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The recent trend of globalization of the economy has been accelerated thanks to emerging new 

communication technologies. This forces some companies to be adapted to rapidly changing 

market requirements utilizing a multi-factory production network. Job scheduling in such a 

distributed manufacturing system, is significantly complicated especially in the presence of 

dynamic events. Furthermore, production systems need to be flexible to timely react to the 

imposed changes. Hence, reconfigurable machine tools (RMTs) can be used as a resource for 

flexibility in manufacturing systems. This paper deals with a distributed job-shop rescheduling 

problem, in which the facilities benefit from reconfigurable machines. Firstly, the problem is 

mathematically formulated to minimize total weighted lateness in a static state. Then, the 

dynamic version is extent based on a designed conceptual framework of rescheduling module 

to update the current schedule. Since the problem is NP-hard, a self-adaptive hybrid 

equilibrium optimizer algorithm is proposed. The experiments show that the proposed EO 

algorithm is extremely efficient. Finally, a simulation-optimization model is developed to 

evaluate the performance of the manufacturing system facing stochastic arriving jobs. The 

obtained results show that the production system can be very flexible relying on its distributed 

facilities and reconfigurable machines. 

 

Keywords: Distributed manufacturing, Reconfigurable machine tools, Dynamic scheduling, 

Cyber-physical shop floor, simulation-optimisation model; meta-heuristic algorithms. 

 

1. Introduction 

Over the last decades, due to the globalization of the economy and its requirements, 

manufacturing systems need to be more flexible to survive in such a competitive 

environment. Hence, some companies have started to utilize a network of 
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geographically dispersed facilities as a distributed manufacturing system. In such a 

system, manufacturers have the opportunity to become closer to both customers and 

suppliers. Therefore, they can be more responsive to market requirements because of 

some important advantages such as accessibility to raw materials and low-cost 

production resources (Naderi and Azab, 2014).  

To comply with and to take more advantages of such distributed systems, the 

different parts need to be coordinated using information technology. This lets to 

disperse components to have a more effective performance and a high competitiveness 

level for other players. That is while capabilities of new emerging smart factories are 

enhancing supported by Industry 4.0 technologies, such as the internet of things (IoT), 

cyber-physical systems (CPS), and big data. The required real-time data can be 

provided from the distributed shop floors using Industry 4.0 technologies. These data 

can include the job-related events (e.g., new arriving jobs or delayed jobs), resource-

related events (e.g., accessibility of machines and their current configurations), and 

possible limitations enforced by the logistics system (e.g., raw materials availability). 

The capabilities of a connected manufacturing system help companies make more 

dynamic decisions to adapt to a customer-oriented market (Zhang et al. 2019). 

Coordination can be important for the flexibility of a system; however, it is not all. In 

other words, the infrastructure of production needs to respond main requirements of 

this market as well (e.g., the high demand fluctuations or the rapid introduction of new 

products).  

To cope with these issues, taking advantages of reconfigurability for manufacturing 

systems and tools has been considered in recent years. As one of the useful 

contributions in this field, a new class of production machines, reconfigurable machine 

tools (RMTs), have been introduced. An RMT is able to satisfy a wide range of 

manufacturing requirements relying on its flexible and modular structure 

(Mahmoodjanloo et al. 2020a). One of the most important benefits of developing 

RMTs is the use of several different machines, which share common and many costly 

modules while being rarely used simultaneously, can be prevented (Gadalla and Xue 

2017). The capacity and functionality of a manufacturing system by relying on the 

abilities of such machines can be adjusted easily. 

As production scheduling is one of the most important basics in the production 

management field, and it has a significant impact on both supply chain responsiveness 

and efficiency, in this paper, we aim to study a dynamic job-shop scheduling problem 
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in a distributed manufacturing system, in which each facility contains some 

reconfigurable machine tools to perform assigned operations. 

This paper is organized as follows. Section 2 reviews the related literature. Section 

3 presents a mathematical model for the static state of the problem and its extension 

for a dynamic environment. Section 4 proposes an extension of a new meta-heuristic 

to solve the problem efficiently. Section 5 conducts numerical experiments. Finally, 

Section 6 concludes the paper and suggests a few future research directions. 

 

2. Literature review 

A distributed scheduling problem (DSP) in multi-factories is one of the well-known 

optimization problems, which has motivated several studies especially in the last two 

decades (Chaouch et al. 2017a). In addition to academic research studies, the 

production scheduling in a distributed environment, as a challenging problem, is also 

interesting among real-world applications (Wilkinson et al. 1996; Wang et al. 2007). 

Generally, the problem contains two main decisions including 1) determining the most 

suitable factory (i.e., facility) for each job and 2) scheduling operations of the assigned 

jobs on the available machines in each facility (Jia et al. 2003). Hence, the problem has 

a high level of complexity especially when we face a job shop scheduling problem 

(JSSP) in the machine environment of each facility. On one hand, the growing role of 

globalized and distributed manufacturing, and on the other, the need to find efficient 

algorithms to solve such a complex problem, have motivated researchers to pay more 

attention in this area. Following up, we are going to review the used solution 

approaches and the utilized performance indicators in the related researches. 

For the information flow structure, DSPs can be studied in a centralized or 

decentralized decision-making system. In a decentralized (multi-agent) approach, 

scheduling sub-problems can be independently solved in each facility by an associated 

local decision-maker, who may have conflicting objectives with other local agents. The 

overall system objectives can be achieved through predefined communication 

mechanisms (Toptal and Sabuncuoglu 2010). Even though such an approach is 

flexible, and it can overcome the complexity of DSP as well; there is not any guaranty 

about the optimality of the final solution. On the other hand, a centralized (single-

agent) approach considers the overall scheduling problem to achieve the global 

optimum solution. Although due to the high level of complexity, the global optimum is 
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hardly achieved; however, developing an efficient algorithm can guaranty achieving a 

high-quality solution within reasonable computation time.  

Only a minor part of the literature has dealt with the distributed job-shop scheduling 

problem (DJSP) with a centralized decision-making approach (Chaouch et al. 2017a). 

As one of the pioneer studies with successful implementation, the DJSP was studied 

by Jia et al. (2002) to facilitate collaboration among geographically distributed plants 

of multinational companies. The authors used the World Wide Web (WWW) 

technology to develop a web-based system. They utilized a genetic algorithm (GA) to 

solve the problem with the considerations of low cost and short makespan. Thereafter, 

Jia et al. (2003) developed a modified GA to solve the DJSP by introducing a two-step 

encoding method to assign and schedule the jobs. Naderi and Azab (2014) for the first 

time utilized mathematical programming to model the DJSP and proposed two 

different mathematical formulations, which used sequence- and position-based 

variables to minimize makespan. They also proposed six simple heuristics to solve the 

problem. Later, Naderi and Azab (2015) improved the sequence-based mathematical 

model and developed a hybrid simulated annealing (SA) algorithm using a greedy local 

search method.  

Chaouch et al. (2017b) proposed an improved version of the classic ant system 

algorithm by introducing an elitism mechanism and using the job-facility assignment 

heuristic (i.e., introduced by Naderi and Azab (2014)), to solve the DJSP. Wu et al. 

(2017) studied the effect of using different encoding methods on the performance of 

the GA in solving the DJSP. They also introduced a new chromosome representation 

and two heuristic rules to represent/extract three decisions including (1) job-to-facility 

assignment, (2) operation-to-machine assignment, and (3) operation sequencing 

decision. Their research confirmed the effect of appropriate chromosome 

representations on the output of the used algorithms. Chaouch et al. (2019) used a 

hybrid ant colony algorithm combined with a local search to minimize the global 

makespan over all the factories in the DJSP.  

While the above-mentioned studies considered a traditional JSSP in a multi-factory 

environment to minimize a time-related objective (e.g., makespan or total tardiness), 

some recent papers in this field have tried to consider other aspects of the problem too. 

Chang and Liu. (2017) developed a hybrid GA to minimize makespan in the distributed 

flexible job-shop scheduling problem (DFJSP), in which jobs could be performed on 

different machines in each facility. They used an encoding scheme based on a roulette 
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wheel method to randomly allocate the jobs to facilities and assign the operations to 

eligible associated machines. Lu et al. (2018) proposed a chromosome scheme to 

enhance the performance of the GA to minimize makespan in the DFJSP. In addition 

to makespan, some other criteria have been considered especially in multi-objective 

DJSPs. Li et al. (2018) studied a multi-objective DFJSP and proposed a hybrid Pareto-

based tabu search algorithm to minimize four criteria including makespan, maximal 

workload, total workload, and earliness/tardiness (E/T).  

Wu et al. (2019) developed a mixed-integer linear programming (MILP) model for 

a DFJSP and proposed a multi-objective hybrid differential evolution and simulated 

annealing algorithm to minimize the E/T and total cost. Jiang et al. (2020) proposed 

an effective modified multi-objective evolutionary algorithm with decomposition 

(MMOEA/D) to minimize energy consumption and makespan. While in all the above-

mentioned studies, it is assumed that all operations of a job should be performed on 

the machines of the same facility, Luo et al. (2020) and Gong et al. (2020) assume that 

operations of a job can be transferred among different facilities taking into account the 

jobs’ transfer time and transfer energy consumption. For an overview of more related 

studies on production planning and scheduling problems in multi-factory production 

networks as well as a more comprehensive classification, see Lohmer and Lasch 

(2020). 

