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Abstract 

The efficient planning of search and rescue (SAR) operations is highly impactful in the disaster 
response phase, which offers a limited time window with a declining chance for saving trapped 
people. The present paper introduces a new robust decision support framework for planning SAR 
resource deployment in post-disaster districts. A two-stage decomposition approach is applied to 
formulate the problem as iterative interrelated stages of mixed-integer programming (MIP) 
models. The first stage presents a robust multi-period allocation model for maximizing fair and 
effective demand coverage in the affected districts during the entire planning horizon. It takes into 
account the time-sensitiveness of the operations via a time-dependent demand satisfaction 
measure and incorporates resource transshipment optimization. The second stage optimizes the 
routing of the resources allocated in the first stage for each district during the upcoming period. 
It aims to minimize the weighted sum of SAR demand fulfillment times under consideration of 
secondary destruction risk, resource collaboration, and rest time requirements. At the end of each 
period, the proposed framework can be re-executed to capture updated resource, demand, and 
travel time parameters. To tackle the environment’s inherent uncertainty, an interval-based 
robust optimization approach is adopted. The proposed framework is solved and analyzed for an 
urban zone in Iran under an earthquake scenario. Results show that the proposed robust models 
have superior performance compared to a deterministic approach for adaptation to an uncertain 
disaster environment. More importantly, they prove to be a strong analysis tool for providing 
helpful managerial insights for the mitigation and preparedness phases. 
 
Keywords: Search and rescue; Earthquakes; Disaster management; Response phase; Robust 
allocation routing. 
 
1. Introduction 

Earthquakes have caused severe damage and numerous fatalities in recent years. They 
continue to catastrophically threaten millions of people’s lives, directly or indirectly, all over the 
world every year. According to the Significant Earthquake Database 1  (NGDC/WSD), major 
earthquakes during the last decade caused more than 400,000 deaths and more than 500,000 
injuries, and affected 103 countries. The Sichuan earthquake in China in 2008 and earthquakes in 
Haiti in 2010 and Nepal in 2015 were among the most destructive and affected more than 56 

 
* Corresponding author. Tel.: +98 21 82084183, Fax: +98 21 88013102 
E-mail address: tavakoli@ut.ac.ir (R. Tavakkoli-Moghaddam) 
1Earthquakes with one or more of the following five characteristics are listed as significant: 1) Caused 
moderate damage (approximately $1 million or more); 2) Caused deaths; 3) Magnitude 7.5 or greater; 4) 
Modified Mercalli Intensity (MMI) of X or greater; and 5) Generated a tsunami (NGDC/WSD). 
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million people (EM-DAT). Immediately after earthquakes strike (French and Geldermann, 2005), 
possible sudden structural collapses trigger search and rescue (SAR) operations in the response 
phase of the disaster management cycle, which aims at locating, extricating and stabilizing trapped 
people (OCHA, 2015).  

SAR is a fight against time since the survival likelihood of trapped people declines over time 
(Noji, 1997; Olson and Olson, 1987). Hence, providing rescue operations in a disaster-impacted 
zone requires the timely availability of sufficient SAR resources based on the damage magnitude. 
However, given the response phase setting, especially in major disasters that cause damages over 
a large zone with multiple districts, these resources can face serious shortages for various reasons: 
failure in the preparedness phase to devise an agile initial response to the disaster; budget 
limitations; or logistical constraints. Despite the low presence of SAR teams in the vital initial 
hours, response teams from various local, national, and international governmental or non-
governmental organizations gradually arrive. Therefore, developing well-structured mechanisms 
to alleviate the intra- and inter-organizational coordination challenges in disaster response is 
beneficial and important (Quarantelli, 1988; Altay and Green, 2006; Balcik et al., 2010; Galindo 
and Batta, 2013). The complexity in the availability of resources, on the one hand, and the 
diminishing survival chances of trapped people on the other hand, highlight the significance of 
timely resource allocation in the life-saving endeavors of the response phase (Rolland et al., 2010; 
Mohamadi and Yaghoubi, 2017).  

When disaster strikes, fair distribution of available resources is also fundamentally important 
(Altay and Green, 2006; Beamon and Balcik, 2008; Hu et al., 2016; Erbeyoglu and Bilge, 2020). The 
range of effects from overlooking the notion of fairness in rescue resource allocation decisions 
extends beyond the response phase. It can lead to undesirable short-term and long-term social, 
economic, and environmental consequences, such as the occurrence of citizen dissatisfaction, 
increased complications and health-related issues in the management of dead bodies, 
overwhelmed debris management, and additional environmental damages, unbalanced relief 
distribution, and increased recovery efforts.  

Although having an optimal allocation scheme is crucial in largely affected zones, its 
performance is strongly linked with how resources are operationally deployed to serve demand 
locations in each district. Transportation disruptions and different travel times between demand 
locations, the risk of secondary destructions leading to time-dependent SAR, resource safety 
concerns, and trapped population density in each location all highlight how the routing of 
resources is critical for timely, well-organized and efficient utilization of resources.  

This becomes even more critical in urban regions since the presence of densely packed tall 
buildings, a large population, and complex street patterns can complicate and extend the 
operations (Statheropoulos et al., 2015). Although effective SAR planning is important, it has 
received less attention from scholars compared with other operation management topics in the 
vast body of the disaster management literature. In Iran, with its history of highly destructive 
earthquakes, the risks of overlooking these challenges endanger the capital, Tehran, more than 
other cities. Tehran is the largest city in the nation with more than 8,000,000 residents (Statistical 
Center of Iran, 2011), and it is located on three major active faults: the Mosha, North Tehran, and 
Rey faults (JICA, 2000). These faults caused several deadly and destructive earthquakes in the 
region from 743 to 1170, and again in 1830 (Ambraseys and Melville, 1977). The faults in the 
region are depicted in Fig. 1. 

Decision making in such a complex setting characterized by high time-sensitivity, several 
operational constraints, different objectives (e.g., fairness and effectiveness in the presence of 
several beneficiaries) coupled with the uncertainty and unpredictability of the situation (Balcik et 
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al., 2010; Galindo and Batta, 2013; Hoyos et al., 2015) is a complex and difficult task (Clemen, 
1996). In such a context, the existence of a decision support framework, which tackles these 
challenges, can accommodate the decision makers with tools to analyze the situation and to make 
informed and right choices (Thompson et al., 2006; Cioca and Cioca, 2010; Othman et al., 2017). 

Inspired by the vulnerability of Tehran in the face of potential earthquakes, and to address the 
challenging, highly complex and impactful problem of rescue operation management, this study 
develops a novel robust decision support framework for SAR planning optimization. The proposed 
framework, which also tackles the inherently uncertain nature of the disaster environment by 
adopting interval-based robust optimization, integrates two major decisions: (1) allocation of 
available SAR teams among districts in the affected zone; and (2) routing of allocated resources to 
serve the demand locations in each district of the zone. 

The main contributions of the developed decision support framework can be categorized as 
follows: 

 Considering fairness and operational efficiency in allocation decisions. 
 Addressing the risks of disruption in the operations from the occurrence of secondary 

destruction. 
 Considering the inherent uncertainty of disasters by adopting an interval robust 

optimization framework for SAR allocation and routing. 
 Incorporating two coordination mechanisms to increase management effectiveness in the 

affected zone. 
The rest of this paper is structured as follows. Section 2 reviews related studies in the literature. 

In Section 3, the problem is defined and the proposed framework is presented. Section 4 suggests 
the robust counterpart models. The application of the proposed framework to an urban district in 
Tehran is analyzed in Section 5. Conclusions are drawn in Section 6. 

 

 
Fig. 1. (a) Map of faults and seismicity in Iran (Mojarab et al., 2014); (b) The 22 urban districts of 

Tehran and the position of major faults (Asadzadeh et al., 2015) 
 

2. Literature review 
The present work mainly focuses on search and rescue operations in the earthquake response; 

but in a broader context, it is related to important decisions about resource allocation, scheduling, 
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and routing in disaster response. The response phase has attracted the attention of the majority 
of disaster management contributors (Goldschmidt and Kumar, 2016), and there is a rich body of 
research dealing with its different aspects. To not lose focus, the review mainly concerns papers 
that have studied allocation, scheduling, or routing decisions within the scope of SAR. 

 
2.1. Resource allocation 

Zhang et al. (2012) proposed a deterministic model for the allocation of multiple resources to 
multiple affected nodes to fully serve demand after primary and possible secondary disasters. 
They applied a heuristic approach to minimize total costs of resource allocation to primary 
disasters and opportunity costs of arrival at possible secondary ones. Chu and Zhong (2015) 
addressed the allocation of medical teams shortly after a severe disaster. They defined saving 
functions for different degrees of severity and maximized the expected number of survivals via a 
nonlinear mathematical allocation of available teams at different points. Zhang et al. (2016) 
developed a deterministic two-stage allocation model for restoring interdependent lifeline 
infrastructure after disruptions. A cost minimization model selects the destroyed components in 
the first stage, and then restoration scheduling is determined by a makespan minimization model. 
A heuristic algorithm was proposed to solve the proposed models. Su et al. (2016) addressed the 
collaboration of various emergency agencies (hospitals, police stations, etc.) to respond to 
concurrent incidents in disaster zones. They chose the sum of travel times and allocation costs as 
an objective function, treated the parameters as deterministic, and developed a differential 
evolution (DE) algorithm as their solution approach. Xiang and Zhuang (2016) developed a 
queuing network for patients with deteriorating conditions after large-scale disasters and 
proposed two optimization models for death rate minimization and system time minimization.   

 
2.2. Scheduling and Routing 

As suggested by Wex et al. (2013), building a service tour for each resource unit in the affected 
district can be viewed in both the scheduling and routing domains. Fiedrich et al. (2000) 
developed a dynamic optimization model to schedule technical equipment in SAR, and also 
considered construction stabilization and rehabilitation of transportation lifeline tasks to 
minimize fatalities. Chen and Miller-Hooks (2012) developed a multi-stage stochastic program to 
optimize the routing of homogenous SAR teams in a large urban zone to maximize the number of 
saved people. Taking the arrival time of SAR teams as a priori vs. considering demand, service 
times, and travel times as random variables, they proposed a sequence of interrelated two-stage 
stochastic programs as their solution approach and determined the tours of SAR teams. Zheng et 
al. (2018) presented a multi-objective fuzzy rescue task scheduling and risk minimization 
formulation and solved it with a multi-objective biogeography optimization (BBO) algorithm. 
They treated task weights, risk factors, and processing and travel time parameters as fuzzy 
numbers and considered a nonlinear fuzzy risk exposure function for rescue units.  

