
HAL Id: hal-03626330
https://hal.science/hal-03626330

Submitted on 31 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BAT: Small and Fast KEM over NTRU Lattices
Pierre-Alain Fouque, Paul Kirchner, Thomas Pornin, Yang Yu

To cite this version:
Pierre-Alain Fouque, Paul Kirchner, Thomas Pornin, Yang Yu. BAT: Small and Fast KEM over
NTRU Lattices. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022, 2022
(2), pp.240-265. �10.46586/tches.v2022.i2.240-265�. �hal-03626330�

https://hal.science/hal-03626330
https://hal.archives-ouvertes.fr

BAT: Small and Fast KEM over NTRU Lattices
Pierre-Alain Fouque1, Paul Kirchner1, Thomas Pornin2 and Yang Yu3

1 Rennes Univ, IRISA, Rennes, France pierre-alain.fouque@irisa.fr,
paul.kirchner@irisa.fr

2 NCC Group, Quebec, Canada thomas.pornin@nccgroup.com
3 BNRist, Tsinghua University, Beijing, China yang.yu0986@gmail.com

Abstract. We present BAT – an IND-CCA secure key encapsulation mechanism
(KEM) that is based on NTRU but follows an encryption/decryption paradigm
distinct from classical NTRU KEMs. It demonstrates a new approach of decrypting
NTRU ciphertext since its introduction 25 years ago. Instead of introducing an
artificial masking parameter p to decrypt the ciphertext, we use 2 linear equations
in 2 unknowns to recover the message and the error. The encryption process is
therefore close to the GGH scheme. However, since the secret key is now a short basis
(not a vector), we need to modify the decryption algorithm and we present a new
NTRU decoder. Thanks to the improved decoder, our scheme works with a smaller
modulus and yields shorter ciphertexts, smaller than RSA-4096 for 128-bit security
with comparable public-key size and much faster than RSA or even ECC. Meanwhile,
the encryption and decryption are still simple and fast in spite of the complicated
key generation. Overall, our KEM has more compact parameters than all current
lattice-based schemes and a practical efficiency. Moreover, due to the similar key pair
structure, BAT can be of special interest in some applications using Falcon signature
that is also the most compact signature in the round 3 of the NIST post-quantum
cryptography standardization. But different from Falcon, our KEM does not rely on
floating-point arithmetic and can be fully implemented over the integers.
Keywords: Lattice-based cryptography · NTRU · KEM · Falcon

1 Introduction
Lattice-based schemes, especially when they have a polynomial structure, are a very strong
contender for post-quantum cryptography. They can be faster than widely deployed
cryptosystems based on RSA and ECDH. However, the sizes of public keys, signatures and
ciphertexts are significantly larger than in RSA and even larger by an order of magnitude
compared with ECDH cryptosystems. Such a large size is a major drawback of lattice
schemes, and can be a crucial obstacle in the following situations:

– Real-world protocols may have a maximum length designed for classical cryptography.
For a standard Ethernet connection, the maximum transmission unit (MTU) is 1500
bytes1, and forward secrecy requires several objects.

– Large communication sizes increase the risk of lost packets and delays. Recent
experiments on post-quantum TLS [51] show that communication sizes come to
govern the performance when the packet loss rate is higher than 3%. Moreover,
[57] examines how the initial TCP window size affects post-quantum TLS and SSH
performance, and show that even a small size increase can reduce the observed
post-quantum slowdown by 50%. In addition, transmission energy can also be a

1https://en.wikipedia.org/wiki/Maximum_transmission_unit and Distributions on IP packets.

mailto:pierre-alain.fouque@irisa.fr
mailto:paul.kirchner@irisa.fr
mailto:thomas.pornin@nccgroup.com
mailto:yang.yu0986@gmail.com
https://en.wikipedia.org/wiki/Maximum_transmission_unit

significant part of the energy consumption on cryptography [55]. The size of signature
schemes in TLS handshakes is also important as analyzed in [58].

– In some lightweight applications, e.g. internet of things (IoT), encryption and verifi-
cation are done by some constrained devices. These devices only have small on-board
storage and modest processors so that they may not be compatible with large public
keys, signatures and ciphertexts.

With post-quantum cryptography standardization and deployment underway, it is impor-
tant to explore new lattice-based cryptosystems with smaller parameters.

In this light, a natural choice is NTRU [39], as its structure reduces the data to one
ring element. There have been many high-performance NTRU-based schemes ranging from
Falcon [30], BLISS [26] for signature to NTRU-HRSS [41], NTTRU [47], NTRUEncrypt [20],
NTRU Prime [9] for encryption and KEM. In particular, Falcon is the most compact
signature in the round 3 of the NIST post-quantum cryptography standardization [50].

NTRU-based schemes are defined over some polynomial ringR that isR = Z[x]/(xn+1)
with n a power-of-2 in this work. The secret key of an NTRU cryptosystem is essentially
a pair of short polynomials (f, g) ∈ R2 while the public key is h = f−1g mod q. All
NTRU encryption schemes, ranging from the earliest proposal [39] to the round 3 NIST
submission [14], have followed essentially the same design rationale for more than 20 years.
Concretely, the ciphertext is c = phr +m mod q where p is the masking modulus, r is the
randomness, m is the message. A correct decryption is built upon that c′ = pgr + fm is
short so that c′ = (fc mod q). The masking modulus p is also necessary to decrypt: one
needs to first clean out pgr via reduction modulo p and then to recover m by multiplying
the inverse of f modulo p. For typical NTRU KEMs, (f, g) is sparse and of length about
C
√
n for small constant C.
By contrast, the design rationale for NTRU-based signatures went through some

significant changes. The first NTRU-based signature is NTRUSign [38] that is a hash-
and-sign scheme. However, its signature transcripts leak some secret key information
so that NTRUSign and some variants were broken by statistical attacks [49, 28]. Later,
Ducas et al. made use of the GPV hash-and-sign framework [33] and proposed a provably
secure NTRU-based signature [27] that further developed into Falcon [30]. The public key
of Falcon is still h = f−1g mod q for some short (f, g), while the actual secret key is a

trapdoor basis Bf,g =
(
g G
f F

)
∈ R2×2 such that gF − fG = q. The signing of Falcon

is essentially Gaussian sampling with a trapdoor [33, 29]. Consequently, the signature
size depends on the maximal Gram-Schmidt norm of Bf,g. As analyzed in [27], Falcon
chooses (f, g) of ‖(f, g)‖ ≈ 1.17√q for optimal parameters. Therefore, ‖(f, g)‖ in Falcon is
independent of n, which is different from the case of NTRU KEMs.

Some other NTRU-based signatures [26, 24], do just use one vector (f, g) as the secret
key as the case of NTRU KEMs. However, to the best of our knowledge, there is no
practical NTRU-based KEM using a trapdoor basis as the secret key. Intuitively we
expect (F,G) to yield one more equation in decryption so that one can recover both the
message and encryption randomness via two equations. This in effect gets rid of the
masking modulus p in classical NTRU KEMs and thus hopefully allows smaller parameters.
Moreover, when we unify the trapdoor function for both signature and KEM part of the
code can be shared, and we may also reduce some storage and communication. Therefore,
it would be interesting to investigate the practicality of a trapdoor basis for KEM.

Indeed, the earliest lattice-based cryptosystem GGH (Goldreich-Goldwasser-Halevi [34])
uses a trapdoor basis as the secret key and implements both encryption and signature
based on that trapdoor function. Later Micciancio improved the GGH trapdoor function
by using the Hermite normal form [48]. While GGH encryption has a long history as
NTRU, its practicality is far from well-studied and there is no GGH-like encryption/KEM
with concrete parameter and security analysis so far.

2

Our contributions. We present a new KEM based on NTRU, called BAT2. Similar
to Falcon signature, BAT uses h = f−1g mod q as the public key and its secret key is
a trapdoor basis Bf,g with an additional ring element (for faster decapsulation). In
addition, BAT shares the same leading design principle with Falcon, i.e. minimizing the
communication size.

Our main improvement in BAT-KEM is a better decapsulation algorithm, which
represents a major modification to the NTRU encryption scheme since its introduction 25
years ago. Instead of following the original NTRU, we modify it according to the GGH-
Micciancio blueprint [35, 48]. The message m is now encapsulated as c = hm+ e mod q
where h is the NTRU public key and e is a small error. The decapsulation corresponds to
applying Babai’s nearest plane algorithm with the secret basis to decode the closest lattice
point, and therefore recovering the message. Compared with other NTRU KEMs, we do
not need the masking modulus p to extract the message. Instead of multiplying only by f ,
we multiply by F so that we get 2 linear equations in the 2 unknowns e,m.

However, Babai’s nearest plane algorithm heavily relies on floating-point arithmetic,
although most expensive calculation can be done in a pre-computation phase. To avoid
floating-point arithmetic in the decapsulation, we replace the high-precision Gram-Schmidt
vectors with integral approximations. Additionally, notice that m and e do not necessarily
follow the identical distribution, hence we take into account their different sizes to optimize
the decoding. We also use the Learning With Rounding (LWR) assumption [7, 15] in order
to further reduce the size of the ciphertext. Our improved decoding algorithm can be used
with a smaller modulus and dropping more bits, and thereby increases the security of the
scheme and decreases the communication.

Overall, our KEM achieves very impressive performance. First of all, for the same NIST
security level, BAT achieves the smallest communication size, namely “public key size +
ciphertext size”, among all current lattice cryposystems and even RSA cryptosystems.
Secondly, the complexity of the code as well as its running time is asymmetric: while the
key generation is complicated, the frequent key usage is quite efficient. Specifically, the
encryption is very simple — essentially a ring multiplication —, and the decryption also
boils down to a few ring additions and multiplications. Cheap daily operations make BAT
particularly compatible with small devices. Thirdly, we can implement the whole scheme
fully over integers, which is different from the case of Falcon. Our implementation is
constant-time and uses some AVX2 optimizations. We can notice that BAT has performance
comparable to Kyber while being more compact. Furthermore, it is comparable to SIKE
p434 in size while being much more efficient. We gave the timing with x86 assembly
optimization, while with the same level of optimization we did, the SIKE performance
timing would be higher by one order of magnitude. We summarize the detailed comparisons
with some well-known schemes in Table 2.

