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A bilinear systems approach with input saturation to control the
agreement value of multi-agent systems

Daniel R. Alkhorshid1, Eduardo S. Tognetti1 and Irinel-Constantin Morărescu2

Abstract— While reaching an agreement in multi-agent sys-
tems (MAS) can be ensured by enforcing some connectivity
properties between agents, the consensus depends on their
initial conditions and the network topology. In this context,
our main objective in this paper is to sway the consensus value
of multi-agent systems towards a desired value. The asymptotic
stability and maximization of the domain of attraction for
the bilinear model representing the opinion dynamics in the
presence of limited control action for a fixed and connected
network are investigated. By using algebraic graph theory and
linear matrix inequality (LMI), we provide sufficient conditions
guaranteeing the convergence of agents toward the desired
consensus. Furthermore, examples illustrate the effectiveness
of the proposed method.

I. INTRODUCTION

Multi-agent systems have a wide range of applications
such as robotic teams, power grids, telecommunication net-
works, biology and opinion dynamics. In the MAS setup the
agents have only a local limited view of the overall system,
which means that they design decentralized control actions
governing their behavior. The coherent behavior of the MAS
is often described in terms of consensus i.e., the agents reach
an agreement on certain variables of interest [1]–[4].

A very rich literature exists on the design of consensus
algorithms for agents with linear dynamics, for which the
behavior is well understood. In this setting, the literature
considers fixed and time-varying communication topologies
[5], [6], directed or undirected graphs [7], [8], synchronous
or asynchronous information exchange [9], [10], delayed or
immediate transmissions [2], [3], etc. It is not worthy that
in all these cases the resulted agreement value depends on
the initial conditions of the agents and the network topology
describing their interactions. While in some applications this
is convenient in some other such as power grids, traffic con-
trol or opinion dynamics, one needs to reach an agreement as
close as possible to a desired a priori fixed value. In this case
a supplementary centralized control action is required which
in many applications is subject to saturation and global cost
constraints.

In the last decade, many works focused on the consensus
problem with saturated inputs (see for instance [11], [12]) or
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global control effort constraints (see [11], [13], [14]).
In this work, we focus on reaching a desired consensus on

the network of interest by applying an external centralized
control action to it. One considers both saturated inputs
and the minimization of an overall cost corresponding to
the global effort/budget of the external entity to control the
agreement value. While different applications such as power
grids or platooning can be modeled in this setup, our main
motivation comes from the control of opinion dynamics over
social networks.

Emergence of consensus in social networks is a controver-
sial problem. Social studies pointed out that, in general, opin-
ions tend to converge one toward another during interactions.
Consequently, it is not surprising that consensus received a
particular attention in opinion dynamics literature [15], [16].
It is also worth noting that some of the first mathematical
models naturally lead to consensus [17], [18] while some
others lead to network clustering [4], [19], [20]. To enforce
consensus in social networks, some recent studies propose
the control of one or a few agents, see [21], [22].

Besides these methods of controlling opinion dynamics
towards consensus, we also find recent attempts to con-
trol the discrete-time dynamics of opinions such that as
many agents as possible reach a certain set after a finite
number of influences [23]. The closest work to the present
manuscript is [11] in which the authors consider a discrete-
time implementation (campaign influence) of the exogenous
control action trying to sway the agreement value toward a
desired one. Unlike [11] in this work we are considering
a continuous-time influence of the external entity, a time-
varying state dependent control input which is saturated and
a total budget/energy which is continuously spent over time.