Yan et al. (2014) proposed a cost minimization logistical support scheduling model with 
stochastic travel time in a given emergency repair network. Adopting average travel times, they 
simplified the stochastic model to a deterministic model and used a heuristic decomposition 
approach. Lei et al. (2015) proposed a deterministic service tardiness minimization model to find 
a timely dispatching schedule for medical supplies originating from different depots by 
preplanned routes of medical teams in the aftermath of a disaster. Cao et al. (2018) developed a 
deterministic multi-objective model for multi-period optimization of emergency rescue vehicles 
routing in post-disaster operations. In addition to the minimization of the rescue operation time, 
they considered the accumulated number of an unserved population at each period as the rescue 
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delay cost objective function. Furthermore, by defining a rescue utility score for each demand 
node, they defined the rescue utility objective function. They used a hybrid NSGA-II and ant colony 
optimization algorithm to solve the model. Bodaghi et al. (2020) presented a deterministic 
completion time minimization model to determine the scheduling of expandable and non-
expandable resources in emergency operations. To count for the uncertain input parameters, their 
proposed framework runs the model for a set of plausible scenarios and selects the most common 
plan. Liu et al. (2020) developed a two-phase efficiency-focused routing optimization model. They 
evaluated the rescue efficiency of each arc based on its travel time and risk as well as the affected 
population, secondary hazard probability, and damage severity by a DEA model in the first phase. 
Considering the loss of efficiency for the remaining arcs over the operation progress, the second 
phase maximizes the total efficiency score of the selected visit sequence.  

Wex et al. (2013) proposed a deterministic binary quadratic formulation to determine service 
routes of rescue teams with different capabilities to minimize the sum of the weighted completion 
time. They addressed different greedy, construction, and improvement heuristics, in addition to a 
Mont Carlo simulation method, to solve their NP-hard model. Extending their research, Schryen et 
al. (2015) presented two deterministic models to coordinate assignment and scheduling of multi-
skill rescue units, with and without collaboration, for serving multiple incidents with different 
requirements. They proposed a heuristic solution method, which was later improved by a branch-
and-price algorithm, developed by Rauchecker and Schryen (2019).  Shahparvari et al. (2017) 
addressed short-notice evacuation of the population in a bush fire disaster with hard time 
windows. They presented a possibilistic rescue routing model with the objective function of 
maximizing the number of transferred evacuees. Although their work is in the evacuation stream, 
it shares similarities with our focused area because it considers capacitated rescue resources with 
uncertain demand loads and route traveling times. Table 1 gives an overview of the main 
characteristics of the above research. 

Although there is increasing interest in the planning of resources during SAR operations, the 
considered studies either overlooked existing uncertainty in the disaster response reality or 
tackled it mostly with fuzzy logic, stochastic optimization, and scenario-based robust optimization 
approaches. While these methods add value to deterministic models, which ignore the situation’s 
inherent uncertainty, their results and successful application highly rely on decision-makers’ 
knowledge of uncertain parameters in the form of membership functions, probability 
distributions, or possible scenarios (Bozorgi-Amiri et al., 2013). However, many underdeveloped 
or developing countries have difficulties in accessing well-recorded reliable historical data or 
high-precision simulations. Hence, determining these characteristics for post-disaster time-
sensitive SAR operations can lead to more inaccuracy or be operationally impractical or 
inefficient. Furthermore, the use of deterministic models with expected values is accompanied by 
the risk that solutions will be infeasible and/or non-optimal in cases of uncertain input parameter 
perturbations (Mulvey et al., 1995; Ben-Tal et al., 2009).  

Such inefficiencies in the management of scarce rescue resources during disaster response 
with a slipping rate of survival can lead to higher losses caused by an inefficient allocation of 
resources among demand locations, waste of SAR teams’ time in non-optimal routes, and higher 
safety risks for SAR teams. To close this gap, this paper develops a robust SAR planning model 
based on the interval robust approach proposed by Bertsimas and Sim (2004) to address 
uncertainty in both the allocation and routing stages. Although a few papers on humanitarian 
relief (Baron et al., 2011; Najafi et al., 2013; Zhang et al., 2014; Zokaee et al., 2016) have applied 
interval data robust formulations, to the best of the authors’ knowledge, it has not been introduced 
in the SAR literature.  
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Table 1. Literature review summary 

 Publication Studied 
decisions Uncertainty Secondary 

risk 
Identical 
resources Lead time Obj. function Solution method Real-life case Fairness Resource 

collaboration 
Prioritized 
tasks 

Fiedrich et al., 
2000 Scheduling Probabilistic Yes Yes - Fatality min. Simulated 

Annealing No No No No 

Zhang et al., 
2012 Allocation Deterministic Yes No Travel Rescue costs min. Heuristic No No No No 

Chen & Miller-
Hooks, 2012 Routing Stochastic No Yes Travel Number of survivors 

max. 
Column 
generation 

Port-au-Prince 
earthquake No No No 

Wex et al., 2013 Scheduling Deterministic No No Travel & 
resource 

Weighted sum of 
completion times min. Heuristic No No No Yes 

Zheng et al., 
2018 Scheduling Fuzzy No No Travel & 

resource 

Total weighted 
completion times & 
operational risk min. 

Biogeography- 
based 
optimization 

No No No Yes 

Yan et al., 2014 Scheduling Stochastic No No Travel Operating cost min. Heuristic Chi-Chi 
earthquake No Yes No 

Schryen et al., 
2015 Scheduling Deterministic No No Travel & 

resource 
Weighted sum of 
completion times min. Heuristic No No Yes Yes 

Chu and Zhong, 
2015 

Allocation Stochastic No Yes Travel Number of survivors 
max. 

Commercial 
Solver 

Sichuan 
earthquake 

No Yes Yes 

Lei et al., 2015 Scheduling Deterministic No Yes Travel Operations' total 
tardiness min. Heuristic 

New York 
hospital 
network 

No No No 

Zhang et al., 
2016 Allocation Deterministic No No - Cost & make-span min. Heuristic Shanghai lifeline 

system No No Yes 

Su et al., 2016 Allocation Deterministic No No Travel & 
resource Cost & travel time min. Differential 

evolution No No Yes No 

Xiang & 
Zhuang,  2017 Allocation Probabilistic No Yes - Total death rate & 

system time min. Heuristic No No No Yes 

Shahparvari et 
al., 2017 Routing Fuzzy No No Travel Number of transferred 

evacuees max. Heuristic 
Victoria Black 
Saturday 
Bushfires 

No No No 

Cao et al. 
(2018) Routing Deterministic No No Travel 

Rescue time & delay 
cost min. & rescue 
utility max.  

Hybrid NSGA-II 
& ant colony No No No Yes 

Bodaghi et al. 
(2020) Scheduling Probabilistic No No Travel & 

resource 
weighted sum of 
completion times min. 

Commercial 
Solver 

Victoria Black 
Saturday 
Bushfires 

No No No 

Liu et al. (2020) Routing Fuzzy Yes Yes Travel Routing efficiency max. Commercial 
Solver 

Wenchuan 
earthquake No No Yes 

Our model Allocation & 
routing Robust Yes No Travel & 

resource 

Fair coverage max. & 
weighted sum of 
completion times min. 

Commercial 
Solver 

Tehran 
earthquake  
scenario 

Yes Yes Yes 
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As the primary mission of humanitarian operations is saving lives and alleviating human 
suffering, the majority of the studies focus on effectiveness rather than cost-related objectives 
(Falasca et al., 2009). Most of the previous studies have focused on fatality minimization or 
operation time minimization, and they have mostly neglected the fairness challenge in allocation 
and scheduling models. The majority of studies have not looked into the collaboration of non-
identical SAR resources in task completion. Furthermore, although task weights can represent 
task risk rankings, only a few studies have explicitly addressed secondary risks.  

Our study is most similar to the work by Schryen et al. (2015) in the assignment and routing of 
collaborating teams with different skills. We extend their model and contribute to the SAR 
literature by: 

 Incorporating realistic interval uncertainties and developing a novel robust allocation 
routing framework. 

 Addressing fairness by maximizing the minimum timely coverage of affected districts 
by SAR resources in the allocation stage. 

 Considering operation disruption by including secondary destruction risk of locations 
with or adjacent to unstable structures. 

 Coordinating available resources and command centers in different districts of the 
impacted zone in two ways. First, since urban zones are often districted, the presented 
decision support framework considers a multi-district multi-period setting. It better 
corresponds to the resource assignment decision process that arises at a tactical level 
in the response phase. Second, it incorporates the resource transshipement between 
affected districts for effective operations management and loss minimization.   

 Accounting for additional operational constraints in the routing of rescue teams 
including idling for rest periods and the impact of secondary destructions on the 
operation duration. 

As per the definition, the investigated problem belongs to the broader field of resource-
constrained routing and scheduling as well as resource-constrained project scheduling problems 
(Hartman and Briskorn, 2010; Paraskevopoulus et al. 2013). Addressing both allocation and 
routing issues in these problems makes them computationally complex problems that belong to 
NP-hard class (Garey and Johnson, 1990; Miller and Franz, 1996; Lenstra and Rinnooy Kan, 1981; 
Laporte 2007). Furthermore, there is even incremental complexity due to the consideration of 
real-world constraints reflected from the interviews with the SAR experts, such as the arrival of 
new resources over the planning horizon, transshipment of resources between districts, resource 
collaboration in demand locations, and time-sensitive SAR times (Schiffer et al. 2019). In the 
related literature, the assignment of resources and their service tours in SAR problems and the 
other variants of resource-constrained project scheduling or routing problems are modeled and 
solved following simultaneous or two-stages decomposition approaches (Paraskevopoulus et al. 
2013; Yalçındağ et al., 2016). However, the intrinsic complexity of the problem, which contradicts 
the need for decision-making agility, especially in disaster response, has made the decomposition 
approaches efficient and interesting methods being applied in numerous studies (Schmid et al. 
2013; Rolland et al., 2010; Nickle et al., 2012; Allaoua et al., 2013; Yalçındağ et al., 2016; Can and 
Ulusoy, 2014; Misir et al., 2015; Yalçındağ and Matta, 2017; Attia et al., 2019; Dahmen et al., 2020, 
Memari et al., 2020). 

To overcome the drawback of simultaneous modelling of both decisions while benefiting from 
joint allocation routing decision-making, a two-stage framework is proposed in this study. The 
first stage takes arriving resource availability times as a priori and builds robust assignment of 
available and incoming teams to affected districts over a multi-period horizon for SAR response. 
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This stage maximizes allocation fairness by maximizing minimum SAR demand coverage over the 
whole zone and determines: 1) the allocated number of resources in each district for each period; 
and 2) resource transfers to other districts or discharging decisions over the planning horizon. 
The outputs of the first stage for the first period of the planning horizon are fed into the second 
stage. The second stage models the routing of each district’s allocated teams among its demand 
locations during the several hours’ duration of that period. It integrates fatality and time 
minimization by taking the trapped population in each demand location of the district as the 
importance weight in an objective function of minimizing the weighted sum of task completion 
times. The model allows team collaboration and takes into account SAR tasks’ non-preemptive 
characteristics. To have the optimal weighted sum of demand locations’ SAR completion times, 
this stage determine 1) the sequence of demand location visits for each team; and 2) the amount 
of SAR activity of each team for each demand location on their routes.  