Finally, we explain in a simplistic way why the new decryption algorithm leads to
smaller parameters. To correctly decrypt, our KEM needs (fc mod q) = gm + fe, i.e.
‖gm + fe‖∞ < q

2 , while previous NTRU KEMs need ‖pgr + fm‖∞ < q
2 . We also

compare with ring-LWE-based KEMs. For a typical ring-LWE-based KEM, its secret
key is (f, g) ∈ R2, public key is (a, b = af + g) ∈ (R/qR)2 and ciphertext is (c1 =
ae0 + e1, c2 = be0 + e2 + b q2em) ∈ (R/qR)2. The requirement for correct decryption is
‖e0g − e1f + e2‖∞ < q

4 . Suppose that m, e, r, ei are drawn from a distribution of standard
deviation σe and f, g from a distribution of standard deviation σf . The coefficients of
gm+ fe, pgr+ fm, e0g− e1f + e2 are modeled as Gaussian. The comparison on parameter
restrictions are summarized in Table 1. It can be seen that given (n, τ, σe, σf), BAT allows
a smaller modulus q. Note that for fixed (n, σe, σf), a smaller q implies higher security.

2BAT stands for “Basis with Attractive Trapdoor”.

3

Table 1: The parameter restrictions for correct decryption. The parameter τ is the
tail-bound parameter determining the decryption failure rate.

Requirement for correct decryption
NTRU τσeσf

√
(p2 + 1)n < q

2
Ring-LWE τσeσf

√
2n < q

4
BAT τσeσf

√
2n < q

2

Table 2: Comparisons with other KEMs including NTRU-HRSS [41], NTTRU [47],
Kyber [4], Saber [8], LAC [45], Round5 [5], ECC, RSA and SIKE [42]. Timings do not
include random generation (from the operating system) or key derivation costs. Sizes for
BAT and LW-BAT include an optional one-byte identifying header. The implementation of
LW-BAT was not fully optimized with AVX2 opcodes.

Security Ciphertext
(bytes)

PK
(bytes)

Keygen
(kcycles)

Encaps
(kcycles)

Decaps
(kcycles)

BAT 128 bits 473 521 30.6× 103 8.4 54.3
BAT 256 bits 1006 1230 185.7×103 18.5 118.6

LW-BAT 80 bits 203 225 23.6× 103 55.7 248.0

NTRU-HRSS 128 bits 1140 1140 220.3 34.6 65.0
NTTRU 128 bits 1248 1248 6.4 6.1 7.8

Kyber 128 bits 768 800 33.9 45.2 34.6
Kyber 256 bits 1568 1568 73.5 97.3 79.1
Saber 128 bits 736 672 45.2 62.2 62.6
Saber 256 bits 1472 1312 126.2 153.8 155.7
LAC 128 bits 712 544 59.6 89.1 140.2
LAC 256 bits 1424 1056 135.8 208.0 359.2

Round5 128 bits 620 461 46 68 95
Round5 256 bits 1285 978 105 166 247

Round5-iota 96 bits 394 342 41 52 28

RSA 4096 128 bits 512 512 2.19× 106 212.1 13690
ECC 128 bits 32 32 46 176 130

SIKE p434b 128 bits 346 330 5.9× 103 9.7× 103 10.3× 103

Compressed
SIKE p434b

128 bits 236 197 10.2× 103 15.1× 103 11.1× 103

a Here Round5-iot is only IND-CPA secure rather than IND-CCA secure.
b SIKE and compressed-SIKE use x64 assembly optimizations.

Comparison with Falcon. BAT is similar in spirit to Falcon signature: they both
achieve good compactness by using some nice NTRU trapdoor basis as the secret key.
Nevertheless, some crucial distinctions exist between BAT and Falcon.

– At a high level, BAT and Falcon exploit their trapdoor to solve CVP (closest vector
problem), but the used CVP algorithms are very different. Specifically, Falcon makes
use of the KGPV Gaussian sampler [33] that is a randomized Babai’s nearest plane
algorithm. In contrast, BAT decrypts with a deterministic NTRU decoder that can
be viewed as a hybrid of Babai’s round-off and nearest plane algorithms.

– The algorithms of BAT are simpler than those of Falcon. On the one hand, the
signing of Falcon relies on high-precision Gaussian sampling, but the encryption and

4

decryption of BAT only need basic integer operations. On the other, Falcon includes
many high-precision intermediate values along with the trapdoor for faster signing,
but BAT just adds one integral polynomial for faster decryption.

– The NTRU trapdoors of BAT and Falcon are generated in different ways. In fact,
Falcon chooses its trapdoor for smaller signatures, which is equivalent to minimizing
the maximal Gram-Schmidt norm of the trapdoor basis. As for BAT, the trapdoor is
generated to minimize the decryption failure, and according to our new decoder, the
distributions of the message and error will also affect the trapdoor generation (see
Section 3 for more details).

Related work. Very recently, Chuengsatiansup et al. [18] propose some extensions of
Falcon signature and NTRU encryption over Module-NTRU lattices. This allows more
flexible parameters for NTRU-based cryptosystems. Our techniques are likely to apply to
the Module-NTRU-based schemes as well.

In order to improve parameters, some schemes [17, 61] are built upon a variant of
LWE in which the secret and error follow different distributions. Our work makes use of a
similar idea. Yet the main difference is that our KEM follows a novel pattern which is
essential to minimize the parameters.

Roadmap. We start in Section 2 with some preliminary materials. In Section 3, we
introduce a new decoding algorithm that is the building block of our NTRU-based KEM.
Section 4 presents our KEM in details. We give security proofs and estimates in Section 5
and implementation details in Section 6.

2 Preliminaries
2.1 Notations
We follow the setting Zq = {−(dq/2e−1),−(dq/2e−2), · · · , q−dq/2e} and (a mod q) ∈ Zq
for any a ∈ Z. Let ln (resp. log) denote the logarithm with base e (resp. 2). For an integer
q > 0, let baeq = baqe/q ∈ (1/q) ·Z for a ∈ R. For a real-valued function f and a countable
set S, we write f(S) =

∑
x∈S f(x) assuming that this sum is absolutely convergent.

2.2 Linear algebra
Let B = (b0, . . . ,bn−1) ∈ Qn×n of rank n. The Gram-Schmidt orthogonalization of B
is B = B∗U, where U ∈ Qn×n is upper-triangular with 1 on its diagonal and B∗ =
(b∗0, . . . ,b∗n−1) is a matrix with pairwise orthogonal columns.

Let Rn = Z[x]/(xn + 1) with n a power-of-2 and Kn = Q[x]/(xn + 1). We denote
by (Rn mod q) the ring Rn/qRn. When the context is clear, we may write Rn (resp.
Kn) as R (resp. K). We identify f =

∑n−1
i=0 fix

i ∈ Kn with its coefficient vector
coef(f) = (f0, · · · , fn−1). Let ‖f‖ = ‖coef(f)‖ and ‖f‖∞ = ‖coef(f)‖∞. We denote by
f the conjugate of f , i.e. f(x−1). Let 1 =

∑n−1
i=0 x

i ∈ R. The symbol b·eq is naturally
generalized to Kn by applying it coefficient-wise.

2.3 Probability and statistics
Given a distribution χ, we write z ← χ when the random variable z is drawn from χ. For
z ← χ, let µ[z] (resp. σ[z]) denote the expectation (resp. standard deviation) of z, and
µ[χ] := µ[z] (resp. σ[χ] := σ[z]). If µ[χ] = 0, then χ is called centered. For a random
a ∈ K, if all its coefficients independently follow a distribution χ, then we call a iid-random

5

over χ. If a ∈ K is iid-random over χ, we write σa = σ[χ] and µa = µ[χ]. We call it
centered when µa = 0.

For a distribution χ, we denote by Sample(χ) the procedure of generating a random
sample of χ and by Sample(χ; seed) the sampling procedure with seed seed. For a finite
set S, let U(S) be the uniform distribution over S. In particular, for a positive integer k,
σ[U(Zk)] =

√
k2−1

12 and µ[U(Zk)] = 0 if k is odd; otherwise µ[U(Zk)] = 1
2 .

For c ∈ R and σ > 0, let ρσ,c(x) = exp
(
− (x−c)2

2σ2

)
be the one-dimensional Gaussian

function with center c and standard deviation σ. When c = 0, we just write ρσ(x). The
discrete Gaussian over integers with center c and standard deviation σ is defined by the
probability function

DZ,σ,c(x) = ρσ,c(x)
ρσ,c(Z) ,∀x ∈ Z.

Let erf(x) = 2√
π

∫ x
0 exp(−t2)dt be the error function. For a random variableX following

a normal distribution with mean 0 and variance 1/2, erf(x) is the probability of X in the
range [−x, x].

2.4 NTRU
Given f, g ∈ R such that f is invertible modulo some q ∈ Z, let h = f−1g mod q.
The NTRU lattice defined by h is denoted by Lh,q = {(u, v)t | u = hv mod q}. Given

(f, g), one can compute
(
g G
f F

)
∈ R2×2 a basis of Lh,q by solving the NTRU equation

gF−fG = q [38, 53]. Fixing (f, g), there are infinitely many such bases, whereas these bases

have the same Gram-Schmidt norms. Hence, we simply write Bf,g =
(
g G
f F

)
∈ R2×2.

While the public key of an NTRU-based scheme is h itself, the secret key can have
different forms. For most NTRU encryption schemes, the secret key is (g, f) itself, i.e.
one short vector of Lh,q. But for some other applications, e.g. signature and IBE, the
secret key is Bf,g called an NTRU trapdoor basis. Falcon [30] is a representative example.
Falcon is an NTRU-based signature following the GPV hash-and-sign framework [33].
To sign a message m, the signer computes a pair of short polynomials (s1, s2) such that
s1 + hs2 = Hash(m). This procedure is accomplished by lattice Gaussian sampling with
Bf,g and the length of the signature (s1, s2) depends on the sampled Gaussian width. The
Gaussian sampler of Falcon is a fast Fourier variant [29] of the KGPV sampler [33], hence
the signature size is proportional to the maximal Gram-Schmidt norm of Bf,g. For optimal
parameters, Falcon generates (f, g) such that ‖(f, g)‖ ≈ 1.17√q as per [27].

