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Abstract

Secure disk storage is a rich and complex topic and its study is challenging
in theory as well as in practice. In case of loss or theft of mobile devices
(such as laptops and smartphones), the threat of data exposure is impor-
tant and a natural security objective is to guarantee the confidentiality of
the data-at-rest stored in such devices (e.g. on disks or solid-state drives).
Classical approaches to encrypt data may have a severe impact on perfor-
mance if the underlying architectural specificities are not considered. In
particular, it is usually assumed that an encryption scheme suitable for the
application of disk encryption must be length preserving. This so-called
”full disk encryption” method provides confidentiality but does not provide
cryptographic data integrity protection. It indeed rules out the use of au-
thenticated encryption where an authentication tag is concatenated to the
ciphertext. Moreover, authenticated encryption requires storing tags, and
latency is added due to extra read/write accesses and tag computations. We
present a comprehensive study of full disk encryption solutions and compare
their features from a security perspective. We additionally present threat
models for authenticated disk encryption and present a systematized analy-
sis of the techniques usable in these settings (which has, up to now, received
little attention from the research community). We finally review the current
state-of-the-art of incremental cryptography and provide new insights for its
use in secure disk storage contexts.
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1. Introduction

The proliferation of mobile electronic devices has made it critical to pro-
tect the on-device data, as mobile phones or laptops are easily lost or stolen.
When this occurs, extremely valuable and sensitive stored information might
be at risk. An important security objective is therefore to ensure confiden-
tiality of such on-device data. Mobility implies strong constraints on the
methods to be used for secure disk storage. The encryption algorithm has
to be computationally and space-efficient with respect to the storage for
read/write accesses to the data.

It is usually assumed that an encryption scheme suitable for the applica-
tion of disk encryption must be length preserving. This so-called Full Disk
Encryption (FDE) method is implemented in a large panel of devices, from
compact smartphones to larger and more powerful ones such as servers. FDE
is known to guarantee the confidentiality in the disk at a low level (e.g. sec-
tor level). Obviously, reading and writing operations should suffer as little as
possible from performance degradation that occurs when one deploys FDE.
This requires FDE to have random access to every single sector on the drive
and impacts different layers in a device: from the disk memory cells to the
operating system.

FDE is now a mainstream technology that provides confidentiality but
unfortunately does not provide cryptographic data integrity protection. How-
ever, if data confidentiality is necessary, it is perhaps even more critical to
prevent data alteration. Up to now, most disk encryption solutions rely on
the so-called poor-man’s authentication to ensure integrity, meaning if an at-
tacker alters some encrypted data on the disk, the corresponding plaintext
will be scrambled unpredictably, yielding an alert in the operating system or
application layer. However, this approach is not cryptographically viable and
a stronger integrity mechanism should be provided (e.g. some applications
silently ignore errors when parsing files). This protection comes with a cost:
authenticity-oriented cryptosystems store extra tags with additional latency
to access and compute them. Hence, it is important to analyse if a crypto-
graphic mechanism guarantees data authenticity with minimal performance
impact and minimal storage.

This expository work aims at giving a state-of-the-art of cryptographic
constructions used in FDE and the rationale behind their design (storage
constraints and performance goals). We also formalize new models where,
in addition to confidentiality, two levels of data authentication at a low-level
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are possible.

Organization of the paper. This paper is organized as follows. In sec-
tion 2, data at rest threats are analysed to present adversary models and
their relevance to FDE. Disk storage technologies and their constraints are
described. Section 3 exposes the challenges of FDE regarding these con-
straints while keeping decent performance. Section 4 explores the possibility
to add data authentication. Two strategies are detailed: local and global au-
thentications. The first one only offers a block-level authentication but does
not prevent replay attacks (restoring a former version of the disk content).
The second one protects the entire disk even against replay attacks by using
specific authentication schemes that have the property to be incremental :
tags are updated instead of being re-computed from scratch. The implica-
tions of these authentication schemes in terms of storage and update time
are analysed and discussed.

2. Data Protection and Data Storage

2.1. Data Protection

The need for user data protection has become critical, emphasized by
smartphones and cheap outsourced storage democratization. Mobile devices
can be left unattended, sent for repair, sold, given to legal authorities during
checks (e.g. in airports), lost, or stolen. In all these common situations, an
untrusted party can have access to the user data stored in the device (even
when switched off).

In this paper, a device refers to a system that runs autonomously with
a persistent memory to protect. FDE concerns data at rest stored in the disk
only. Data is encrypted before being stored in the disk and decrypted after
being loaded from the disk which means that the disk should always store
encrypted data1. Data is said to be encrypted and decrypted ”on-the-fly”.

Threat Models. All these devices store some amount of data that needs
to be protected in confidentiality, and different solutions exist depending on
the model (architecture and adversary). In the following, we gather all these
scenarios in three main attack categories according to how the adversary
accesses the disk.

1The strategy used for the initial encryption step depends on the FDE tool.
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1. Single passive access to the disk. When a device is stolen or lost, the
user expects data confidentiality insurance: anyone except him should not
learn any information about clear data. The adversary has access to the en-
crypted data and aims at discovering information about the corresponding
plaintexts.

2. Multiple passive access to the disk. It encloses -1- but here the adver-
sary is more powerful as they can make copies of the disk at different times.
The adversary can analyse these copies to track modifications. Later, we
will see that even with a strong FDE encryption mode, an adversary is able
to guess exactly which parts have been changed between copies.

3. Active access to the disk. This adversary encloses -1- and -2- with
the ability to tamper with the disk data. These attacks are also known
as ”active attacks” [26]. As an active attack, we can think about silent
data corruption [4] even if it is not an intentional attack as it can be due to
random hardware failures. This issue is usually solved by non-cryptographic
checksums.

A possible scenario for this latest model is an adversary that succeeds to
perform malicious modifications in the disk without the user realizing it.
They can also tamper with the disk and can give it back to the user who
does not notice data corruption. An example is a copy-paste attack where a
disk is shared between a user 1 and a user 2: the malicious user 1 copies data
from the user 2 part of the disk and pastes it in its own part. As in many
FDE tools, a unique key is used for the entire disk (more details in section
3.1); user 1 could be able to decrypt user 2’s data.
In addition to data confidentiality, the user wants to be able to check the au-
thenticity of the data they is using. A specific tampering attack is what we
can call a ”downgrade attack” or a ”replay attack”: the adversary snapshots
the entire disk at time t and waits for a specific moment to restore it. The de-
sired property to thwart this is a so-called temporal data authentication:
at any moment, the user wants to be sure that the data they is manipulating
now is the data stored during the previous legitimate manipulation.

For each category, an adversary can perform online attacks which means
that they has physical access to the device. As a consequence, they can
attack the disk content but also the other components (e.g. hardware parts).
Otherwise, if it performs offline attacks, we suppose that they has no access
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to the entire device but only to the raw disk memory content, i.e. storage
memory cells.

2.2. From Disk Storage to Data Encryption

We provide a simplified description of a system as a basis for discussing
the FDE problematic and analyzing the differences between FDE products.

