  premature  transition  from  larva  to  pupa  with  respect  to  food  conditions  or

starvation  is  prevented  by  juvenile  hormone  (Riddiford,  1994;  Riddiford  and  Ashburner,

1991). Thus,  developmental  timing might  be regulated to reach an optimal  duration with
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respect to outer environmental factors.

More than 1500 described species  of  the genus  Drosophila (Bächli  et  al.,  2021;

O’Grady and DeSalle, 2018) occupy a wide range of habitats with various climatic conditions

(Markow and O’Grady, 2008). A dozen of species have been reported to be cosmopolitan

species  (Markow and O’Grady, 2008, 2005), such as  Drosophila melanogaster (David and

Capy,  1988;  Li  and  Stephan,  2006) that  potentially  dispersed  with  humans  from  Africa

around the globe (Mansourian et al., 2018). These species may be generalists but were also

found  to  be  locally  adapted  to  diverse  environments  (Kapun  et  al.,  2020;  Markow and

O’Grady, 2008). In contrast, the vast majority of species are restricted to certain continental

ranges or are endemic to a specific geographic region that encompasses a unique habitat

with specific food and climate conditions  (Markow and O’Grady, 2008, 2005). Because of

their inability to disperse outside their habitat,  these endemic species may have evolved

temperature-buffering  mechanisms  to  ensure  a  constant  developmental  timing  under

variable temperature conditions. 

Drosophila  pachea (Diptera :  Drosophilidae)  is  endemic to the Sonoran desert  in

Mexico and is an obligate specialist on decayed parts, or rot-pockets, of its single host plant,

the Senita cactus (Lophocereus schottii) (Gibbs et al., 2003; Heed and Kircher, 1965; Lang

et al., 2012; Markow and O’Grady, 2005). The micro-climate of the rot-pockets encompasses

important changes of temperature all  along the year, with a recorded maximum variation

from 5°C to 42°C within 24 h (Gibbs et al., 2003). Living in an environment with large daily

and annual temperature changes may require a certain temperature robustness with respect

to  developmental  processes  in  poikiloterm  species.  We  wondered  if  the  developmental

timing in D. pachea may be sensitive to differing rearing temperatures. To test this, we first

determined the overall  timing of  the  Drosophila  pachea life-cycle. Then, we focussed on

pupal development at four different rearing temperatures to investigate differences in the

pupal  timing.  Finally,  we compared these durations across closely  related sister  species

Drosophila  acanthoptera (Diptera  :  Drosophilidae)  and  Drosophila  nannoptera  (Diptera  :

Drosophilidae) to investigate potential species-specific developmental timing differences.

2. Materials and methods

2.1. Drosophila stock maintenance

Drosophila  stocks  were  retrieved  from the  San  Diego  Drosophila  Species  Stock

Center (now The National Drosophila Species Stock Center, College of Agriculture and Life

Science, Cornell University, USA). The D. pachea stock 15090-1698.01 was established in
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1997 from individuals caught in Arizona, USA. The D. nannoptera stocks 15090-1692.00 and

15090-1693.12 were established in 1992 from individuals caught in Oaxaca, Mexico. The D.

acanthoptera stock  15090-1693.00  was  established  in  1976  from  individuals  caught  in

Oaxaca,  Mexico  (UCSC Drosophila  species  stock  center  San  Diego,  now The  National

Drosophila Species stock center, Cornell University). These stocks have been kept in good

conditions at 25°C in our laboratory since 2012.

Flies were maintained in transparent plastic vials (25 x 95 mm, Dutscher) containing

about 10 mL of standard Drosophila medium. This medium was composed of 66.6 g/L of

cornmeal, 60 g/L of brewer’s yeast, 8.6 g/L of agar, 5 g/L of methyl-4-hydroxybenzoate and

2.5% v/v ethanol  (standard food).  We added 40 μL of  5 mg/mL of  7-dehydrocholesterol

(7DHC) (Sigma, reference 30800-5G-F) dissolved in ethanol into the food for D. pachea, as

this species need this sterol for proper development  (Heed and Kircher, 1965; Lang et al.,

2012; Warren et al., 2001) (standard D. pachea food). As a pupariation support, a piece of

paper sheet (1 cm x 4 cm, BenchGuard) was added to each vial. Stocks were kept at 25°C

or 29°C at a 12 h light:12 h dark photoperiodic cycle with a 30 min transition between light

(1080 lm) and dark (0 lm).