After implementing the first period’s allocation and routing decisions, the planning framework 
is run again for the remaining periods of the horizon. In the first stage, the allocation model is 
solved again to capture the actual status of operation progress and upcoming updates on input 
parameters. Afterward, with the new allocation scheme, the second stage is run with the updated 
data to optimize the routing of allocated teams for the next period. This cycle continues until the 
end of the SAR planning horizon in the response phase.  

Proactive approaches in the mitigation and preparedness phases play a key role in reducing 
disaster loss in the built environment (Mojtahedi and Lan Oo, 2014). Therefore, the proposed 
decision support framework is designed, not only to help SAR planning during the response phase 
but more importantly, to also equip relevant disaster stakeholders with a tool for more effective 
use of resources in investment, training, and capability-building decisions during the risk 
mitigation and preparedness phases. 

 
3. Problem description 

This study proposes a two-stage approach to optimize the planning of SAR operations in 
disaster-impacted zones. It assumes that the affected zone is divided into several districts. Each 
district, with several demand locations, has three types of demand based on the damage severity 
and requires teams with a compatible set of skills to serve them.  

The first stage addresses the coverage of affected districts’ SAR demand over the entire SAR 
timeline in the response phase and formulates it as a multi-period fair resource allocation model 
(MPFRAM). For each severity type, the model takes the total estimated SAR demand in each 
district and computes the minimum demand coverage over the entire affected zone. Based on the 
importance weight of each demand type, the objective function maximizes the allocation fairness 
by maximizing the weighted sum of all demand types’ minimum coverage over the affected zone.  

To account for allocation effectiveness about deteriorating chances of saving lives, a decreasing 
utility parameter is considered for allocation in each period. Incorporation of this parameter, 
which is driven by the declining survival rate of trapped people after large-scale disasters 
(Fiedrich et al. 2000), represents the importance of operation effectiveness and favorability of 
quick demand response (Gralla et al., 2014; Erbeyoglu and Bilge, 2020). Having the utility 
parameters as the weights, each district’s demand satisfaction is calculated as the weighted sum 
of allocated SAR work over the whole horizon. To have optimal utilization of capacities against 
demand, the model allows for an exchange of SAR units between districts wherever it is beneficial, 
according to demand coverage status and district distances. As SAR operations evolve and 
response time shrinks, fewer SAR teams are required and the affected zone prepares for debris 
management and road restoration. So, the model considers both the deployment and release of 
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SAR units in decision variables. However, due to the usual scarcity of resources vs. overwhelming 
demand, releasing rescue SAR units are not expected unless in the last periods. The main 
assumptions and outcomes of this stage can be summarized as follows. 

 
Assumptions: 

 SAR demand and travel time parameters are considered uncertain and assumed to be 
symmetrically distributed at the given intervals. 

 The number of arriving new SAR teams at each period is assumed to be known. 
 Each period consists of T hours (e.g., 12 hours), and T can be set based on decision 

environment circumstances. 
 The utility of resource allocation in each period represents that period’s demand coverage 

efficiency and declines over time.  
 SAR teams can travel between districts to improve SAR capacity utilization vs. demand. 

However, the travel time between resource-exchanging districts decreases the amount of 
possible SAR work. 

 
Outputs: 

 The allocated number of resources in each district for each period. 
 The resource transfer to other districts or discharging decisions over the planning horizon. 

The outputs of the first stage for the first period are fed into the second stage. This stage 
addresses the deployment of allocated teams in the first period of the planning horizon for each 
district. It formulates the problem as a single period capacitated resource routing model 
(SPCRRM) and optimizes the weighted sum of SAR task completion times in the district’s demand 
locations. Each demand location needs the SAR operation in one of the three types of demand 
based on its damage severity.  Similarly and with hierarchical levels of skills, each team has a 
specific capability degree, which qualifies them for serving the respective demand type and less 
severe situations. Due to the uncertain changing environment in the aftermath of natural 
disasters, SAR operation times, the number of trapped people, and the travel time between 
demand locations within each district are assumed to be uncertain, and an interval robust 
approach is adopted to deal with that.  

Some of the demand locations, which include residential buildings, schools, hotels, malls, and 
urban infrastructure, may be at a higher risk of further destruction and extended operation time 
due to situations like being located on the coastline with tsunami risk, or being adjunct to partially-
collapsed unstable structures. To adapt the realistic vulnerability of rescue success to operation 
timing in such situations, an estimated threshold time is considered for high-priority demand 
locations. These locations, which should be identified based on expert input, are assumed to 
require longer operation time if they are not served before their threshold time.  

The amount of required operation time at each demand location is stated in terms of hours. It 
may be accomplished by several teams and can be estimated based on building dimensions, 
approximate trapped population, damage severity, etc. The model adopts the realistic constraint 
of work-rest periods in difficult working conditions for SAR operations. This assumption becomes 
vital in team scheduling when the disaster-impacted zone is exposed to infectious disease or 
dangerous materials (Sawik, 2010). The maximum limit of working hours and the rest duration is 
assumed a priori, but teams are not allowed to interrupt an unfinished task, even if it exceeds their 
shift time. If several teams serve at a single demand location, their service times should be 
overlapping, or follow an end-to-start relationship with at least one other team until the task is 
completed. Any task that is planned to be started during that period should be completed and 
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removed from the district’s total SAR demand. The start time of each team on the last location of 
their tour, along with their assigned SAR activity hours, determine their availability time for the 
next period. The main outputs of this stage are as follows: 

 The sequence of demand location visits for each team. 
 The amount of SAR activity of each team in each demand location on their route. 
 The expected operation finish time for each demand location based on the start of SAR 

and the team engagement amounts. This also determines team availability times for 
the next period, whether in the same district, in the transfer link’s destination district, 
or out of the SAR mission. 

Due to the very vague status of input parameters over the whole search and rescue phase (120 
hours), a dynamically changing environment, and the rapidly incoming updated data, SPCRRM 
considers a single period of 12 hours duration. After implementing the allocation and routing 
decisions of the first period, the planning horizon is updated and the proposed framework is re-
run to capture the actual operation progress and information updates. By the inclusion of realized 
remaining demand in each district and other input parameter updated vales, MPFRAM is run for 
the remaining periods of the horizon. Building on the outputs of the first stage and benefiting from 
the newly arrived data, the second stage SPCRRM is run for the next period to optimize the routing 
of allocated teams in each district. This cycle is repeated until the end of the SAR timeline in the 
response phase. The flow of information between the two stages is outlined in Fig. 2. Feeding 
updated input data into the models requires a well-designed and stable communication 
infrastructure, and can highly impact the effectiveness of search and rescue operations 
(Mohamadi et al., 2019).  
 

First Stage
Zone Scale

Multi-Period Horizon

Run the SPCRRM for the current 
period for each district

Run the MPFRAM

Updated demand location profiles: 
Demand type
Required SAR time
Trapped population
Secondary risk existence
Travel time to other demand 

locations

Travel times between districts
Remaining demand in each district
Resource availability
Remaining Periods

Second Stage
District Scale

Single-Period Horizon

External update

External update

Database

T
he
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ur

re
nt

 p
er

io
d’

s 
al

lo
ca

tio
n 

de
ci

si
on

Execution Stage

Implementing the current 
period’s decisions

 
Fig. 2. SAR two-stage decision support framework 

 
The next two sub-sections present the formulations of the problem as mixed-integer linear 

programming (MILP) models. 
 

3.1. First stage - MPFRAM 
The mathematical model in the first stage uses the following notation and decision variables. 
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Indices and parameters: 

𝑠 Demand types ( 𝑠 ∈ {1,2,3}) 
𝑘, 𝑘′ Districts in the affected zone ( 𝑘, 𝑘′ ∈ {1,2, . . , 𝑅}) 
𝑡 T-hour SAR deployment planning periods ( 𝑡 ∈ {1,2, . . , 𝑍}) 
𝜃௧ Estimated survival utility in period t 
𝑑௦௞ Total required SAR operation type s in district k 

𝑐௦௧ 
Number of SAR teams with type s capability arriving in the impacted 
zone at period t 

𝑔௞௞ᇱ Travel time between district k and k' 
𝑤௦ Importance weight of missions with severity degree of s 
𝑇 Duration of each SAR deployment planning period 

 
Decision variables: 

𝑥௦௞
௧  Number of teams with type s capability allocated to district k in period t 

𝑦௦௞௞ᇱ௧ Number of teams with type s capability transferred from district k to k' in period t 
ℎ௦௞௧ Number of newly arrived teams with type s capability allocated to district k in period t 
𝑓௦௞௧ Number of excess teams with type s capability in district k to leave in period t 
𝑐𝑜𝑣௦ Minimum effective coverage of demand for task type s among affected districts 

𝑧௦௧ = ൝
1

0
 

If there is an increase in the number of allocated teams for demand type s in the 
affected zone from period t-1 to t 
Otherwise 

 
The model is formulated as follows: 
 

Max ෍ 𝑤௦𝑐𝑜𝑣௦

௦

  (1) 

s.t.   