As can be observed in the reviewed papers, the studied approaches developed to 

solve the problem of static distributed scheduling are often impractical in real-world 

environments. Moreover, at the dawn of the fourth industrial revolution (Industry 

4.0), smart and distributed production systems can be supported by new emerging 

technologies and paradigms such as IoT and CPS. Such technologies provide real-time 

data to make efficient decisions in dynamic distributed production systems. Hence, 

designing efficient methods and tools to utilize the provided data to make better 

decisions can be significant. In contrary to multi-factory issues, developing smart 

scheduling systems for single-factory applications has been considered recently. For 

example, Romero-Silva and Hernández (2019) studied the role of CPS in different 

manufacturing contexts to provide companies in order to carry out a better scheduling 

task. They found that especially production systems with un-certain demands and 

complex production processes can significantly benefit from implementing a CPS at 

their shop-floor levels. Tian et al. (2019) proposed a production information 

management system using the industrial IoT technology to tackle the dynamic FJSP 
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on a rolling horizon. In this paper, inspired by such concepts, we aim to develop a 

dynamic scheduling model to be applied in a distributed manufacturing environment. 

On the other hand, when we consider the dynamic aspects of a production 

environment, paying attention to changeable customer needs in terms of both product 

mix and volume can be significant. To support such requirements, utilizing a suitable 

substrate for production is inevitable. Hence, the paradigm of reconfigurable 

manufacturing systems (RMSs) has been introduced to answer the rapid changes in 

the variety or volume of the market demand. Indeed, reconfigurability in production 

can be defined as the ability to transform the system to be adjusted according to new 

requirements (Yelles-Chaouche et al. 2020). A production system can obtain such 

ability thanks to the reconfigurability features in its different components and sub-

systems such as machines, workforce mapping, line/facility layout, material handling, 

and transportation systems. Reconfigurable machines, as one of the most important 

resources, play a significant role in such manufacturing systems. Nonetheless, despite 

the special capabilities, utilizing these machines due to the high level of their 

flexibilities creates new operational challenges, especially in the scheduling issues.  

Recently, Mahmoodjanloo et al. (2020a) presented a new variant of a job-shop 

scheduling problem with configuration-dependent setup times (CDST), which contains 

reconfigurable machine tools on the shop floor. They presented the mathematical 

formulations of a single-factory scheduling problem and a hybrid meta-heuristic 

namely self-adaptive differential evolution with Nelder-Mead mutation strategy 

(SADE-NM) to efficiently solve the problem. Later, they developed a mathematical 

model based on operation-position decision variables for a dynamic distributed 

scheduling problem considering RMTs in shop floors (Mahmoodjanloo et al. 2020b). 

However, their research needs further improvements, which we will proceed to do by 

presenting the following contributions: 

• Firstly, proposing a new mathematical model based on operation-sequence 

decision variables for a dynamic distributed flexible job-shop scheduling 

problem with configuration-dependent setup times (DFJSP-CDST) and 

comparing two models (i.e., sequence- and position-based formulations) based 

on their computational performances. 

• Secondly, improving the performance of a newly introduced meta-heuristic, 

namely Equilibrium Optimizer presented by Faramarzi et al. (2020), by adding 
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a self-adaptive mechanism to effectively control its parameters and embedding 

a local search based on the VNS algorithm. 

• Thirdly, developing an encoding scheme for the considered problem and 

applying the presented self-adaptive algorithm to solve real-world instances of 

reasonable large sizes. 

• Finally, utilizing a simulation-optimization approach to evaluate the impact of 

using new modules for RMTs on the performance of a production system in a 

dynamic environment when demand is stochastic with Poisson distribution. 

 

3. Problem statement and mathematical formulation 

3.1. Problem definition 

There is a distributed manufacturing system including several facilities, which have 

already been deployed in different geographical areas. Each facility 𝑓 ∈ 𝐹 contains a 

set of reconfigurable machine tools 𝑘 ∈ 𝐾𝑓 to process the assigned jobs. For each RMT, 

there is a set of possible configurations 𝐶𝑘,𝑓 that can be obtained using appropriate 

modules. The process of changing the modules needs a setup time 𝑆𝑇𝑐1,𝑐2,𝑘
𝑓

 that is 

dependent on two consecutive configurations 𝑐1 and 𝑐2, where 𝑐1 ≠ 𝑐2. Actually, on 

each machine 𝑘 ∈ 𝐾𝑓, to obtain a new configuration 𝑐2 ∈ 𝐶𝑘,𝑓 from the initial 

configuration 𝑐1 ∈ 𝐶𝑘,𝑓, it is needed to remove some old modules and/or add some new 

ones. It is supposed that an RMT can perform one or more operations in each 

configuration. The new configuration of the machine can let us carry out some new 

operations or fulfill some of the old ones at a different rate. 

There is a set 𝒥 of 𝑛 jobs, where each one should be performed in one of the existing 

facilities. Each job 𝑖 ∈ 𝒥 has a set of 𝑛𝑖 operations with a prespecified order (e.g., 𝑂𝑖,1 →

𝑂𝑖,2 → ⋯ → 𝑂𝑖,𝑛𝑖
). It is supposed that operation 𝑂𝑖𝑗 can be performed at least on one 

configuration of the existing machines in each facility. It is worth noting that, no setup 

is needed to carry out the operations in a machine configuration, while to switch to a 

different configuration, the machine needs a setup. The main decisions that can be 

made in the problem environment contain allocating each job to a facility and 

scheduling the assigned jobs on the machines in the associated facility.  

The objective is to minimize total weighted lateness. Moreover, the scheduling 

environment can be classified into two main classes including static (offline) and 

dynamic (online) scheduling. Herein, firstly, a static mathematical model is developed 
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based on a sequence-based formulation. Afterward, the proposed model is extended 

for a dynamic situation where there are some jobs in each facility to be processed 

according to an incumbent schedule. Then the current schedule should be updated by 

arriving some new jobs. To perform such schedule updating tasks, we suppose a 

variable-order rescheduling strategy, in which all unprocessed operations can be 

rescheduled after assigning the new arriving jobs to the facilities, but to consider the 

stability of the current schedule as much as possible, deviation of the completion times 

in the new schedule will be controlled by adding a penalty term to objective function of 

the dynamic model. 

 

3.2. Static scheduling model 

In this subsection, we present a static mathematical model formulation, in which 

there are several jobs to be scheduled in the empty facilities. 

 

Sets and indices: 

𝐹 Set of facilities, where facility index 𝑓 ∈ 𝐹 

𝐾𝑓 Set of machines in the facility 𝑓 ∈ 𝐹, where machine index 𝑘 ∈ 𝐾𝑓 

𝐶𝑘,𝑓 Set of configurations of machine 𝑘 ∈ 𝐾𝑓, where configuration index 𝑐 ∈ 𝐶𝑘,𝑓 

𝒥 Set of jobs, where job index 𝑖 ∈ 𝒥 

𝑁𝑖 Set of all operations of job 𝑖 ∈ 𝒥, where operation 𝑗 of job 𝑖 is denoted by 𝑂𝑖𝑗 

 

Parameters: 

𝑃𝑇𝑖𝑗𝑘𝑐
𝑓

 Processing time of operation 𝑂𝑖𝑗 on machine-configuration 𝑘𝑐 in facility 𝑓 

𝑅𝑖𝑗𝑘𝑐
𝑓

 Binary parameter. 1 if operation 𝑂𝑖𝑗 can be processed on machine-

configuration 𝑘𝑐 in facility 𝑓; 0, otherwise. 

𝑇𝑇𝑖
𝑓
 Transportation time to the related customer when job 𝑖 be sent from facility 𝑓 

𝑆𝑇𝑐1,𝑐2,𝑘
𝑓

 Configuration-dependent setup time when the configuration is changed 

from 𝑐1 to 𝑐2 (i.e., 𝑐1 ≠  𝑐2 and 𝑐1, 𝑐2 ∈ 𝐶𝑘,𝑓) on machine 𝑘 in the facility 𝑓 

𝐷𝑖 Due date of job 𝑖 

𝜔𝑖
𝐸 Earliness penalty of job 𝑖 per time unit 

𝜔𝑖
𝑇 Tardiness penalty of job 𝑖 per time unit 

 

Decision variables: 
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𝑥𝑓𝑖 1 if job 𝑖 be assigned to facility 𝑓; 0, otherwise. 

𝑦𝑖𝑗𝑘𝑐
𝑓

 1 if operation 𝑂𝑖𝑗 is processed on machine-configuration 𝑘𝑐 in facility 𝑓; 0, 

otherwise. 

𝑈𝑖𝑗𝑖′𝑗′  1 if operation 𝑂𝑖𝑗 is scheduled before operation 𝑂𝑖′𝑗′; 0, otherwise  

𝐶𝑂𝑖𝑗 Completion time of operation 𝑂𝑖𝑗 

𝐸𝑖 Earliness of job 𝑖 

𝑇𝑖 Tardiness of job 𝑖 

 

Static model formulation: 

Min 𝓏 = ∑ 𝜔𝑖
𝐸  𝐸𝑖

𝑖∈𝒥

+ 𝜔𝑖
𝑇 𝑇𝑖 

(1) 

s.t. 