3 A New NTRU Decoder
In this section we present a new NTRU decoding algorithm that is the key component of
our KEM. In the context of NTRU, the code words are hs+ e mod q where h is the public
key and s, e are small polynomials. The decoding process recovers (s, e) with an NTRU
trapdoor. An ideal decoder is supposed to satisfy:

1. All operations are simple and efficient; no high-precision arithmetic is needed.

2. The decoding distance is large, i.e. being able to recover large errors (s, e). Note
that for our KEM, larger errors correspond to higher security level.

There have been two famed decoding algorithms due to Babai [6]: Babai’s round-off
algorithm (RO for short) and Babai’s nearest plane algorithm (NP for short). They have
respective pros and cons. The RO algorithm outperforms NP in efficiency and simplicity.

6

In addition, RO is particularly compatible with q-ary lattices: all operations are over
Zq. By contrast, NP is capable of decoding larger errors in both the worst and average
cases [54]. Yet the principal drawback of NP is its reliance on high-precision arithmetic.

Our decoder improves on both RO and NP. First, it is able to tackle a larger decoding
distance than RO. Second, while complicated computations are still required, all involved
algorithms can be implemented using fixed-point arithmetic in practice, which outperforms
NP. Meanwhile these expensive computations can be done in the pre-computation and
therefore do not affect the decoding efficiency. With an auxiliary integer vector, our
algorithm achieves the same efficiency as RO and totally performs over integers. To
optimize the decoding, our algorithm also takes into account the distributions of s and e.

3.1 Babai’s algorithms for NTRU
For better contrast, we first recall RO and NP briefly in the NTRU setting. Let h ∈

(R mod q) be the public key and Bf,g =
(
g G
f F

)
∈ R2×2 be the trapdoor basis. In later

discussion, we shall treat Lh,q as a R-module of rank 2 rather than a Z-module of rank 2n.
The application of RO related to NTRU dates back to NTRUSign [38]. Given c =

hs+ e ∈ (R mod q), we have
(
c
0

)
∈ Lh,q +

(
e
−s

)
. The RO algorithm computes

(
e′

−s′
)

=(
c
0

)
−Bf,g

⌊
B−1
f,g

(
c
0

)⌉
as
(
e
−s

)
. As B−1

f,g = 1
q

(
F −G
−f g

)
, a correct decoding such that

(e′, s′) = (e, s) follows if (
F −G
−f g

)(
e
−s

)
=
(
Fc mod q
−fc mod q

)
.

This is equivalent to
max{‖fe+ gs‖∞, ‖Fe+Gs‖∞} ≤

q

2 .

The NP algorithm is more complicated. It involves the Gram-Schmidt orthogonal

basis B∗f,g =
(
g G∗ = G− vg
f F ∗ = F − vf

)
where v = Ff+Gg

ff+gg
. A correct decoding follows if

max{‖fe+ gs‖∞, ‖F ∗e+G∗s‖∞} ≤ q
2 .

In some applications [27, 30], the trapdoor basis is optimal with respect to Gram-
Schmidt norms: ‖(g, f)‖ ≈ ‖(G∗, F ∗)‖. However, ‖(g, f)‖ and ‖(G,F)‖ are not so close:
‖(G,F)‖ ≈

√
n
12 · ‖(g, f)‖ [38]. As a consequence, ‖(e, s)‖ is dominated by the large

‖(G,F)‖ in the RO algorithm but by the small ‖(g, f)‖ in the NP algorithm, which leads
to a gap of O(

√
n).

3.2 Our decoding algorithm for NTRU
As shown in Section 3.1, RO boils down to solving two linear equations over R (without
modular reduction). To enlarge its decoding range, we hope to replace the large (G,F)
with some small vector (G′, F ′) of size ≈ ‖(g, f)‖. A natural candidate is (G∗, F ∗) =
(G− vg, F − vf) with v = Ff+Gg

ff+gg
as in NP. However, if we want to work with (G∗, F ∗)

directly, we have to resort to high-precision arithmetic. To overcome the precision issue,
we choose (G′, F ′) = (G − gbveq′ , F − fbveq′) ∈ (1/q′)R2. When q′ is sufficiently large,
(G′, F ′) converges to (G∗, F ∗) whose norm is about ‖(g, f)‖. In practice, a moderate q′
suffices to significantly improve the decoding.

We further refine our decoder as per the distributions of s and e. We focus on the
common case where both s and e are iid-random over some publicly known distributions χs
and χe. In practice, χs and χe are not necessarily same even close, which may cause a gap

7

between the sizes of s and e. For example, when ‖s‖ � ‖e‖, we expect a better decoding

by using a basis
(
g′ G′

f ′ F ′

)
with ‖g′‖ > ‖g‖ ≈ ‖f‖ > ‖f ′‖ and ‖G′‖ > ‖G‖ ≈ ‖F‖ > ‖F ′‖.

To this end, we introduce a parameter γ, by default γ = σe/σs, to compute the optimal
decoding basis. Moreover, χs and χe do not have to be centered neither, e.g. χs = U(Z2).
For given (f, g), non-centered s and e lead to a non-zero average of fe+ gs. Therefore, we
also consider the impact of µs and µe during decoding. Here we assume µs, µe ∈ 1

Q · Z for
some Q ∈ N, which is indeed the case of our later schemes.

The decoding algorithm consists in two steps: (1) computing the auxiliary polynomial
w and (2) recovering (s, e). They are illustrated in Algorithms 3.1 and 3.2 respectively.
Notably, both algorithms can be fully implemented over the integers. In Algorithm 3.1,
the computation of v consists in one polynomial division, but the final output is actually
an integral approximation of q′v, which can be computed with fixed-point values. More
details are presented in Section 6.1.

Algorithm 3.1 ComputeVec

Input: a trapdoor basis Bf,g =
(
g G
f F

)
∈ R2×2, q′ ∈ N and γ > 0;

Output: w ∈ R
1: v ← γ2Ff+Gg

γ2ff+gg
2: return w = q′bveq′

Algorithm 3.2 Decode

Input: a trapdoor basis Bf,g =
(
g G
f F

)
∈ R2×2, w ∈ R, q, q′, Q ∈ N,

c = (hs+ e mod q) ∈ R with small (e, s) and µe, µs ∈ 1
Q · Z

Output: (e, s) ∈ R2

1: (Gd, Fd)← (q′G− gw, q′F − fw)
2: c′ ← (Qfc− f(Qµe1)− g(Qµs1) mod qQ)
3: c′′ ← (q′QFc− F (q′Qµe1)−G(q′Qµs1)− c′w mod qq′Q)

4: solving
(
e′

s′

)
from

(
f g
Fd Gd

)(
e′

s′

)
= 1

Q ·
(
c′

c′′

)
5: return (e = e′ + µe1, s = s′ + µs1)

Theorem 1 gives the probability of correct decoding of Algorithm 3.2 and its proof is
in Appendix A.

Theorem 1. Let R = Z[x]/(xn + 1) with n a power-of-2 and q ∈ N. Let f, g ∈ R be iid-

random over DZ,σf and h = f−1g mod q. Let Bf,g =
(
g G
f F

)
∈ R2×2 be an NTRU basis.

Let s, e ∈ R be iid-random over χs and χe respectively, and µe, µs ∈ 1
Q ·Z for some Q ∈ N.

Let γ = σe/σs, q′ ∈ N and w = ComputeVec(Bf,g, q
′, γ). Let I(γ) = 2 ln(γ)

γ2−1 for γ 6= 1

and I(1) = 1. Let σ1 =
√
nσfσs

√
γ2 + 1, σ2 = σs

(
qγ√
n·σf

√
I(γ) + n1.5

√
γ2+1

2q′ σf

)
. Let

τ = min
{

q

2
√

2σ1
, q

2
√

2σ2

}
. Then the probability of Decode(Bf,g, w, q, q

′, Q, (hs+e mod q)) =
(e, s) is heuristically estimated at least 1− 2n · (1− erf(τ)) over the randomness of s and e.

8

3.3 Decoding failure rate
Theorem 1 gives a heuristic estimate for µ[P (Bf,g, w, χs, χe)] (over the randomness of
(f, g)) where

P (Bf,g, w, χs, χe) = Pr[Decode(Bf,g, w, q, q
′, Q, (hs+ e mod q)) 6= (e, s) | e← χe, s← χs]

is the decoding failure rate for given (Bf,g, w). In fact, it is hard to numerically compute
µ[P (Bf,g, w, χs, χe)], since the distribution of (G′, F ′) (defined in Lemma 1) is complicated.
But it is easy to numerically compute P (Bf,g, w, χs, χe) given (Bf,g, w).

We experimentally calculate P (Bf,g, w, χs, χe) for some (Bf,g, w) generated with the
suggested parameters (see Tables 3 and 4). The failure probabilities are smaller than for a
naive Gaussian model, and significantly so for a ring dimension of 256.

4 BAT KEM
In this section, we present a KEM scheme, called BAT, constructed following the afore-
mentioned encode/decode paradigm. Its secret key is an NTRU trapdoor basis as in the
Falcon signature. As a consequence, some codes for Falcon implementation can be reused.

BAT permits very compact parameters. Specifically, the modulus q is greatly reduced
in contrast to Falcon. More remarkably, the ciphertext is well compressed: each coefficient
requires only less than one byte of storage.

4.1 Algorithm description
Prior to the description of our KEM, we first present the underlying public key encryption.
It is specified by the following parameters:

– R = Z[x]/(xn + 1) with n = 2l.

– q = bk+1 with b, k ∈ N. Note that b determines the size of each ciphertext coefficient
and k determines the decoding distance.

– q′ ∈ N is used to control the decryption failure rate.