2.2.  Cohort  synchronisation  of  D.  pachea embryos  and  time-lapse  recording  of

embryonic development

For collection of cohorts of synchronised embryos, about 250-500 adult flies were

transferred into a 9 x 6 cm plastic cylinder, closed by a net on the top and by a 5.5 cm

diameter petri-dish lid at the bottom. The petri-dish contained grape juice agar (24.0 g/L

agar, 26.4 g/L saccharose, 20% grape juice, 50% distilled water, 12% Tegosept [1.1 g/mL in

ethanol] (Dutscher), 4% 7-DHC (Sigma)) and 50-200 μL fresh baker’s yeast as food source

and egg laying substrate on top. These plates are named hereinafter “food plates”. Female

flies were let to lay eggs on the food plates for 1 h - 2 h (1 h to examine embryos and 2 h to

synchronise larvae). Then, eggs were retrieved from food plates by filtering the yeast paste

through a 100 μm nylon mesh (BS, Falcon 352360).

For time-lapse imaging the chorion of embryos was removed by a 90 sec incubation

of  the embryo-containing filter  in 1.3% bleach (BEC Javel) under constant  agitation until

about half of the embryos were floating at the surface of the bleach bath. Embryos were

extensively  rinsed with tap water for  at  least  30 sec.  Dechorionated embryos were then

gently glued on a cover slip (ThermoFisher) coated with Tesa glue. For coating, 50 cm TESA
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tape was transferred into 25 mL n-heptane (Merck) and glue was let to dissolve overnight at

room temperature. A total of 15 µL of dissolved glues was finally pipetted onto a cover slip to

form a 5 x 20 mm rectangular stripe and n-heptane was let to evaporate. Embryos were

covered with 40 μL of Voltalef 10S halocarbon oil (VWR) to avoid desiccation. Live-imaging

was immediately launched inside a temperature and humidity controlled chamber at 25°C ±

0.1°C and 80% ± 1% humidity (Lang and Orgogozo, 2012; Lefèvre et al., 2021; Rhebergen

et al., 2016). Time-lapse acquisition was performed at an acquisition rate of 1 picture every

7.5 sec using a digital camera (Conrad 9-Megapixel USB digital microscope camera) and

Cheese  software,  version  3.18.1,  on  a  computer  with  an  ubuntu  16.04  linux  operating

system. Movies were assembled with avconv (libav-tools).

In  Drosophila melanogaster and closely related species, females were reported to

hold fertilized eggs inside the reproductive tract for >12 hours (Markow et al., 2009), which

could  explain  the variation  observed  in  our  experiments  with  D.  pachea.  Therefore,  we

monitored egg retention in this species by examining dechorionated eggs from a 1 h egg-

laying  period.  We  found  that  all  observed  embryos  (n=52)  were  early  embryos  at  the

syncytial blastoderm stage (Wieschaus and Nüsslein-Volhard, 1986) and egg retention was

not  observed.  Out  of  28 embryos monitored,  12 (43%)  pursued their  development  until

hatching while the others did not develop at all (Movie S1, Dataset S1). Such mortality has

been reported previously (Jefferson, 1977; Pitnick, 1993) but potentially also dependent on

the above-mentioned bleach treatment. The embryos that died during the experiment were

excluded from analysis. Furthermore, the duration of hatching, which is the last stage of

embryonic development, has been shown to be more variable in comparison to the other

embryonic  stages  in  various  Drosophila  species  (Chong  et  al.,  2018;  Kuntz  and  Eisen,

2014).  We thus measured both the total  embryonic  duration,  from collection  up to larva

hatching and the embryonic duration up to the trachea gas filling stage, which precedes the

hatching stage (Dataset S1).