∑ 𝑥𝑓𝑖

𝑓∈𝐹

= 1     ∀ 𝑖 ∈ 𝒥 (2) 

∑ ∑ ∑ 𝑦𝑖𝑗𝑘𝑐
𝑓

𝑐∈𝐶𝑘,𝑓𝑘∈𝐾𝑓 𝑗∈𝑁𝑖

≤ 𝑛𝑖 × 𝑥𝑓𝑖     ∀ 𝑓 ∈ 𝐹, 𝑖 ∈ 𝒥 (3) 

∑ ∑ ∑ 𝑦𝑖𝑗𝑘𝑐
𝑓

𝑐∈𝐶𝑘,𝑓𝑘∈𝐾𝑓𝑓∈𝐹

= 1     ∀ 𝑖 ∈ 𝒥, 𝑗 ∈ 𝑁𝑖 (4) 

𝑦𝑖𝑗𝑘𝑐
𝑓

≤ 𝑅𝑖𝑗𝑘𝑐
𝑓

     ∀ 𝑖 ∈ 𝒥, 𝑗 ∈ 𝑁𝑖, 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑐 ∈ 𝐶𝑘,𝑓 (5) 

𝐶𝑂𝑖𝑗 ≥ 𝐶𝑂𝑖,𝑗−1 + ∑ ∑ ∑ 𝑃𝑇𝑖𝑗𝑘𝑐
𝑓

 𝑦𝑖𝑗𝑘𝑐
𝑓

 𝑐∈𝐶𝑘,𝑓𝑘∈𝐾𝑓𝑓∈𝐹

   ∀ 𝑖 ∈ 𝒥, 𝑗 ∈ 𝑁𝑖 (6) 

𝐶𝑂𝑖𝑗 ≥ 𝐶𝑂𝑖′𝑗′ + 𝑃𝑇𝑖𝑗𝑘𝑐2

𝑓
+ 𝑆𝑇𝑐1,𝑐2,𝑘

𝑓

− (2 − 𝑦𝑖𝑗𝑘𝑐2

𝑓
− 𝑦

𝑖′𝑗′𝑘𝑐1

𝑓
+ 𝑈𝑖𝑗𝑖′𝑗′) × 𝑀  ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑐1, 𝑐2

∈ 𝐶𝑘,𝑓 , 𝑖, 𝑖′ ∈ 𝒥, 𝑗 ∈ 𝑁𝑖 ,  𝑗′ ∈ 𝑁𝑖′ , 𝑂𝑖𝑗 ≠ 𝑂𝑖′𝑗′   

(7) 

𝐶𝑂𝑖′𝑗′ ≥ 𝐶𝑂𝑖𝑗 + 𝑃𝑇
𝑖′𝑗′𝑘𝑐2

𝑓
+ 𝑆𝑇𝑐1,𝑐2,𝑘

𝑓

− (3 − 𝑦𝑖𝑗𝑘𝑐1

𝑓
− 𝑦

𝑖′𝑗′𝑘𝑐2

𝑓
− 𝑈𝑖𝑗𝑖′𝑗′) × 𝑀  ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑐1, 𝑐2

∈ 𝐶𝑘,𝑓 , 𝑖, 𝑖′ ∈ 𝒥, 𝑗 ∈ 𝑁𝑖 ,  𝑗′ ∈ 𝑁𝑖′ , 𝑂𝑖𝑗 ≠ 𝑂𝑖′𝑗′  

(8) 

𝐶𝑂𝑖,𝑛𝑖
+ ∑ 𝑇𝑇𝑖

𝑓
 𝑥𝑓𝑖

𝑓∈𝐹

+ 𝐸𝑖 − 𝑇𝑖 ≤ 𝐷𝑖      ∀ 𝑖 ∈ 𝒥 (9) 

𝑦𝑖𝑗𝑘𝑐
𝑓

, 𝑥𝑓𝑖 ∈ {0, 1}      ∀ 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑐 ∈ 𝐶𝑘,𝑓, 𝑖 ∈ 𝒥, 𝑗 ∈ 𝑁𝑖 (10) 

𝐶𝑂𝑖𝑗, 𝐸𝑖 , 𝑇𝑖 ≥ 0     ∀ 𝑖 ∈ 𝒥, 𝑗 ∈ 𝑁𝑖 (11) 
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The objective of the proposed model is to minimize the total weighted lateness, 

which is presented in Eq. (1). Constraints (2) ensure each job to be allocated to one of 

the existing facilities. Constraints (3) guarantee that all operations of a job be 

performed on the allocated facility, where 𝑛𝑖 = |𝑁𝑖| is the total number of operations 

for job 𝑖. Constraints (4) state that each operation should be processed. Constraints (5) 

also prevent assigning of the operations to the infeasible machine-configurations. 

Constraints (6) ensure that all operations of a job should be performed based on the 

prespecified sequence, and minimum time between two consequent operations (i.e., 

the processing time of the precedence operation) should be respected. On each RMT 𝑘 

in a facility, Constraints (7) and (8) prevent the overlapping of the assigned operations, 

where 𝑀 is a big positive number. For each job 𝑖, Constraints (9) calculate the amount 

of E/T time. Constraints (10) and (11) define the type of decision variables. 

 

3.3. Rescheduling model 

In this subsection, the presented static mathematical model is extended to be utilized 

in a dynamic environment. In this state, some new jobs arrive when several existing 

jobs have already been scheduled in each facility. The objective is to assign new jobs to 

the facilities as well as reschedule the operations of newly assigned jobs and the 

remained operations of the old jobs to minimize the total weighted lateness. The 

required real-time data of the distributed manufacturing system can be provided 

utilizing cyber-physical shop floors (CPSF). Herein, a scheduling module is designed 

to use the provided real-time data to update a current schedule in the shop floors. We 

can consider three basic levels under an IoT environment for the shop floors. To 

provide the autonomous analysis of system status as well as make a real-time response 

to dynamic events, a conceptual framework of information flow is presented in Fig. 1. 
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Fig. 1. Dynamic scheduling task using CPSF capabilities (Mahmoodjanloo et al. 2020b). 

 

To extend the static model to be applied in a dynamic environment, we need to 

update some old sets and define some new sets/parameters as well. It is supposed that 

new jobs arrive at time 𝑡1, and the responding times (∆𝑡𝑓) can be estimated separately 

for each facility as different facilities maybe have different conditions to manage their 

logistic systems or provide the required materials. Hence, insertion time (𝑡2
𝑓

) can be 

calculated by: 

𝑡2
(𝑓)

= 𝑡1 + ∆𝑡𝑓     ∀ 𝑓 ∈ 𝐹 (12) 

 

Therefore, the updated sets can be defined as follows: 

𝒥′ Set of all uncompleted jobs (WIPs) until the insertion time, where 𝒥′ ⊆ 𝒥 

𝒥′′ Set of new arrived jobs 

𝑁𝑖
′ Set of all new job operations (for 𝑖 ∈ 𝒥′′) or unprocessed operations of 

existing jobs, where 𝑁𝑖
′ ⊆ 𝑁𝑖 for  𝑖 ∈ 𝒥′ 

𝑗1
(𝑖)

 Index of the first unprocessed operation of job 𝑖, where 𝑗1
(𝑖)

∈ 𝑁𝑖
′ and 

𝑗1
(𝑖)

− 1 ∉ 𝑁𝑖
′ (note that 𝑗1

(𝑖)
= 1 for 𝑖 ∈ 𝒥′′) 

𝑐𝑘,𝑓
′  Index of the current configuration of machine 𝑘 in facility 𝑓 at time 𝑡2

𝑓
, 

where 𝑐𝑘,𝑓
′ ∈ 𝐶𝑘,𝑓 

𝐶𝐽𝑖 Completion time of job 𝑖 in the current schedule (𝐶𝐽𝑖 = 𝐶𝑂𝑖,𝑛𝑖

∗ ) 

As a new job arrives, the scheduling module uses the real-time data obtained from 

CPSF to extract the state of the shop floors and perform a rescheduling task. Hence, it 

needs to determine the earliest possible start time of each current job (𝑆𝐽𝑖) and each 
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machine (𝑆𝑀𝑘,𝑓). Eq. (13) calculates the value of 𝑆𝐽𝑖 for the existing jobs, and Eq (14) 

states a constraint to calculate 𝑆𝐽𝑖 for the new jobs. 

𝑆𝐽𝑖 = max {𝐶𝑂
𝑖,𝑗1

(𝑖)
−1

, 𝑡2
(𝑓)

}     ∀𝑖 ∈ 𝒥′   if   𝑥𝑓𝑖
∗ = 1 (13) 

𝑆𝐽𝑖 = ∑ 𝑡2
(𝑓)

𝑥𝑓𝑖

𝑓∈𝐹

     ∀𝑖 ∈ 𝒥′′ (14) 

Also, the earliest possible start time of machine 𝑘 in facility 𝑓 can be extracted using 

Eq. (15). 

𝑆𝑀𝑘,𝑓 = {
𝑡2

(𝑓)
       No operation is being processed on the machine at time 𝑡2

(𝑓)
 

𝐶𝑂
𝑖,𝑗1

(𝑖)
−1

Operation 𝑂
𝑖,𝑗1

(𝑖)
−1

is being processed on the machine at time 𝑡2
(𝑓) (15) 

Fig. 2 presents a simple example to illustrate how the value of 𝑆𝐽𝑖 and 𝑆𝑀𝑘,𝑓 can be 

extracted based on the introduced equations. In this example, there are two jobs (i.e., 

job_1 and job_2 with four and three operations, respectively), which have already been 

scheduled on two existing machines. It is supposed that a new job arrives at time 𝑡1 =

90, and the rescheduling task (new job insertion) can be applied at time 𝑡2
(𝑓)

= 𝑡1 +

∆𝑡𝑓 = 180. At this time, operation 𝑂2,2 is being processed on the second machine. 

Hence, the earliest possible start time of the second machine is equal to the completion 

time of 𝑂2,2, i.e., 𝑆𝑀2,𝑓 = 200, while such time for the first machine is equal to 𝑡2
(𝑓)

, i.e., 

𝑆𝑀1,𝑓 = 180. Also, we can determine the earliest possible start time of the jobs as 𝑆𝐽1 =

max{170, 180} = 180, and 𝑆𝐽2 = max{200, 180} = 200. 

 

Fig. 2. An example to extract 𝑆𝐽𝑖 and 𝑆𝑀𝑘,𝑓 

 

Considering the optimal value of the variables 𝑥𝑓𝑖
∗  ∀𝑖 ∈ 𝒥 and the introduced 

sets/parameters as the initial conditions, the dynamic model can be developed as 

follow. Constraints (4) and (5) should be considered replacing updated set 𝒥′ ∪ 𝒥′′ 

instead of the previous set 𝒥. In Constraint (2), set 𝒥 should be replaced by set 𝒥′′. 