At a high level, our idea is to build an encryption scheme upon a one-way trapdoor
function. Indeed, for a pseudorandom public key h, the function F (s, e) = hs+ e mod q is
one-way under the Ring-LWE assumption, but one can invert it with the trapdoor Bf,g as
shown in Section 3. In our scheme, the encryption consists in computing c = F (s, e) and
the decryption in recovering s by inverting F (s, e).

The key generation is shown in Algorithm 4.1. The first step is to generate an NTRU
trapdoor basis Bf,g along with the public key h. This is similar to the Falcon key generation,
but the size of the secret key is changed. The second step pre-computes an auxiliary
vector w. As explained in Section 3, w is used for decoding a larger error while avoiding
floating-point arithmetic in the decapsulation. We include it as a part of the secret key.
Note that Falcon key generation also pre-computes the Falcon tree for signing, but that
computation is useless in our scheme.

The encryption algorithm is described in Algorithm 4.2. The message space isM =
{0, 1}λ where λ denotes the claimed security level. To achieve the IND-CPA security, we
compute the trapdoor function on an ephemeral s and then mask the message m with
hashed s. For better compactness, we replace F (s, e) with F (s) =

⌊
(hs mod q)

k

⌉
and thus

use Ring-LWR as the hardness assumption. It is easy to see that the storage of a ciphertext
is n log b+ λ bits. The decryption stems from the decoding algorithm in Section 3. The
formal description is provided in Algorithm 4.3.

9

Algorithm 4.1 KeyGenEnc
Input: the ring R = Z[x]/(xn + 1), integers q, k, q′ ∈ N

Output: public key h ∈ R, secret key (Bf,g, w) ∈ R2×2 ×R where Bf,g =
(
g G
f F

)
1: γ ←

√
k2−1

3

2: σf ←
√

qγ
n

√
I(γ)
γ2+1 where I(γ) is defined as in Theorem 1

3: f, g ← DR,σf
4: if f or g is not invertible in (R mod q) then
5: restart
6: end if
7: if ‖(g, γf)‖ >

√
nσf

√
γ2 + 1 then

8: restart
9: end if
10: h← f−1g mod q
11: compute (F,G) ∈ R2 such that gF −Gf = q

12: Bf,g ←
(
g G
f F

)
∈ R2×2

13: w ← ComputeVec(Bf,g, q
′, γ)

14: (Gd, Fd)← (q′G− gw, q′F − fw)

15: if ‖(Gd, γFd)‖ > q′
(

qγ√
n·σf

√
I(γ) + n1.5

√
γ2+1

2q′ σf

)
then

16: restart
17: end if
18: return (h, (Bf,g, w))

Algorithm 4.2 Encrypt
Input: public key h ∈ R, integers q, k ∈ N, message m ∈M, seed seed
Output: ciphertext (c1, c2)
1: s← Sample(U(R mod 2); seed)
2: c1 ←

⌊
(hs mod q)

k

⌉
3: e← (hs mod q)− kc1, γ ←

√
k2−1

3

4: if ‖(γs, e)‖ > 1.08
√

n(k2−1)
6 then

5: return ⊥
6: end if
7: c2 ← Hashm(s)

⊕
m where Hashm is some hash with rangeM

8: return (c1, c2)

10

Algorithm 4.3 Decrypt
Input: ciphertext (c1, c2), public key h ∈ R, secret key (Bf,g, w), integers q, k, q′ ∈ N
Output: message m
1: c′ ← c1k
2: (e, s)← Decode (Bf,g, w, q, q

′, 2, c′)
3: γ ←

√
k2−1

3

4: if ‖(γs, e)‖ > 1.08
√

n(k2−1)
6 then

5: return ⊥
6: end if
7: if c1 =

⌊
(hs mod q)

k

⌉
then

8: return Hashm(s)
⊕
c2

9: else
10: return ⊥
11: end if

By some standard techniques [31, 25], an IND-CCA secure KEM immediately follows
from our IND-CPA encryption. Algorithms 4.4, 4.5 and 4.6 describe the key generation,
encapsulation and decapsulation algorithms respectively, in which S (resp. K) is the set of
seed (resp. shared key). The detailed security arguments are given in Section 5.2.

Our KEM tolerates a small decryption failure rate for better performance, as many
current lattice-based KEMs. Yet some works [32, 22, 37, 23] also show the impact of
decryption failures on security. We bound the size of the error used to 1.08 its average to
limit the impact of precomputed messages on the decryption failure rates: the exponent
may be reduced by 20 % in the worst case.

Algorithm 4.4 KeyGenEncap

Input: the ring R = Z[x]/(xn + 1), integers q, k, q′ ∈ N
Output: public key h ∈ R, secret key (Bf,g, w, r) ∈ R2×2 ×R×R
1: r ← Sample(U(M))
2: (h, (Bf,g, w))← KeyGenEnc(R, q, k, q′)
3: return (h, (Bf,g, w, r))

Algorithm 4.5 Encapsulate
Input: public key h ∈ R, integers q, k ∈ N
Output: ciphertext c, key K
1: m← Sample(U(M))
2: (c1, c2)← Encrypt(h, q, k,m,Hashs(m)) where Hashs is some hash with range S
3: if (c1, c2) =⊥ then
4: restart
5: end if
6: K ← Hashk(m, c1, c2) where Hashk is some hash with range K
7: return ((c1, c2),K)

4.2 Parameter selection
We keep the same ring R as Falcon but choose a much smaller modulus q. Indeed, a smaller
modulus forbids the applications of a complete NTT, nevertheless similar techniques [46, 47]
still allow a very fast polynomial multiplication. For security, a smaller q implies a smaller

11

Algorithm 4.6 Decapsulate
Input: ciphertext (c1, c2), public key h ∈ R, secret key (Bf,g, w, r), integers q, k, q′ ∈ N
Output: key K
1: m′ ← Decrypt((c1, c2), h, (Bf,g, w), q, k, q′)
2: if m′ 6=⊥ and (c1, c2) = Encrypt(h, q, k,m′,Hashs(m′)) then
3: return K ← Hashk(m′, c1, c2)
4: else
5: return K ← F(r, c1, c2) where F is some PRF with range K
6: end if
7: return K

standard deviation of the secret key distribution and then less entropy of the secret key.
But such loss does not reduce much the concrete security level.

A notable modification exists in key generation. In Falcon, (f, g) is sampled to make
‖(g, f)‖ ≈ ‖(G∗, F ∗)‖ where (G∗, F ∗) is the Gram-Schmidt orthogonalization of (G,F) in
Bf,g. However, in BAT, we choose σf satisfying

√
nσf

√
γ2 + 1 = qγ√

n·σf

√
I(γ). This gives

rise to a nearly optimal decryption failure rate according to Theorem 1. In particular,
when γ = 1, the σf we use also makes ‖(g, f)‖ ≈ ‖(G∗, F ∗)‖ as the case of Falcon. But for
this case, σ used by BAT is different from that by Falcon, which is explained in Remark 4.

Let us recall that

c′ = ck = hs− k
(
hs

k
−
⌊

(hs mod q)
k

⌉)
:= hs+ e mod q.

We model e drawn from U(Znk) and thus3 σe =
√

k2−1
12 . As σs = 1

2 , it follows that

γ = σe/σs =
√

k2−1
3 . The decryption failure rate is equal to the probability of incorrect

decoding. According to Theorem 1, the decryption failure rate is heuristically bounded by
2n · (1− erf(τ)) for some τ . We also exactly computed the decryption failure rate for 100
keys: the standard deviation of the logarithm of the rate over the secret key distribution is
around 8, and the exact values are even smaller than their heuristic estimates. Therefore
we present the exact values for the decryption failure rate and the tail-bound parameter τ
for the heuristic estimates.

Table 3 shows the suggested parameters.

Table 3: Suggested parameters for BAT.

Security n (b, k, q) σf q′ τ Decryption Failure
128 bits 512 (128, 2, 257) 0.596 64513 9.46 2−146.7

256 bits 1024 (192, 4, 769) 0.659 64513 10.42 2−166.7

The parameter set for lightweight BAT. We further suggest one more parameter
set particularly aiming at a lower security level, say 80 bits of security, which may be
of interest for some lightweight use-cases. We call this lightweight variant LW-BAT. In
LW-BAT, the degree n is only 256; for better compactness the modulus q does not support
NTT anymore. We choose a relatively high decryption failure rate 2−71.9, but it should be
sufficient for lightweight applications, e.g. IoT: for the Round5 IoT parameters [5], the
decryption failure rate is 2−41 even larger than ours. Table 4 summarizes the concrete
parameter set.

3The actual distribution is within statistical distance 1/q of U(Zn
k).

12

Table 4: Suggested parameters for LW-BAT.

Security n (b, k, q) σf q′ τ Decryption Failure
80 bits 256 (64, 2, 128) 0.595 64513 6.71 2−71.9

5 Security
We now report on the security of BAT. First, we demonstrate the IND-CCA security
of our KEM under some hardness assumptions. Then we estimate the concrete security
according to the best known attacks.

5.1 Assumptions
The (decision) NTRU assumption. Let R×q be the set of invertible elements in R/qR.
Let χ be some distribution over R×q . The advantage of adversary A in solving the decision
NTRU problem NTRUR,q,χ is
AdvNTRU
R,q,χ (A) =

∣∣Pr[b = 1 | f, g ←↩ χ; b← A(f−1g mod q)]− Pr[b = 1 | u←↩ U(R×q); b← A(u)]
∣∣ .

In our case, R = Z[x]/(xn + 1) and χ is the distribution of the secret key f and g.
Remark 1. There are some researches on the hardness of the decision NTRU assumption
over R = Z[x]/(xn + 1). Notably, as shown in [59], when χ is a discrete Gaussian of
standard deviation σ = ω̃(n√q), the ratio of f and g is statistically indistinguishable from
uniform, which gives a firm theoretical grounding. The decision NTRU assumption with a
narrow distribution χ is also closely related to Falcon [30] and sometimes referred to as
the Decisional Small Polynomial Ratio (DSPR) assumption [44, 12].