From a practical point of view, the problem considered in
this manuscript is related to viral marketing in which sell-
ers attempt to artificially create word-of-mouth advertising
among potential customers. Social scientists and economists
have well established the effectiveness of this trend [24],
[25]. The control limitations imposed in the paper are related,
on the one hand, to the fact that sellers have a limited power
of influence on any potential customer and, on the other
hand, they have a fixed given budget to influence customers’
decisions. It is noteworthy that for simplicity, we consider
the topology of the network of interest is fixed, meaning
that the characteristics of each agent and the network itself
would not change during time. The model representing
the opinion dynamics is bilinear; hence an estimate of the
domain of attraction of the origin is obtained based on a local
quadratic Lyapunov function and its resulting (ellipsoidal)



level sets [26]. As the states belong to the positive orthant, we
propose a convex optimization problem, in terms of LMIs,
exploiting properties of positive systems [27] to maximize
the invariant region where the state trajectories must belong.
To deal with the state dependency in the design conditions,
we adopted the parametrization of the states as norm-
bounded uncertainties. This approach is more appropriate
than the polytopic approximation of the bilinear term [28]
when dealing with high-order systems (large number of
agents).

The paper is organized as follows. In section II we
introduce the main problem along with the network rules
and properties. Additionally, we introduce lemmas that are
essential for further developments. In section III, we propose
the main result of this paper in the form of a theorem and
its mathematical justification along with it. In section IV
we present two examples to display the effectiveness of the
proposed method. Finally, the conclusion is made at the
section V.

NOTATION

The space of real matrices with dimension n×m is denoted
by Rn×m, Rn

+ denotes the space of vectors of dimension n
with positive entries. For a matrix X , XT and X⊥ denote the
transpose of X and any matrix whose columns form a basis
for the null space of X , respectively. X(i) denotes the i−th
row. If X is square, X−1 denotes the inverse of X ; He{X}
stands for X +XT ; and X > 0 (X < 0) indicates that matrix X
is positive (negative) definite; X � 0 (X � 0) denotes all the
elements of X are positive (nonnegative). For a vector v∈Rn,
diag(v) = diag(v1, . . . ,vn) is a diagonal matrix composed
with the elements of v, and for a matrix X , diag(X) is
composed with the diagonal elements of X . The identity
matrix of order n is denoted by In and the null m×n matrix
is denoted by 0m,n (or simply I and 0 if no confusion arises),
1 stands for a vector of ones of appropriate dimension. The
symbol ? denotes symmetric blocks in partitioned matrices,
⊗ denotes the Kronecker product, L n

2 [0,∞) denotes the
space of square integrable vectors of n functions over [0,∞).

II. PRELIMINARIES

A. Problem formulation

In this work, we focus on the exogenous control of the
consensus value in multi-agent systems. The study is mainly
interpreted in term of opinion dynamics in social networks.
Consequently, in the sequel we assume that the agents repre-
sent individuals that form a social network interacting over
a fixed topology. The network is represented as a graph G in
which each agent corresponds to a vertex belonging the set
V = {1, . . . ,N} associated with the N agents. An edge (i, j)
in the graph indicates that agent j influences the opinion of
agent i. Let us also consider the associated adjacency matrix
A = [ai j] ∈ RN×N . The corresponding Laplacian matrix is
L = [li j] ∈RN×N defined by{

lii = ∑
N
j=1 ai j, ∀i = 1, . . . ,N

li j =−ai j if i 6= j,
(1)

where ai j 6= 0 means that agent i is influenced by agent j and
ai j = 0 otherwise. For every agent i ∈ V we assign a time
varying opinion xi(t) described by a scalar value normalized
between 0 and 1, i.e., xi(t) ∈ [0,1]. We consider that each
opinion changes in time under the endogenous influence of
neighbors’ opinions on one hand, and exogenous control
(persuasion) action of an external influencer.

In the sequel, d ∈ {0,1} represents the opinion promoted
by the external entity/influencer. The evolution in time of the
states/opinions is described by the following dynamics:

ẋi(t) =
N

∑
j=1

ai j(xi(t)−x j(t))+(xi−d)ui(t), ∀i∈ {1, . . . ,N},

where ui(t)∈ [−ū, ū], ū∈ (0,1) is a finite energy and bounded
exogenous control action.