Moreover, as the existing jobs cannot be reassigned to another facility, in Constraints 

(3) and (9), the previous optimum value of the related decision variable should be 
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considered as a parameter (𝑥𝑓𝑖
∗  ∀𝑖 ∈ 𝒥′). For Constraints (7) and (8), the job-related sets 

should be updated as 𝑖, 𝑖′ ∈ 𝒥′ ∪ 𝒥′′, 𝑗 ∈ 𝑁𝑖
′,  𝑗′ ∈ 𝑁𝑖′

′ . Constraint (6) should be replaced 

by Eqs. (16) - (18). 

𝐶𝑂𝑖𝑗 ≥ 𝐶𝑂𝑖,𝑗−1 + ∑ ∑ ∑ 𝑃𝑇𝑖𝑗𝑘𝑐
𝑓

 𝑦𝑖𝑗𝑘𝑐
𝑓

 𝑐∈𝐶𝑘,𝑓𝑘∈𝐾𝑓𝑓∈𝐹

   ∀ 𝑖 ∈ 𝒥′ ∪ 𝒥′′, 𝑗 ∈ 𝑁𝑖
′ − {𝑗1

(𝑖)
} (16) 

𝐶𝑂
𝑖,𝑗1

(𝑖) ≥ 𝑆𝐽𝑖 + 𝑃𝑇
𝑖𝑗1

(𝑖)
𝑘𝑐

𝑓
+ 𝑆𝑇

𝑐𝑘,𝑓
′ ,𝑐,𝑘

𝑓
− (1 − 𝑦

𝑖𝑗1
(𝑖)

𝑘𝑐

𝑓 ) × 𝑀     ∀𝑖 ∈ 𝒥′ ∪ 𝒥′′ (17) 

𝐶𝑂
𝑖,𝑗1

(𝑖) ≥ 𝑆𝑀𝑘,𝑓 + 𝑃𝑇
𝑖𝑗1

(𝑖)
𝑘𝑐

𝑓
+ 𝑆𝑇

𝑐𝑘,𝑓
′ ,𝑐,𝑘

𝑓
− (1 − 𝑦

𝑖𝑗1
(𝑖)

𝑘𝑐

𝑓 ) × 𝑀     ∀𝑖 ∈ 𝒥′ ∪ 𝒥′′ (18) 

 

Eventually, the rescheduling problem can be solved considering the objective 

function (19), where new variables 𝐸𝑖
′ and 𝑇𝑖

′ measure the deviation of new schedule for 

the old jobs 𝑖 ∈ 𝒥′ based on Equation (20) considering associated weights 𝛿1 and 𝛿2. 

Min 𝓏 = ∑ 𝜔𝑖
𝐸𝐸𝑖

𝑖∈𝒥′∪𝒥′′

+ 𝜔𝑖
𝑇𝑇𝑖 + ∑ 𝛿1𝐸𝑖

′

𝑖∈𝒥′

+ 𝛿2𝑇𝑖
′ (19) 

𝐶𝑂𝑖,𝑛𝑖
+ 𝐸𝑖

′ − 𝑇𝑖
′ = 𝐶𝐽𝑖     ∀ 𝑖 ∈ 𝒥′ (20) 

 

4. Solution approach 

A distributed job-shop scheduling problem with reconfigurable machine tools is an 

extension of the classical job-shop scheduling problem. Hence, it is an NP-hard 

problem (Garey, Johnson, and Sethi 1976). In this section, to efficiently search the 

solution space of the problem a self-adaptive version of a new presented meta-heuristic 

algorithm, named Equilibrium Optimizer (EO), is developed. The EO algorithm has 

recently been introduced based on the concept of the behavior of dynamic and 

equilibrium state of the control volume mass balance models, i.e., inspired from the 

physics principle of mass conservation during entering, generating, and leaving in a 

control volume (Faramarzi et al. 2020). In the following section, firstly the main steps 

of EO are presented, and subsequently, the procedure of self-adaptive control 

parameters is introduced. 

 

4.1. Equilibrium optimizer (EO) algorithm 

Faramarzi et al. (2020) introduced EO that is a population-based meta-heuristic 

algorithm, in which the particles (i.e., solutions) and the associated concentrations 

(i.e., positions) can be considered as search agents. The concentration of each agent is 
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randomly updated for a set of best-so-far particles (i.e., equilibrium candidates) to 

achieve the equilibrium state (i.e., the best result). The concentration of search agents 

is updated based on Eq. (21) in each control volume (i.e., iteration). 

𝐶𝑛𝑒𝑤 = 𝐶𝑒𝑞 + (𝐶 − 𝐶𝑒𝑞). �⃗� +
�⃗�

𝜆. 𝑉
(1 − �⃗�) (21) 

where 𝐶 and 𝐶𝑛𝑒𝑤 are the concentration vectors in the current and next iterations, 

respectively. 𝐶𝑒𝑞 is a randomly selected candidate from a set of equilibrium 

concentrations, namely equilibrium pool (𝐶𝑒𝑞,𝑝𝑜𝑜𝑙). The updating equation contains 

three terms. The first and second terms have an important role in exploration aims, 

and the third term dependent on the value of random vector 𝜆, namely turnover rate, 

mostly plays the role of an exploiter to search solutions closer to the selected candidate. 

It is worth noting that small values in the turnover rate vector lead to exploration in 

the related dimensions. Besides, control volume 𝑉 as a constant parameter can help 

the searching process by adjusting the scale of the denominator. Moreover, vector �⃗� is 

an exponential term to control exploration and exploitation aims in a searching 

process, which is presented by: 

�⃗� = 𝑎1. 𝑆𝑖𝑔𝑛(𝑟 − 0.5). [𝑒−�⃗⃗⃗�𝑡 − 1] (22) 

In the formulation of �⃗�, the function sign is used to control the direction of search 

depending on 𝑟, which is a random vector between 0 and 1. Time parameter 𝑡 that is 

dependent on the iterations is used to control the behavior of parameter 𝜆 during the 

implementation of the algorithm. Eq. (23) is proposed for this parameter. 

𝑡 = (1 −
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
)

𝑎2×
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
 (23) 

where 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 is the maximum number of iterations and 𝐼𝑡𝑒𝑟 is the current iteration 

of the algorithm which is equal to a position update for each particle. Besides, 

parameters 𝑎1 and 𝑎2 are respectively used to control exploration and exploitation 

aims. 

Another important vector introduced in the algorithm is generation rate �⃗�. It is 

utilized to help in the exploration using the participation probability of the selected 

equilibrium concentration. This vector is defined as Eq. (24). 

�⃗� = 𝐺𝐶𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗. (𝐶𝑒𝑞 − 𝜆. 𝐶). �⃗� (24) 
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where the vector 𝐺𝐶𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ is a generation rate control parameter, which is constructed by 

the repetition of the same value resulted from Eq. (25). In this formula, parameters 𝑟1 

and 𝑟2 are random parameters between 0 and 1, and the generation probability (𝐺𝑃) is 

another input parameter of EO. The 𝐺𝑃 is the percentage of particles, which uses a 

generation term to update their states.  

𝐺𝐶𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ = {
0.5 𝑟1  𝑟2 ≥ 𝐺𝑃
0       𝑟2 < 𝐺𝑃

 (25) 

Finally, it is worth noting that all multiplications of vectors used in the above-

mentioned formulas are a type of element-wise multiplication (Hadamard product). 

 

4.2. Proposed Self-Adaptive Equilibrium optimizer (SAEO) 

In the classic EO presented in the previous subsection, there are three input control 

parameters including 𝑎1, 𝑎2, and 𝐺𝑃. The authors proposed a value for each parameter, 

(i.e., 𝑎1 = 2, 𝑎2 = 1, and 𝐺𝑃 = 0.5). It is also mentioned that the value of parameters 

can be tuned for each problem to achieve an efficient level of exchanges between 

exploration and exploitation mechanisms. In addition to these control parameters, 

there is a random vector 𝜆, which has an important role in the search process especially 

by affecting the vector �⃗�. This role is considerable because the turnover rate 𝜆 has an 

important effect simultaneously on exploration and exploitation mechanisms in 

different aspects of a solution space. The classic EO uses time-dependent parameter 𝑡 

to control the behavior of 𝜆 during the implementation of the algorithm. However, it 

seems that the utilized control mechanism has not enough effectiveness because it does 

not utilize the experience of used particles during the search process. Hence, we 

propose a self-adaptive mechanism to automatically control the turnover rate by the 

algorithm. 

For a minimization problem, the gap between the concentration of each particle 𝑝 

and the worst particle in the iteration 𝐼𝑡𝑒𝑟 is calculated by: 

∆𝑓𝑖𝑡𝑝
𝐼𝑡𝑒𝑟 = 𝑓𝑖𝑡𝑚𝑎𝑥

𝐼𝑡𝑒𝑟 − 𝑓𝑖𝑡(𝐶𝑝
𝐼𝑡𝑒𝑟) (26) 

where 𝑓𝑖𝑡(𝐶𝑝
𝐼𝑡𝑒𝑟) represent the fitness value of particle 𝑝 in iteration 𝐼𝑡𝑒𝑟, and 𝑓𝑖𝑡𝑚𝑎𝑥

𝐼𝑡𝑒𝑟  is 

the fitness value of the worst particle in iteration 𝐼𝑡𝑒𝑟, i.e., 𝑓𝑖𝑡𝑚𝑎𝑥
𝐼𝑡𝑒𝑟 = max𝑝{𝑓𝑖𝑡(𝐶𝑝

𝐼𝑡𝑒𝑟)}. 