The (search) Ring-LWR assumption. Let χ be some distribution over R. The advantage
of adversary A in solving the search Ring-LWR problem RLWRR,q,k,χ is

AdvRLWR
R,q,k,χ(A) = Pr

a←↩U(R×q),s←↩χ

[
A
(
a,

⌊
(as mod q)

k

⌉)
= s

]
.

In our case, R = Z[x]/(xn + 1) and χ = U(R mod 2).
Remark 2. The theoretical foundation of the search Ring-LWR assumption is developed
in [7, 11, 15]. There are also some practical schemes, e.g. Lizard [17] and Saber [8], using
the Ring-LWR over Z[x]/(xn + 1) or its module variant as their hardness assumption.
Indeed, the provable hardness of Ring-LWR with a binary secret s remains open. Yet this
would not weaken the concrete security especially when q is relatively small (as in our
case).

5.2 KEM security
The security notion we prove for BAT is IND-CCA security (indistinguishability against
chosen-ciphertext attacks). To this end, we first note that the underlying encryption
(Algorithms 4.2 and 4.3) is IND-CPA secure (indistinguishability against chosen-plaintext
attacks) under the assumptions in Section 5.1.

Theorem 2. Let Π be the public key encryption scheme defined by Algorithms 4.1, 4.2
and 4.3. Let Hashm be modeled as a random function. For any adversary A, there exist
adversaries A1 and A2 of roughly the same running time as that of A such that

AdvIND-CPA
Π (A) ≤ AdvNTRU

R,q,χ1
(A1) + AdvRLWR

R,q,k,χ2
(A2)

where χ1 is the distribution of the secret key (f, g) and χ2 = U(R mod 2).

13

Proof. We prove via a sequence of games. Let Pr[Wi] denote the probability of the
adversary winning Game i.

Game 0 is the classical bit-guessing version of the IND-CPA security game, thus
Pr[W0] = 1

2 + AdvIND-CPA
Π (A). The challenger in Game 0 proceeds as follows:

Initialization: (1) (pk = h, sk)← KeyGenEnc()
(2) s← U(R mod 2); c1 ←

⌊
(hs mod q)

k

⌉
initialize an empty associative array Map : R mod 2→M

(3) v ← U(M); b← U({0, 1})
(4) Map[s]← v

send pk to A
Encryption query on

(m0,m1) ∈M2: (5) c2 ← v
⊕
mb; send (c1, c2) to A

Random oracle query
on s′ ∈ R mod 2: (6) if s′ /∈ Domain(Map), then Map[s′]← U(M)

send Map[s′] to A
Game 1 and Game 0 only differ in the generation of pk: line (1) in Game 0 is replaced

by “pk = h← U(R×q)”. We define A1 for the decision NTRU problem. Upon input h ∈ R×q ,
A1 plays the challenger in Game 0 except for setting pk = h in line (1). Then it is easy to
see that

AdvNTRU
R,q,χ1

(A1) = |Pr[W0]− Pr[W1]|.

Game 2 is precisely the same as Game 1, except that we delete line (4). Let E be the
event that the adversary queries the random oracle at the point s in Game 2. Clearly,
Game 1 and Game 2 proceed identically unless E occurs. Therefore,

|Pr[W1]− Pr[W2]| ≤ Pr[E].

If E happens, then one of the random oracle queries made by the adversary is s such
that c1 =

⌊
(hs mod q)

k

⌉
, which gives a solution to the search Ring-LWR problem with input

(h, c1). Precisely, we define A2 for the search Ring-LWR problem. Upon input (h, c),
A2 plays the challenger in Game 2 except for setting pk = h and c1 = c. Additionally,
when A2 terminates, if there is some s′ ∈ Domain(Map) such that c =

⌊
(hs′ mod q)

k

⌉
,

then A2 outputs s′ otherwise outputs “failure”. By definition, E happens if and only if
s ∈ Domain(Map), then we have

Pr[E] = AdvRLWR
R,q,k,χ2

(A2).

In Game 2, v is uniformly random drawn fromM and independent of other interme-
diate variables. Therefore, (m0,m1) is completely indistinguishable, i.e. Pr[W2] = 1

2 . It
immediately follows that

AdvIND-CPA
Π (A) = Pr[W0]− 1

2 ≤ AdvNTRU
R,q,χ1

(A1) + Pr[W1]− 1
2

≤ AdvNTRU
R,q,χ1

(A1) + Pr[W2]− 1
2 + Pr[E]

≤ AdvNTRU
R,q,χ1

(A1) + AdvRLWR
R,q,k,χ2

(A2).

The BAT KEM is obtained via applying a tweaked Fujisaki-Okamoto transform [10, 43]
to the IND-CPA secure encryption. Theorem 3 gives the concrete security statement of
the IND-CCA security of BAT when Hashm,Hashs and Hashk are modeled as quantum
random oracles.

14

Theorem 3. [[43], Corollary 4.7] Let Π be the public key encryption scheme defined by
Algorithms 4.1, 4.2 and 4.3. LetM, C, K and S be the message, ciphertext, key and seed
spaces of Π. Let ΠCCA be the IND-CCA secure KEM defined by Algorithms 4.4, 4.5 and 4.6.
Let Hashm : R → M, Hashs : M → S and Hashk : M× C → K be quantum-accessible
random oracles. Let F :M× C → K be a PRF. Let δ be the decryption error rate of Π
and η be the injectiveness parameter of the derandomized Π by Hashs.4 For an IND-CCA
adversary A against ΠCCA issuing at most qH (resp. qS) quantum queries to Hashk (resp.
Hashs) with query depth at most dH (resp. dS) and at most qdec classical decapsulation
queries, we can construct two adversaries of running time roughly bounded by 3 · TimeA.
These adversaries are:

– an IND-CPA adversary A′ against Π;

– a PRF adversary A′′ against F issuing at most qdec queries.

These adversaries satisfy:

AdvIND-CCA
ΠCCA

(A) ≤ 8 · dH · (dS + 1) ·
(

AdvIND-CPA
Π (A′) + 8 · (3qS + 1)

|M|

)
+ 6 · (3qS + qdec) ·

(
(8dS + 1)δ +

√
3η
)

+ (4dH + 12) · η + 2AdvPRF
F (A′′).

5.3 Concrete security
We estimate the concrete security based on the primal attack and the hybrid attack that
are two best known attacks in lattice-based cryptography. Additionally, an attacker can
break a KEM through either key recovery or message recovery. For BAT, the cost of key
recovery relies on the hardness of the NTRU assumption, while the cost of message recovery
relies on the hardness of the Ring-LWR assumption. Thus, we respectively analyze the
costs of key recovery and message recovery based on the primal and hybrid attack.

5.3.1 Cost of lattice reduction

We begin with a brief introduction to lattice reduction that is heavily used by both
primal and hybrid attacks. Currently, the most practical lattice reduction algorithms are
BKZ [56] and BKZ 2.0 [16]. Let BKZ-β denote the BKZ/BKZ 2.0 with blocksize β. For a
d-dimensional lattice L, BKZ-β would generally find some v ∈ L with ‖v‖ ≤ δdβ vol(L)1/d

and

δβ ≈

(
(πβ)

1
β β

2πe

) 1
2(β−1)

when d > β > 50.
The cost of running BKZ-β on a d-dimensional lattice is estimated by

CBKZ-β = t · d · CSVP-β

where t is the tour number BKZ-β takes and CSVP-β is the cost of solving SVP on a
β-dimensional lattice. We follow a typical setting taking quantum speedups into account:

t = 1, CSVP-β = 20.265β+16.4, CBKZ-β = d · 20.265β+16.4.

Remark 3. The BKZ cost model we use is not extremely conservative: some lattice-based
schemes use the Core-SVP model in which CBKZ-β = 20.265β (resp. 20.292β) for quantum
(resp. classical) setting. For a fair comparison, we shall also show the required blocksize β
along with the estimated cost.

4The specific definitions of δ and η are given in [10].

15

5.3.2 Primal attack

The primal attack consists of constructing a uSVP (unique-SVP) instance and solving it
by lattice reduction. We refer to [3, 2, 1] for details.

For key recovery, the uSVP instance is
(
qIn Mn(h)

In

)
∈ Z2n×2n where Mn(h) is

the matrix form of the public key h. The secret key pair
(
g
f

)
is a short vector of the

uSVP instance. To optimize the primal attack, one can reduce the instance dimension by
“forgetting” some equations and take homogeneousness into account.

For message recovery, it suffices to recover s from c1 =
⌊

(hs mod q)
k

⌉
. Let c = k · c1,

then c = hs− k
(
hs
k −

⌊
(hs mod q)

k

⌉)
:= hs+ e mod q. We construct the uSVP instance asqIn −Mn(h) coef(c)

In
1

 ∈ Z(2n+1)×(2n+1) that contains

es
1

 as a short vector. Unlike

the case of key recovery, the unknowns s and e have different distributions. Therefore, the
primal attack can be improved by re-scaling technique. Also, the strategy of “forgetting”
some equations still works here.

The primal attack with all above optimizations is systematically discussed in [21]. We
estimate the cost of primal attack with the open-source script5 of [21]. Numbers are shown
in Table 5.

5.3.3 Hybrid attack

The hybrid attack was first proposed to cryptanalyze NTRU [40]. Later, the hybrid attack
is adapted to solving uSVP instances and then analyzed taking quantum speedups into
account [13, 36, 60].

To estimate the hybrid attack, we first construct the uSVP instance as Section 5.3.2
as per key recovery and message recovery. The hybrid attack solves a uSVP instance(

B C
Ir

)
∈ Zd×d as follows. Let

(
vl
vg

)
be the short vector of the uSVP instance. First, it

guesses the last r coefficients vg. Next, it solves a BDD instance of (B,Cvg) by lattice
reduction and obtains the first (d− r) coefficients vl. For each (vg, vl), it labels vg with
some addressed determined by vl. After collecting many such vg’s, it finds a collision, that
is (v′g, v′′g) at one same address, which implies a uSVP solution with some probability.

We estimate the cost of the hybrid attack with the open-source script6 by Thomas
Wunderer. Our estimate is based on the hybrid attack with quantum speedups. Numbers
are shown in Table 5.