Here, we consider the desired opinion as extreme values of
individual opinion, meaning expected binary behaviors (con-
sume/ not consume, agree/ disagree, etc). Most problems can
be put in this classification, while the case of intermediate
desired opinion d ∈ (0,1) (moderate consuming, for instance)
is left for future researches. It is noteworthy that the rate of
changes in every agent’s opinion relies on both the granted
budget Ju and their original opinion x0(t). The granted budget
here embodies the limited bound of the control action to
reach the desired opinion. It is evident that in real-world
situations, not all agents are tempted equally (in a uniform
manner) by the external control action [11].

Assumption 1 We suppose that the graph G representing
the social network is weakly connected in the sense that it
contains a directed spanning tree (i.e. a directed graph in
which, except the root which is not influenced, each node is
influenced by a single other node called parent).

Lemma 1 ( [29]) Under Assumption 1 L has 0 as a simple
eigenvalue associated with the right eigenvector 1∈RN , that
is, L1= 0. All the other N−1 eigenvalues of L have positive
real parts.

Let x(t) = (x1(t), . . . ,xN(t))T ∈RN and u(t) = (u1(t), . . . ,
uN(t))T ∈ RN be the vectors collecting the states and the
control input of all agents. The collective dynamics is then
described by

ẋ(t) =−Lx(t)+B(x(t)−1d)u(t) (2)

where the function B(·) : RN → RN×N is given by B(x) =
diag(x1,x2, . . . ,xN). We define the set of admissible values
of the states as

χ = {x ∈RN : xi(t) ∈ [0, 1], i = 1, . . . ,N}. (3)

Let us define xdi(t) = xi(t)−d and xd(t) = x(t)−1d. From
Lemma 1, the system (2) is rewritten as

ẋd(t) =−Lxd(t)+B(xd(t))u(t) (4)

where xdi ∈ [−d, 1− d], i = 1, . . . ,N. For d = 1, one has
xdi ∈ [−1, 0]. In the solution proposed in this paper, the case



d = 1 is symmetric of d = 0, then we adopt hereafter, without
loss of generality, d = 0 and xd = x.

The following problem is addressed in this work.

Problem 1 To design a control law ui that solves the fol-
lowing optimization problem.

min
u(t)

Jx =
∫

∞

0
x(t)T Rx(t)dt (5)

subjected to

|ui(t)| ≤ ū (6)

Ju =
∫

∞

0
u(t)T Qu(t)dt < µ (7)

where ū and µ are given specifications, R and Q are positive
definite matrices. The matrix Q penalizes the control effort
required for synchronization. The conditions (6)–(7) repre-
sent constraints in the amplitude and in the energy of the
control signal, respectively.

In simple language, when a system (for example an anti
smoking campaign) is interested in encouraging the targeted
social network (for example young population) to agree on a
desired opinion (a behavior), it attempts to sway the network
consensus as close as possible to the desired consensus (5),
by using a granted budget which could be interpreted as a
limited and bounded control action (6)–(7).

Finally, observe that the functions Jx and Ju can be
rewritten as

∫
∞

0 z(t)T z(t)dt and
∫

∞

0 y(t)T y(t)dt, respectively,
where

z(t) = R
1
2 x(t)

y(t) = Q
1
2 u(t).

(8)

B. Representation of the bilinear term and saturation model

The constraint (6) can be incorporated in the dynamics
as u(t) = sat(v(t)) using the standard decentralized satura-
tion function sat(v(`)) = sign(v(`))min(|v(`)|, ū), `= 1, . . . ,N,
where v is an unbounded control signal to be designed. Then,
one has

ẋ(t) =−Lx(t)+B(x(t))sat(v(t)). (9)

System (9) can be rewritten using the decentralized dead-
zone nonlinearity ψ(v) = v− sat(v)

ẋ(t) =−Lx(t)+B(x(t))v(t)−B(x(t))ψ(v(t)). (10)

We describe the bilinear product in (10) for x ∈ χ using a
norm-bounded uncertainty, that is,

B(x) = B0 +B1∆(t), (11)

with B0 = B(0.51), B1 = 0.5, and ∆(t) =
diag(δ1(t), . . . ,δN(t)) ∈RN×N , where δi(t), i = 1, . . . ,N, are
bounded Lebesgue measurable uncertainties belonging to
the set

D = {δ ∈R : δ (t)T
δ (t)≤ 1}.