2.3. Cohort synchronisation of larvae, dissection and imaging of larval mouth hooks

In order to collect cohorts of larvae at a synchronous developmental stage, we first

collected embryos from a 2 h egg laying interval (see above) that were placed on a food

plate together with fresh yeast. Freshly hatched larvae were retrieved from the yeast paste

with fine forceps (Dumont #5, Fine Science Tool) or by filtering the yeast through a nylon

mesh  (see  above).  Larvae  were  transferred  into  vials  containing  standard  Drosophila

pachea food and were examined once a day until all larvae had turned into pupae (Dataset
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S2). 

For  imaging  of  the  larval  teeth,  entire  larvae  were  mounted  in  20  μL dimethyl-

hydantoin formaldehyde (DMHF) medium (Entomopraxis) beneath a cover slip (0.17 mm ±

0.01 mm thick, ThermoScientific), which was gently pressed against the microscope slide

(ThermoScientific)  to  orient  larval  teeth  in  a  flat,  lateral  orientation  to  the  microscope

objective.  Larval  teeth  were  imaged  at  100  or  400  fold  magnification  in  bright  field

illumination  (Strasburger, 1935) using the microscope IX83 (Olympus). The instar stage of

each dissected individual was determined based on tooth morphology  (Strasburger, 1935)

(Figure S1). 

2.4. Measurement of the duration of puparium formation in D. pachea

The precise duration of puparium formation was characterized by monitoring nine D.

pachea pupariating larvae by time-lapse imaging. Larvae at the third instar stage and third

instar wandering stage were collected from the D. pachea stock and were transferred into

fresh D. pachea standard medium, inside a 5 cm diameter petri-dish and a piece of 1 cm x 4

cm paper sheet (BenchGuard). The dish was then placed into the temperature and humidity

controlled chamber at 25°C ± 0.1°C and 80% ± 1% humidity, as previously described. Time-

lapse acquisition was performed for about 72 h as previously described for embryonic timing

characterization. The duration of the white puparium stage was measured from the moment

when the larva had everted the anterior spiracles and had stopped moving until the moment

when the pupal case had turned brown.

2.5. Characterization of developmental timing in pupae

The developmental duration of  D. pachea,  D. nannoptera and D. acanthoptera was

examined by observation of pupae at different time points after puparium formation (APF).

Synchronised pupae were obtained from each species by collecting so-called “white pupae”

that had just formed the puparium (Dataset S3). Specimens were collected with a wet brush

directly from stock vials.  Individuals of the same cohort were placed onto moist Kimtech

tissue (Kimberly-Clark) inside a 5 cm diameter petri dish. Petri dishes with pupae were kept

at 22°C, 25°C, 29°C, or 32°C inside plastic boxes, which also contained wet tissue paper.

Specimens analyzed at 22°C and 32°C were taken from a stock at 25°C at the stage of

puparium formation  and subsequently  incubated  at  the  desired  temperature.  A group  of

7

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

7



pupae resulting from a single collection event was considered as a synchronised cohort.

Developmental  progress  of  synchronised  cohorts  (Table  1,  Figure  S2)  was examined  at

various time points by visual examination of the pupae using a stereomicroscope VisiScope

SZB  200  (VWR)  (Dataset  S4).  Developmental  stages  were  assigned  according  to

morphological  markers  defined  for  D.  melanogaster  by  Bainbridge  and  Bownes  (1981)

(Table 2). The markers used to characterize stages 8 to 12 (eye, wing or body pigmentation,

Table  2)  were  not  convenient  for  the  characterization  by  direct  observation  of  D.

acanthoptera pupae as these flies develop black eyes, as opposed to most other Drosophila

species  that  have  red  eyes.  In  addition, D.  acanthoptera is  generally  less  pigmented

compared to  D.  pachea and  D.  nannoptera  (Pitnick  and  Heed,  1994) and  pigmentation

changes  were  not  easily  detectable  through  the  pupal  case.  Therefore,  we  additionally

carried out time-lapse imaging of one cohort with five D. acanthoptera pupae to investigate

the  developmental  durations  of  stages  8-12.  The  anterior  part  of  the  pupal  case  was

removed, letting the head and the anterior part of the thorax visible. Image acquisition was

done  at  25°C  ±  0.1°C  and  80%  ±  1%  humidity,  as  previously  described.  Time-lapse

acquisition was performed as previously described and recorded with the VLC media player,

version 3.0 at  an acquisition  rate  of  1  picture every 13:02 min.  Two pupae died during

acquisition and were excluded from the analysis (Movie S2).