Kernel (Host)

ControllerDriver

Disk

Protocol

Figure 1: View of components involved in disk encryption.

First, let us define the taxonomy of the FDE-related components. At the
highest level, we consider systems running operating systems (OS) and host-
ing applications. The core component of the OS is its kernel. In a nutshell,
the BIOS is the first piece of code executed at power on, loading an on-disk
bootloader that runs the kernel that handles the memory and the periph-
erals after boot time. It manages data stored in the disk through different
virtualization layers as shown in Fig. 2. From an end-user perspective, data
is abstracted in the form of files aggregated in filesystems that can be stored
in volumes or partitions (a volume can be split among different partitions).
The kernel handles physical disks through partitions with specific drivers in
charge of low-level read/write operations. As shown in Fig. 1, a dedicated
protocol conveys read/write commands at the physical layer. Such commands
are limited to a fixed-size data unit called a sector. The low-level driver is
consequently in charge of sector-based read and write operations. The Paral-
lel ATA (PATA) and Serial ATA (SATA[18]) standards are examples of such
protocols commonly used as classical disk interfaces. The physical disk con-
tains a controller and non-volatile memory units to store data sectors. The
controller is usually a dedicated micro-controller with embedded firmware
that deals with the commands received from the kernel driver and manages
the internal non-volatile memory depending on the disk technology.

Disks. The older and well-known technology is the Hard Disk Drive (HDD),
read and written by a mechanical arm handled by the disk controller. Each
drive has one or more disk platters allowing to store and retrieve a sector.
The controller communicates with a driver using a protocol that enables write
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MD = Meta-Data
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Figure 2: Simplified logical levels: from files to sectors

and read commands depending on sector numbers, also called Logical Block
Addresses (LBA).
The physical composition of newer Solid State Drives (SSD) is totally dif-
ferent: they are flash memory devices gradually replacing the HDDs with
improved performance. Similar to magnetic drives, they are logically sector-
addressable devices. The flash memory cells of an SSD are hierarchically
organized as a set of flash chips called packages, which are further divided
into dies, planes, blocks2 and pages. Every page consists of one or more
sectors and is the smallest unit that can be written. The Flash Translation
Layer (FTL) stores the mapping between LBAs and Physical Block Addresses
(PBAs). The FTL implements an abstraction layer to be compatible with
systems using HDD: the driver reads and writes sectors using LBA. Disk in-
terfaces such as PATA or SATA have different physical link properties, speed,
and communication protocols but they all enable access to sector granularity.
The driver and other components from the OS manage data and optimize
read and write access.

Physical and Logical sectors. The physical sector is the sector used
internally in the disk and the logical sector is the one presented to the host
by the disk controller. The kernel asks to write at least one logical sector in
an atomic operation from its point of view: the host cannot ask to write
less than one sector. Historically, HDDs had 512-bytes sectors that were
presented to the host: at the time, logical and physical distinctions did not
exist. To read and write disk data efficiently, the OS used a unit called a

2These blocks should not be confused with the blocks of the blockcipher, nor with the
“block” (actually “sector”) in the term Logical Block Address (LBA).
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page3 that is a virtual unit composed usually by eight logical sectors. A page
is the smallest unit the OS can read and write and, its size is a multiple of
the logical sector size. OS storage page size is commonly chosen to match
the virtual memory page size (usually 4096 bytes): this allows optimizing file
system transfers between disk and RAM as well as caching. Nowadays, disk
manufacturers are able to produce disks with larger sectors on par with the
OS page size to increase low-level performance. This heterogeneous situa-
tion regarding logical and physical sectors sizes explains why the Advanced
Format standard has been created to specify various compatibility modes.

3. Full Disk Encryption

3.1. Challenges

Encryption can be implemented at different levels from file to sector-based
encryption (see Fig. 2). File encryption aims at encrypting independently
each file usually without encrypting the corresponding meta-data. With
filesystem encryption, the files and the meta-data (including the internal hi-
erarchy) are encrypted (see ecryptfs [50] for instance). Volume encryption,
partition encryption and disk encryption use a block-oriented encryption
known as Full Disk Encryption (FDE). Blocks refers to sectors as previ-
ously introduced. Equivalent qualifiers are ”Low-level full disk encryption”
or ”whole disk encryption” [51]. FDE advantageously ensures unconditional
and transparent encryption of all the data stored in the disk.

FDE cost. Disk memory access is time-consuming: this is a critical is-
sue for manufacturers and academic research. Huge efforts have been put
into optimizing memory accesses to achieve tremendous advances in mem-
ory latency. Memory subsystems are tuned as much as possible with cache
memories and fast SRAM memory chips to speed up computer capabili-
ties. Adding an encryption layer could affect performance drastically. FDE
framework developers try to integrate encryption that takes into account this
optimization work. A consequence is that FDE is length-preserving: all
the sectors are encrypted independently without additional data; other-
wise sector (un)alignment management becomes a problem. Moreover most
of FDE implementations aim at being compatible with a maximum number

3It is different from SSD pages.
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of systems. A large panel of FDE frameworks tries to defeat different adver-
saries by implementing encryption at different layers and by managing the
key differently.

Key management. To decrypt data, the user has to provide a secret; usu-
ally a password or a pin code. The secret will unlock the decryption key,
which is then used to decrypt the whole disk. More complex key manage-
ments4 are also implemented in some devices, but in this paper, we consider
the classical FDE encryption schemes where the whole disk is encrypted
with a unique key. This choice is mainly due to shared disk usage, password
modification, and backup. The location of the key management, the kernel
driver or the disk controller, is a way to define two families of FDE products:
the first one called Self-Encrypted Disks (SEDs) corresponds to stand-alone
systems performing encryption/decryption inside the disk by the controller
and the other corresponds to software implementations performing encryp-
tion/decryption on the host side. Although password derivation and key
management are obviously crucial topics for disk security, we consider them
out of the scope of the current article as we only focus on FDE itself after
the main key has been recovered.

Standard Encrypted Disks. A standard disk (either HDD or SSD) usu-
ally aims only at storing data without encryption. Software FDE solutions
like dm-crypt [1] (Linux), Bitlocker [20] (Windows), FileVault [15] (MacOS),
Truecrypt/Veracrypt(multi-OS) [3] perform encryption through the OS and
store the encrypted data in the standard disk. Even though such imple-
mentations can take advantage of hardware-accelerated instructions such as
AES-NI, we refer to them as software-based solutions as opposed to dedi-
cated hardware solutions where most of the FDE logic is performed in dedi-
cated controllers. In software-oriented solutions, the standard disk does not
manipulate raw user secrets neither the raw cryptographic key but the host
does. An adversary can take advantage of this by targeting the system RAM:
these are out-of-scope attacks. We only focus on adversaries with access to
the standard disk and aim at breaking confidentiality.