Let us consider the following state feedback control law

v(t) = Kx(t), K = diag(k1, . . . ,kN) ∈RN×N . (12)

With the diagonal structure of the gain K, we impose the
control action of each agent vi to only depend on its opinion
xi. The closed-loop system formed by (8), (10) and (12) is
given by

ẋ(t) = (−L+(B0 +B1∆(t))K)x(t)

− (B0 +B1∆(t))ψ(Kx(t)) (13a)

z(t) = R
1
2 x(t) (13b)

y(t) = Q
1
2 Kx(t)+Q

1
2 ψ(Kx(t)). (13c)

Observe that the controllability matrix formed from the
pair (−L,B(x)) of system (9) loses rank for x = 0 and
the system (9) becomes uncontrollable. To circumvent this
problem, we consider the interval xi ∈ [ε,1], where ε is a
positive scalar arbitrarily small, in the modeling of B(x) in
(11). This implies B0 = B((0.5+ ε)1) and B1 = 0.5.

Let us finish this section with the following lemmas which
are instrumental for further developments.

Lemma 2 (Petersen’s Lemma [30]) Let G = GT ∈ Rn×n,
M ∈Rn×p, and N ∈Rq×n be given matrices. For all ∆(t) ∈
Rp×q such that ∆(t)T ∆(t)≤ I, the inequality

G+M∆(t)N +NT
∆(t)T MT ≤ 0

holds if and only if there exists a scalar λ > 0 such that

G+λMMT +
1
λ

NT N ≤ 0.

Lemma 3 ( [31]) Consider a matrix G ∈ RN×N and define
the region

Π =
{

x ∈ RN : |vi−Gix| ≤ ū, i = 1, . . . ,N
}
. (14)

If x⊆Π then the following relation holds

ψ(v)T T (ψ(v)−Gx)≤ 0 (15)

for any matrix T ∈ RN×N diagonal and positive definite.

As detailed in the next section, the definition of positive
systems will help construct the invariant region to which the
initial conditions must belong.

Definition 1 ( [27]) The system ẋ(t) = Ax(t) is called posi-
tive (Metzlerian) system if for every initial condition x(0) ∈
Rn

+, the states satisfy x(t) ∈Rn
+ for t ≥ 0.

Lemma 4 ( [27]) The system ẋ(t) = Ax(t)+Bu(t) is posi-
tive if and only if A is a Metzler matrix, that is, A(i j) ≥ 0 for
i 6= j, and B� 0.

III. MAIN RESULTS

In this section we present the main conditions to design the
control law (12) and solve Problem 1. The control strategy
must assure the trajectories to remain in χ and Π, where
(15), used in the design conditions, holds. In other words, one
must find an invariant region S such that if x(0) ∈S , then



x(t) ∈ χ ∩Π for all t ≥ 0. We adopt the following candidate
region for S :

S :=
{

x ∈ RN
+ : xTW−1x≤ 1, W =W T > 0

}
. (16)

In general, S is not invariant even if V (t) = xTW−1x is
a Lyapunov function for the closed-loop system. Moreover,
inclusion conditions for S ⊂ χ are not easy to obtain.

Consider the following level curve of the Lyapunov func-
tion V (t) = x(t)TW−1x(t),

Sa :=
{

x ∈ RN : xTW−1x≤ 1, W =W T > 0
}
. (17)

The set Sa can be obtained straightforwardly from stability
conditions however the ellipsoid region is centered in the
origin meaning Sa * χ , that is, even for x(0) ∈Sa∩χ ∩Π

the trajectories could try to escape from χ . To solve this
problem we first propose an augmented space χa defined as

χa = {x ∈RN : xi(t) ∈ [−1, 1], i = 1, . . . ,N}, (18)

where Sa is contained, that is Sa ⊆ χa. Observe that χa
is symmetric in all orthants in the state space allowing the
maximization of Sa ∩ χ . Finally, we propose to design the
control law (12) such that the closed-loop system is positive
(see Definition 1). Note that, −L is a Metzler matrix and
B(x)� 0 for all x ∈ χ , then, according to Lemma 4, system
(2) is positive. Therefore, the set S is invariant. Fig. 1
illustrate sets χ , χa, S , Sa and a trajectory x(t).
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Fig. 1: Sets χa (black dashed box), χ (red box), S (gray
region), Sa (blue curve), and trajectory x(t) (bold blue line).