2.6. Data analysis

Data was manually entered into spreadsheets (Datasets S1, S2, S3 and S4) and

analysis was performed in R version 3.6  (R Core Team,  2014). Ages expressed in hours

after pupa formation were automatically calculated with respect to the time point of white

pupa collection.

3. Results

3.1. D. pachea embryonic and larval development at 25°C last for about 33 h and 216

h, respectively

We  roughly  examined  the  duration  of  embryonic  and  larval  development  in  D.

pachea at 25°C. The average duration of the total embryonic development in D. pachea at

25°C, until hatching of the larva was 32 h 48 min ± 1 h 13 min (mean ± standard deviation ; n

= 12) (Figure 1, Movie S1). Embryonic development up to the trachea gas filling stage (see

Material and Methods for details) was estimated to be 26 h 48 min ± 1 h 13 min (mean ±
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standard deviation ; n = 12) (Movie S1). These durations appeared to be longer in D. pachea

compared  to  those  reported  for  various  other  Drosophila  species,  such  as  Drosophila

melanogaster,  Drosophila  simulans,  Drosophila  sechellia,  Drosophila  yakuba,  Drosophila

pseudoobscura,  Drosophila  mojavensis (Figure  2)  (David  and  Clavel,  1966;  Kuntz  and

Eisen, 2014; Powsner, 1935). 

The total duration of  D. pachea larval development on standard  D. pachea food at

25°C was approximately 9 days (~216 h). The duration of the first and second instar larva

were about 2 days each and the third instar stage lasted for about 5 days (Figure 1). In D.

melanogaster, the total duration of the larval stage was about 5 days for larvae reared on

optimal food at 25°C, the first and second instars lasting for 1 day each, and the third instar

for  three  days,  according  to  Strasburger,  (1935).  The  larval  development  of  D.  pachea

appeared thus to be longer compared to those of D. melanogaster at 25°C.

3.2. Similar durations of pupal development in D. pachea at 25°C, 29°C and 32°C

The duration of larval development appears to be sensitive to various environmental

factors, such as diet (Matzkin et al., 2011), crowding, or access to food (Vijendravarma et al.,

2013). Since pupal development is apparently less affected by such factors, we focussed on

the pupal stage to investigate the effect of the rearing temperature on timing of development

in D. pachea. We evaluated pupal developmental progress at four temperatures: 22°C, 25,

29°C, and 32°C. Preliminary tests revealed that rearing of D. pachea at temperatures lower

than 25°C is prolonged which favors the accumulation of bacterial infections in the food and

decreased survival of the flies. At 34°C, D. pachea individuals died within a few days and at

32°C flies survived but did not reproduce. Since we could not cultivate  D. pachea at the

extreme temperatures of 22°C and 32°C, individuals were selected at the stage of puparium

formation in a stock at 25°C and incubated at either temperature.

At 25°C - 32°C, D. pachea pupae reached the pharate adult stage in less than 55 h

but  timing  was  prolonged  at  22°C  (Figure  3A-E).  However,  pupal  development  was

accelerated at 29°C and 32°C between stages 8 and 13 (beginning of eye pigmentation until

the end of body and wing pigmentation) compared to development at 25°C (Figure 3A-E). In

addition, development was consistently slower at 22°C compared to 25°C. However, stages

14 and 15 required more time at 29°C and 32°C with respect to developmental progress at

25°C  and  resulted  in  a  similar  overall  duration  of  about  100  -  145  h.  Only  at  22°C,

development was globally slower and adults emerged later, between 150 - 190 h. Thus, in
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D. pachea the rearing temperature influences the relative progress of pupal development at

particular stages. While pupal development is slowed-down at temperatures below 25°C, the

overall duration appears to be similar at higher temperatures. 