Self-Encrypted Disks. In SEDs, encryption is performed by a dedi-
cated hardware in the disk itself. The SED is supposed to be unlocked only

4Disk encryption key management is a large subject that will not be fully discussed in
this paper: only the necessary elements are given.
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by the legitimate user. The user authentication is performed directly on
a physical interface like a pinpad or through a trusted computer. Encryp-
tion/decryption is performed on the device and the encryption key should
never leave it [41].

Software/Hardware Implementation. Software implementations are
easy to develop and maintain contrary to hardware ones. But hardware
implementations have the advantage of efficiency, reliability [5] and are po-
tentially more resistant to attack vectors such as side-channel leakage. This
explains why SEDs are usually found at a higher price compared to software-
based solutions. Different SEDs were analysed in [40] and the authors ex-
ploited flaws in the firmware of the micro-controllers handling the hardware
encryption. This study disproves the common belief that hardware FDE so-
lutions are more secure than software-based ones. Building a secure FDE
solution is however not straightforward: it is a complex process and involves
versatile skill sets. The resistance of the cryptographic mechanism, the key
derivation function, the usage of hardware keys are not sufficient: the en-
cryption and the firmware implementation are also part of this mechanism
and none of them should be neglected. Fully controlling the design and pro-
duction chain, which is the case for SEDs and some smartphones, can help
but can affect the implementation neatness and consistency.

Performance. The performance of an FDE solution can encompass the
execution time and for some specific usages power consumption. The ex-
ecution time depends essentially on the cryptographic algorithm, the way
the tool is implemented, the number of the read and write operations. The
cryptographic algorithm efficiency includes among others its structure (num-
ber of basic operations), its parallelization capabilities for encryption and
decryption, the key size. An implementation can be more or less optimized
to speed up the execution time. And a dedicated hardware implementation
should have a smaller execution time than its software version. Obviously,
read and write operations on the disk should be minimized.
It is also desirable to limit the power consumption of the system for cost-
efficiency reasons. For smartphones, it is crucial because their usability de-
pends on battery life, and too much power dedicated to cryptographic com-
putations is not an interesting deal. FDE mechanisms should therefore seek
energy consumption limitation [25].
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3.2. FDE and Cryptography
As argued above, writing and reading a sector have to be as quick as pos-

sible which implies that encryption/decryption delays have the same require-
ment. This is why each sector is encrypted independently and encryption
relies on blockciphers for their time performance. A secure blockcipher re-
veals no information about the plaintext knowing the ciphertext as long as
the key is randomly sampled and kept secret. Today, the most used blockci-
pher is AES (128 bits block length). The sector length is a multiple of the
block length and a secure encryption mode has to be used since using sequen-
tially the blockcipher on the sector content will lead to insecure encryption
(ECB mode). A full disk encryption mode uses the same key [26, 35] to
encrypt the whole disk and it can be the case that the key is composed of
sub-keys or used to derive sub-keys.
A widespread FDE mode is CBC-ESSIV [24] for ”Cipher Block Chaining-
Encrypted Salt-Sector IV”. This mode is a CBC mode where the Initial-
ization Vector (IV) is derived from the sector number. In CBC mode, the
IV is required for decryption and it is stored as a first block in the cipher-
text which is not possible for length preserving encryption. That is why, in
CBC-ESSIV, for each sector, the IV is the encryption of the sector number
s under a different key k’ and the plaintext blocks are encrypted using the
key k. This mode is parallelizable for decryption only and it is secure for an
adversary belonging to the threat models -1- and -2-. This mode is less and
less used and it should not be adopted because of its vulnerability to mal-
leability attacks. A malleability attack consists in applying a transformation
on a ciphertext block i and knowing the impact on the plaintext. To be able
to perform a malleability attack, the adversary must have active access to
the disk (threat model -3-). For CBC, flipping the j-th bit on the ciphertext
block i will lead to decrypting the plaintext block i + 1 correctly but with
the j-th bit also flipped as shown in figure 3. The i-th plaintext, which is
128 bits for AES, is randomized. This attack has severe impacts: a plaintext
bit can be flipped at any position which gives the power to the adversary to
change the plaintext block the way they wants. Practical attacks are demon-
strated by Lell in [38] on dm-crypt. In the BitLocker solution, the elephant
diffuser component [20], which is a keyed diffuser, is applied to the entire
sector plaintext to mix all plaintext bits, and then CBC-ESSIV is used for
encryption. The diffuser makes the malleability attack on CBC impractical.
Nowadays, the standard for storage devices [31] specifies XTS mode for ”XEX
Tweakable blockcipher with ciphertext Stealing” which is based on XEX for
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Figure 3: CBC-ESSIV malleability attack.

”Xor-Encrypt-Xor” designed by Rogaway [46]. A tweakable blockcipher is a
blockcipher that takes not only the classical inputs, a key, and a plaintext,
but also a tweak and outputs the ciphertext. A tweak is a public value and
in the case of FDE, it is the sector number, hence there is no need to store
this value. This trick allows having a length preserving mode to encrypt each
sector. A modification on a sector can be seen by a passive adversary (threat
model -2-): all unchanged plaintext blocks at the same position will have
the same ciphertext blocks and the modified ones will be different. Then
it provides a ”spatial” security in the sense that each encrypted sector
block looks random for the adversary as long as there is no repetition of
plaintext block at the same position. If the adversary is active and modifies
sector content (ciphertext), they is limited to tamper with one block only
that corresponds to 128 bits in the case of AES usage. For example, they
can flip one bit in the sector, after decryption the corresponding plaintext
will look random (see figure 4) but all the other plaintext blocks will be
decrypted normally. This property makes a tampering attack harder but
does not prevent it. Moreover, XTS has the advantage to be parallelizable
for encryption and decryption. Moreover, it uses only one AES call for each
plaintext block.
Wide Tweakable Block Ciphers (WTBC) go further in limiting the tamper-
ing ability of the adversary but require more AES calls per block. A WTBC
is based on a standard blockcipher that processes input blocks through mul-
tiple passes in order to simulate a blockcipher over the input size. This
is why they are known to be slow [20] and much less used than XTS for
example. In the FDE context, their block size is the sector size so an ad-
versary, belonging to threat model -3-, corrupting one bit of the ciphertext
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Figure 4: XTS malleability attack.

will lead to randomizing the entire plaintext sector (illustrated in figure 5).
EME2 [27, 32], and XCB [39, 32] are examples of WTBC. Recently, a new
WTBC, Adiantum [16], was introduced by Biggers and Crowley that is more
efficient than XTS when there is no cryptographic accelerator.

c1 c2 c3 c4 c5l

m1 m2 m3 m4 m5

EK EK EK EK EK

DK DK DK DK DK

Decryption

Figure 5: WBTC malleability attack.