The weighted average value in search direction 𝑑 of the solution space can be calculated 

by: 
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�̅�𝑑
𝐼𝑡𝑒𝑟 = ∑ 𝑤𝑝

𝐼𝑡𝑒𝑟 × 𝜆𝑝,𝑑
𝐼𝑡𝑒𝑟

𝑝

 (27) 

where 𝜆𝑝,𝑑
𝐼𝑡𝑒𝑟 is the 𝑑-th vector element, i.e., the value of turnover rate in search direction 

𝑑 of the vector 𝜆𝑝
𝐼𝑡𝑒𝑟 = ‖𝜆𝑝,𝑑

𝐼𝑡𝑒𝑟‖. Besides, 𝑤𝑝
𝐼𝑡𝑒𝑟 is the associated weight of particle 𝑝 in the 

iteration 𝐼𝑡𝑒𝑟 that is calculated by:  

𝑤𝑝
𝐼𝑡𝑒𝑟 =

∆𝑓𝑖𝑡𝑝
𝐼𝑡𝑒𝑟

∑ ∆𝑓𝑖𝑡𝑝
𝐼𝑡𝑒𝑟𝑛𝑃𝑜𝑝

𝑝=1

 (28) 

Finally, the turnover rate of the particle 𝑝 in the next iteration can be updated as Eq. 

(29), where N is the normal distribution function with the mean �̅�𝑑
𝐼𝑡𝑒𝑟 and the standard 

deviation  𝜎𝐼𝑡𝑒𝑟. 

𝜆𝑝,𝑑
𝐼𝑡𝑒𝑟+1 = 𝑁(�̅�𝑑

𝐼𝑡𝑒𝑟 , 𝜎𝐼𝑡𝑒𝑟) (29) 

Hence, the next turnover vector can be obtained as 𝜆𝑝
𝐼𝑡𝑒𝑟+1 = ‖𝜆𝑝,𝑑

𝐼𝑡𝑒𝑟+1‖ while the 

considered standard deviation in each iteration is calculated as Eq. (30). This 

mechanism lets the algorithm generate a wider range of dispersion in its initial 

iterations. Thereafter, the standard deviation should be reduced to extract a less 

dispersion range around the weighted mean of obtained turnover rates. The value 

(limit) of 𝜎𝐼𝑡𝑒𝑟 approaches from 𝜎1 + 𝜎2 (at the beginning of a search process) to 𝜎1 (at 

the end of the search process). Theoretically, we should consider the constraint 0 <

𝜎1 + 𝜎2 ≤ 1 while 𝜎1, 𝜎2 > 0. 

𝜎𝐼𝑡𝑒𝑟 = 𝜎1 + 𝜎2 (1 − (
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
)

2

) (30) 

 

4.3. Details of the proposed hybrid SAEO to solve dynamic DFJSP-CDST 

In this section, the main steps of the proposed hybrid SAEO-VNS algorithm are 

presented to solve DFJSSP-CDST. 

 

Encoding procedure: 

An equilibrium optimizer is a continuous algorithm. To solve DFJSSP-CDST as a 

discrete combinatorial optimization problem, we need to use an encoding approach. 

Herein, the approach proposed by Mahmoodjanloo et al. (2020a) is utilized to 

represent feasible solutions to the problem. They used a two-dimensional matrix 

(𝐴2×𝑛) with real random values to determine operations scheduling and machine 

configuration decisions in a static single-facility FJSSP-CDST problem. We enhance 
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their encoding approach by adding the possibility of job assignment decisions for a 

dynamic distributed version. Hence, a new row is added to the matrix. The new matrix 

(𝐴3×𝑛) can be utilized to randomly generate a solution that represents a feasible 

schedule for the DFJSSP-CDST. In this matrix, the number of columns is equal to the 

total number of operations of uncompleted jobs in the distributed production systems 

(i.e., 𝑛 = ∑ |𝑁𝑖|𝑖∈𝒥′ ).  

Table 1 represents a simple instance designed to illustrate the encoding scheme. In 

this instance, there are two facilities each one contains two RMTs. Four jobs should be 

assigned and scheduled in these facilities. 

 

Table 1. Data for the illustrated instance 

𝑓, 𝑘, 𝑐 
Job1  Job2  Job3  Job4 

1 2 3 4  1 2 3  1 2 3  1 2 3 
1, 1, 1       75      87  91   52 57 
1, 1, 2  72  86   54     96       
1, 2, 1  65 55 61     62    81     59   86  76 
1, 2, 2 93 97 63        67  96  62     
2, 1, 1 81  71        83  85    95   
2, 1, 2    80     97    77   75  60     60 
2, 1, 3 60 58             84  
2, 2, 1           75      87  91   52  
2, 2, 2  72  86   54     96      55 

𝐷𝑖  430  650  400  400 

 
The random matrix presented in Fig. 3 illustrates the encoding scheme for this 

instance as well. To extract the random solution associated with this code, three steps 

should be followed. At Step 1, each job is assigned to one of the facilities based on the 

average value of its related elements in the third row of matrix 𝐴. For this purpose, we 

divide the interval [0,1] to |𝐹| equal and incompatible subsets. 

 In the illustrated example of Fig. 3, in which there are two facilities (|𝐹| = 2), if the 

average value of elements for a job be smaller than 0.5, the job should be assigned to 

the first facility, otherwise, it should be assigned to the second facility. Thereafter, the 

sequence priority of operations in each facility will be determined based on their 

elements in the second row of matrix 𝐴. Based on this procedure, after considering the 

precedence relation of operations for each job, each operation, which has a smaller 

value, achieves the next position in the sequence priority list. Moreover, for each 

operation, a machine-configuration will be selected based on a greedy method, 

utilizing the related elements in the first row of matrix 𝐴. For this purpose, a probability 

matrix (�̅�𝑓 = ‖�̅�𝑖𝑗𝑘𝑐
𝑓

‖) is first calculated for each facility based on Eq. (31). For example, 
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as the first job has already been assigned to the second facility (in Step 1), the related 

probability values of 𝑂11 is calculated as [0.43, 0, 0.57, 0, 0]𝑇 (i.e., the associated column 

in matrix �̅�2, see Appendix A). Eventually, since 𝐴11 = 0.53 > 0.43, operation 𝑂11 

should be processed on the third configuration of machine 2 in the second facility. 

 

 

Fig. 3. Random solution (i.e., particle) for the example. 

 

�̅�𝑖𝑗𝑘𝑐
𝑓

=

1

𝑃𝑇𝑖𝑗𝑘𝑐
𝑓

∑
1

𝑃𝑇𝑖𝑗𝑘𝑐
𝑓𝑘∈𝐾𝑓,𝑐∈𝐶𝑘,𝑓

     ∀ 𝑓 ∈ 𝐹, 𝑖 ∈ 𝒥, 𝑗 ∈ 𝑁𝑖 , 𝑥𝑓𝑖 = 1, 𝑃𝑇𝑖𝑗𝑘𝑐
𝑓

≠ 0 (31) 

After assigning the jobs to the facilities and determining the related machine-

configuration of each operation, an active schedule of operations in each facility can be 

extracted based on the obtained sequence priority and using the G&T method (Giffler 

and Thompson 1960) as a well-known constructive heuristic algorithm in the related 

literature (Sha and Hsu 2006; Ahmadian et al. 2021). The procedure of the G&T 

method is presented in Appendix B. The resultant schedule of the randomly generated 
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code in Fig. 3 is represented in Fig. 4. The value of the total weighted E/T is 542 for 

this schedule (𝜔𝑖
𝐸 = 1 and 𝜔𝑖

𝑇 = 2). 

 

 

Fig. 4. Resultant schedule of the particle 

 

Local search function: 

To solve the DFJSP-CDST as a combinatorial optimization problem, it is needed to 

improve the performance of the EO algorithm, which is originally developed for 

continuous optimization, by adding a local search method. In this hybrid approach, the 

searching mechanisms of EO are used for global exploration/exploitation of 

continuous search space (i.e., encoding space) while the proposed local search enhance 

the exploitation ability for searching in discrete environment (i.e., decoding space) at 

vicinity of solutions obtained in each iteration. 

Hence, considering the structure of solutions in the studied problem, seven heuristic 

neighborhood search (HNS) methods are proposed as follows:   

𝐻𝑁𝑆1: Select two facilities randomly, select a random job in each facility, and replace 

two selected jobs. 

 𝐻𝑁𝑆2: Select two facilities based on a random greedy approach. The first facility should 

be selected regarding to the total tardiness-related probability (𝑃𝑟𝑇𝑇𝑓) (i.e., 

calculated in Eq. (32)), and the second facility should be selected regarding to the 

total earliness-related probability (𝑃𝑟𝑇𝐸𝑓) (i.e., calculated in Eq. (33)). Remove a 

random selected job from the first facility, and insert it to the second one.  

𝑃𝑟𝑇𝑇𝑓 =
∑ 𝑇𝑖 × �̂�𝑓𝑖𝑖∈𝒥′∪𝒥′′

∑ 𝑇𝑖𝑖∈𝒥′∪𝒥′′
     ∀𝑓 ∈ 𝐹 (32) 

𝑃𝑟𝑇𝐸𝑓 =
∑ 𝐸𝑖 × �̂�𝑓𝑖𝑖∈𝒥′∪𝒥′′

∑ 𝐸𝑖𝑖∈𝒥′∪𝒥′′
     ∀𝑓 ∈ 𝐹 (33) 
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where �̂�𝑓𝑖 represents the value of the assignment variable in the related solution. 

𝐻𝑁𝑆3: Select a facility randomly, and change the priorities of its two randomly selected 

operations. 