Table 5: Concrete security estimate for BAT. The item “A/B” denotes the attack cost A
and the required BKZ blocksize B. The item “A” denotes the attack cost A.

Security Key Recovery Message Recovery
primal hybrid primal hybrid

80 bits 87.8 / 236 90.3 83.3 / 219 79.5
128 bits 152.1 / 475 164.1 144.6 / 447 140.1
256 bits 274.4 / 933 314.4 278.6 / 949 275.7

5https://github.com/lducas/leaky-LWE-Estimator
6https://github.com/lducas/LatRedHybrid

16

https://github.com/lducas/leaky-LWE-Estimator
https://github.com/lducas/LatRedHybrid

6 Implementation Details
We implemented BAT with integer-only computations. We provide here some details on
the used implementation techniques.

6.1 Key pair generation
Key pair generation starts with producing the short polynomials f and g, then solving
the NTRU equation to obtain F and G. This specific step uses the algorithm described
in [53]. Compared with the reference implementation of Falcon, the following differences
are noteworthy:

– BAT polynomials have a lower norm than their Falcon equivalent. The polynomial
resultants obtained at the deepest level of the recursive algorithm are then shorter,
which improves performance.

– All uses of floating-point operations (for Babai’s nearest-plane algorithm) have been
replaced with fixed-point values (over 64 bits, with 32 fractional bits), which removes
all dependencies on the floating-point unit. Since fixed-point values have a limited
range, this implies that the reduction may fail, leading to a key pair generation
restart. Failed cases can be efficiently filtered out early in the process by checking
the current partial solution to the NTRU equation modulo a small prime integer;
hence, the overhead implied by these restarts is low. At degree n = 512, about 30%
of candidate (f, g) pairs lead to a restart.

– Some memory reorganization allowed for additional RAM savings, down to 12288
and 24576 bytes for n = 512 and 1024, respectively (compared to 14336 and 28672
bytes for Falcon).

Once the complete NTRU basis (f, g, F,G) has been obtained, ComputeVec is used to
obtain w. The polynomials γ2Ff +Gg and γ2ff + gg are first computed modulo a small
prime where NTT can be applied for efficient computations (a 31-bit prime is used; since
the basis coefficients are all small, it is easily seen that coefficients do not exceed 219 in
absolute value). The v polynomial is then obtained by performing the division in the FFT
domain, using the same fixed-point code as the one used for solving the NTRU equation.
The division itself is performed with a constant-time bit-by-bit routine.

Since fixed-point values are approximations of the real coefficients of v, the rounding
step may occasionally be wrong by 1. Extensive tests show that it is a relatively uncommon
occurrence (it happens in about 0.5% of keys at n = 512) and always when v is close to
z + 1/2 for some integer z; over 30000 random key pairs, the largest observed deviation
of v − 1/2 from the closest integer, for coefficients where our implementation rounds to
w incorrectly, is lower than 2× 10−4. This means that in all observed cases, |wi − vi| <
1/2 + 2× 10−4. Since the decoding process works as long as |wi − vi| < 1, the impact on
the decryption failure rate is negligible.

6.2 Field operations
Efficient and secure (constant-time) operations in the small base fields (modulo q and
q′) are implemented with Montgomery multiplication. Namely, a value x modulo q is
represented by an integer y in the 1 to q range (inclusive), such that y = 232x mod q.
Montgomery reduction can be implemented in two 16-bit multiplications, two shifts and
one addition; they can moreover be mutualized because analysis shows that reduction
works properly for values up to close to 232. For details on this technique, see [52].

On recent x86 platforms, SIMD opcodes can be used to further optimize operations.
AVX2 registers can store 16 values modulo q (or q′) and perform 16 Montgomery reductions

17

in parallel. The _mm256_mullo_epi16() and _mm256_mulhi_epu16() intrinsics compute,
respectively, the low and high halves of a 16-bit product, with a very low reciprocal
throughput (0.5 cycles). Computing 16 modular multiplications in parallel requires in
total only 6 invocations of such intrinsics.

6.3 NTT multiplication
Since q − 1 and q′ − 1 are multiples of 256 for BAT, the NTT can be applied to speed up
computations over polynomials modulo Xn + 1, when working with integers modulo either
q or q′. For n a power of two up to 27 = 128, the NTT representation of a polynomial f
is the set of f(ζ2i+1) for 0 ≤ i ≤ n− 1, where ζ is a primitive 2n-th root of 1 modulo q
(or q′). In NTT representation, addition and multiplication of polynomials can be done
coefficient-wise, hence with cost O(n) operations modulo q. Moreover, conversion to and
from NTT representation can be done in O(n logn) steps.

For larger degrees, we cannot use full NTT representation, but we can still optimize
operations by splitting polynomials as follows. Consider n = 512; the polynomial f modulo
X512 + 1 can be split into four sub-polynomials as follows:

f = f0(X4) +Xf1(X4) +X2f2(X4) +X3f3(X4)

the polynomials fi being of degree up to 127, and operating modulo X128 + 1. Then,
operations on such polynomials can be expressed as a relatively small number of operations
on the sub-polynomials, which themselves can be implemented in the NTT domain, since
the sub-polynomials are of degree less than 128.

In our implementation, the NTT representations of the sub-polynomials are interleaved,
so as to maximize parallelization efficiency.

6.4 Polynomial splitting and Karatsuba multiplication
For LW-BAT, we use q = 128, which prevents us from using the NTT straightforwardly7.
Instead, for polynomial multiplications, we use Karatsuba with an even/odd split, by
writing a polynomial f as:

f = f0(X2) +Xf1(X2)
with f0 and f1 being half-size polynomials (they operate modulo Xn/2 + 1). We can then
express the product of f and g as:

fg = (f0g0)(X2) +X2(f1g1)(X2) +X((f0 + f1)(g0 + g1)− f0g0 − f1g1)(X2)

i.e. we turn the multiplication of two polynomials modulo Xn+ 1 into three multiplications
of polynomials modulo Xn/2 + 1. We use this reduction recursively, until polynomials have
degree less than 4.

The same split is used to compute polynomial divisions modulo Xn + 1: this is used to
compute the public key h = g/f mod q, and also to rebuild G from f , g and F when the
short format for private key storaged was used. The even-odd split allows us to write:

1
f

= f0(X2)−Xf1(X2)
(f0(X2) +Xf1(X2))(f0(X2)−Xf1(X2))

= f0(X2)−Xf1(X2)
(f2

0 +Xf2
1)(X2)

which reduces inversion modulo Xn + 1 to a multiplication (modulo Xn + 1) and an
inversion modulo Xn/2 + 1. Applied recursively, this method leads us to the simple
problem of inverting an integer modulo q = 128, which can be done in a few inexpensive
multiplications.

7A very recent work [19] shows that by introducing an extra prime p such that p > nq2/2 and
p = 1 mod 2n, one can implement the multiplication over Rq with NTT over Rp.

18

6.5 Decoding

Decoding involves computing polynomials with integer coefficients modulo q, q′ and Q.
The final step requires solving for e′ and s′; we only need s′ in practice, since we can use
encapsulation to verify the result. Moreover, there are only two possible values for each
coefficient of s′ (for 1/2 and −1/2) and we merely need to disambiguate between these two
values. To keep to integer values, we do not recover s′ but qq′Qs′; moreover, we perform
computations modulo an additional small prime distinct from q and q′. In practice, when
q = 257, we perform the last step by working modulo 769; when q = 128 or 769, we use
computations modulo 257.

6.6 Encoding and storage

We defined compact encoding formats for public keys, private keys, and ciphertexts. Each
format starts with a single header byte which identifies the object type and parameter set.

Public keys are polynomials with coefficients modulo q. When q = 257, we encode
coefficients by groups of eight, each group using 65 bits: each coefficient is split into a low
half (4 bits) and a high half (value 0 to 16, inclusive); eight “high halves” are encoded
over 33 bits in base 17. For q = 769, a similar mechanism is used, with 5 coefficients being
encoded over 48 bits. All encoding and decoding operations can be implemented with only
simple 32-bit multiplications, and can be done efficiently in a constant-time manner (this
last property does not nominally matter for public keys, which are public).

Ciphertexts are mainly polynomials with small, signed integer coefficients. When
q = 257, coefficients of c1 are in the −64 to +64 range; eight coefficients are encoded over
57 bits, in a way similar to public key encoding. For q = 769, coefficients of c are in the
−96 to +96 range, and five coefficients are encoded over 38 bits in base 193. The value c2,
which is a fixed-size binary value, is simply appended to the encoding of c1.

Private keys have a “short” and a “long” formats. The long format includes the
32-byte seed that was used to generate f , g, and the 32-byte value r (which is used when
decapsulation fails). This seed is followed by a copy of r, then the polynomials f , g, F , G
and w themselves, and the public key h. Coefficients of f and g are encoded over 4 bits
each, in two’s complement notation; for F and G, 6 bits are used per coefficient, and 17
bits for w. The public key h uses the same encoding as in the public key. The short format
only stores the 32-byte seed, and the polynomial F : the value r and the polynomials f
and g are regenerated with the same pseudorandom (deterministic) process that was used
during key pair generation; G is recomputed using the NTRU equation (modulo q); and w
and h are recomputed. While the short format is substantially shorter, decoding a private
key stored in the short format has a nonnegligible overhead, but is still much cheaper than
key pair generation, since the most expensive part (solving the NTRU equation from f
and g alone) is avoided.

The numbers for required storages are listed in Table 6.

Table 6: The required storage of BAT (full format, including the header byte).

Security Public Key
(bytes)

Ciphertext
(with FO, bytes)

Private key
(short, bytes)

Secret Key
(long, bytes)

80 bits 225 203 225 1473
128 bits 521 473 417 2953
256 bits 1230 1006 801 6030

19

6.7 Speed benchmarks
We provide two implementations — (1) plain portable C version and (2) AVX2 version. We
measured the speed on an Intel i5-8259U CPU clocked at 2.3 GHz; TurboBoost is disabled.
Compiler is Clang-10.0, with optimization flags “-O3”. The AVX2 implementation uses
intrinsic functions, and an additional optimization flag “-march=native”. For key pair
generation, reported value is an average over several hundreds of key pairs (by nature, that
process takes a varying time, since each candidate (f, g) may or may not lead to a successful
key pair generation; it is still “constant-time” in that timing variations are independent
of the value of the private key which is ultimately generated). For encapsulation and
decapsulation, reported value is the core process, without random generation (from the
operating system), hashing to derive the shared secret, and encoding/decoding costs; on
the test system, these extra operations add up to about 20k extra cycles.