4. Data Authentication

In the context of FDE the strongest notion of integrity is the poor man’s
authentication which means that if an adversary modifies the ciphertext (here
a sector content), one can hope that this modification will lead to a random
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change in the corresponding plaintext in such a way that the system or the
user will detect this tampering. Relying on this method to protect disk con-
tent authenticity is not enough as an adversary can easily take advantage
of the disk encryption algorithm malleability. Lell [38] implemented an at-
tack against a volume encrypted using CBC-ESSIV as shown in figure 3. To
be able to detect all the illegitimate data modifications, data authentica-
tion is required in addition to encryption. A Message Authentication Code
(MAC) takes as input a message and returns a tag. This primitive is a keyed
algorithm usually based on blockciphers [22] like CBC-MAC and CMAC or
hash functions [23] like the HMAC family. Authentication for disk content is
not a new subject [30, 12]; it is the purpose of the standard [33] and was the
aim of different recent projects: the dm-integrity framework [11], dm-x [13]
and StrongBox [19]. Having data authentication is out of FDE scope due
to storage of additional data [48, 35, 11], which is the reason why the defi-
nition of new models are required. These new models bring new challenges:
how should we store tags, which algorithms minimize the added computa-
tional latency (e.g. additional to encryption only latency), and additional
data storage. The purpose of this section is to clarify the models where data
authentication is possible and to provide solutions and their analysis.

4.1. Local Authenticity

A naive solution is to compute a tag over all the disk content using a
MAC and only one tag is stored for the whole disk. However, then each
time a sector is read or written, this tag has to be verified or re-generated
which means processing all disk sectors; this is too costly. A better and
natural mechanism (at the expense of space) is to compute a local tag for
each sector to keep independence between each sector which costs to store a
tag per sector. We call this per sector data authentication local or spatial
authentication.

ADE Model. The possibility to store tags for each data sector gives a
model that diverges from the FDE model we called the Authenticated
Disk Encryption (ADE) model. Depending on how these tags are stored
(see § 4.1), we can consider storing more than the local tags to make the
cryptographic primitive stronger. That is why from here local tags refer to
additional data stored for data protection including cryptographic tags, IV,
. . . In this model, the adversary has access to the disk several times and can
modify its content: data sectors and tag sectors. This adversary is part of the
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threat model -3-, their goal is to break confidentiality or to build a forgery
for at least one data sector (e.g. data sector d and the corresponding tag τ).
They wins if data confidentiality of a sector content is broken or if for the
data sector number s, they builds a fresh data sector d∗ and its corresponding
tag τ ∗ where verification succeeds. A mechanism secure in the ADE model
does not cover replay attacks [52]: an adversary having a copy of the disk
(or a part of it) at the time t can replace the disk content at any moment
after that time (replay attacks in theft with recovery described in § 2.1).

Authenticated Encryption (AE). To perform AE, we can choose among
generic compositions or authenticated encryption.

Generic compositions [8]. There are three classical generic compositions:
MAC-Then-Encrypt, MAC-and-Encrypt, or Encrypt-Then-MAC to achieve
confidentiality and authentication with two keys. These keys can be derived
from a master key or generated independently. These solutions store exactly
the same amount of extra data (without taking into account the keys) and the
choice between them has to be made according to security and calculation
efficiency. From a security point of view, the composition Encrypt-Then-
MAC is known to be secure if the underlying primitives are secure5. For
example, XTS-AES can be composed with HMAC-SHA-2 as in [11], but the
simple approach will lead to sector reordering attacks. As the MAC of
a sector does not take as input the sector number, sector reordering will not
be detected: an adversary changing the location of a sector together with
its tag will obtain a valid MAC verification. The standard for authenticated
encryption for storage devices [33] specifies that additional data for each
sector should be added and the MAC ensures its authenticity.

Authenticated encryption schemes (AE). They are specific schemes
that provide confidentiality and authenticity at the same time by design.
They take usually a single key and use derivation function(s) to obtain the
required key material. For a given plaintext, it outputs a ciphertext and a
tag. As they are dedicated to this purpose, they can be more efficient. In
2009, some schemes were standardized among them CCM [21, 33], OCB [21]
and GCM [21, 33] with AES as blockcipher. AES-GCM is a widely deployed
AE scheme: it is used in protocols such as SSH [34], TLS [45], IPSec [54]
and storage [33]. A few years ago, the CAESAR competition [9] was or-

5This is not straightforward as explained in [42], some care must be taken.
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ganized with the goal to identify a portfolio of authenticated ciphers that
offer advantages over AES-GCM and are suitable for widespread adoption.
Specifically, robustness and tolerance against nonce misuse [53] (a missing
feature of AES-GCM) have been one of the leitmotivs for the emergence
of seven finalists ACORN, AEGIS, Ascon, COLM, Deoxys-II, MORUS, and
OCB (see [9] for details).

AE(k, i, pi)

pi

p0 p1

pn

t0

ci

c0 c1

cn tn

Plain sectors Encrypted and tagged sectors

Figure 6: Disk Encryption and local authentication tag within each sector. Dashed boxes
represent encrypted data and hatched boxes tags.

Local Tag Storage:. Different ways of storing local tags on the disk can
be implemented and depending on the chosen strategy; the seek time can be
more or less large.

Location. Local tags storage solutions can be: (1) to extend physical sector
size; (2) to implement virtual sector smaller than physical sector (illustration
in figure 6) or (3) to keep the same sector size and dedicate some of them to
store tags.
Solution (1) was proposed in [14] by arguing that it is feasible for manufac-
turers to produce disks with bigger sector sizes because some space is already
reserved for checksums. In this case, the only additional step is to modify the
device mapper or the device controller to take into account authentication,
but this solution can not be implemented in all deployed disks. Changing
physical sector size is expensive so the majority of manufacturers will wait
for a standard. Solution (1) relies on manufacturers.
Solution (2) avoids waiting for a new disk format; it is compliant with exist-
ing disks. The counterpart is implementing a virtualization layer. A basic
virtualization strategy is to split the physical sector into two parts: data and
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local tags. An example is the FreeBSD disk encryption GELI [17]: 480 bytes
of data and a 32 bytes for the tag are stored in a 512 bytes physical sector.
Solutions (3) breaks atomicity contrary to solutions (1) and (2). If for any
reason, some sectors are written and the corresponding local tags are not (or
the other way around), the authentication check will fail. If a write operation
on the disk is interrupted, the previous sector content should be recovered
otherwise authenticity check will fail. An example is dm-integrity: it imple-
ments interleaved meta-data sectors [10] where the meta-data includes local
tags. A fixed number n of consecutive sectors are processed, and the cor-
responding meta-data is stored in the next sector (see figure 7). The user
can choose the number n. The software dm-integrity allows the possibil-
ity to manage recovery on write failure with journals: for example, it can
save an old data content of unfinished sector write. Enabling journals is an
option and experiments with dm-integrity show that enabling them has se-
vere impacts on performance. To be more specific, Milan Broz [10] shows
that adding local tags to AES-XTS encryption with HMAC-SHA256 in dm-
integrity decreases the read and write throughputs by 20% on average. And
adding journalisation divides these numbers by 2!