𝑥௦௞
௧ = ℎ௦௞௧ − 𝑓௦௞௧ + ෍ 𝑦௦௞ᇱ௞௧

௞ᇲ

௞ᇱஷ௞

− ෍ 𝑦௦௞௞ᇱ௧

௞ᇲ

௞ᇱஷ௞

 
∀𝑠, 𝑘, 𝑡 = 1 (2) 

𝑥௦௞
௧ = 𝑥௦௞

௧ିଵ + ℎ௦௞௧ − 𝑓௦௞௧ + ෍ 𝑦௦௞ᇱ௞௧

௞ᇲ

௞ᇱஷ௞

− ෍ 𝑦௦௞௞ᇱ௧

௞ᇲ

௞ᇱஷ௞

 
∀𝑠, 𝑘, 𝑡 > 1 (3) 

෍ ℎ௦௞௧

௞

≤ 𝑐௦௧𝑧௦௧ ∀𝑡, 𝑠 (4) 

෍ 𝑓௦௞௧

௞

≤ (1 − 𝑧௦௧) ෍ 𝑐௦௧ᇲ

௧

௧ᇲୀଵ

 ∀𝑠, 𝑡 (5) 

𝑐𝑜𝑣௦𝑑௦௞ − ෍ ൭𝑇𝑥௦௞
௧ − ෍ 𝑔௞ᇱ௞𝑦௦௞ᇱ௞௧

௞ᇱ

൱ 𝜃௧

௧

≤ 0 ∀𝑠, 𝑘 (6) 

𝑥௦௞
௧ , 𝑦௦௞௞ᇲ௧ , ℎ௦௞௧ , 𝑓௦௞௧ ≥ 0, 𝑖𝑛𝑡, 𝑐𝑜𝑣௦ ≥ 0  (7) 

𝑧௦௧ ∈ {0,1}  (8) 
 
To account for fair allocation, the objective function maximizes the demand coverage for the 

district with the lowest coverage score. This also results in minimizing the gap between the 
coverage statuses of different districts, and hence, fairness is taken into consideration. Since there 
are different demand types for severity, the objective function takes the weighted sum of all three 
types’ minimum level of coverage over all the districts in the affected zone.  
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Constraints (2) and (3) calculate the number of SAR teams in each district. Each district may 
cover its demand from multiple sources, including teams allocated in the previous period, 
transferred teams from other districts, and allocation of new teams that reach to the hot zone at 
each period. Constraint (4) is a capacity constraint for the total number of new teams assigned in 
each period over the whole affected zone. As operations progress, for each demand type for which 
the amount of allocated resources exceeds the remaining total demand, the operation center 
should decide to discharge excess teams (Constraint (5)). These teams can either be assigned as 
fresh resources for satisfying the remaining demand in less severe tasks and be taken into the 
updated 𝑐௦௧ parameter, or dispatched for further operations of the response phase, like relief item 
distribution. 

Constraint (6) computes the minimum coverage level for each demand type over the affected 
districts. Although the transshipment of resources enables better resource utilization, the time 
spent on traveling between the districts reduces the remaining time for the operation in the 
destination district. Hence, the lost time is subtracted from the resources’ effective allocated times. 
To incorporate the reduction in the survival rate of trapped people over response time shrinkage, 
the effectiveness of allocated resources in each period is considered by the help of utility weights. 
Sign constraints are given in Constraints (7) and (8).  

After solving the first stage, the number of allocated teams for each demand type and each 
district in the first period is fed into SPCRRM in the second stage to plan the teams’ SAR activities 
in each district.  It is a single-period capacitated routing model that schedule the operations of the 
allocated teams in each district for the duration (e.g. 12 hours) of the first period of the remaining 
planning horizon.  

 
3.2. Second stage - SPCRRM 
The mathematical model in the second stage uses the following notation and decision variables. 
 
Indices and parameters: 

𝑖 SAR teams (𝑖 ∈ {1,2, . . , 𝑁}) 

𝑗, 𝑗ᇱ 
Demand locations, where 1 and m are dummy nodes representing the command base 
(𝑗, 𝑗ᇱ ∈ {1,2, . . , 𝑚})  

𝑑௝ Location j’s demand type 𝑑௝ ∈ {1,2,3} 

𝑝௝  People trapped in location j 
𝑐௜ Team i's capability type 𝑐௜ ∈ {1,2,3} 
𝑔௝௝ᇱ Travel time between location j and j' 

𝜖௝ 
Estimated threshold time at which SAR time at location j increases (due to secondary 
destructions) 

𝑏′௝ Required SAR time in location j before the threshold time 
𝑎௝ Additional SAR time in location j after the threshold time  
𝛼௜ Time at which team i is available in the affected district 
𝐿 Minimum acceptable involvement of a team in the operation at a location 
𝑇 Duration of the route planning period 
𝜏 Shift time 
𝜌 Rest time 

 
Decision variables: 

𝑠௜௝  Start time of team i at location j 
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𝑠′௝ Start time of SAR at location j 
𝑓௝ Completion time of SAR at location j 
𝑏௜௝ Amount of SAR activity by team i at location j 

𝑤௜௝ 
Amount of continuous SAR activity along the route by team i after 
visiting location j 

𝑞′௝ = ൝
1

0
 

If location j is included in the schedule 
 
Otherwise 

𝑞௜௝ = ൝
1

0
 

If location j is allocated to team i 
 
Otherwise 

𝑦௝ = ൝
1

0
 

If SAR starts at location j after its threshold time 
 
Otherwise 

𝑥௜௝ = ൝
1

0
 

If team i arrives first at location j 
 
Otherwise 

𝑣௜௝௝ᇱ = ൝
1

0
 

If team i visits location j' after location j along their route 
 
Otherwise 

𝑟௜௝ = ൝
1

0
 

If team i needs to rest after visiting location j 
 
Otherwise 

 
And the model is formulated as follows: 
 

Min ෍ 𝑝௝𝑓௝

௝

  (9) 

s.t.   

𝑞′௝ ≤ ෍ 𝑞௜௝

௜
௖೔ஹௗೕ

 
∀𝑗 (10) 

𝑠௜௝ ≤ 𝑇𝑞௜௝  ∀𝑖, 𝑗;  𝑗 ≠ 1;  𝑗 ≠ 𝑚; 𝑐௜ ≥ 𝑑௝  (11) 
𝑠௜௝ ≥ 𝛼௜𝑞௜௝  ∀𝑖, 𝑗 = 1 (12) 

 
The objective function (9) minimizes the weighted sum of SAR completion times in affected 

locations. Since the populations of trapped people in the demand locations are used as importance 
weights, the objective function can be interpreted as the total man-hours waiting to receive SAR 
services over all the locations in the district. Constraint (10) is an integrality constraint that makes 
sure that locations with assigned SAR teams are selected in the routing plan. Constraint (11) 
guarantees that the start time of the SAR mission by each team at each selected demand location 
cannot exceed the duration of the planning period. Each started SAR activity will continue until 
completion. The completion time, which might be later than the period’s duration, determines the 
teams’ availability times in the next period. Only qualified teams may get involved in serving each 
demand type, and this case is addressed in the whole model via appropriate condition(s). Teams 
are ready to start their route once they arrive at the command base, as shown in Constraint (12). 
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𝑠′௝ ≤ 𝑇൫1 − 𝑞௜௝൯ + 𝑠௜௝  ∀𝑖, 𝑗;  𝑗 ≠ 1;  𝑗 ≠ 𝑚; 𝑐௜ ≥ 𝑑௝  (13) 

𝑠′௝ ≥ 𝑠௜௝ + (1 − 𝑇)൫1 − 𝑥௜௝൯ ∀𝑖, 𝑗;  𝑗 ≠ 1;  𝑗 ≠ 𝑚;  𝑐௜ ≥ 𝑑௝  (14) 

෍ 𝑥௜௝

௜
௖೔ஹௗೕ

= 𝑞′௝  
∀𝑗 ; 𝑗 ≠ 1;  𝑗 ≠ 𝑚 (15) 

𝑥௜௝ ≤ 𝑞௜௝  ∀𝑖, 𝑗; 𝑐௜ ≥ 𝑑௝  (16) 

 
Constraints (13) to (16) calculate the start time of the SAR at each demand location as the 

earliest time of operation by the allocated qualified teams.  
 

𝑦௝𝑎௝ + 𝑏′௝𝑞′௝ ≤ ෍ 𝑏௜௝

௜
௖೔ஹௗೕ

 
∀𝑗 (17) 

𝑠௜௝ + 𝑏௜௝ ≤ 𝑠′௝ + 𝑏′௝𝑞′௝ + 𝑦௝𝑎௝  ∀𝑖, 𝑗 ; 𝑗 ≠ 1;  𝑗 ≠ 𝑚; 𝑐௜ ≥ 𝑑௝  (18) 

 
Constraint (17) ensures that each selected demand location is fully served by contributing 

teams. Constraint (18) guarantees that if the operation starts at a location, there should be at least 
one team present to complete the job; in other words, the work cannot be interrupted, and the 
involved teams may not leave the demand location prior the SAR completion unless another team 
continues the mission.  

 
𝑏௜௝ ≥ 𝐿𝑞௜௝  ∀𝑖, 𝑗 ; 𝑗 ≠ 1;  𝑗 ≠ 𝑚 (19) 
𝑠′௝ ≥ 𝑦௝𝜖௝ ∀𝑗; 𝑗 ≠ 1;  𝑗 ≠ 𝑚 (20) 

𝑠′௝ ≤ 𝑇𝑦௝ + 𝜖௝൫1 − 𝑦௝൯ ∀𝑗; 𝑗 ≠ 1;  𝑗 ≠ 𝑚 (21) 

 
Constraint (19) states that once a team is allocated to a demand location, they should serve in 

the mission for a minimum amount of time. Constraints (20) and (21) determine whether each 
location receives its required SAR before the threshold time. 

 
𝑤௜௝ ≥ 𝑏௜௝  ∀𝑖, 𝑗;  𝑗 ≠ 1;  𝑗 ≠ 𝑚;  𝑐௜ ≥ 𝑑௝  (22) 

𝑤௜௝ᇱ ≤ 𝑏௜௝ᇱ + 𝑀൫2 − 𝑣௜௝௝ᇱ − 𝑟௜௝൯ ∀𝑖, 𝑗, 𝑗ᇱ;  𝑗 ≠ 𝑗′;𝑗, 𝑗ᇱ ≠ 1;  𝑗, 𝑗ᇱ ≠ 𝑚; 𝑐௜ ≥ 𝑑௝;  𝑐௜ ≥ 𝑑௝ᇱ (23) 

𝑤௜௝ᇱ ≤ 𝑏௜௝ᇱ + 𝑀൫1 − 𝑣௜௝௝ᇱ൯ ∀𝑖, 𝑗′; 𝑗 = 1 ; 𝑗 ≠ 𝑗ᇱ;  𝑐௜ ≥ 𝑑௝ᇱ (24) 

𝑤௜௝ᇱ ≤ 𝑤௜௝ + 𝑏௜௝ᇱ + 𝑀൫1 − 𝑣௜௝௝ᇱ൯ ∀𝑖, 𝑗, 𝑗ᇱ; 𝑗 ≠ 𝑗ᇱ ; 𝑗, 𝑗ᇱ ≠ 1;  𝑗, 𝑗ᇱ ≠ 𝑚 ; 𝑐௜ ≥ 𝑑௝;  𝑐௜ ≥ 𝑑௝ᇱ (25) 

𝑤௜௝ᇱ ≥ 𝑤௜௝ + 𝑏௜௝ᇱ − 𝑀൫1 + 𝑟௜௝ − 𝑣௜௝௝ᇱ൯ ∀𝑖, 𝑗, 𝑗′ ; 𝑗 ≠ 𝑗′ ;  𝑗, 𝑗ᇱ ≠ 1;  𝑗, 𝑗ᇱ ≠ 𝑚 ; 𝑐௜ ≥ 𝑑௝;  𝑐௜ ≥ 𝑑௝ᇱ (26) 

 
Constraints (22) to (26) compute the total continuous work of each team, along with their route 

after visiting each demand location. As shown in Constraints (22) to (24), the consecutive work of 
a team after a location is equal to their SAR activity in that location only if this node is visited right 
after a rest time or at the start of the route. Constraints (25) and (26) accumulate the SAR activities 
of the team at the linked locations along the route if the team’s working shift is not finished yet. 