The timing data for two implementations are illustrated in Tables 7 and 8 respec-
tively.

Table 7: The performance of the plain C implementation of BAT.

Security Key Generation
(cycles)

Encapsulation
(cycles)

Decapsulation
(cycles)

80 bits ≈ 23.8× 106 82131 392036
128 bits ≈ 37.2× 106 35785 279260
256 bits ≈ 264.7× 106 71007 537580

Table 8: The performance of the AVX2 implementation of BAT.

Security Key Generation
(cycles)

Encapsulation
(cycles)

Decapsulation
(cycles)

80 bits ≈ 23.6× 106 55736 248038
128 bits ≈ 30.6× 106 8355 54264
256 bits ≈ 185.7× 106 18479 118592

Acknowledgements
This work was partly supported by the European Union PROMETHEUS project (Horizon
2020 Research and Innovation Program, grant 780701). Paul Kirchner is partly funded
by the Direction Générale de l’Armement (Pôle de Recherche CYBER). This work is also
partly supported by the National Natural Science Foundation of China (No. 62102216), the
National Key Research and Development Program of China (Grant No. 2018YFA0704701),
the Major Program of Guangdong Basic and Applied Research (Grant No. 2019B030302008)
and Major Scientific and Technological Innovation Project of Shandong Province, China
(Grant No. 2019JZZY010133).

References
[1] Albrecht, M.R., Curtis, B.R., Deo, A., Davidson, A., Player, R., Postlethwaite, E.W.,

Virdia, F., Wunderer, T.: Estimate all the {LWE, NTRU} schemes! In: SCN 2018.
pp. 351–367 (2018)

20

[2] Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the Expected Cost
of Solving uSVP and Applications to LWE. In: ASIACRYPT 2017. pp. 297–322 (2017)

[3] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum Key Exchange—A
New Hope. In: USENIX Security 16. pp. 327–343 (2016)

[4] Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber (2020), https://pq-crystals.
org/kyber/data/kyber-specification-round3.pdf

[5] Baan, H., Bhattacharya, S., Cheon, J.H., Fluhrer, S., Garcia-Morchon, O., Laarhoven,
T., Player, R., Rietman, R., Saarinen, M.J.O., Son, Y., Tolhuizen, L., Arce, J.L.T.,
Zhang, Z.: Round5: KEM and PKE based on (Ring) Learning with Rounding (2020),
https://round5.org/doc/Round5_Submission042020.pdf

[6] Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combi-
natorica 6(1), 1–13 (1986)

[7] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
EUROCRYPT 2012. pp. 719–737 (2012)

[8] Basso, A., Mera, J.M.B., D’Anvers, J.P., Karmakar, A., Roy, S.S., Beirendonck,
M.V., Vercauteren, F.: SABER: Mod-LWR based KEM (2020), https://www.esat.
kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

[9] Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
Reducing attack surface at low cost. In: SAC 2017. pp. 235–260 (2017)

[10] Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter proofs
of cca security in the quantum random oracle model. In: TCC 2019. pp. 61–90 (2019)

[11] Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: TCC 2016. pp. 209–224 (2016)

[12] Brakerski, Z., Döttling, N.: Lossiness and Entropic Hardness for Ring-LWE. In: TCC
2020 (2020)

[13] Buchmann, J., Göpfert, F., Player, R., Wunderer, T.: On the hardness of LWE with
binary error: Revisiting the hybrid lattice-reduction and meet-in-the-middle attack.
In: AFRICACRYPT 2016. pp. 24–43 (2016)

[14] Chen, C., Danba, O., Hoffstein, J., Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe,
P., Whyte, W., Zhang, Z.: NTRU: A submission to the NIST post-quantum standard-
ization effort (2020), https://ntru.org/

[15] Chen, L., Zhang, Z., Zhang, Z.: On the hardness of the computational Ring-LWR
problem and its applications. In: ASIACRYPT 2018. pp. 435–464 (2018)

[16] Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: ASIACRYPT
2011. pp. 1–20 (2011)

[17] Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: Cut off the tail! A practical post-
quantum public-key encryption from LWE and LWR. In: International Conference on
Security and Cryptography for Networks. pp. 160–177 (2018)

[18] Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon:
compact signatures based on module NTRU lattices. In: ASIACCS 2020 (2020)

21

https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://round5.org/doc/Round5_Submission042020.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://ntru.org/

[19] Chung, C.M.M., Hwang, V., Kannwischer, M.J., Seiler, G., Shih, C.J., Yang, B.Y.:
NTT Multiplication for NTT-unfriendly Rings. IACR Transactions on Cryptographic
Hardware and Embedded Systems p. to appear (2021)

[20] Cong Chen, Jeffrey Hoffstein, W.W., Zhang, Z.: NIST PQ Submission: NTRUEncrypt
A lattice based encryption algorithm (2017), https://ntru.org/resources.shtml

[21] Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: Lwe with side information:
Attacks and concrete security estimation. In: Crypto 2020 (2020)

[22] D’Anvers, J.P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Verbauwhede,
I.: Decryption failure attacks on IND-CCA secure lattice-based schemes. In: PKC
2019. pp. 565–598 (2019)

[23] D’Anvers, J.P., Rossi, M., Virdia, F.: (One) Failure Is Not an Option: Bootstrapping
the Search for Failures in Lattice-Based Encryption Schemes. In: EUROCRYPT 2020.
pp. 3–33 (2020)

[24] Das, D., Hoffstein, J., Pipher, J., Whyte, W., Zhang, Z.: Modular lattice signatures,
revisited. Designs, Codes and Cryptography 88(3), 505–532 (2020)

[25] Dent, A.W.: A designer’s guide to KEMs. In: IMA International Conference on
Cryptography and Coding. pp. 133–151. Springer (2003)

[26] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice Signatures and
Bimodal Gaussians. In: CRYPTO 2013. pp. 40–56 (2013)

[27] Ducas, L., Lyubashevsky, V., Prest, T.: Efficient Identity-Based Encryption over
NTRU Lattices. In: ASIACRYPT 2014. pp. 22–41 (2014)

[28] Ducas, L., Nguyen, P.Q.: Learning a Zonotope and More: Cryptanalysis of NTRUSign
Countermeasures. In: ASIACRYPT 2012. pp. 433–450 (2012)

[29] Ducas, L., Prest, T.: Fast Fourier Orthogonalization. In: ISSAC 2016. pp. 191–198
(2016)

[30] Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-Fourier Lattice-based
Compact Signatures over NTRU (2020), https://falcon-sign.info/

[31] Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption
schemes. In: Crypto’99. pp. 537–554 (1999)

[32] Gama, N., Nguyen, P.Q.: New chosen-ciphertext attacks on NTRU. In: PKC 2007.
pp. 89–106 (2007)

[33] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New
Cryptographic Constructions. In: STOC 2008. pp. 197–206 (2008)

[34] Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice
Reduction Problems. In: CRYPTO ’97. pp. 112–131 (1997)

[35] Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Crypto’97. pp. 112–131 (1997)

[36] Göpfert, F., van Vredendaal, C., Wunderer, T.: A hybrid lattice basis reduction and
quantum search attack on LWE. In: PQCrypto 2017. pp. 184–202 (2017)

22

https://ntru.org/resources.shtml
https://falcon-sign.info/

[37] Guo, Q., Johansson, T., Yang, J.: A Novel CCA Attack Using Decryption Errors
Against LAC. In: ASIACRYPT 2019. pp. 82–111 (2019)

[38] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSIGN: Digital Signatures Using the NTRU Lattice. In: CT-RSA 2003. pp.
122–140 (2003)

[39] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem.
In: ANTS 1998. pp. 267–288 (1998)

[40] Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against ntru. In: CRYPTO 2007. pp. 150–169 (2007)

[41] Hülsing, A., Rijneveld, J., Schanck, J., Schwabe, P.: High-Speed Key Encapsulation
from NTRU. In: CHES 2017. pp. 232–252 (2017)

[42] Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., Feo, L.D., Hess, B., Jalali,
A., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Renes, J., Soukharev, V.,
Urbanik, D., Pereira, G.: Supersingular Isogeny Key Encapsulation (2020), https:
//sike.org/files/SIDH-spec.pdf

[43] Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.F.: Measure-rewind-measure:
Tighter quantum random oracle model proofs for one-way to hiding and cca security.
In: EUROCRYPT 2020. pp. 703–728 (2020)

[44] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on
the cloud via multikey fully homomorphic encryption. In: STOC 2012. pp. 1219–1234
(2012)

[45] Lu, X., Liu, Y., Jia, D., Xue, H., He, J., Zhang, Z., Liu, Z., Yang, H., Li, B., Wang,
K.: LAC: Lattice-based Cryptosystems (2019), https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions

[46] Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclotomic
rings and applications to lattice-based zero-knowledge proofs. In: EUROCRYPT 2018.
pp. 204–224 (2018)

[47] Lyubashevsky, V., Seiler, G.: NTTRU: Truly Fast NTRU Using NTT. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems pp. 180–201 (2019)

[48] Micciancio, D.: Improving lattice based cryptosystems using the Hermite normal form.
In: International Cryptography and Lattices Conference. pp. 126–145 (2001)

[49] Nguyen, P.Q., Regev, O.: Learning a Parallelepiped: Cryptanalysis of GGH and
NTRU Signatures. In: EUROCRYPT 2006. pp. 271–288 (2006)

[50] NIST: Round 3 candidates of the NIST Post-Quantum Cryptography Standard-
ization (2020), https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-3-submissions

[51] Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography in
TLS. In: PQCrypto 2020. pp. 72–91 (2020)