Discussion. Disk sectors are now dedicated to storing actual data (Dd

sectors) and local tags (Dla sectors) for solution (3), but this additional data
estimation cost is applicable for all solutions. We have Ds = Dd +Dla where
Ds is the total number of sectors. Let τs be the tag size and Ss the sector
size. The maximum number of tags a sector can store is TS = Ss/τs. Then
we have Dla = Dd/TS and Dd = (TS × Ds)/(TS + 1) which means that
the data sectors represent (100 × TS)/(TS + 1) percent of the disk and
local tags represent 100/(TS + 1) percent. For a disk with a sector size of
4096 bytes (Ss = 212 Bytes) where 1 Terabyte (240 Bytes) of actual data are
stored, we have Dd = 240−12 sectors. Let us take the example of the following
generic composition: the encryption primitive is AES-XTS encryption where
the tweak is the sector number and the MAC primitive is HMAC-SHA-256.
The HMAC is computed over the concatenation of the ciphertext and the
sector number to avoid reordering attacks. The local tag size per sector
data is 32 Bytes which corresponds to the tag produced by HMAC-SHA-256
(τs = 25 Bytes). Then a sector stores 128 local tags (TS = 27) which gives
Dla = 228−7 sectors (8 GB). Additional data represent only 0,8% of the disk
but this estimation does not consider journals.

Data authentication protecting against replay attacks is a desirable prop-
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Figure 7: Interleaved Meta-data. Large dashed boxes represent encrypted data and small
dashed boxes meta-data.

erty; we can call this security notion temporal authenticity or global
authenticity. The next section aims at analyzing how we can get such
property and at estimating its cost.

4.2. Global Authentication and Incremental Cryptography

Global authenticity is a strong security notion that aims at protecting all
the local tags from tampering. A simple solution is to store all these tags in
persistent secure memory, which means the adversary cannot tamper with
it.

Secure Memory (SM). Obviously, such a component is not an accessible
part of the disk otherwise downgrade attacks are still applicable. Now, we will
assume that such memory exists otherwise replay attacks cannot be prevented
in the context of full disk encryption [30, 11] and also in the context of secure
cloud storage with block-level encryption [43, 13]. Disk and cloud storage
are similar from a theoretical point of view in the sense that the server can
be seen as a big remote disk. These two use cases are different; nonetheless,
the data authenticity problem for data stored in a physical disk or a distant
disk (cloud) can be solved similarly. For disk protection, we can consider a
Secure Element (which usually embeds a small and persistent memory) as a
SM but it can store only a limited amount of data typically a few kilobytes to
a few megabytes [49]. Whereas for cloud storage, the SM can be associated
with a dedicated client local storage where it is possible to store data that
cannot be tampered with by the server. In this case, the SM can be a whole
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disk partition that the local OS protects from any server access, yielding a
few gigabytes of “secure memory”.
Once again, the naive idea is to compute a global tag over all the local tags.
Then reading a sector will lead to re-computation over all the local tags which
is too much time-consuming.

FADE Model. We have a different model deviating from the ADE one
called the Fully Authenticated Disk Encryption (FADE) where the
adversary has the possibility to perform any modification on the disk. It
breaks data authentication if it succeeds to build a forgery for a sector s
different from the last legitimate one. In this model, the adversary can
attempt replay attacks.

Global MACs. To be secure in the FADE model, a global MAC is needed,
and it should have specific properties to be effective.
-Security: It has to guarantee the authenticity of the local tags.
-Speed: It has to be fast for tag generation and verification, minimize cryp-
tographic operations, minimize the added read/write access to the disk; tag
generation/verification must be relative to a data unit.
-Locality: If the verification fails, the index of tampered sectors should be
easy to find.
-Minimal storage in the disk: If additional data has to be stored in the
disk it should be as short as possible to save space in the disk.
-Minimal storage in secure memory: A global tag has to be stored in
secure memory that has limited storage space.

Incremental Cryptography. Incremental cryptography was introduced
by Bellare, Goldreich, and Goldwasser in [6] and it is an attractive feature
that enables to efficiently update a cryptographic output like a ciphertext, a
signature, or an authentication tag after modifying the corresponding input.
A MAC can be incremental regarding some update operations like replacing,
deleting, or inserting a block in the input. In our case, the input is the
concatenation of the sector local tags computed with a classical MAC e.g,
not an incremental MAC then for each modification in a sector; the local tag
will be recomputed, and the global tag (output of incremental MAC) will be
updated.

This efficiency comes from the computation of independent MACs over
all the inputs (the values pi in Fig. 8) and the resulting output blocks are
combined to obtain the global tag τ . This independent processing seems to

18



p1 p2 p3

fK fK fK

Combine

τ

p4 p2 p3

fK fK fK

Combine

τ ′

Figure 8: Overview of incremental replace operation. The function fK denotes the MAC.
The inputs τ1, τ2, τ3 give the tag τ . After replacing τ1 by τ4, the tag τ is updated with τ ′.

fit the independence of the disk sectors: as the sectors are modified indepen-
dently, we can imagine a root tag τ for the whole disk that is updated for
each sector modification without recomputing the root tag from scratch.

A disk is a fixed number of sectors, and local tags depend on the sector
number so having an incremental MAC regarding the replace operation only
is sufficient. The chaining Xor-Scheme [6, 36], Xor-MAC [7], GMAC [37] and
Merkle tree [6] are incremental MACs. These algorithms use a keyed function
fK

6 and, they are compared in Table 1 with regard to the computational time
of their tag generation algorithm, the replace update operation, and the tag
verification algorithm. The table gives the number of calls to fK for a disk
composed of n sectors which means that the input of the tagging algorithm
is the concatenation of the sector local authentication tags. In the following,
log is for binary logarithm. For n inputs, the Xor-Scheme and the Xor-MAC
have a constant time replacing operation (respectively 4 and 2 calls to fK)
and the storage cost is only a tag size (their description can be found in
Appendix A.). The main drawback is the verification cost: to verify the
authenticity of 1 sector tag; it requires n calls to fK . Merkle tree is the only
incremental scheme that has the locality property and a trade-off between
replacing and verifying operation delays. The counterpart is that it requires
more storage space, but it is not necessary to store the entire tree. In the
next section, the Merkle tree storage will be discussed in detail.

4.3. Merkle Tree

A Merkle tree is an authentication data structure where leaves are the
values to protect, and each node is the MAC of the concatenation of its

6To be more precise, fK is a pseudo-random function.
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Tag Replace Verify Storage L
Chaining XS n 4 n 1 N

Xor-MAC n+ 1 2 n+ 1 1 N
Merkle tree n log(n) log(n) n Y

Table 1: Operation and Storage costs of incremental MACS for n-block input. The column
L is for Locality property.

children. In the following, Merkle trees are binary trees which means that
each node is the MAC of its two children. This construction is used to ensure
data authenticity at block level [43, 30, 28, 2], in cloud storage context [29, 13]
and at file level [47] due to its incremental and locality properties.

n′

m

0

Figure 9: Perfect Merkle tree of n′ levels. Nodes of level m only are stored (m ≤ n′).