𝐻𝑁𝑆4: Select an operation randomly, and change its machine-configuration based on 

the random greedy approach (if possible). 

𝐻𝑁𝑆5: Select randomly an operation that is immediately positioned after a setup 

operation. Change the configuration of the related machine to a randomly selected 

possible configuration. 

𝐻𝑁𝑆6: Select randomly an operation that is immediately positioned before a setup 

operation. Change the configuration of the related machine to a randomly selected 

possible configuration. 

𝐻𝑁𝑆7: Identify the operations which are immediately positioned between two setup 

operations. For each identified operation, if the related configurations of the 

previous and the next operations are same, change the configuration of the selected 

operation to it (if possible). 

It is worth noting that, after applying each HNS in decoding space, the related action 

should be transformed by an appropriate random change in encoding space. The 

proposed local search process can be developed based on the introduced HNSs as 

presented in Procedure_1 utilizing a pipe neighborhood change step (Hansen et al. 2017). 

 

Procedure_1. Variable Neighborhood Search. 

Inputs: Particle (𝐶) 

Algorithm parameter: 𝑅𝑚𝑎𝑥  

1 Set 𝐶′ = 𝐶 

2 Set 𝑟 = 0, i.e., the number of iterations without improvement 

3 Set 𝑘 = 1, i.e., the index of Heuristic Neighborhood Search method 

4 While  𝑟 ≤ 𝑅𝑚𝑎𝑥 

5 Find 𝐶𝑛𝑒𝑤
′  Calling 𝐻𝑁𝑆𝑘(𝐶′) 

6 if 𝑓𝑖𝑡(𝐶𝑛𝑒𝑤
′  ) < 𝑓𝑖𝑡(𝐶′) Then 

7 Set 𝐶′ = 𝐶𝑛𝑒𝑤
′   

8 Set 𝑟 = 0 

9 else 

10 Set 𝑘 ⟵ 𝑘 + 1 

11 If 𝑘 = 7 Then 𝑘 = 1 

12 Set 𝑟 ⟵ 𝑟 + 1 

13 end 

14 Apply 𝐻𝑁𝑆7(𝐶′) 

15 end 

Output: Improved particle (𝐶′)  
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Rescheduling function: 

To apply the proposed algorithm in a dynamic environment, it is needed to be adjusted 

for the implementation of a rescheduling function. Moreover, the required data can be 

provided utilizing industrial IoT. Digital twin sends real-time data from shop floors, so 

the last situation of all machines and works in progress (i.e., uncompleted jobs) will be 

specified once a new event occurred (e.g., arriving at a new job). The conceptual 

framework of the scheduling module has been presented in Fig. 5.  

 

 

Fig. 5. Conceptual framework of the scheduling module 

 

Based on the presented data flow system in Fig. 5, the introduced encoding 

procedure should be updated to be used in a dynamic environment. The updating 

process of a particle has been presented in Procedure_2. 

 

Procedure_2. Updating process of a particle. 

Inputs: Old particle, Updated list, Updated data (see Fig. 5) 

1 Delete all columns related to the operations of completed jobs 

2 Freeze all columns related to the completed operations of WIPs 

3 Freeze the third row of the particle (for WIPs) 

4 Generate a random particle for newly arrived jobs 

5 Add the new particle at the end of the old one 

Output: Updated particle 
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The following pseudo-code presents the steps of the hybrid SAEO-VNS algorithm to 

solve the dynamic DFJSSP-CDST. 

 

Procedure_3. Pseudo-code of the hybrid SAEO-VNS to solve the dynamic DFJSSP-CDST. 

Problem parameters: Old particles, Updated list of jobs, and Updated technical data 

Algorithm parameters: (𝑎1, 𝐺𝑃, 𝜎1, 𝜎2) and (𝑀𝑎𝑥_𝐼𝑡𝑒𝑟, 𝑛𝑃𝑜𝑝)  

1. Initialization: 

2. For 𝑝 = 1: 𝑛𝑃𝑜𝑝  

3. Update the particle 𝐶𝑝 Calling Procedure_2(𝐶𝑝, Updated list, Updated data) 

4. Extract resultant schedule of the updated particle 𝐶𝑝 Calling Procedure_B1 

5. Calculate 𝑓𝑖𝑡(𝐶𝑝), i.e., the fitness of resultant schedule (Total weighted lateness) 

6. Set 𝐼𝑡𝑒𝑟 =  1 

7. While 𝐼𝑡𝑒𝑟 ≤ 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 

8. Update equilibrium pool (𝐶𝑒𝑞,𝑝𝑜𝑜𝑙) 

9. Find four best particles as 𝐶𝑒𝑞_1, 𝐶𝑒𝑞_2, 𝐶𝑒𝑞_3, 𝐶𝑒𝑞_4 

10. Calculate 𝐶𝑒𝑞_𝑎𝑣𝑒 = (𝐶𝑒𝑞_1, +𝐶𝑒𝑞_2 +  𝐶𝑒𝑞_3 + 𝐶𝑒𝑞_4)/4 

11. Construct 𝐶𝑒𝑞,𝑝𝑜𝑜𝑙 = {𝐶𝑒𝑞_1, 𝐶𝑒𝑞_2, 𝐶𝑒𝑞_3, 𝐶𝑒𝑞_4, 𝐶𝑒𝑞_𝑎𝑣𝑒} 

12. For Each particle in 𝐶𝑒𝑞,𝑝𝑜𝑜𝑙 Do local search Calling Procedure_1 

13. Calculate 𝜆�̅�𝑡𝑒𝑟, i.e., the weighted average value of turnover rate using Eqs. (26)-(28) 

14. Calculate 𝜎𝐼𝑡𝑒𝑟 using Eq. (30) 

15. Set 𝐼𝑡𝑒𝑟 ⟵ 𝐼𝑡𝑒𝑟 + 1 

16. For 𝑝 = 1: 𝑛𝑃𝑜𝑝 

17. Select a random particle (𝐶𝑒𝑞_∗) from 𝐶𝑒𝑞,𝑝𝑜𝑜𝑙 

18. Generate random vector 𝑟 and 𝜆𝑝
𝐼𝑡𝑒𝑟 using Eq. (29) 

19. Calculate �⃗� using Eq. (22)  

20. Calculate �⃗� using Eqs. (24) and (25) 

21. Update concentration 𝐶𝑝 ⟵ 𝐶𝑒𝑞_∗ + (𝐶𝑝 − 𝐶𝑒𝑞_∗). �⃗� +
�⃗�

�⃗⃗⃗�𝑝
𝐼𝑡𝑒𝑟.𝑉

(1 − �⃗�) 

22. Extract resultant schedule of the updated particle 𝐶𝑝 Calling Procedure_B1 

23. Calculate 𝑓𝑖𝑡(𝐶𝑝) 

Outputs: The best schedule, Data of the last generation 

 

5. Computational results 

The purpose of this section is to verify the performance of the proposed algorithm 

based on numerical experiments. Hence, the performance of algorithm SAEO-VNS is 

compared with the results from the MILP model solved by the CPLEX solver and the 

results obtained from applying three other meta-heuristics. The comparisons are 

performed among outputs of the mentioned algorithms based on 32 randomly 

generated instance problems. The MILP model is implemented in GAMS 24.1.3 and 

solved utilizing the solver CPLEX. Also, the meta-heuristic algorithms are coded on 

MATLAB 2019. All test instances are performed on a computer with a 2.90 GHz Intel 

(R) Core (TM) i7-7820HK CPU and with RAM 32.0 GB. 
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5.1. Random instance generation 

To evaluate the results of the proposed algorithm, two computational experiments are 

designed based on several random instance problems. Using the range of parameters, 

which are presented in Table C1 (in Appendix C), two sets of problems are generated 

to test the methods in static and dynamic states. At the first set, 16 instance problems 

in different sizes are generated to test the scheduling methods (static state). Afterward, 

16 instance problems are considered to test the rescheduling methods (dynamic state). 

General specification of the instance problems utilized for static (Subset-S) and 

dynamic (Subset-D) states respectively are presented in Tables C2 and C3. 

  

5.2. Evaluation of results 

This section aims to test the performance of the proposed MILP models and the 

proposed algorithm. The obtained results of the proposed SB models (in both static 

and dynamic states) are compared with the results of the PB models introduced by 

Mahmoodjanloo et al (2020b). Moreover, to test the performance of the SAEO-VNS 

algorithm, the obtained results are compared with the results of the classic EO 

(Faramarzi et al. 2020) embedded by VNS (EO-VNS) and two self-adaptive algorithms 

which have been recently used in the literature (i.e., including SADE-NM 

(Mahmoodjanloo et al. 2020a) and SA-COA (Abdollahzadeh-Sangroudi and Ranjbar-

Bourani 2019)). 

To guarantee the best performance, each algorithm needs some accurately 

calibrated parameters. Fortunately, three of the four foregoing algorithms have a self-

adaptive approach to control the main parameters while only needing some initial 

values. Hence, we use the proposed initial values in associated original papers in our 

study. For the classic EO, we find that the proposed input parameters (𝑎1 = 2, 𝑎2 = 1, 

and 𝐺𝑃 = 0.5) have acceptable performance in our problem too. We also use 𝑎1 = 2 

and 𝐺𝑃 = 0.5 as two input parameters in SAEO; however, about the parameters 𝜎1 and 

𝜎2, a computational experiment is performed. In this experiment, we consider the first 

data set as the test problem. The analysis of variance (ANOVA) test is used to analyze 

the results. The means plot and least significant difference (LSD) intervals (at the 95% 

confidence level) for different levels of these parameters are represented in Fig. 6. 

Hence, the selected values 𝜎1 = 𝜎2 = 0.25 are used in the following experiments. 