 

𝑤௜௝ ≤ 𝑀𝑟௜௝ + ቀ𝜏൫1 − 𝑟௜௝൯ቁ ∀𝑖, 𝑗;  𝑗 ≠ 1;  𝑗 ≠ 𝑚 ;  𝑐௜ ≥ 𝑑௝  (27) 

𝑤௜௝ ≥ 𝜏𝑟௜௝  ∀𝑖, 𝑗;  𝑗 ≠ 1;  𝑗 ≠ 𝑚 ; 𝑐௜ ≥ 𝑑௝  (28) 
𝑤௜௝ ≤ 𝑀𝑞௜௝  ∀𝑖, 𝑗;  𝑗 ≠ 1;  𝑗 ≠ 𝑚 ; 𝑐௜ ≥ 𝑑௝  (29) 
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Constraints (27) and (28) determine the necessity of rest time for each team after each SAR 
visit. Constraint (29) ensures the integrality relation of assigning the team for SAR activity on each 
demand location and their work amount. 

 
𝑠௜௝ + 𝑏௜௝ + 𝑔௝௝ᇱ + 𝑟௜௝𝜌 ≤ 𝑠௜௝ᇱ + 𝑀൫1 − 𝑣௜௝௝ᇱ൯ ∀𝑖, 𝑗, 𝑗ᇱ;  𝑗 ≠ 𝑗ᇱ;  𝑗 ≠ 𝑚; 𝑐௜ ≥ 𝑑௝;  𝑐௜ ≥ 𝑑௝ᇱ  (30) 

෍ 𝑣௜௝௝ᇱ

௝ᇲ

௝ᇲஷ௝

௝ᇲஷଵ
௖೔ஹௗೕ

= 𝑞௜௝  

∀𝑖, 𝑗 ;  𝑗 ≠ 𝑚; 𝑐௜ ≥ 𝑑௝  (31) 

෍ 𝑣௜௝ᇱ௝

௝ᇲ

௝ᇲஷ௝

௝ᇲஷ௠
௖೔ஹௗೕ

= 𝑞௜௝  

∀𝑖, 𝑗;  𝑗 ≠ 1; 𝑐௜ ≥ 𝑑௝  (32) 

𝑓௝ ≥ 𝑠௜௝ + 𝑏௜௝ + 𝑀൫1 − 𝑞′௝൯ ∀𝑖, 𝑗;  𝑗 ≠ 1;  𝑗 ≠ 𝑚 (33) 
𝑠௜௝ , 𝑠′௝ , 𝑓௝ , 𝑤௜௝ , 𝑏௜௝ ≥ 0  (34) 
𝑥௜௝ , 𝑦௝ , 𝑞௜௝ , 𝑞′௝ , 𝑣௜௝௝ᇱ , 𝑟௜௝ ∈ {0,1}  (35) 

 
Constraint (30) calculates the start time of operation by each team at each demand location 

along their route. Constraints (31) and (32) ensure that each selected demand location has a 
predecessor and successor node on the team’s route. The finish time of SAR at each location is 
calculated in Constraint (33) as the latest time of operation completion by the assigned teams. 
While the start of SAR at each selected demand location should be within the routing period’s 
duration, the finish time might be later, since no interruption is allowed until the selected 
location’s total demand is satisfied. Sign constraints are given in Constraints (34) and (35). 

The solution provided by solving this stage flows back to the first stage to complete the 
planning framework. This feedback, along with the externally updated information, enables the 
first stage to re-optimize the allocation decisions for the remaining horizon and to continue the 
operation planning. 

In the ever-changing disaster environment, the inherent uncertainty of parameters limits the 
applicability of deterministic models. Hence, this section introduces the model’s interval-based 
robust counterpart, which keeps the model flexible and robust in real-world applications. 
 
4. Interval data robust optimization 

In practice in an uncertain environment, there are parameters with unknown exact values that 
may be actualized differently from their estimated nominal values. These gaps are potentially 
capable of violating some constraints and hurting solution optimality. Therefore, there is a need 
for implementing solution approaches that remain robust in terms of feasibility and solution 
quality in the presence of uncertainty (Bertsimas and Sim, 2004). 

Soyster (1973) was the first to develop a model to meet this need. However, his model, which 
constructed a solution feasible for all the data in a convex set, was too conservative. This first 
attempt was further developed by Ben-Tal and Nemirovski (1998, 1999, 2000), El-Ghaoui and 
Lebret (1997), El-Ghaoui et al. (1998), Bertsimas and Sim (2004) and Bertsimas and Thiele 
(2006). Bertsimas and Sim (2004) proposed a solution approach for linear mathematical models 
with an uncertain coefficient matrix. Their approach does not increase the model’s complexity and 
has a flexible in a conservatism level; it is briefly described below. 
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Bertsimas and Sim (2004) considered the following model and assumed that the i-th constraint 
has ⌊𝛤௜⌋ uncertain technological coefficients with values that lie in a stochastic symmetric interval 
ൣ𝑎ത௜௝ − 𝑎ො௜௝ , 𝑎ത௜௝ + 𝑎ො௜௝൧ , and exactly one parameter with a 𝛤௜ − ⌊𝛤௜⌋  perturbation, where 𝛤௝  is not 

necessarily an integer and may take up any value in [0, |𝐽௜|] with 𝐽௜  being the set of uncertain 
coefficients in constraint i. 

 
Max    z=cx 

𝑎෤𝑥 ≤ 𝑏 
l≤ 𝑥 ≤ 𝑢 

(36) 

 
To ensure the model stays feasible after the Γi coefficients’ perturbations, they rewrote the 

model with the help of a protection function 𝛽௜(𝑥∗. 𝛤௜): 
 

Max    z=cx 
𝑎෤𝑥 + 𝛽௜(𝑥∗, 𝛤௜) ≤ 𝑏 
𝑙 ≤ 𝑥 ≤ 𝑢 

(37) 

where 𝛽௜(𝑥∗, Γ୧) = max
ቄ𝑆௜ ∪ {𝑡௜}ቚ𝑆௜ ⊆ 𝐽௜ , |𝑆௜| = ⌊𝛤௜⌋. 𝑡௜ ∈ 𝐽௜ ∖ 𝑆௜ቅ

൛∑ aො ୧୨หx୨
∗ห +௝∈ௌ೔

(𝛤௜ − ⌊𝛤௜⌋)aො ୧୨หx୨
∗หൟ.  

𝛽௜(𝑥∗, Γ୧) protects the feasibility by embedding the largest possible deviation of left-hand side 
coefficients in i-th constraint. So it needs to find a Γi set of coefficients that can cause the biggest 
perturbation: 

 

𝛽௜(𝑥∗, 𝛤௜) = 𝑀𝑎𝑥 ෍ 𝑎ො௜௝ห𝑥௝
∗ห𝑧௜௝

௝∈௃೔

 

s.t. 

෍ 𝑧௜௝

௝∈௃೔

≤ 𝛤௜  

0 ≤ 𝑧௜௝ ≤ 1 ∀𝑗 ∈ 𝐽௜  

(38) 

 
In this model, positive values of  𝑧௜௝  represent the coefficients in the 𝛤௜  uncertainty level whose 

perturbation can cause the biggest risk of violating the right-hand side in the i-th Constraint (36) 
and (37). Since this model is feasible and bounded, according to the strong duality property, its 
dual problem is also feasible and bounded, and its objective value is equal to the primal. If 𝑧௜  and 
𝑝௜௝  are the auxiliary dual variables of Model (38), one can rewrite Model (37) into its ID robust 

counterpart model (39) by replacing 𝛽௜(𝑥∗. 𝛤௜) with the dual model of Model (38). The use of 𝛤௜ , 
which is called “the budget of uncertainty” (BoU), facilitates user flexibility in calibrating the 
robustness of the method based on the preferred conservatism level (Bertsimas et al, 2011). 

 
Max 𝑧 = 𝑐𝑥 
s.t. 

෍ 𝑎ത௜௝𝑥௝

௝

+ 𝑧௜Γ୧ + ෍ 𝑝௜௝

୨∈୎౟

≤ 𝑏௜  

𝑧௜ + 𝑝௜௝ ≥ 𝑎ො௜௝𝑦௝  

−𝑦௝ ≤ 𝑥 ≤ 𝑦௝  

𝑙௝ ≤ 𝑥௝ ≤ 𝑢௝ 

𝑧௜ , 𝑝௜௝ , 𝑦௝ ≥ 0 

 
 
 
∀𝑖, 𝑗 ∈ 𝐽௜  
∀𝑗 
∀𝑗 

(39) 

  



17 
 

Using 𝛤௜  as the allowed summation of perturbations in uncertain parameters of row i, this 
approach enables the user to make the trade-off between the probability of violating the i-th 
constraint and the effect on the objective function of the nominal problem (Bertsimas et al. 2011). 
Bertsimas and Sim (2004) proved that if more than 𝛤௜  uncertain parameters change in the i-th 
constraint, the probability of the constraint’s violation is at most 𝐵(𝑛, 𝛤௜), which is approximated 
by the following bound: 

 

𝐵(𝑛, 𝛤௜) ≈ 1 − 𝜙(
௰೔ିଵ

√௡
)  

where 𝑛 = |𝐽௜| and 𝜙( ) is the cumulative distribution function of a standard normal variable.  
Hence, one can protect the solution against infeasibility by choosing an appropriate level of 𝛤௜ , 

depending on the number of uncertain parameters present in that constraint. Testing different 
pairs of (𝑛, 𝛤௜) , the proposed approach is capable of guaranteeing a robust feasible solution 
without sacrificing too much optimality.  

In the case of constraints that are similar to Constraint (6), in which there is only one uncertain 
demand parameter per constraint for each (𝑠, 𝑘), Bertsimas and Sim’s approach results in several 
BoU parameters 𝛤௦

௞, each ranging from 0 to 1 for the demand uncertainty in each constraint. This 
means that even examining only 0 and 1 options for each 𝑑௦௞’s BoU leads to 2௦∗௞  states, which is 
computationally infeasible to deal with. Therefore, Bertsimas and Thiele (2006) extended the 
work of Bertsimas and Sim (2004) to account for such situations. Their proposed robust method 
considered an accumulated conservatism parameter 𝛤  for the relevant set of uncertain 
parameters, which are dispersed among different rows of constraints.  