For a disk of n sectors, Merkle tree leaves are the n local tags where
n = 2n′

.
This estimation is given for a perfect binary tree; the number of actual data
is 2n where n is an integer. In this paper, all the Merkle tree storage costs
are computed according to a number of leaves (tags) equal to a power of 2
e.g. where n = 2n′

. Let L be the output size of the MAC algorithm fK used
to compute the Merkle tree nodes. Then storing an entire Merkle tree takes
(2n′ − 1)L bits.
There are different memories where it can be stored: the SM, the disk, and
the RAM. But in any case, a copy of the trusted root has to be stored in the
SM. This value must not be tampered with in order to recompute the path
from the sector local tag to the root and check the obtained root and the
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stored one. To simplify the analysis, we distinguish two ways of storing the
tree: either it is entirely stored in the same memory which is said to be a
stand-alone storage, or the tree is split into different memories which is said
to be an hybrid storage. It is possible to store some strategic nodes and to
recompute the corresponding subtrees when needed.

Nowadays RAM modules can store a large amount of data; typically
between 4 GB and 16 GB. In addition to current computation data, the
RAM could store a part of the Merkle tree. In the following, an estimation
of the update/verify times of a sector and the storage cost in the different
memories is given depending on the storage configurations. Some of the
following solutions are suitable for disk protection but once again it depends
on the device: for a laptop, the disk size is in the range of gigabyte or terabyte,
the RAM size is rarely larger than 32 GB, and is in average around 8 GB.
The secure memory is usually only a few kilobytes. The access latencies
of the different memories are also a parameter to take into account.

Cost S∅,∅tree S∅,∅tags S∅,∅root Stree,∅
root S∅,treeroot Stree,tree

root

Up/Ver n′ 1 2n′ − 1 n′ n′ n′

RAM - - - 2n′ − 1 - 2n′ − 1

Disk 0 0 0 0 2n′ − 1 2n′ − 1

SM 2n′ − 1 2n′
1 1 1 1

Table 2: Estimation of Stand-alone storage of Merkle tree with n actual data sectors where
n = 2n

′
. Up/Ver stands for update and verify cost.

Stand-alone Storage:.
Table 2 gives 5 possibilities for Merkle tree storage where it is entirely

stored in the SM, the RAM, or the disk. We denote them Sb,c
a where a denotes

what is stored in the SM, b what is stored in the RAM and c what is stored
in the disk.

• S∅,∅tree: The entire Merkle tree is stored in the SM and for each read and write
operation, the update/verify operation on the Merkle tree costs n′ calls fK .
This solution does not use disk and RAM storage but the update/verification
has a reasonable cost. If it is possible to store 2n′ − 1 tags then it should be
possible to store 2n′

which corresponds to solution S∅,∅tags. In this case, all the
local tags can be stored in the SM and as it is assumed that this memory is
tamper-proof, the global authentication scheme is no longer needed: the local
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tags are stored directly in SM. Then the Merkle tree is no longer needed.
If the SM is big enough, this solution should be considered otherwise the
following possibilities, where only a small value (the root) is stored in SM,
are more suitable.

• S∅,∅root: The only value stored is the Merkle tree root and it is stored in the
SM. The storage on the disk, the SM, and the RAM is minimized but the
update/verify cost is the worst: the entire Merkle tree has to be recomputed
for each update/verify operation. For this reason, this solution seems to be
unsuitable for disks.

• Stree,∅
root : This solution considers a context where the RAM is big enough to

store the entire Merkle tree and operates in rated conditions. The access
time to Merkle tree nodes in the RAM is smaller than in the disk but the
counterpart is that the Merkle tree will not be maintained when the system
is switched off. It has to be recomputed each time the system is switched
on. This solution could be interesting if saving disk storage is a priority. In
fact, it stores only the root in SM and no additional data in the disk. The
update/verify operation cost is reasonable but a re-computation delay due
to the volatility of the RAM is added.

• S∅,treeroot : This solution has the same settings as Stree,∅
root except that the Merkle

tree is not stored in RAM but in the disk. It has the advantage to remove
the re-computation delay but this time the additional storage in the disk is
the entire Merkle tree size. Moreover, the time to read and write a node will
be larger as it is stored in the disk. Unsurprisingly, this solution could be
implemented in an optimized manner by some developers as solution Stree,tree

root .

• Stree,tree
root : This solution combines solutions Stree,∅

root and S∅,treeroot : the tree is stored
in the disk and also in the RAM. Each time the device is switched on,
the Merkle tree is copied from the disk to the RAM which avoids the re-
computation delay of solution Stree,∅

root . This solution is the most efficient from
a speed point of view.

For a reasonable amount of data, solution S∅,∅tags can be considered for
cloud storage as few gigabytes can be stored on the client-side but it seems
unpractical for a stand-alone disk. Solution Stree,tree

root stores only the root in
the SM and is the quickest solution described above which makes it the most
suitable for a stand-alone disk.
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Discussion. Table 3 gives the Merkle tree storage cost in RAM, in the disk,
and in the SM with the same settings as in section 4.1. As explained in
the analysis of S∅,∅root, the update and verify operations cost a large amount
of calls to the function fK . The same problem will emerge each time the
device is switched on for solution Stree,∅

root due to storage in RAM. Solutions
S∅,∅tree and S∅,∅tags are not suitable for the rather small-sized SM we discussed in
section 4.2. Unsurprisingly, solution Stree,tree

root seems to be the most suitable
for disk protection. In these settings, 8 GB are needed to store local tags
and 8 GB for global storage then for solutions S∅,treeroot and Stree,tree

root , the FADE
mechanism costs 1,5% of the entire disk.

Cost S∅,∅tree S∅,∅tags S∅,∅root Stree,∅
root S∅,treeroot Stree,tree

root

Up/Ver 28 1 268435455 28 28 28
RAM - - - 8 GB - 8 GB
Disk 0 0 0 0 8 GB 8 GB
SM 8 GB 8 GB 32 B 32 B 32 B 32 B

Table 3: Estimation of Stand-alone storage of Merkle tree where n = 228 and L = 32
Bytes

Hybrid Storage:. Table 4 presents variants where the Merkle tree nodes
of level m, where m ≤ n′, are stored. We denote them Hb,c

a where a denotes
what is stored in the SM, b what is stored in the RAM and c what is stored
in the disk.

The performance depends on the choice of m (see Tab. 4). The optimum
value of m depends on many factors: the disk, the SM and the RAM sizes, the
CPU, the cryptographic algorithms etc. Due to this variety of factors, this

Cost H∅,toproot H∅,∅level-m H∅,subtreeslevel-m Hsubtrees,∅
level-m Hsubtrees,top

root

Up/Ver 2n′−m − 1 +m 2n′−m − 1 n′ −m n′ −m n′

RAM - - 2n′ − 2m+1 - 2n′ − 2m+1

Disk 2m+1 − 1 0 0 2n′ − 2m+1 2m+1 − 1
SM 1 2m 2m 2m 1

Table 4: Estimation of Hybrid storage of Merkle Tree with n actual data sectors where
n = 2n

′
and m ≤ n′. Up/Ver stands for update and verify cost.
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analysis is only theoretical: it provides insights about the main tendencies
of each implementation strategy. It would be nonetheless interesting to test
these solutions in different devices to adjust the level m and compare their
real performances.