Moreover, for both hybrid algorithms (i.e., EO-VNS and SAEO-VNS), the maximum 
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number of iterations without improvement in the embedded VNS is considered as 

𝑅𝑚𝑎𝑥 = 20.  

 

 

Fig. 6. Calibration of input parameters 𝜎1 and 𝜎2 for SAEO 

 

To comparison the four meta-heuristics in a fair situation, a stopping condition is 

considered based on CPU time. For each instance problem, we fix it to 𝑚𝑎𝑥{2000, |𝑁𝑖
′|2} 

milliseconds. Moreover, the best value for the population number (𝑛𝑃𝑜𝑝) of each 

algorithm was determined based on another experiment on the first data set. Based on 

the results of ANOVA tests, we use 𝑛𝑃𝑜𝑝𝐸𝑂 = 𝑛𝑃𝑜𝑝𝑆𝐴𝐸𝑂 = 𝑛𝑃𝑜𝑝𝑆𝐴−𝐶𝑂𝐴 = 90 and 

𝑛𝑃𝑜𝑝𝑆𝐴𝐷𝐸−𝑁𝑀 = 120. The means plot and LSD intervals (at the 95% confidence level) 

for different levels of 𝑛𝑃𝑜𝑝 of each algorithm are represented in Fig. D1 (in Appendix 

D). It is worth noting that to compare the results of considered algorithms on instance 

problems with different sizes, we use the relative percentage deviation (RPD) as a 

common performance measure (Mahmoodjanloo et al. 2020c). For a problem with 

minimization objective, the RFD can be calculated by Eq. (34), where 𝑀𝑖𝑛 represents 

the best-obtained value of the objective function, and 𝐴𝑙𝑔. represent the obtained value 

by the algorithm. 

𝑅𝑃𝐷 =
𝐴𝑙𝑔. −𝑀𝑖𝑛

𝑀𝑖𝑛
     (34) 

To evaluate the performance of solution methods, we first solve 16 instance 

problems in Subset-S using the static-version of models/algorithms. Thereafter, 

obtained solutions by the SB model were used as current schedules of the system to 

run a dynamic version of mathematical models for the related instances in Subset-D. 

Besides, for each instance, the best solution obtained by meta-heuristics was used to 

run a dynamic version of algorithms for the related instance in Subset-D. We consider 
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a maximum run time of 3600 seconds for both mathematical models. The objective 

function value (OFV) and the related CPU times (if an optimum solution is obtained in 

time limitation, otherwise the optimality gap) are presented in Table 2.  

Also, each instance is solved 30 times by each meta-heuristic. The mean values 

(Ave.) and the standard deviations (S.D.) have been presented in Table 2. As can be 

seen in this table, none of the SB and PB models can find a feasible solution for the 

instances with more than three facilities within the predefined time limit. Moreover, 

they only solve respectively four and two instances optimally. Anyway, the experiments 

show that the SB model outperforms the PB model. On the other hand, SAEO-VNS has 

obtained better results among the meta-heuristics. A comparison among the best 

solutions obtained by SAEO-VNS and the SB model can prove the acceptable 

performance of the proposed algorithm because SAEO-VNS can find more qualified 

solutions in a reasonable time (Fig. 7). 

 

Table 2. Computational comparison of the algorithms on instance problems of two data sets. 

Ins. 

ID 

SB model PB model SADE-NM SA-COA EO-VNS SAEO-VNS 

OFV. 
Time/ 

Gap% 
OFV. 

Time/ 

Gap% 
Ave. S.D. Ave. S.D. Ave. S.D. Ave. S.D. 

S1 87.3 182 87.3 305 98.2 6.8 105.7 7.0 106.4 7.5 90.2 3.6 

S2 63.6 1905 68.7 8% 72.5 5.2 75.6 7.3 78.5 7.5 67.5 3.5 

S3 99.3 15% 135.6 59% 111.1 10.0 121.9 11.4 134.9 14.8 110.0 6.3 

S4 172.1 43% - - 187.2 13.2 214.4 12.2 193.7 21.8 168.4 14.5 

S5 144 23% 211.2 83% 159.4 10.3 168.5 14.4 152.8 16.9 148.2 9.0 

S6 191.2 51% - - 184.6 16.2 207.8 17.1 215.1 20.3 167.9 14.4 

S7 136.6 29% 204.5 96% 146.3 9.3 157.3 13.1 156.7 17.2 137.1 10.1 

S8 - - - - 219.8 18.7 242.3 20.1 244.5 24.1 209.4 15.2 

S9 - - - - 302.5 17.8 326.7 19.7 318.5 33.9 264.5 17.4 

S10 - - - - 359.6 21.4 405.9 27.8 414.7 44.1 316.7 22.2 

S11 - - - - 364.6 23.3 420.8 31.2 423.1 33.3 338.7 25.0 

S12 - - - - 366.1 23.9 412.2 28.3 439.6 42.9 356.6 28.2 

S13 - - - - 280.8 15.9 296.7 22.8 310.8 27.5 260.4 19.7 

S14 - - - - 321.5 26.0 359.6 30.1 350.8 35.9 297.1 24.4 

S15 - - - - 348.0 23.2 386.9 27.1 429.9 43.5 308.5 23.9 

S16 - - - - 356.3 24.0 370.3 30.8 384.7 44.1 327.4 20.9 

D1 91.3 146 91.3 270 99.9 4.2 104.1 4.6 104.6 7.2 96.5 4.4 

D2 77.6 2304 85.2 11% 86.1 4.9 93.0 5.2 83.4 7.6 80.4 3.5 

D3 103.5 8% 126.6 32% 115.3 6.8 128.4 8.5 123.9 10.6 109.4 5.2 

D4 212.4 41% - - 197.6 10.1 201.0 12.2 198.0 18.8 190.5 9.8 
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D5 154.9 31% 187.3 59% 157.8 8.7 141.2 8.6 150.0 12.2 133.3 6.9 

D6 214.2 56% - - 199.6 10.5 199.1 10.5 187.8 17.5 186.7 8.3 

D7 197.1 22% 284 78% 189.3 9.3 201.4 9.4 168.5 18.1 168.7 9.3 

D8 - - - - 209.3 11.2 220.5 12.4 208.9 21.9 198.1 11.4 

D9 - - - - 233.0 14.0 252.5 17.1 222.7 19.8 214.7 13.6 

D10 - - - - 263.8 16.9 288.2 15.5 275.0 27.9 248.6 17.3 

D11 - - - - 246.7 15.3 238.6 15.9 264.5 28.4 207.5 14.8 

D12 - - - - 283.4 18.5 329.6 20.7 314.3 34.5 283.5 18.8 

D13 - - - - 171.6 13.3 206.1 17.2 227.3 21.7 182.2 12.6 

D14 - - - - 265.7 19.5 272.3 21.5 275.0 31.7 238.5 15.1 

D15 - - - - 286.7 21.9 321.8 18.5 315.1 33.6 297.3 17.3 

D16 - - - - 280.4 21.3 306.9 20.8 341.3 34.9 277.4 18.3 

 

However, the ANOVA test is used to better understand the performance of 

algorithms. The results show that SAEO-VNS outperforms other algorithms as well 

(Fig. 8). We also use the Fisher individual tests, to pairwise compare the differences of 

mean RPDs (Fig. 9a). Based on this test performed at the 95% confidence level, if an 

interval does not contain the zero line, it means that the related two algorithms are not 

significantly different. The comparison of differences between the results obtained by 

EO-VNS and SAEO-VNS algorithms shows that the proposed self-adaptive policy to 

control the parameters of the EO algorithm is significantly efficient. Moreover, the 

obtained individual values by the rival algorithms (presented in Fig. 9b) illustrate a 

more suitable performance for SAEO-VNS because it obtains a greater number of the 

most qualified solutions. Moreover, we also checked the performance of the proposed 

algorithm without applying the local search step. Results show that the proposed local 

search can improve the performance of the hybrid algorithm about 5%. 

 

Fig. 7. Comparison SBM vs. the best solution obtained by SAEO-VNS  
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Fig. 8. Means plot and LSD intervals (at the 95% CI) for the different used algorithms 

 

  
(a) (b) 

Fig. 9. Fisher individual tests at 95% CI, (a) Differences of means plot, (b) Individual value plot of 

RPDs 

 

5.3. Managerial insights 

In this section, to evaluate the performance of the proposed method facing new 

arriving jobs when demand is stochastic, we develop a simulation model of a dynamic 

production environment based on the conceptual framework presented in Fig. 5. New 

jobs arrive randomly following a Poisson distribution. In other words, the time interval 

between two sequential events follows an Exponential distribution with a specified 

mean parameter 𝜆. Hence, when a new job arrives, it is assigned to one of the facilities, 

where its operations are scheduled. We utilize the shop floor of instance S10 as the 

production environment and run our simulation model using parameter 𝜆 = 100. The 

number of work-in-progress (WIP) and the percentage of tardy jobs are represented in 

Fig. 10.  
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(a) (b) 

Fig. 10. Simulation results of a dynamic distributed job-shop scheduling problem for Ins. S10 

 

To have a more stable analysis, we can consider the first 1000 events as a worming 

period and focus on the remaining results. The simulation shows that on average 

4.3071% (at most 20.4819%) of jobs will face tardiness. This provides managers the 

possibility of evaluating various scenarios to more effectively control the production 

system.  