The control input energy/budget constraint (7) can prevent
the trajectories from initial conditions belonging to S to
reach the origin. From a practical point of view, making
all individual opinions converge to the desired opinion can
be costly and budget constraints will lead the opinions to
converge to a value different from d. Therefore, we propose
a method to find an invariant region Su ⊆S such that for
all x(0) ∈ Su there is enough budget Ju < µ to make all
opinions reach the origin. We also propose a method to limit
investments (u = 0) for all initial opinions belonging to S \
Su when the budget µ is reached.

We can reformulate Problem 1 as:

Problem 2 To design a state feedback gain K such that the
closed-loop system (13) is positive and to find

(i) an estimation of the domain of attraction S ⊂ (χ ∩Π)
such that for all initial conditions x(0) ∈S , the trajec-
tories of the closed-loop system converge exponentially
toward the origin with guaranteed cost Jx for all δi(t)∈
D and |ui(t)| ≤ ū;

(ii) an estimation of a region Su such that for all initial
conditions x(0)∈Su∩S , the trajectories of the closed-
loop system converge exponentially toward the origin
with guaranteed cost Ju < µ for all δi(t) ∈ D and
|ui(t)| ≤ ū;

(iii) a control law to limit investments (u = 0) for all initial
opinions belonging to S \Su when the budget Ju = µ

is reached.

For the following results, the polyhedral set χa is repre-
sented by

χa =
{

x ∈ RN : Ωx≤ 1,
}

(19)

where Ω = IN⊗
[
−1 1

]T ∈ R2N×N , 1 ∈ RN , and 0 ∈ χa.
As methodology, following ideas presented in [11] where

the maximum possible investment is used as soon as possible
to minimize a cost function related to the convergence of x,
we first present a result that solves (5)–(6) (Problem 2 (i)).
After that, we propose an stability analysis condition that
provides Lyapunov level curves that are upper bounds for
the guaranteed cost Ju solving Problems 2 (ii) and (iii).

Theorem 1 Suppose that there exist diagonal positive def-
inite matrices W ∈ RN×N and S ∈ RN×N , a diagonal matrix
Z ∈RN×N , a matrix Y ∈RN×N , and a scalar λ > 0, such that
the following inequalities hold:

He{−LW +B0Z}+λ I ? ? ?
SBT

0 +Y −2S ? ?
W 0 −R−1 ?
Z S 0 −4λ I

< 0 (20)

[
W ?

Ω(i)W 1

]
≥ 0, ∀i = 1, . . . ,2N (21)

[
W ?

Z(i)−Y(i) ū2

]
≥ 0, ∀i = 1, . . . ,N. (22)

Then, the state feedback gain K = ZW−1 makes the closed-
loop system (13a) asymptotically stable with S ⊆ χ ∩Π

the estimation of the domain of attraction of the origin with
guaranteed cost Jx ≤ x(0)TW−1x(0) .

Proof: First, consider the closed-loop system (13) and
the Lyapunov function V (t) = x(t)TW−1x(t). The integral
from 0 to ∞ of

V̇ (t)+ z(t)T z(t)< 0, ∀x ∈ χ, (23)

implies Jx < V (0). Condition (23) is equivalent to V̇ (t) <
−cx(t)T x(t), for c the maximum eigenvalue of R, and thus
it verifies the exponential stability of the origin.

Using Lemma 3, the inequality (23) holds if V̇ (t) +
z(t)T z(t)−2ψ(v(t))T T ψ(v(t))+2ψ(v(t))T T Gx(t)< 0, and,



considering (13) with B(x) = B0+B1∆(t), the last inequality
is rewritten as[

x
ψ(v)

]T [He
{
−W−1L+W−1B(x)K

}
+R ?