In the above example, s denotes the demand type and remains in the conservatism level 
definition. While, the notion of the district is removed, and the method considers a single 𝛤௦ to 
accumulate the budget of uncertainty for all districts’ demand type s. Therefore, each district’s 

share of demand uncertainty becomes 
௰ೞ

ோ
, where R is the number of districts. 

In line with the characteristics of both studies, this paper adopts the interval data robust 
method presented by Bertsimas and Sim (2004) and Bertsimas and Thiele (2006) to address 
uncertain parameters in both stages. SAR demand and the travel time parameters in the first stage, 
and trapped population, required SAR times, threshold times, and travel time parameters in the 
second stage are treated as uncertain and are considered in symmetric interval forms. These 
intervals are fed in by damage estimation applications and systems, expert input, and information 
updates received during the operations. 

 
4.1. MPFRAM robust counterpart: 

𝛤௞
ଶ is the number of districts with stochastic travel times from district k. 𝑟௞ and 𝑣௞௞ᇱare dual 

variables of the protection function of districts’ travel times. Since there are R districts considered 

in the first-stage allocation formulation, 
௰ೞ

భ

ோ
 is defined as the level of conservatism for demand 

parameters as stated in Equation (40). Furthermore, 𝑞௦௞ and 𝑢௦௞ are the corresponding regular 
dual variables for protecting the model’s feasibility against demand uncertainty. Equations (40) 
to (43) substitute Constraint (6) and build the first stage’s robust counterpart. 

 

𝑐𝑜𝑣௦𝑑̅௦௞ +
Γୱ

ଵ

𝑅
𝑞௦௞ + 𝑢௦௞ − ෍ 𝑇𝑥௦௞

௧ 𝜃௧

௧

+ ෍ ෍ 𝑔̅௞ᇱ௞𝑦௦௞ᇱ௞௧

௞ᇱ

𝜃௧

௧

+ Γ୩
ଶ𝑟௞ + ෍ 𝑣௞௞ᇱ

௞ᇱ

≤ 0 ∀𝑠, 𝑘 (40) 

𝑞௦௞ + 𝑢௦௞ ≥ 𝑐𝑜𝑣௦𝑑መ௦௞  ∀𝑠, 𝑘 (41) 
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𝑟௞ + 𝑣௞௞ᇱ ≥ 𝑔ො௞ᇱ௞ ෍ 𝑦௦௞ᇱ௞௧

௧

𝜃௧ ∀𝑠, 𝑘, 𝑘′ (42) 

𝑞௦௞ , 𝑢௦௞, 𝑟௞ , 𝑣௞௞ᇱ ≥ 0  (43) 
 
4.2. SPCRRM robust counterpart: 

𝛤, which is independently defined for each district in the second stage, is the number of demand 
locations with uncertain populations. 𝜁ଵ and 𝜁௝

ଶ are defined to address duality in the protective 

function of population coefficients. Equation (9) is replaced with Equations (44) and (45). To 
adopt Bertsimas and Sim’s (2004) approach in the uncertain coefficients in the objective function, 
the worst case occurs when all the locations have higher populations, worsening the weighted 
summation of completion times. So, in the presence of conservatism level 𝛤, the objective function 
can be written as Min = ∑ 𝑝௝𝑓௝௝ + 𝛽௝൫𝑓௝

∗, Γ൯ , and the rest follows the approach introduced by 

Bertsimas and Sim (2004). 
 

Min ෍ 𝑝̅௝𝑓௝

௝

+ Γ𝜁ଵ + ෍ 𝜁௝
ଶ

௝

  (44) 

𝜁ଵ + 𝜁௝
ଶ ≥ 𝑝̂௝𝑓௝ ∀𝑗 (45) 

 

Since there are (m-2) demand locations in each district, 𝛤ଷ determines the conservatism level 

of the SAR times of all locations. Therefore,  
௰య

௠ିଶ
 is each location’s budget of uncertainty for SAR 

time. 𝛼௝
ଵ and 𝛼௝

ଶ are the dual variables of the SAR time uncertainty protection function. Let m' be 

the number of locations in the risk of secondary destruction and operation time expansion, then  
௰ర

௠ᇲ  is considered to be each high-risk location’s price of robustness for uncertain additional 

operation time. 𝛽௝
ଵ  and 𝛽௝

ଶ  are the dual variables to protect the model’s feasibility against the 

uncertainty of required additional SAR time after secondary destruction. Equations (46) to (49) 
replace Equations (17) and (18). 

 

𝑦௝𝑎ത௝ +
Γସ

𝑚′
𝛽௝

ଵ + 𝛽௝
ଶ + 𝑏ത′௝𝑞′௝ +

Γଷ

𝑚 − 2
𝛼௝

ଵ + 𝛼௝
ଶ ≤ ෍ 𝑏௜௝

௜
௖೔ஹௗೕ

 
∀𝑗 (46) 

𝑠௜௝ + 𝑏௜௝ ≤ 𝑠′௝ + 𝑏ത′௝𝑞′௝ + 𝑦௝𝑎௝ +
Γଷ

𝑚 − 2
𝛼௝

ଵ + 𝛼௝
ଶ +

Γସ

𝑚′
𝛽௝

ଵ + 𝛽௝
ଶ ∀𝑖, 𝑗𝑐௜ ≥ 𝑑௝;𝑗 ≠ 1, 𝑚 (47) 

𝛼௝
ଵ + 𝛼௝

ଶ ≥ 𝑏෠′௝𝑞′௝  ∀𝑗  𝑗 ≠ 1, 𝑚 (48) 

𝛽௝
ଵ + 𝛽௝

ଶ ≥ 𝑦௝𝑎ො௝ ∀𝑗  𝑗 ≠ 1, 𝑚 (49) 

 

Similarly, 
௰ఱ

௠ᇲ is considered as the conservatism level for uncertain threshold times in demand 

locations with the risk of operation expansion. Since uncertain threshold times appear in two 
different sets of constraints, two protection functions are required. One addresses the feasibility 
of Constraint (20) with dual variables 𝛾௝

ଵ  and 𝛾௝
ଶ  by Equations (50) and (52); and one protects 

Constraint (21) against the threshold time’s uncertainty by 𝛾′௝
ଵ and 𝛾′௝

ଶ in Equations (51) and (53). 

There are (𝑚 − 2)ଶ  possible independent outflow links between the demand locations in the 

second stage; and therefore, 
௰ల

(௠ିଶ)మ defines the level of conservatism for travel times for each pair 

of locations. Since in Equation (30), the uncertain travel time parameter is not multiplied by any 
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variable, the constraint’s feasibility protection is obtained by the inclusion of travel time 
perturbation based on its budget of uncertainty.  

 

𝑦௝𝜖௝̅ +
Γହ

𝑚′
𝛾௝

ଵ + 𝛾௝
ଶ ≤ 𝑠′௝  ∀𝑗𝑗 ≠ 1, 𝑚 (50) 

𝑠′௝ +
Γହ

𝑚′
𝛾′௝

ଵ + 𝛾′௝
ଶ ≤ 𝑇𝑦௝ + 𝜖௝̅൫1 − 𝑦௝൯ ∀𝑗𝑗 ≠ 1, 𝑚 (51) 

𝛾௝
ଵ + 𝛾௝

ଶ ≥ 𝑦௝𝜖௝̂  ∀𝑗  𝑗 ≠ 1, 𝑚 (52) 

𝛾′௝
ଵ + 𝛾′௝

ଶ ≥ ൫1 − 𝑦௝൯𝜖௝̂ ∀𝑗  𝑗 ≠ 1, 𝑚 (53) 

𝑠௜௝ + 𝑏௜௝ + ቆ𝑔̅௝௝ᇱ + 𝑔ො௝௝ᇱ

Γ଺

(𝑚 − 2)ଶ
ቇ + 𝑟௜௝𝜌 ≤ 𝑠௜௝ᇱ + 𝑀൫1 − 𝑣௜௝௝ᇱ൯ 

∀𝑖, 𝑗, 𝑗′𝑗 ≠ 𝑗′ 
𝑗 ≠ 𝑚; 𝑐௜ ≥ 𝑑௝ , 𝑑௝ᇱ 

(54) 

𝛼௝
ଵ, 𝛼௝

ଶ, 𝛽௝
ଵ, 𝛽௝

ଶ, 𝛾௝
ଵ, 𝛾௝

ଶ, 𝛾′௝
ଵ, 𝛾′௝

ଶ, 𝜁ଵ, 𝜁௝
ଶ ≥ 0  (55) 

 
Replacing Equations (9), (17), (18), (20), (21) and (30) with Equations (44) to (55) builds the 

second stage’s robust counterpart.  
 
5. Case study 

To show the effectiveness of the proposed model, this section describes a robust SAR allocation 
and routing example based on an earthquake scenario in an urban part of Iran’s capital, Tehran. It 
is the most populated city in the country, with 22 municipal districts, and is located in the southern 
foothills of the Alborz Mountains, in an earthquake-prone region (Fig. 3). It is surrounded by three 
major seismically active faults, Mosha to the northeast, North Tehran to the north, and Rei to the 
south, as well as hidden faults underneath the whole city’s sediment layers (JICA, 2000). The city 
has expanded tremendously over the past 50 years, and now has more than 8,000,000 inhabitants 
and covers an area of 730 km2. It is now considered one of the cities most vulnerable to 
earthquakes in the world (Amini Hosseini et al., 2014).   

The scenario considered, called the Tehran floating earthquake scenario (TFES), was 
developed to assess the city’s relative vulnerability and considers the hidden faults underneath 
the city. In the case of an earthquake caused by these faults, which are simulated to be 13 km in 
length and 10 km in width, everywhere in the city would have a similar probability of occurrence, 
with a seismic intensity of 8 to 9 on the MMI scale (JICA, 2000; Ashtari et al., 2005). 

 

 
Fig. 3. Tehran urban District 6 with 6 subdistricts (Google map, Ghajari et al., 2017) 

 



20 
 

Inspired by the results of the TFES simulation for a nighttime earthquake, this section presents 
the results of MPFAM implementation in one of Tehran’s municipal districts (District 6) for a 6-
period planning horizon and elaborates on the findings from solving SPCRRM in one of its 
subdistricts for the first period. 

District 6 has an area of 21 km2 and nearly 235,000 inhabitants and is located in the central 
part of the capital. It is one of the oldest districts in the city and has special characteristics 
compared to the rest 1 , which highlights the importance of SAR planning for successful loss 
prevention, not only at the district level but also beyond the district at the city level. 

 An average of 9% of its population is above 64 years old, putting this district among the 
top three for the oldest population and among the most vulnerable districts, compared 
with an average of 6% in the Tehran megacity. 