For example, to reduce the mean value of tardy jobs, the capacity of the distributed 

production system should be increased. On the other hand, each facility utilizes several 

RMTs. This leads to a level of higher flexibility in the production system. In fact, 

instead of buying new machines, we can change the overall capacity by 

adding/replacing new modules to the existing RMTs. Now, the question is which 

modules should be added/enhanced, on which machines, in which facilities? The 

simulation model can help the managers to answer such questions by predicting the 

value of considered key performance indicators based on existing scenarios. To have 

more illustration, we randomly select one configuration of each RMT in facilities 2 and 

3 of the instance problem S10, and replaced it with a new module that performs the 

same operations 10% faster (instance problem S10_v2). The simulation shows that on 

average 0. 2480% (at most 7. 1429%) of jobs will face tardiness. The number of WIPs 

and the percentage of tardy jobs is represented in Fig. 11. 
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(a) (b) 

Fig. 11. Simulation results of a dynamic distributed job-shop scheduling problem for Ins. S10_v2 

 

6. Conclusions 

Due to the globalization of the economy and rapidly changing market requirements, 

some companies have started to use the benefits of distributed manufacturing systems 

to have the opportunity of more adaptation by becoming closer to both customers and 

suppliers. Moreover, to increase the flexibility in manufacturing systems, RMTs have 

been developed to benefit from using several different machines that share many costly 

and common modules while being rarely used at the same time. Job scheduling in a 

distributed system that contains RMTs is very complex especially when the decision-

making environment is dynamic. Today, interconnection in a network of 

geographically dispersed facilities thanks to the use of the new emerging technologies 

of Industry 4.0 can provide manufacturers to utilize real-time data to make efficient 

decisions in a dynamic environment. To the best of our knowledge, there is no study to 

tackle this problem. In this paper, we studied a distributed job-shop rescheduling 

problem, in which the facilities benefit from reconfigurable machines. Firstly, the 

problem was modeled and solved using mathematical programming. Then, regarding 

the high level of complexity, a self-adaptive version of a newly introduced meta-

heuristic algorithm named Equilibrium Optimizer (EO) was developed to efficiently 

solve medium- and larger-sized problems in a reasonable time. And finally, a 

simulation-optimization model was developed to evaluate the performance of the 

manufacturing system facing stochastically arriving jobs.  

Obtained results show that the production system can be very flexible relying on its 

distributed facilities and reconfigurable machines. Moreover, accessibility to real-time 

data and using efficient decision tools can provide managers with a quick response to 
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changing market requirements. For future studies, some of the other dynamic job-

related events (e.g., rush jobs and job cancelation) or resource-related events (e.g., 

machine breakdowns and shortage of materials) can be considered. Moreover, in this 

research, we used a single-agent approach which can better operate in optimality 

measures rather than multi-agent (MA) approaches. However, MA can be more 

effective in adjusting with dynamic environment. Hence, developing a multi-agent 

approach can be recommended in such an environment.   
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Appendix A. Calculation of the probability matrix �̅�𝑓  

For the presented instance in Table 1, the associated probability matrix �̅�𝑓 can be 

calculated as Table A1. For example, the first column of the probability matrix �̅�2, i.e., 

the probability vector to select a random machine-configuration to perform operation 

𝑂11 in the second facility, can be calculated using the related vector of processing time 

[81, 0, 60, 0, 0]𝑇 and utilizing Eq. (31) as [0.43, 0, 0.57, 0, 0]𝑇. The first and the third 

elements are calculated as 0.43 = (
1

81
)/(

1

81
+

1

60
) and 0.57 = (

1

60
)/(

1

81
+

1

60
). 

 

Table A1. Data for the illustrated instance 

 

 

Job1  Job2  Job3  Job4 

1 2 3 4  1 2 3  1 2 3  1 2 3 

�̅�1 

      0.42      0.52  0.25   1 0.57 

 0.35  0.41   0.58     0.41       

 0.39 0.53 0.59     1    1     0.38   1  0.43 

1 0.26 0.47        0.59  0.48  0.37     

�̅�2 

0.43  1        0.34  0.29    1   

   0.52     1    1   0.37  0.42     0.48 

0.57 0.55             0.38  

          0.42      0.29  1   0.62  

 0.45  0.48   0.58     0.29      0.52 
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Appendix B. Procedure of decoding scheme 

The list of used parameters and notations: 

𝑃𝑆 Partial schedule of operations 

Ω Subset of operations that can be scheduled. 

𝑃𝑇𝑖𝑗 Processing time of operation 𝑂𝑖𝑗 

𝐸𝑆𝑖𝑗 Earliest time that operation 𝑂𝑖𝑗 ∈ Ω can be started. 

𝐸𝐹𝑖𝑗 Earliest time that operation 𝑂𝑖𝑗 ∈ Ω can be finished. 

 
It is worth noting that the procedure is called for each facility after assigning the jobs 

to the facilities and allocation of each operation to a machine-configuration. Hence, in 

the above-mentioned notations, the indices of facilities and machine-configurations 

are ignored. 

  

Procedure_B1. Pseudo-code of the decoding method based on the G&T approach. 

Inputs: 𝑃𝑇𝑖𝑗𝑘 , 𝑆𝑇𝑘, Sequence priority 

1. Initialization: 

2. Set  𝑃𝑆 = ∅  

3. Extract all operations without predecessors and set them in Ω 

4. Set 𝑆𝑡𝑜𝑝 = 𝐹𝑎𝑙𝑠𝑒 

5. Do 

6. Calculate 𝐸𝑆𝑖𝑗  for 𝑂𝑖𝑗 ∈ Ω, i.e., equal to the maximum of completion time of the previous 

operation of job 𝑗 and sum of the completion time of machine 𝑘 and its related 

sequence-dependent setup time in 𝑃𝑆 

7. Set 𝐸𝐹𝑖𝑗 = 𝐸𝑆𝑖𝑗 + 𝑃𝑇𝑖𝑗 

8. Determine EF∗ = min𝑂𝑖𝑗∈Ω{𝐸𝐹𝑖𝑗} 

9. Find the related machine 𝑘∗ that present EF∗ 

10. Identify the subset of operations 𝑂𝑖𝑗 ∈ Ω′ (Ω′ ⊆ Ω) which requires machine 𝑘∗ and 

𝐸𝑆𝑖𝑗 < EF∗ 

11. Select the operation 𝑂𝑖𝑗 ∈ Ω′ which has the highest priority in the Sequence priority 

12. Add the selected operation to 𝑃𝑆 

13. Update the set Ω by removing the selected operation and adding its successor (if there 

is any) 

14. If Ω = ∅ Then set 𝑆𝑡𝑜𝑝 = 𝑇𝑟𝑢𝑒 

15. Until 𝑆𝑡𝑜𝑝 = 𝐹𝑎𝑙𝑠𝑒 

16 Return 𝑃𝑆 
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Appendix C. Test data 

Table C1 presents the parameter levels for random instance generation. Also, 

general specification of the instance problems utilized for static and dynamic states 

respectively are presented in Tables C2 and C3. 

 

Table C1. Parameter levels for a random instance generation 

Parameters Values 

|𝐹| {2, 3, 4, 5} 

|𝐾𝑓| {2, 3, … ,7} 

|𝐶𝑘,𝑓| {2, 3} 

|𝒥| {4, 5, … , 15} 

|𝑁𝑖| Random number (5-15) 

𝑡1 Exponential distribution (100) 

∆𝑡𝑓 Uniform distribution (10-30) 

𝑃𝑇𝑖𝑗𝑘𝑐
𝑓

 Uniform distribution (40-100) 

𝑆𝑇𝑐1,𝑐2,𝑘
𝑓

 Uniform distribution (75-150) 

𝐷𝑖  𝑟𝑎𝑛𝑑(2, 5) × max𝑓{∑ max𝑘,𝑐{𝑃𝑇𝑖𝑗𝑘𝑐
𝑓

}𝑗 }  

(𝜔𝐸 , 𝜔𝑇) (
1

3
,
2

3
) 

(𝛿1, 𝛿2) (
1

3
,
1

3
) 

 

Table C2. General specification of the instance problems utilized for static state (Subset-S). 

Instance 

ID 

Facilities No. 

|𝐹| 

RMTs No. 

per facility 

Configurations No. 

per RMT 

Jobs No. 

|𝒥| 

Total 

operations 

|𝑁𝑖| 

S1 2 2 2 4 38 

S2 2 3 3 5 32 

S3 2 4 2, 3 6 54 

S4 2 5 3 7 77 

S5 3 3 2 7 61 

S6 3 4 2, 3 8 86 

S7 3 5 3 9 63 

S8 3 6 3 10 96 

S9 4 4 2 12 111 

S10 4 5 3 13 140 

S11 4 6 2, 3 14 139 

S12 4 7 3 15 152 

S13 5 4 2 12 111 

S14 5 5 3 13 140 

S15 5 6 2, 3 14 139 

S16 5 7 3 15 152 
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Table C3. General specification of the instance problems utilized for dynamic state (Subset-D). 

Instance 

ID 

Shopfloor 

environment 

New jobs 

arriving time: 

𝑡1 

New jobs 

No. 

|𝒥′′| 

Total 

operations of 

new jobs 

D1 S1 164 1 6 

D2 S2 194 1 12 

D3 S3 220 2 13 

D4 S4 15 2 19 

D5 S5 59 1 9 

D6 S6 42 1 12 

D7 S7 279 2 18 

D8 S8 77 2 23 

D9 S9 246 2 17 

D10 S10 27 2 24 

D11 S11 123 3 19 

D12 S12 104 3 28 

D13 S13 31 2 21 

D14 S14 53 2 22 

D15 S15 134 3 37 

D16 S16 61 3 34 
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Appendix D. Results of parameter tuning  

Fig. D1 depicts the means plot and LSD intervals for the different levels of the 

population number of the proposed algorithms. 

 

  

(a) SADE-NM (b) SA-COA 

  

(c) EO (d) SAEO 

Fig. D1. Means plot and LSD intervals (at the 95% confidence level) for the different levels of the 

population number (𝑛𝑃𝑜𝑝) of the SADE-NM, SA-COA, EO and SAEO algorithms. 