B(x)TW−1 +T G −2T

]
[

x
ψ(v)

]
< 0.

By pre- and post-multiplying the previous inequality by
diag(W,T−1), one has[

He{−LW +B(x)Z}+W T RW ?
SB(x)T +Y −2S

]
< 0,

where Z = KW , S = T−1, and Y = GW . Using the Schur
complement lemma, one hasHe{−LW +B(x)Z} ? ?

SB(x)T +Y −2S ?
W 0 −R−1

< 0.

For all x ∈ χ we can replace B(x) by (11) in the above
inequality yieldingHe{−LW +B0Z} ? ?

SBT
0 +Y −2S ?
W 0 −R−1


+He


∆

0
0

0.5
[
Z S 0

]< 0.

Applying Lemma 2 for ∆(t) = diag(δ1(t), . . . ,δN(t)), δi(t) ∈
D , and the Schur Complement, we recover (20).

Observe that (21) is equivalent to[
W−1 ?
Ω(i) 1

]
≥ 0,

which implies (see [32]) that Sa ⊆ χa and, consequently,
S ⊆ χ .

Finally, by pre-and-post multiplying inequality (22) by
diag(W−1, I), one has[

W−1 ?
K(i)−G(i) ū2

]
≥ 0

Considering the set Π in Lemma 3 and Sa in (17), the above
inequality verifies Sa ⊆Π [33] and S ⊆Π.

Conditions of Theorem 1 are sufficient for the exponen-
tial stability of the closed-loop system (13a). However, it
does consider the energy (budget) constraint in the con-
trol input (7). Additionally, the Lyapunov function V (t) =
x(t)TW−1x(t) with W obtained by Theorem 1 does not
provide Su and a condition that guarantees Ju < µ for all
x ∈ S . We propose the following result to compute level
curves associated with the control input energy Ju and solve
Problems 2 (ii) and (iii).

Theorem 2 If there exist diagonal positive definite matrices
P ∈ RN×N and S ∈ RN×N , a matrix Y ∈ RN×N , and a scalar

λ > 0, such that the following inequalities hold
He{−LP+B0KP}+λ I ? ? ?

SBT
0 +Y −2S ? ?
KP S −Q−1 ?
KP S 0 −4λ I

< 0,

(24)
then, the closed-loop system (13a) has guaranteed cost Ju ≤
x(0)T P−1x(0).

Proof: Considering the Lyapunov function V (t) =
x(t)T P−1x(t), the integral from 0 to ∞ of V̇ (t)+y(t)T y(t)< 0
with respect to the closed-loop system (13a) implies Ju <
V (0). The rest of the proof follows the same lines of the
proof of Theorem 1.

Remark 1 The estimation of the region of initial conditions
such that Ju≤ µ is given by Su = {x∈RN

+ : x(0)T P−1x(0)≤
µ}. For initial opinions belonging to S \Su, the following
control law assures Ju < µ:

u(t) =

{
sat(Kx), x(t)T P−1x(t)> x(0)T P−1x(0)−µ

0, otherwise.
(25)

Condition (25) makes the trajectories of x(0) ∈S \Su be
attracted to the boundary of the set {x ∈S : x(t)T P−1x(t)≤
x(0)T P−1x(0)− µ}. Observe that when u = 0 the system
dynamics becomes ẋ(t) = −Lx(t) which has a global uni-
formly exponentially stable attractor given by the consensus
manifold.

Remark 2 A way to indirectly maximize the set S defined
in (16) and minimize Jx, as presented in (5), is to maximize
the trace of W (see [32]). Hence, (5)–(6) and the maximiza-
tion of the estimate of the basin of attraction S are obtained
by solving the following optimization problem:

max Trace(W) (26)

subjected to (20)–(22).
To obtain a tighter approximation for the upper bound

for cost Ju in Theorem 2, we can also solve the following
optimization problem:

max Trace(P) (27)

subjected to (24).