 Up to 26% of its buildings are more than 30 years old. 
 It hosts the city’s second-largest waste collection center and one of its five water treatment 

plants. 
 This district is the second frequent traffic destination among Tehran’s 22 districts. It is 

located in a focal part with access to the city’s main urban routes and is one of the key 
passages for delivering aid to the southern districts. 

Fig. 3 introduce the district with its subdistricts, and Table 2 presents the TFES2 simulation 
results for a nighttime earthquake. The nominal values for SAR demand and travel times were 
extrapolated by SAR experts based on several criteria such as the number and severity of damaged 
buildings, average number of floors, average number of households in the buildings, and casualty 
estimates. 

 
Table 2. District 6 after TFES 

District 6 Population Families Fatality 
severe 

casualties 
light 

casualties 
homeless 

population 

severely 
damaged 
buildings 

medium 
damaged 
buildings 

lightly 
damaged 
buildings 

Subdistrict 1 12321 3085 51 62 556 8714 335 275 64 

Subdistrict 2 22630 6784 95 121 1029 16011 708 642 151 

Subdistrict 3 12048 4148 56 90 618 8969 700 490 115 

Subdistrict 4 32136 7670 104 204 1123 22149 907 1021 253 

Subdistrict 5 10554 3783 23 74 270 5062 363 421 104 

Subdistrict 6 28977 7166 80 200 873 19740 887 1013 241 

 
5.1. First-stage results 

To test the results for the first stage, uncertainty budgets (𝛤௟
ଵ, 𝛤௞

ଶ) are set as (5, 3, 2) and (4, 3, 
3, 3, 4, 3) with 20% perturbation from nominal values. So, 5 out of 6 subdistricts have 
perturbations from their first-type demand nominal values, half have second-type demand 
different from nominal values, and 33% are not at their nominal third-type demand. Similarly, the 
travel time from the subdistrict 1 to four other subdistricts and the travel times from subdistrict 
4 to three other subdistricts are perturbed. 

Fig. 4 depicts the number of SAR units allocated to each subdistrict by the implementation of 
MPFRAM. The total number of allocated teams in each period and for each demand type represent 
the considered capacity of SAR resources and their distribution over the planning horizon. In the 
initial hours after the earthquake, only a small number of teams are available to carry out the SAR 

 
1 Atlas of Tehran metropolis, provided by Tehran municipality, 2006. 
2 Loss data are altered to maintain confidentiality. 
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operations. The number of available teams for the lowest demand type (least severe) is relatively 
higher than for the other two since volunteer citizens from the neighborhood can cooperate in 
these cases. For more serious damage, the district’s capacity might not be sufficient, and the 
operations will depend on the arrival of professional resources from other districts, cities or 
countries, depending on the demand size.  

 

 
Fig. 4. First-stage results 

 
As can be seen, to restore the maximum minimum weighted coverage among the subdistricts, 

subdistricts 4 and 6, with relatively more extensive damage, receive a major share of available 
capacity. 

  
5.1.1. Sensitivity analysis 

To check the results’ sensitivity to different situations, different levels of demand, and capacity 
are tested. Fig. 5 illustrates the impacts of both SAR resource capacity expansion and improving 
their availability lead time for subdistrict demand coverage.  

 

 
Fig. 5. Coverage improvement vs. SAR response 

 
This analysis, which can be used as a simulation tool, is capable of providing decision-makers 

with helpful managerial insights into "next steps" for improving the safety of the city’s residents. 
Following are the practical insights that can be deduced from sensitivity analysis of the studied 
case: 
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 For all three severity degrees, outcomes are more sensitive to the availability lead time of 
SAR teams than to increased numbers of resources. 

 Highly qualified teams that are competent to be involved in severity type 3 missions are 
more behind on demand compared with the other types; hence, improvements in either 
capacity or arrival lead time of these teams can significantly improve results. 

 Although it is very difficult to build capacity or decrease availability lead time of highly 
qualified teams for all the subdistricts in the district, it is vital for the district’s SAR success 
that the most vulnerable subdistricts (4 and 6) be marked for advanced development and 
training of potential local and neighbor professionals. As can be seen in the chart, there is 
a huge 40% opportunity that can be unlocked by a 20% increase in the number of teams 
and cutting the availability lead time by half.  

 Lack of visible improvement in the results for the second severity degree group highlights 
the first priority, which is to fill the major gap between demand and SAR capacity.   

 Considering that it is easier to build teams for the first-degree severity type, the analysis 
confirms at least 30% potential improvement if each subdistrict trains eligible and 
sufficient local teams.  

Since the main damage to the districts’ residents’ safety, accessibility of roads, and operability 
of urban services is caused by medium and severe destruction, the sensitivity of SAR success to 
the vulnerability of structures to destruction is studied. Fig. 6 presents a simulated glide path for 
improving district coverage by decreasing damage to buildings (within the same SAR capacity). 
This glide path, together with district vulnerability and strategic character, can help to leverage 
relevant managerial decisions about reinforcement/renovation timelines and priorities. Using the 
proposed allocation model as a simulation tool for sensitivity analysis of SAR demand coverage 
before an earthquake strikes can be beneficial for disaster management authorities in both the 
risk mitigation and preparedness phases.  
 

 
Fig. 6. Coverage improvement glide path 

 
5.1.2. Impact of different levels of uncertainty budgets 

Furthermore, different levels of uncertainty budgets are used to show the trade-off between 
the model’s optimality and robustness in the allocation stage (Table 3). This analysis can help 
decision-makers with setting the model’s conservatism to maintain feasibility and closeness-to-
optimality when faced with uncertainty. As expected, eliminating deterministic and worst-case 
scenarios, the objective function follows a mild worsening trend when the model is immunized for 
higher perturbations and uncertainty budgets. 
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Table 3. First-stage objective function’s variations for different levels of BoU 
Uncertainty Budget 
Scenarios 

Certain 
Scenario 

Scenario 
1 

Scenario 
2 

Base 
Scenario 

Scenario 
3 

Scenario 
4 

Worst-case 
Scenario 

Demand type 
uncertainty 
budget 

1 0 3 4 5 6 6 6 
2 0 2 2 3 4 4 6 
3 0 1 2 2 2 3 6 

Travel time with 
other nodes 
uncertainty 
budget 

1 0 2.4 3.2 4 4.8 5 5 
2 0 1.8 2.4 3 3.6 4.2 5 
3 0 1.8 2.4 3 3.6 4.2 5 
4 0 1.8 2.4 3 3.6 4.2 5 
5 0 2.4 3.2 4 4.8 5 5 
6 0 1.8 2.4 3 3.6 4.2 5 

Corresponding 
coverage 
response for 
demand type 

1 43% 35% 33% 31% 30% 30% 30% 
2 9% 8% 8% 7% 7% 7% 6% 

3 40% 38% 36% 36% 36% 34% 29% 

Run time (Sec.)  99 47 156 101 60 502 200 

 
5.1.3. Performance analysis of proposed robust MPFRAM 

To test the performance of the decisions suggested by the proposed robust model vs. the 
deterministic approach, additional experiments are implemented. To this end, at perturbation 
levels of 20% and 30%, models with three sets of uncertainty budget s(𝛤௟

ଵ, 𝛤௞
ଶ) equal to (6, 5), (4, 

3) and (3, 2.5), leading respectively to 99%, 90% and 80% feasibility reliability, are implemented. 
For each perturbation level, the performance of solutions provided by the robust models and the 
deterministic approach is then evaluated vs. 20 uniformly generated random realizations of the 
uncertain parameters from their respective intervals. The outputs are compared based on their 
performances after inserting the proposed allocation decisions in Equations (1) to (8). For each 
model, three sub-measures are calculated to define total performance: 1) the new objective 
function value from the realized 𝑐𝑜𝑣௦; 2) the coverage unfairness at each severity degree based on 
the standard deviation of realized coverages between the subdistricts; and 3) the violation of 
Constraint (6). The latter is the difference between a model’s output for guaranteed coverage and 
its realized possible coverage of realized demand by the proposed allocation decisions. This 
infeasibility, which is of very high importance, means missed coverage promises and represents 
distorted resource requirement assessment.  

To penalize unfavorable sub-measures and to unify the scale of all three parts of the measure, 
the total of realized demands for each type is used as a multiplier. The measure’s mean and its 
range of changes for different random realizations are calculated in each model.  

The results presented in Fig. 7 demonstrate that the robust approach outperforms the 
deterministic model. In all cases, the robust approaches show a minimum performance higher 
than the deterministic model’s average measure value. Also, this superiority is even reinforced in 
more volatile environments with higher possible perturbations. At both uncertainty levels, the 
performance gap between the robust and deterministic approaches grows as the uncertainty 
budget increases. In other words, higher conservatism and solution immunization lead to lower 
deviations from promised coverage levels and to fewer resource miscalculations. While the 
appropriate conservatism level depends on the decision-maker’s preference, the assessment 
shows that the robust allocation model presents a better fit for resource planning in SAR 
operations. 
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Fig. 7. Performance of robust and deterministic approaches under uncertain parameter realizations at two 

perturbation levels 
 

5.2. Second-stage results 
To test the model’s performance in the second stage, subdistrict 4 (Fig. 3), with an area of 4.9 

km2 and 52,000 habitants, is selected. We consider six demand locations in this subdistrict 
according to the municipality neighborhood definitions. Demand location 1, with a high-risk CNG 
station and in proximity to four very tall buildings, is at risk of secondary destruction after the 
earthquake, and hence is considered for operation time expansion after the threshold time. In the 
second stage, (6, 4, 1, 1, 10) are chosen as (𝛤, 𝛤ଷ, 𝛤ସ, 𝛤ହ, 𝛤଺). This means that all demand locations’ 
population parameters are assumed to be different from the nominal values. 66% of the locations 
have perturbed SAR processing time, only one of the locations with secondary destruction risk is 
assumed to have additional processing time and a threshold time different from nominal values, 
and finally, the travel time on 10 travel links have perturbations. Five teams are considered as the 
available resources for SAR routing. Teams 1 and 2 are capable only for type 1 severity, teams 3 
and 4 are qualified for type 2 severity, and team 5 is capable of the most severe demand type. The 
other input data1 used to model the routing can be found in Table 4. 