• H∅,toproot : This solution minimizes the storage in SM by storing the Merkle tree
root only. The top of the Merkle tree, from the root to level m, is stored in
the disk. For each update/verify operation, recomputing the corresponding
subtree costs 2m − 1 calls to fK and the update/verify of the top of the tree
costs m calls to fK . If a verification fails, it will not be possible to find
exactly which sector was tampered with, in the best case, only the node at
level m can be given as an information to the user.

• H∅,∅level-m: The nodes at the level m are stored in the SM. Here, these nodes do
not need data authenticity check, they are assumed to be authentic as they
are stored in the SM. For each update, the needed subtree is recomputed
which costs 2n′−m − 1 calls to fK . Here, the SM has to store 2mL bits.
Depending on the value m and the SM size, it might be possible for a disk.
For instance, if the SM can store 1 MB and the L = 256 bits then the
maximum value of m is 12.

• H∅,subtreeslevel-m : The nodes of the level m are stored in the SM and the m sub-
trees are stored in the RAM. Each update operation costs going through
the subtree, which requires n′ − m calls. Storage in the RAM involves a
re-computation time when the device is switched on.

• Hsubtrees,∅
level-m : The nodes of the level m are stored in the SM and all the subtrees

are stored in the disk. Unlike, the previous solution, accessing tree nodes in
the disk takes more time.

• Hsubtrees,top
root : The Merkle tree is split between all the memories: the root in

SM, the top in the disk and the corresponding subtrees in the RAM. Because
of the RAM storage, a delay is added each time the device is switched off.
The update/verify time is acceptable.

Solution H∅,toproot seems to be the most suitable for disk encryption, the SM
storage is reduced to the Merkle tree root, the upper part is stored in the
disk and some layers have to be recomputed. These solutions seem to remain
acceptable for disk encryption as long as the value m gives decent storage
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Cost H∅,toproot H∅,∅level-m H∅,subtreeslevel-m Hsubtrees,∅
level-m Hsubtrees,top

root

Up/Ver 8207 8191 13 13 28
RAM - - 8 GB - 8 GB
Disk 2 MB 0 0 8 GB 2 MB
SM 32 B 1 MB 1 MB 1 MB 32 B

Table 5: Evaluation of the Hybrid storage of Merkle tree with n = 228, m = 15, L = 32
Bytes.

cost in the SM and also in the RAM. Solutions, where update/verify time is
minimized, seem to be better as this latency has a direct impact on the disk
performance.

Discussion. Table 5 gives an estimation for the value m = 15 with the
same settings than in the discussion for stand-alone storage. The value m
was chosen to have a maximum storage in SM equal to 1 MB. We can note
that the update and verification time is shorter for solutions H∅,subtreeslevel-m and

Hsubtrees,∅
level-m whereas it is quite long for solutions H∅,toproot and H∅,∅level-m. Storage

in RAM in solutions H∅,subtreeslevel-m and Hsubtrees,top
root adds a re-computation delay

that should be limited as much as possible. Solution Hsubtrees,∅
level-m seems to be

the best solution if the SM can store 1 MB otherwise Hsubtrees,top
root has to be

considered. The storage cost of the entire FADE mechanism for Hsubtrees,∅
level-m is

close to solutions S∅,treeroot and Stree,tree
root , it represents about 1,5% of the disk but

the update and verify time is better.

Cost H∅,toproot H∅,∅level-m H∅,subtreeslevel-m Hsubtrees,∅
level-m Hsubtrees,top

root

Up/Ver 32 7 3 3 28
RAM - - 6 GB - 6 GB
Disk 2 GB 0 0 6 GB 2 GB
SM 32 B 1 GB 1 GB 1 GB 32 B

Table 6: Evaluation of the Hybrid storage of Merkle tree with n = 228, m = 25, L = 32
Bytes.

In section 4.2, the SM was limited to a few megabytes and corresponds to
realistic figures of the current state-of-the-art of Secure Elements. Other tech-
nologies embedding more secure memory have raised industry attention in

25



the last years. Examples of such solutions are those belonging to the Trusted
Execution Environment (TEE) ecosystem, with TrustZone, Intel SGX, and
so on. In the TEE paradigm, a Secure Element is “emulated” in the form
of a sandboxed execution mode (the “Secure World”) of a general-purpose
processor, yielding more computing power and storage space when compared
to classical Secure Elements. Even though the storage space of such a solu-
tion is usually shared with the so-called “Non Secure World”, more and more
SoC vendors embed non-volatile memory dedicated to the TEE with hard-
ware security isolation insurance. In such components, the SM considered
in our models could reach hundreds of megabytes to gigabytes of internal
storage, and Table 6 gives figures in a case where 1 gigabyte can be stored in
the SM. Software implementations of FADE using TEE as an SM have been
proposed in [28]: the Secure Block Device Library (SBDL) uses CMAC and
Merkle trees to bring confidentiality and integrity to Trusted Applications
data at-rest storage. Temporal integrity is ensured whenever the underly-
ing SoC provides physical secure storage with non-tampering properties: the
Merkle tree root, as well as the master encryption key, are then stored inside
it.
In Tables 2, 3, 4, 5 and 6, the path of the Merkle tree (or a part of it for hybrid
storage) stored explicitly in RAM is updated and verified for each read and
write operation. As attacks in RAM are out of scope, the verification path can
be omitted to speed up the read operation of a sector. Doing so for the write
operations is more tedious: after some number of writes, several paths in the
tree are updated. These updates lead to refreshing the tree in SM (which can
be reduced to the root or more nodes depending on the chosen solution) just
before powering down the device. In case of failure (device out of battery for
instance), updating the tree in SM is essential, otherwise, the integrity check
will fail for all the sectors lately updated. Hence, this optimization seems
suitable for SEDs embedding emergency batteries, leaving enough time to
perform such updates.

5. Conclusion

Today, products implementing disk encryption are widespread. Most of
them use the classical FDE mode of operation, namely XTS. Adding efficient
data authenticity in the strong model (FADE) with tight constraints is an
important yet unsolved practical challenge. Developers and researchers have
begun to address it since a few years with preliminary solutions (see figure
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Protection Name Description
FDE Bitlocker[20] Elephant diffuser

AES-CBC-ESSIV encryption
Veracrypt[3] AES-XTS (or other encryption

algorithms with XTS mode)
dm-crypt[1] AEC-CBC-ESSIV or AES-XTS
FileVault[15] AES-XTS
CRYHOD[44] Proprietary

ADE GELI[17] Per sector metadata
Data+tag in 8 sectors (4096 bytes)
8+1 native sectors used

dm-integrity[11] Arbitrary-sized metadata per sector
(tweakable)

FADE SBDL[28] Configurable AEAD+CMAC+Merkle tree
Trusted storage (in TEE) usage for
root hash and key

dm-x [13] Configurable AEAD+Merkle tree
Trusted storage (trusted VM, TPM)