3.3. The timing of the pupal development is conserved up to the pharate adult stage

between D. pachea and various Drosophila species at 25°C

The white  pupa stage  (see  Material  and  Methods  for  details)  in  D.  pachea was

estimated to last for 102 min ± 41 min (mean ± standard deviation) (n=9) at 25°C. This

duration has to be considered as the remaining variation of developmental progress between

examined  individual  pupae  in  later  timing  analyses  (see  Materials  and  Methods).  This

duration was similar to previously reported durations for D. melanogaster white pupae of 80-

120 min, at 25°C (Bainbridge and Bownes, 1981). 

At 25°C, the pharate adult stage (stage 7, Table 2) was observed about 55 h after

puparium formation and emergence of adults between 115 - 145 h after puparium formation

(Figures 2A). This timing was similar to those of D. acanthoptera and D. nannoptera (Figure

3B). The developmental duration from puparium formation to pharate adult (stages 1 to 7,

from 0 h APF to about 55 h APF) was also similar to those reported for D. melanogaster and

D. guttifera (Figure 3B) (Bainbridge and Bownes, 1981; Fukutomi et al., 2017). However, at

later pupal development durations of stages were prolonged in  D. pachea,  D. nannoptera

and D. acanthoptera compared to D. melanogaster and D. guttifera.

The emergence of  the adult  fly from the pupal  case (stage 15) is highly  variable

within  D. pachea, D. nannoptera and D. acanthoptera. D. pachea adults emerge between

115 -  144 h APF,  D. nannoptera adults between 112 - 140 h APF and  D. acanthoptera

adults between 102 h - 142 h APF. The variance of this stage was significantly different

between the three species (Levene’s test: F = 3.4414, Df = 2, p = 0.03847), the stage 15

being longer in D. acanthoptera compared to D. pachea and D. nannoptera (Figure 3B). 

4. Discussion

4.1. A possible temperature-buffering mechanism during pupal development

The  trend  of  a  decrease  of  developmental  duration  when  rearing  temperature

increases was not observed in D. pachea at high temperatures. Overall, pupal development

duration were similar at 25°C and 32°C, while it was prolonged at 22°C. On the contrary, the

duration of the overall pupal development decreases with increasing rearing temperature in
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D.  melanogaster (Ashburner  and  Thompson  Jr,  1978;  Powsner,  1935).  In  addition,

temperature fluctuations during pupal development of D. melanogaster are known to either

increase or decrease developmental speed (Ludwig and Cable, 1933; Petavy et al., 2001).

In  this  species,  the  first  24  h  of  pupal  development  are  more  sensitive  to  temperature

changes compared to the rest of the pupal stage  (Ludwig and Cable, 1933; Petavy et al.,

2001). While D. melanogaster is a cosmopolitan species that lives in a wide climate range

(David and Capy, 1988),  D. pachea is a desert species endemic of the Sonora  (Heed and

Kircher, 1965; Markow and O’Grady, 2005). The mean daily variations of temperature of this

habitat are 18°C - 42°C in spring/summer and 6°C - 32°C in fall/winter (Gibbs et al., 2003).

D. pachea is found in the wild throughout the year but undergoes a strong population decline

during August, when the seasonal temperatures are highest (Breitmeyer and Markow, 1998).

However, adult  D. pachea are particularly resistant to high-temperatures and survive up to

44°C in the wild, while most other Drosophila species revealed a decreasing survival already

at 38°C (Stratman and Markow, 1998). Thus, this species may have developed some heat

resistance mechanisms, physiological and/or behavioral, that results in a certain tolerance to

temperature  variations  and  would  buffer  temperature  changes  on  the  developmental

progress. This buffering effect could potentially be important for proper development since

heat  stress  has  been  reported  to  increase  developmental  instability  in  various  species

(Kristensen et al.,  2003;  Nishizaki  et  al.,  2015;  Polak and Tomkins,  2013). However,  the

specific  mechanism  by  which  temperature  affects  developmental  stability  is  not  well

understood  (Abrieux  et  al.,  2020;  Breuker  and  Brakefield,  2003;  Carvalho  et  al.,  2017;

Enriquez  et  al.,  2018).  Rearing  at  a  lower  temperature  (<  25°C)  revealed  slower

developmental progress, indicating that a potential buffering for colder temperatures does

not exist in D. pachea. 