[52] Pornin, T.: Efficient Elliptic Curve Operations On Microcontrollers With Finite Field
Extensions. Cryptology ePrint Archive, Report 2020/009 (2020), https://eprint.
iacr.org/2020/009

[53] Pornin, T., Prest, T.: More efficient algorithms for the NTRU key generation using
the field norm. In: PKC 2019. pp. 504–533 (2019)

23

https://sike.org/files/SIDH-spec.pdf
https://sike.org/files/SIDH-spec.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/009
https://eprint.iacr.org/2020/009

[54] Prest, T.: Gaussian Sampling in Lattice-Based Cryptography. Ph.D. thesis, École
Normale Supérieure (2015)

[55] Saarinen, M.J.O.: On PQC message lengths and some energy consumption
myths (2019), https://groups.google.com/a/list.nist.gov/forum/#!forum/
pqc-forum

[56] Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming 66(1-3), 181–199 (1994)

[57] Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Assessing the overhead of post-
quantum cryptography in TLS 1.3 and SSH. In: Han, D., Feldmann, A. (eds.) CoNEXT
’20: The 16th International Conference on emerging Networking EXperiments and
Technologies, Barcelona, Spain, December, 2020. pp. 149–156. ACM (2020)

[58] Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in
TLS 1.3: A performance study. In: 27th Annual Network and Distributed System
Security Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020.
The Internet Society (2020)

[59] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: EUROCRYPT 2011. pp. 27–47 (2011)

[60] Wunderer, T.: On the Security of Lattice-Based Cryptography Against Lattice
Reduction and Hybrid Attacks. Ph.D. thesis, Darmstadt University of Technology,
Germany (2018), http://tuprints.ulb.tu-darmstadt.de/8082/

[61] Zhang, J., Yu, Y., Fan, S., Zhang, Z., Yang, K.: Tweaking the Asymmetry of
Asymmetric-Key Cryptography on Lattices: KEMs and Signatures of Smaller Sizes.
In: PKC 2020 (2020)

A Proofs of Theorem 1
To prove Theorem 1, we need Lemma 1 to estimate the norm of the involved vectors.

Lemma 1. Let R = Z[x]/(xn + 1) with n a power-of-2. Let f, g ∈ R be iid-random over

DZ,σf , Bf,g =
(
g G
f F

)
∈ R2×2 be an NTRU basis. Let v = γ2Ff+Gg

γ2ff+gg
with γ > 0. Let

(G⊥, F⊥) = (G− gv, γF −γfv) and (G′, F ′) = (G− gbveq′ , F − fbveq′). Let I(γ) = 2 ln(γ)
γ2−1

for γ 6= 1 and I(1) = 1. Then

– ‖(G⊥, F⊥)‖ ≈ qγ√
n·σf

√
I(γ);

– ‖(G′, γF ′)‖ ≤ qγ√
n·σf

√
I(γ) + n1.5

√
γ2+1

2q′ σf .

Proof. First, it can be verified that (G⊥, F⊥) = qγ
(
−γf

γ2ff+gg
, g

γ2ff+gg

)
. Let ξn be a 2n-th

primitive root of 1, then ‖f‖2 = 1
n

∑n
i=1 f(ξ2i−1

n)f(ξ2i−1
n) for any f ∈ Kn. Some routine

computation yields that

‖(G⊥, F⊥)‖2 = q2γ2

n

n∑
i=1

1
γ2f(ξ2i−1

n)f(ξ2i−1
n) + g(ξ2i−1

n)g(ξ2i−1
n)

.

24

https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
http://tuprints.ulb.tu-darmstadt.de/8082/

We heuristically model all these f(ξ2i−1
n)f(ξ2i−1

n) and g(ξ2i−1
n)g(ξ2i−1

n) as independent
random variables drawn from the chi-square distribution of parameter k = 2 scaled by
n
2σ

2
f . The average of

n
2 σ

2
f

q2γ2 · ‖(G⊥, F⊥)‖2 is then estimated as∫ ∞
0

∫ ∞
0

1
γ2x+ y

e−
x+y

2

4 dxdy =
∫ ∞

0

∫ z

0

1
(γ2 − 1)x+ z

e−
z
2

4 dxdz

=
{

ln(γ2)
4(γ2−1)

∫∞
0 e−

z
2 dz, γ 6= 1;

1
4
∫∞

0 e−
z
2 dz, γ = 1

= I(γ)
2 .

Further, we get the following approximation

‖(G⊥, F⊥)‖ ≈ qγ√
n · σf

√
I(γ).

Let ∆v = v − bveq′ , then ‖∆v‖∞ ≤ 1
2q′ . It is known that ‖f∆v‖ ≤ n

2q′ ‖f‖ for any
f ∈ Kn. We estimate ‖f‖ and ‖g‖ as

√
nσf . Then it follows that

‖(G′, γF ′)‖ ≤‖(G⊥, F⊥)‖+ ‖(g∆v, γf∆v)‖

≤‖(G⊥, F⊥)‖+ n

2q′ ‖(g, γf)‖

≈ qγ√
n · σf

√
I(γ) + n1.5

√
γ2 + 1

2q′ σf .

This completes the proof.

Remark 4. When γ = 1, our estimation of ‖(G⊥, F⊥)‖ is q√
n·σf

. This implies that for
optimal trapdoor, σf should be 4

√
2
√

q
2n ≈ 1.19

√
q

2n slightly larger than the previous
heuristic bound 1.17

√
q

2n suggested in [27]. The explanation of the factor 1.17 is given
in [54]: the argument makes use of the projection heuristic on both (g, f) and (G,F)
two parts. In fact, this explanation seems problematic: as Bf,g is symplectic, once the
Gram-Schmidt norms of the (f, g) part are fixed, those of the (G,F) part are determined as
well. Thus, the optimal bound for the Gram-Schmidt norm of Bf,g is entirely determined
by ‖b∗0‖

2

‖b∗
n−1‖2 = Tr(ff + gg) Tr

(
1

ff+gg

)
where Tr denotes the trace over Kn.

Proof of Theorem 1. Let s′ = s− µs1 and e′ = e− µe1. It can be verified that

c′ = (Q(gs′ + fe′) mod qQ)

and
c′′ = (q′Q(Fe′ +Gs′)− c′w mod qq′Q).

If ‖fe′+ gs′‖∞ ≤ q
2 , then c

′ = Q(gs′+ fe′) and c′′ = (Q(Fde′+Gds
′) mod qq′Q). Further,

if
max

{
‖fe′ + gs′‖∞,

‖Fde′ +Gds
′‖∞

q′

}
≤ q

2 ,

it follows that c′ = Q(gs′+fe′) and c′′ = Q(Fde′+Gds
′), which ensures a correct decoding

similar to the RO algorithm.
Let T1 = fe′+ gs′ and T2 = Fd

q′ e
′+ Gd

q′ s
′. We approximate T1, T2 by two random Gaus-

sian vectors of standard deviations σT1 =
√
nσfσs

√
γ2 + 1 = σ1 and σT2 = σs

q′ ‖(Gd, γFd)‖.

By Lemma 1, we have σT2 ≤ σ2 and then τ ≤ min
{

q

2
√

2σT1
, q

2
√

2σT2

}
. Therefore, the

probability of correct decoding is at least 1− 2n · (1− erf(τ)).

25

B Changes with respect to Last Submission
In the following we list the changes we made as per the reviews on our last submission
“TCHES 2021, issue2 Paper #22”.

Editorial quality. First we added more connections between sections and explained why
some presented results are relevant for this paper. To improve the paper’s organization,
security arguments and implementation details have been split into two sections. Secondly,
some missing references and backgrounds on Falcon have been added. Thirdly, we included
“Comparison with Falcon” and an intuitive explanation of why BAT achieves smaller
parameters in Section 1, which may help readers to better understand our work. Finally,
we proofread the whole paper and clarify the variables and terms before they are used.

Changed algorithms and parameters. The encryption (Algorithm 4.2) was modified:
the new encryption is IND-CPA secure rather than OW-CPA as the old one. This
modification leads to a simpler security proof while increasing a little the cost on the
ciphertext size. Also we refined the key generation as per Section 3: the trapdoor of the
updated BAT does not always satisfy ‖(f, g)‖ ≈ ‖(F ∗, G∗)‖, which is different from Falcon.
This improves the decryption failure rate. All parameters were changed accordingly.

Decryption failure. To reduce the decryption failure rate, we increased q′ to 64513 and
modified the key generation (explained above). In the previous submission, our estimate
of decryption failure was heuristic (Theorem 1). In the updated version, we also presented
exact values computed for actual secret keys: exact values are even smaller than heuristic
ones. Detailed numbers and explanations were shown in Section 4.2.

Security arguments. All security arguments including the assumptions, the security
proof and the concrete security estimates are now in Section 5. Some references were
added after each used assumption to show why it is assumed to hold. We gave a formal
security proof of CPA security and followed the updated results of FO transformation.
The modifications on concrete security estimates are significant including 1. more details
about considered attacks and their relevance to the used assumptions, 2. costing hybrid
attacks, and 3. re-estimates made by open-source scripts of the state-of-the-art works.

Implementation and benchmarking. We explained more about the fixed-point ap-
proximation in Section 6.1. We also compared with SIKE and compressed SIKE in Table 2
as suggested by Review A. Yet we did not report the full timings including random
generation, hashing and encoding/decoding, as we explained in the rebuttal. Again, the
costs of random generation, hashing and encoding/decoding are not included in the timings
of other algorithms in Table 2, even though these operations are more costly than the core
process that we measured. Moreover, we cannot provide them for the other schemes.

26

	Introduction
	Preliminaries
	Notations
	Linear algebra
	Probability and statistics
	NTRU

	A New NTRU Decoder
	Babai's algorithms for NTRU
	Our decoding algorithm for NTRU
	Decoding failure rate

	BAT KEM
	Algorithm description
	Parameter selection

	Security
	Assumptions
	KEM security
	Concrete security

	Implementation Details
	Key pair generation
	Field operations
	NTT multiplication
	Polynomial splitting and Karatsuba multiplication
	Decoding
	Encoding and storage
	Speed benchmarks

	Proofs of Theorem 1
	Changes with respect to Last Submission