StrongBox [19] Configurable AEAD+Merkle tree
Trusted storage (TEE)

Table 7: Implementations with their security level

7). The global authentication mechanism is new from a cryptographic per-
spective, and the question is whether we can do better than Merkle trees.
From an architectural point of view, the introduction of a secure memory in
laptops as well as in smartphones seems to be a strong requirement to have
global authentication. This is out of scope in this paper, but there is a cru-
cial question for the deployment of FADE solutions: when secure memory are
available, are they accessible to standard FADE software for embedding au-
thentication data (such as a root of a Merkle tree), or are they kept private
to manufacturers proprietary implementations? The next challenging step
would be to implement FADE mechanisms with the Merkle tree in different
devices with different configurations: stand-alone storage, hybrid storage,
and in this case we should find the trade-off for the value m.
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Appendix A. Incremental MACs

Here is the description of two incremental MACs : the Xor-MAC and the
Xor-Scheme (the fixed version). These constructions are of interest due to
their incremental properties: once computed, a tag can be updated efficiently.

Notations. we let {0, 1}∗ denote the set of finite binary strings.
A pseudorandom function family (PRF) is a function family which behaves
like a random function for a computationally bounded adversary (e.g., input
and output behavior).
The description of cryptographic scheme CS is given as a tuple

CS := (A,B, . . . ,C)

where each element can be a parameter of the scheme or an associated al-
gorithm. The notation CS.A refers to the parameter or algorithm A of the
scheme CS.

Appendix A.1. Description of the Xor-MAC

There are two versions of the XMAC construction: the random based one
denoted XMAC-R and the nonce (or counter) based one denoted XMAC-C
depending on how the value v is defined.
Then XMAC is defined as follows

XMAC-C/R = (KS,BS,DS,NS/RS, kg, tag, upd, ver).

• The XMAC construction is based on a pseudorandom function family
F = (KS,Dom,Rng, eval) such that F : F.KS × F.Dom → F.Rng. It
follows that F.Dom = {1} × {0, 1}p × XMAC.BS where {0, 1}p is the
position space and F.Rng = {0, 1}t` where t` is the tag size.

• The key generation algorithm XMAC.kg is a (probabilistic) algo-
rithm that takes no input and returns a key K ∈ XMAC.KS such that
XMAC.KS = F.KS.

• The tagging algorithm XMAC.tag1 takes as inputs the key K ∈
XMAC.KS, a document m ∈ XMAC.DS and outputs a tag t. A value v
prepended by the bit 0, such that v ∈ XMACR.RS for the randomized
version and such that v ∈ XMAC.NS for the counter-based version, is
given as input to F and each document block mi ∈ XMAC.BS prepended
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by 1||i is given as input to the pseudorandom function FK then the sum
of the corresponding outputs τ and the value v is returned as the tag
t = (v, τ).

• The Verification algorithm XMAC.ver takes as inputs the key K ∈
XMAC.KS, the document m and the tag t = (v, τ). It re-computes the
value τ from the inputs m and v then it returns true if this value is
equal to the input t and false otherwise.

• The Update algorithm XMAC.upd takes as inputs the key K ∈
XMAC.KS, the document m, the operation op ∈ OpCodes such that
OpCodes = {R, I, D}, the set of argument arg and the tag t. The
argument arg is composed by the position i where the block value
has to be inserted, deleted or replaced and the new document block
x ∈ XMAC.BS for the insert and delete operations or ε if it is a delete
operation: arg = 〈i, x〉. The I and D operations can be performed only
for the last position: as each document block is processed with it block
position, it is not possible to insert or delete a block efficiently.

FK FK FK FK FK

t

0||v 1||1||m1 1||2||m2 1||3||m3 1||n||mn

h0 h1 h2 h3 hn

. . .

Figure A.10: Description of the XMAC where v is a random value or a nonce.

Appendix A.2. Description of the Xor-Scheme

The XS is a probabilistic scheme, we have a random space XS.RS from
which the random data blocks are randomly sampled. It is defined as follows:

XS = (KS,BS,DS,RS, kg, tag, upd, ver).

• XS is based on a pseudorandom function family F = (KS,Dom,Rng, eval)
such that F : F.KS × F.Dom → F.Rng. It follows that F.Dom =
XS.RS2 × XS.BS2 and F.Rng = {0, 1}t` where t` is the tag size.
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• The key generation algorithm XS.kg is a probabilistic algorithm
that takes no input and returns a key K ∈ XS.KS such that XS.KS =
F.KS2.

• The tagging algorithm XS.tag takes as inputs the key K ∈ XS.KS,
a document m ∈ XS.DS and outputs a tag t := (r, t). Similarly to
the XS scheme, for each document block mi ∈ XS.BS, a random block
value ri ∈ XS.RS is randomly sampled and its bit length is denoted
XS.rl. The concatenation of these values is denoted Ri := mi||ri. Each
couple (Ri−1, Ri) is processed by the function FK1 . The concatenation
of the last value Rn and the number of blocks n encoded as an `-bit
block is processed by a pseudorandom permutation function FK2 with a
different key K2. Then the output values denoted hi are bitwise Xored
to give the value t.

• The Update algorithm XS.upd takes as inputs the key K ∈ XS.KS,
the document the operation op ∈ OpCodes where OpCodes = {I, D},
the set of argument arg and the tag t. The argument arg is composed
by the position i where the block value has to be inserted or deleted
and the new document block x ∈ XS.BS to insert or ε if it is a delete
operation: arg = 〈i, x〉.

• The Verification algorithm XS.ver takes as inputs the key K ∈
XS.KS, the document m and the tag t := (r, t). It re-computes the
value τ from the inputs r and m. It returns true if this value is equal
to the input t and false otherwise.

FK1 FK1 FK1 FK1 FK2

t

nm0 m1 m2 m3 mn-1

h1 h2 h3 h4 hn

r0 ||

R0

r1 ||

R1

r2 ||

R2

r3 ||

R3

rn-1 ||

Rn-1

rn ||

Rn

. . .

. . .

Figure A.11: Description of the fixed Xor-Scheme

30



References

[1] dm-crypt: Linux device-mapper crypto target, https://gitlab.com/

cryptsetup/cryptsetup/-/wikis/DMCrypt, 2020.

[2] dm-verity: Linux device-mapper block integrity checking target, https:
//source.android.com/security/verifiedboot/dm-verity, 2020.

[3] Veracrypt, https://www.veracrypt.fr/en/Home.html, 2020.

[4] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, Garth R. Goodson, and Bianca Schroeder, An analysis
of data corruption in the storage stack, TOS 4 (2008), no. 3, 8:1–8:28.

[5] Hagai Bar-El, Security implications of hardware vs. software crypto-
graphic modules, Discretix White Paper (2002).

[6] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser, Incremental cryp-
tography and application to virus protection, 27th Annual ACM Sym-
posium on Theory of Computing (Las Vegas, NV, USA), ACM Press,
May 29 – June 1, 1995, pp. 45–56.
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