Alternatively,  the  observed buffering  phenotype may be  temperature  independent

and could perhaps ensure the emergence of the adult fly at a particular moment of the day,

such as dawn or dusk, when the environmental temperature might be most suitable for the

freshly emerged individual. In the last pupal stage that corresponds to the adult emergence,

we  observed  timing  variation  between  individuals  in  D.  pachea (up  to  75  h  between

individuals).  This  variation  could  potentially  depend  on  individual  differences  or  on

environmental factors that we could not control, such as the light/dark illumination cycle at

the moment of adult emergence. Such circadian regulation of adult emergence has been

observed in various Drosophila species (Ashburner et al., 2004; Mark et al., 2021; Powsner,

1935; Soto et al.,  2018). However, the important variation in the last pupal stage is also

found among individuals of the same cohort (Dataset S3 and S4). Future monitoring of the

emergence of adults from various cohorts collected at different moments of the day will be

necessary to test this hypothesis. Future investigations will be needed to further characterize
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the potential  temperature buffering  effect  during  D. pachea development  and to test  the

influence  of  the  circadian  rhythm  in  this  species.  In  addition,  we  must  further  assess

temperature dependent pupal development in a wider range of species that live in distinct

climate habitats.

4.2. Conservation of the overall developmental progress during early pupal stages

The detailed analysis of the timing of pupal stages revealed that the first stages 1 to

7 appear to be rather synchronous among D. melanogaster (Bainbridge and Bownes, 1981),

D. guttifera  (Fukutomi et al.,  2017), and the three closely  related species  D. pachea,  D.

acanthoptera and D. nannoptera. Later on, pupal development appears to be more variable

between species. This may indicate the existence of some developmental constraints, which

are  limitations  of  phenotypic  variability  due  to  inherent  properties  of  the  developmental

system (Smith et al., 1985; Wagner, 2014). Such constraints probably act on outgrowth of

adult  organs from primordial structures, so-called imaginal discs, that develop throughout

larval  stages  but  undergo  extensive  tissue  growth  during  pupal  development  up  to  the

pharate adult stage. Thereafter, the timing of development seems to be less constrained and

interspecific  variations  were  observed.  At  least  a  part  of  the  variation  in  the  pupal

developmental  timing  could  be  attributed  to  the  developmental  marker  used.  As  the

coloration markers are qualitative, it is hard to define precise limits of each stage (ie. eyes

turn  progressively  from yellow  to  red).  A solution  might  be to  identify  a  combination  of

multiple markers for each stage or to establish gene expression markers that are known to

account  for  specific  developmental  processes,  as  it  has  been  recently  done  for  eye

development (Escobedo et al., 2021) or male genitalia development (Vincent et al., 2019).

4.3.  D. pachea embryonic  and larval  developmental  durations appear to be longer

compared to other Drosophila species

The  embryonic  developmental  duration  at  25°C  has  been  investigated  in  11

drosophila species other than D. pachea (Chong et al., 2018; Crapse et al., 2021; David and

Clavel, 1966; Kuntz and Eisen, 2014; Powsner, 1935) (Figure 2) and ranged from 16 h in D.

sechellia to 25 h in D. virilis (Chong et al., 2018; Kuntz and Eisen, 2014) (Figure 2), which

appear  to  be  shorter  compared  to  embryonic  development  of  D.  pachea at  the  same

temperature. Interspecific variation in the duration of embryonic development might rely on

genetic factors, as closely related species tend to have similar  embryonic developmental

durations compared to those of distantly related ones (Figure 2). Overall, sample size was
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rather low in our experiments and only present a rough approximation of the time range of

Drosohila larval and embryonic development at a single temperature. A detailed examination

would be necessary to adequately refine the duration of each developmental stage.