 
Table 4. Demand locations in the second stage 

Demand 
location 

Demand 
type 

Estimated 
population 

nominal value 

Threshold time 
nominal value for 

SAR demand 
increase 

SAR demand 
nominal 

value  

Nominal value of SAR 
time increase after 

secondary 
destruction 

1 1 5000 2 6 6 

2 2 6000 14 23 0 

3 3 7000 14 28 0 

4 2 2000 14 2 0 

5 2 1800 14 7 0 

6 3 2300 14 9 0 

 
The second-stage model is run for a 12-hour period in Subdistrict 4, with 6 locations and 5 

available teams, and the routing plan for allocated teams is determined. Fig. 8 shows the activity 
sequence for each SAR team in Subdistrict 4. Teams 1 and 2 can only satisfy the SAR demand at 
the first location due to the demand severity compatibility. To shorten the completion time, both 
teams need to work concurrently. Location 2, with demand type 2, receives its required resources 
for SAR from both teams 3 and 4. Teams are not allowed to interrupt the operations unless another 

 
1 Data are altered to maintain confidentiality. 
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team gets involved. That is why the model decides to release team 3 to respond to locations 4 and 
5, but keeps team 4 involved to fully satisfy location 2’s demands. Tasks that take the resource 
capacities beyond the current planning period get introduced in the next period routing model as 
new tasks with their remained processing time. Team 3 enters a rest period after it leaves location 
2 since it gets to its shift limit. It then continues to visit locations 4 and 5. Team 5 is the only team 
capable of handling the severe demand type. Hence, this resource capacity is not sufficient for both 
locations 3 and 6, so the model chooses to serve location 3 due to its higher population. And hence, 
location 6 remains unserved. 

 
Fig. 8. SAR team’ activity sequences in Subdistrict 4 

 
5.2.1. Sensitivity analysis 

To estimate the operations’ success in minimizing the weighted SAR completion times under 
different circumstances, sensitivity analysis is completed in different categories. Table 5 shows 
that the delayed availability of SAR teams can worsen the objective function values. Since location 
1, with the first severity level, is at risk for operation time expansion by delayed operation and has 
a similar population to location 3 in the third severity category, scenarios 3 and 4 lead to similar 
weighted sums of completion times. 

 
Table 5. Sensitivity of objective function to teams’ availability lead time 

  Arrival time of SAR teams 

  Base 
scenario 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

T
ea

m
s 

#1(type 1 capability) 1 1 1 1 3 6 

#2 (type 1 capability) 1 1 1 1 3 6 

#3 (type 2 capability) 1 1 3 3 3 6 
#4 (type 2 capability) 1 1 3 3 3 6 

#5 (type 3 capability) 1 3 3 6 3 6 
 Objective function 7,848,718 7,865,518 7,889,038 7,914,238 7,919,038 8,004,128 

 
Increased workload 

vs. base scenario 
- - - - 6 11.5 

 Delayed rescue start 
vs. base scenario 

- 2 8 11 10 26.5 

 Run time (Sec.) 6.7 9.4 13.4 7 48.1 52.9 

 
Due to different ratios of resource to demand in each severity degree, more insights can be 

drawn by a detailed investigation of the impact of different availability scenarios on teams’ 
workloads and missed survival opportunities. As can be seen, concurrent delays of all teams 
without injecting new resources, while keeping the same number of served demand locations, lead 
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to increased exposure of the task-force due to escalated demand and less remaining time. 
Moreover, depending on the delayed teams’ capability mix, the summation of delayed starts of 
rescue operations can become higher than arrival delays. It must be addressed during response 
simulations before disaster strikes. Because there is a higher risk of resource arrival delays in the 
initial periods, which have the best survival chance.  

Although the scenario simulation corresponds to a nighttime earthquake, the study of a 
daytime occurrence is equally important. Population distribution and density in different places 
(e.g., residential buildings, educational facilities, offices, or public spaces) differ during the day. 
Hence, the city’s risk exposure and vulnerability can significantly change depending on 
earthquake onset time (Alexander, 1996; Freire and Aubrecht, 2012; Ara, 2014). Also, the daytime 
transportation flow can complicate route accessibility and prolong rescue operations. Given the 
share of the studied district in the city’s daily trips, it is important to evaluate how changes in its 
connectivity to other parts of the city, which lead to different availability lead times of rescue 
teams and travel times within rescue tours, can impact operation planning and demand fulfilment.  

To this end, greater disruptions in accessibility leading to longer arrival and travel times of 
teams are tested. Fig. 9a demonstrates that each demand location experiences delayed completion 
times in the presence of different accessibility prolongation situations. Location 1, with time-
sensitive demand, experiences the highest impact. Since the disruptions are considered to impact 
all teams and travel times equally, the delay trends for the rest of the locations follow their priority 
status, depending on the population and availability of compatible resources. The increasing 
trends of total delayed completion times are shown in Fig. 9b. This analysis, coupled with survival 
rate vulnerability, can be used to assess the need for urgent transportation speed-ups.  

 

 
Fig. 9. Demand locations’ delayed SAR completion with longer arrival and travel times 

 
5.2.2. Impact of different levels of uncertainty budgets 

In this section, the impact of different levels of uncertainty budgets on uncertain parameters is 
tested. For this purpose, the impact of each uncertainty budget on population, travel time and SAR 
time in the robust model optimal solution is studied for three perturbation levels of 10%, 20% 
and 30% and at three constraint feasibility reliability levels of 99%, 90% and 80%. The reliability 
scores are calculated according to Bertsimas and Sim’s (2004) 𝐵(𝑛, 𝛤௜) estimation. Additionally, 
the impact of concurrent variations of the above parameters in three reliability states is tested. 
The changes in the optimal solution of the robust model vs. the deterministic model are calculated 
and presented in Fig. 10. 
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Fig. 10. Impact of variations in uncertain parameters on the objective function at three reliability levels 

 
Since the population parameter has a bigger scale, its perturbations result in higher increases 

in weighted completion times, although the changes remain at almost the same level for different 
reliabilities. In contrast, while the impacts of SAR and travel times are smaller in magnitude, the 
solution demonstrates higher sensitivity to their perturbations and immunization efforts. For 
both SAR and travel time uncertainty, as the reliability level grows, the robust objective function 
value shows higher favorability vs. the deterministic solution by the increase of perturbations. 
That is, as the uncertainty budget increases, perturbations of these two uncertain parameters 
from their nominal values cause greater increases in the objective function for immunization. So 
any effort to secure better estimates for these two parameters can avoid the destructive effects of 
their perturbations on the weighted sum of completion times, and allows a lower immunization 
cost. Dominated by the scale of the population parameter, joint variations in uncertain parameters 
are similar to the population in magnitude but exhibit higher sensitivity to reliability levels due to 
the presence of the other two parameters.  
 
5.2.3. Performance analysis of proposed robust SPCRRM 

To test the performance of the decisions suggested by the proposed robust routing model vs. 
the deterministic approach, additional experiments are carried out. First, for concurrent 
perturbations of uncertain population, SAR time and travel time at both 20% and 30%, three 
robust models with feasibility reliability levels of 99%, 90% and 80%, and respective uncertainty 
budgets are established. The outputs of the robust and deterministic models are collected and 
then tested vs. 20 uniformly generated random realizations of the uncertain parameters from 
their respective 20% and 30% perturbation intervals. The outputs are compared based on their 
performances after inserting the proposed routing decisions in Equations (9) to (35). For each 
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model, five sub-measures aiming at the evaluation of the realized objective function value and 
imposed infeasibilities are calculated to define total performance: 

1) The new SAR completion times Min ∑ 𝑝௝
௥௘௔௟௜௭௘ௗ𝑓௝

௡௘௪
௝  based on the proposed visit 

sequences.  

2) The infeasibilities in meeting the realized SAR time 𝑏′௝
௥௘௔௟௜௭௘ௗ of served demand locations 

vs. the proposed 𝑏௜௝ .  

3) The infeasibilities in providing uninterrupted operation in a case of collaboration in 
Constraint (18).  

4) The infeasibilities in the proposed operation start time 𝑠′௝ vs. the realized possible time 

𝑠′௝
௡௘௪ in Constraints (13) and (14). 

5) The inefficiencies from both sooner-than-necessary and later-than-possible proposed rest 
times, based on the assessment of realized continuous workload 𝑤௜௝

௡௘௪  in a case of 

following the rest visits 𝑟௜௝ proposed by the models.  

To penalize unfavorable infeasibilities, the exposed population multiplied by a penalty factor is 
considered and added to the minimization objective function. The measure’s mean and its range 
of changes for different random realizations are calculated in each model and presented in Fig. 11. 

The results demonstrate that the robust approach outperforms the deterministic model in all 
cases. The deterministic model’s output varies in a wider range, which decreases its reliability 
even more. While the robust models maintain consistent performance in varied perturbations, the 
deterministic approach experiences a larger performance gap by when uncertainty increases. At 
both perturbation levels, the superiority of the robust model grows as the uncertainty budget and 
feasibility reliability increase. 

The evaluation shows that for optimizing the routing of SAR resources in an uncertain disaster 
environment, the decisions proposed by the robust approach offer better robustness and 
optimality. However, the reliability level needs to be tuned based on the decision-maker’s 
preference.  

 

 
Fig. 11. Performance of robust and deterministic approaches under uncertain parameter realizations at 

two perturbation levels 
 
6. Concluding Remarks 

This paper presents a new decision support framework with a two-stage approach for robust 
allocation and routing of rescue teams in an earthquake response environment. Both stages are 
designed to capture the operations’ effectiveness in fighting against time in the battle to extricate 
trapped people. The first stage seeks a fair allocation scheme for SAR resources over the 
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partitioned affected zone, and the second stage aims at minimizing SAR completion times at 
demand locations, weighted by the number of trapped people in each. To capture the real-world 
requirements for providing a robust solution in the presence of uncertain parameters, an interval 
data robust optimization approach is adopted. Demand, travel time, SAR processing time, and 
population are considered to be uncertain parameters. The presented decision framework is 
capable of providing managers with appropriate insights on key points of focus and priorities for 
improved results before and during operations in the mitigation, preparedness, and response 
phases. Belonging to the broader family of resource-constrained routing problems, several real-
life constraints in the rescue teams’ service tours (e.g., idling rest periods, time-dependent service 
durations, hierarchical skill levels, and collaborative rescue service) are reflected. 

The model is applied to a numerical example inspired by an earthquake scenario in an urban 
district in Iran’s capital, Tehran. Comprehensive analysis is done in both stages, and the sensitivity 
of the solution to different levels of resource capacities, availability lead times, travel times, and 
budget of uncertainty for uncertain parameters are studied. Additionally, in both stages, the 
superiority of the proposed robust models’ performance vs. the deterministic approach in keeping 
a near-to-optimal and feasible solution under a perturbed environment is validated.  

To solve larger problems, a heuristic or meta-heuristic algorithm needs to be developed and 
evaluated. Moreover, incorporating path selection for each pair of nodes in SAR routing, and 
integrating the allocation and routing of SAR teams with medical resource planning, crowd 
evacuation planning, or lifeline restoration planning in multi-objective setting are other 
interesting avenues for future research. 
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