Remark 3 For ε > 0 in B0 = B((0.5+ ε)1), we have that
(23) holds for x ∈ χ \Bε , where Bε = {x ∈S : xT x ≤ ε}.
This means that we can only assure the convergence of the
trajectories to Bε . As long ε is sufficiently small, there is
no practical implication since constraint (7) usually prevents
xi(t) to reach d.

IV. NUMERICAL EXAMPLE

In this section, we present two numerical examples to
illustrate the proposed results. The first example contains
three agents that helps us in visualizing the domain of
attraction along with the agents’ trajectories. The second



example involves twenty agents and is presented to show
the effectiveness of the proposed method on a larger and
realistic network.

Example 1 Consider the communication network from [13]
described by a undirected graph G , connected, with N = 3
agents and Laplacian matrix is defined as:

L =

 3 −1 −2
−1 3 −2
−2 −2 4

 .
We consider Problem 1 with Q = 10−1I, R = 10−1I, µ =

0.675, and ū = 0.9. The design is performed by Theorems 1
and 2 adopting B0 = B((0.5 + ε)1), with ε = 0.1. The-
orem 1 yields K = diag(−1.4143,−1.4143,−1.3886) and
the control law (25) is implemented from P obtained by
Theorem 2. We observe in Fig. 2, depicting regions S , Sa,
χ , and χa, that the estimation of the domain of attraction S
(intersection of Sa and χ) encompasses most of χ . Fig. 3
illustrates Su contained in S showing that for some initial
conditions there is not enough budget to reach the origin due
to (7). The trajectories of the agents is shown in Fig. 4 for
the initial condition x(0) = (0.2673,0.5345,0.8018) ∈ ∂S .
We can see all trajectories converge as close as possible to
the origin with respect to the energy constraint (7), and the
control signal respects the input saturation (u3 saturates in
the initial instant).

Fig. 2: Top figure: region Sa (blue) contained in χa (red);
Bottom left figure: projection of Sa (blue) and χa (red) in
the plane x–y; Bottom right figure: estimation of domain of
attraction S (blue) contained in χ (green) for Example 1.

Fig. 3: Ellipsoids Sa (blue, left figure) and S (blue, right
figure) covering Su (green) for Example 1.

Fig. 4: Trajectories of the agents for x(0) =
(0.0673,0.5345,0.8018) and control signal for Example 1.

Example 2 Consider a graph with N = 20 agents repre-
sented by a directed connected graph. The schematic of the
network is depicted in Fig. 5.

Fig. 5: The schematic of interested network in the form of
a directed graph with 20 agents.

Theorem 1 is applied to design the state feedback gain
K that solves Problem 1 with Q = 10−1I, R = 10−1I, µ =
7.5, and ū = 0.9. We consider ε = 0.02 in B0 to solve
Theorem 1and 2. The trajectories of the agents are illustrated
in Fig. 6. Note that the total budget is over in t = 2.2 and,
from this time, the agents are attracted to the consensus
manifold (at t = 7, the maximum value of the agents is
0.0559). We also note that for some agents, the control action
saturates in the initial instants showing that the maximum
investment is applied for some individuals. It is evident
that all the agents opinions are swayed toward the desired
consensus over time, but due to budget constraints it is not
possible to exactly reach the consensus at d = 0.

V. CONCLUSION

In this paper, the problem of reaching a desired opinion
(consensus) in a connected network have been discussed as
an optimization problem. The proposed approach considers
practical aspects such as finite budget in the form of input
saturation and constraint in the energy of the control action.
The dynamic representing individual opinions, normalized



Fig. 6: Trajectories of the agents for some initial condition
x(0) ∈ ∂S and control signal for Example 2.

in the interval [0,1], is bilinear, yielding extra challenge
in designing a stabilizing state-feedback control law. The
main results are given as constructive conditions in terms of
LMIs by exploiting some properties of positive systems and
invariant ellipsoids and can be applied for large networks.
Future works involve searching new invariant regions that
maximize the domain of attraction of the desired opinion.
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