Larval development appeared to be longer in  D. pachea compared to those in  D.

melanogaster  (Bakker,  1959;  Strasburger,  1935).  However,  the  duration  of  this

developmental  stage  has  been  shown  to  be  highly  variable  compared  to  the  other  life

stages. In particular it has been shown that larvae are very sensitive to food composition and

to crowding that affect food quality and food access (Matzkin et al., 2011; Vijendravarma et

al., 2013). Food quality and food access in turn prolong the larval developmental duration

(Matzkin et al., 2011). This effect of food on developmental duration might also probably

affect embryonic and pupal stages indirectly due to nutrient contribution from the adult and

larval stages. A slower development observed in D. pachea raised in the lab might also be

due to variations in the ecdysone metabolism. In insects, ecdysone is first provided to the

embryo as maternal contribution and then directly produced by the individual (Lafont et al.,

2012).  However,  in  D.  pachea the  first  metabolic  step  of  the  ecdysone  biosynthesis  is

different  compared  to  other  insect  species,  the  conversion  of  cholesterol  into  7-

dehydrocholesterol  being abolished  (Lang et  al.,  2012).  Instead,  D. pachea metabolizes

sterols  produced  by  the  Senita  cactus  on  which  they  feed,  such  as  lathosterol,  and

potentially  campestenol  and schottenol  (Heed and Kircher,  1965),  into steroid hormones

differing in their side residues (Lang et al., 2012). Therefore, in the wild,  D. pachea may

produce different variants of ecdysone that may also differently affect developmental timing

compared  to  the  lab  conditions  that  only  provide  the  single  ecdysone  precursor  7-

dehydrocholesterol. Thus, it would be interesting to compare developmental durations of D.

pachea fed with standard D. pachea food used in the lab or with their natural host plant, the

Senita  cactus.  In  addition,  further  investigations  would  be  needed  to  elucidate  how

temperature modulates these mechanisms.

4.5. Conclusion

We investigated the effect of temperature on developmental speed in D. pachea, a

desert species. We characterized the timing of the life-cycle in this species and observed

prolonged  developmental  durations  compared  to  other  Drosophila  species.  The  global

developmental duration during metamorphosis is similar  at rearing temperatures between

25°C  and  32°C  although  stage  specific  timing  differences  were  observed.  These

observations indicate that  D. pachea might potentially have evolved mechanisms to buffer

the  effect  of  temperature  on  developmental  speed.  Such  mechanisms  might  be  of
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importance  to  preserve  the fitness  of  individuals  exposed  to  extreme temperatures  and

important temperature variations during their development. 
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Tables

Table 1: Total numbers of pupae and synchronised cohorts used in for pupal timing

characterization

Species Temperature (°C) Total number of
pupae

Total number of
synchronised cohorts

D. pachea 22 134 21

25 76 11

29 42 5

32 141 21

D. nannoptera 25 40 13

D. acanthoptera 25 61 7

Table  2:  Summary  of  morphological  markers  used  to  stage  pupae,  according  to

Bainbridges and Bownes (1981)

Pupal 
stage

Description

1 Pupariation: extremity of trachea are everted, pupa does not move anymore.

2 Clear, white pupa.

3 Light pigmentation, dorsal trachea still visible.

4 Bubbles appear, dorsal trachea is not visible anymore, light pigmentation of the body.

5 Cranial extremity is retracted, distal extremity of wings appeared.

6 Yellow body is visible.

7 Pharate adult, eyes are not yet pigmented.

8 Eye discs become a bit yellower compared to the rest of the body.

9 Orange eyes, transparent wings are visible.

10 Deep red eyes.

11 Bristles are visible on the thorax.

12 Wings are clear grey, clear pigmentation of the body.

13 Wings are completely black, grey pigmentation appears on the body.
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14 Meconium appeared under the form of a dark spot visible through the abdomen.

15 Eclosion of the adult.

Figures

Figure 1: Timing of the embryonic and larval stages in D. pachea at 25°C.

Embryo duration represents the time from egg laying to the hatching of the larva, based on

time-lapse  imaging  (dotted  line).  Larval  stages  were  determined  based  on  mouth  hook

morphology of dissected larvae from synchronized cohorts, according to Strasburger (1935).

Black dots indicate single observations (Dataset S2). Numbers correspond to the number of

individuals observed at each stage. 

Figure 2: Durations of the embryonic development in various Drosophila species at 

25°C.

The duration of total embryonic development of D. pachea (grey) was established based on

time-lapse imaging. The data for the species other than  D. pachea were extracted from:

blue: Kuntz and Eisen, 2014 (duration up to the trachea filling stage, at 25°C), yellow: David

and Clavel, 1966 (total embryonic development, at 25°C) and green: Powsner, 1935 (total

embryonic development, at 25°C). The data used to establish the cladogram was extracted

from Yassin (2013) and Lang et al. (2014). 

Figure 3: Progress of pupal development.

A-D: Durations of developmental stages in D. pachea pupae at 22°C (A), 25°C (B), 29°C (C)

and 32°C (D), observed at various time points. Temperatures are highlighted in blue colour

tones according  to  the legend.  Black  dots  indicate  single  observations  (Dataset  S3).  E:

Overlay of durations from panels A - D. F: Comparison of pupal development at 25°C in D.

pachea (blue),  D. acanthoptera (green) and D. nannoptera (yellow) based on observations

of synchronized cohorts. The stages 8 to 12 were determined in  D. acanthoptera by time-

lapse imaging of  developing pupae,  after  removal of  the anterior  part  of  the pupal  case

(dotted lines). Data of  D. melanogaster (pink) and D. guttifera (purple) were retrieved from

Bainbridge and Bownes (1981) and Fukutomi et al. (2017), respectively. These species were

indicated by stars in the legend.
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Supplementary data

Figure S1: Mouth hook morphology at the three different larval instar.

Larval mouth hook from A: first, B: second and C: third larval instar in Drosophila pachea. 
The scale bar is 10 µm.

Figure S2: Pupal stages in D. pachea. 

Pupal stages of D. pachea, based on the characterization of D. melanogaster by Bainbridge 
and Bones (1983) (Table 2). Pupae of each stage are presented in dorsal (D) and ventral (V)
view. The stage (Table 2) is indicated by a number. Arrows point to relevant morphological 
markers: C: stage 3, dorsal trachea still visible; D: stage 4, bubbles appear and trachea not 
visible; E: stage 5, distal margins of wings appear; F: stage 6, yellow body visible; G: stage 
7, non-pigmented eyes visible; H: stage 8, yellow eyes appear; I: stage 9, orange eyes; J: 
stage 10, red eyes; K: stage 11, thorax bristles visible; L: stage 12, grey wings; M: stage 13, 
black wings; N: stage 14, meconium visible. The scale is 100 µm. 

Movie S1: Time-lapse of embryonic development of D. pachea at 25 °C.

Out of the 28 embryos, 12 completed their development up to the larva hatching. The 16
embryos  that  did  not  complete  their  embryonic  development  were  excluded  from  the
analysis. 

Movie S2: Time-lapse of pupal development of D. acanthoptera from 52 h APF up to

the emergence of the adult at 25°C

Out of 5 pupae, 3 completed their development up to adult emergence. The two that died
during the time-lapse were excluded from analysis.

Dataset S1: Observations of embryonic development in D. pachea at 25°C

Dataset S2: Observations of larval development in D. pachea at 25°C  

Dataset S3: Pupae cohorts for developmental timing characterization

Dataset S4: Observations of pupal development in D. pachea, D. acanthoptera and D. 
nannotpera

Availability of data and material

The movies S1 and S2 supporting the results of this article are available in the DRYAD 

repository, 

https://datadryad.org/stash/share/dfhCAtgopC4JY6qmkjK6Q_UEMmf2WSfc1gdETPPI7gk.
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