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Introduction

Over the last decades, due to the globalization of the economy and its requirements, manufacturing systems need to be more flexible to survive in such a competitive environment. Hence, some companies have started to utilize a network of geographically dispersed facilities as a distributed manufacturing system. In such a system, manufacturers have the opportunity to become closer to both customers and suppliers. Therefore, they can be more responsive to market requirements because of some important advantages such as accessibility to raw materials and low-cost production resources [START_REF] Naderi | Modeling and heuristics for scheduling of distributed job shops[END_REF].

To comply with and to take more advantages of such distributed systems, the different parts need to be coordinated using information technology. This lets to disperse components to have a more effective performance and a high competitiveness level for other players. That is while capabilities of new emerging smart factories are enhancing supported by Industry 4.0 technologies, such as the internet of things (IoT), cyber-physical systems (CPS), and big data. The required real-time data can be provided from the distributed shop floors using Industry 4.0 technologies. These data can include the job-related events (e.g., new arriving jobs or delayed jobs), resourcerelated events (e.g., accessibility of machines and their current configurations), and possible limitations enforced by the logistics system (e.g., raw materials availability).

The capabilities of a connected manufacturing system help companies make more dynamic decisions to adapt to a customer-oriented market [START_REF] Zhang | Review of job shop scheduling research and its new perspectives under Industry 4.0[END_REF]).

Coordination can be important for the flexibility of a system; however, it is not all. In other words, the infrastructure of production needs to respond main requirements of this market as well (e.g., the high demand fluctuations or the rapid introduction of new products).

To cope with these issues, taking advantages of reconfigurability for manufacturing systems and tools has been considered in recent years. As one of the useful contributions in this field, a new class of production machines, reconfigurable machine tools (RMTs), have been introduced. An RMT is able to satisfy a wide range of manufacturing requirements relying on its flexible and modular structure (Mahmoodjanloo et al. 2020a). One of the most important benefits of developing RMTs is the use of several different machines, which share common and many costly modules while being rarely used simultaneously, can be prevented [START_REF] Gadalla | Recent advances in research on reconfigurable machine tools: a literature review[END_REF]. The capacity and functionality of a manufacturing system by relying on the abilities of such machines can be adjusted easily.

As production scheduling is one of the most important basics in the production management field, and it has a significant impact on both supply chain responsiveness and efficiency, in this paper, we aim to study a dynamic job-shop scheduling problem in a distributed manufacturing system, in which each facility contains some reconfigurable machine tools to perform assigned operations. This paper is organized as follows. Section 2 reviews the related literature. Section 3 presents a mathematical model for the static state of the problem and its extension for a dynamic environment. Section 4 proposes an extension of a new meta-heuristic to solve the problem efficiently. Section 5 conducts numerical experiments. Finally, Section 6 concludes the paper and suggests a few future research directions.

Literature review

A distributed scheduling problem (DSP) in multi-factories is one of the well-known optimization problems, which has motivated several studies especially in the last two decades (Chaouch et al. 2017a). In addition to academic research studies, the production scheduling in a distributed environment, as a challenging problem, is also interesting among real-world applications (Wilkinson et al. 1996;[START_REF] Wang | An effective approach for distributed process planning enabled by event-driven function blocks[END_REF].

Generally, the problem contains two main decisions including 1) determining the most suitable factory (i.e., facility) for each job and 2) scheduling operations of the assigned jobs on the available machines in each facility [START_REF] Jia | A modified genetic algorithm for distributed scheduling problems[END_REF]. Hence, the problem has a high level of complexity especially when we face a job shop scheduling problem (JSSP) in the machine environment of each facility. On one hand, the growing role of globalized and distributed manufacturing, and on the other, the need to find efficient algorithms to solve such a complex problem, have motivated researchers to pay more attention in this area. Following up, we are going to review the used solution approaches and the utilized performance indicators in the related researches.

For the information flow structure, DSPs can be studied in a centralized or decentralized decision-making system. In a decentralized (multi-agent) approach, scheduling sub-problems can be independently solved in each facility by an associated local decision-maker, who may have conflicting objectives with other local agents. The overall system objectives can be achieved through predefined communication mechanisms [START_REF] Toptal | Distributed scheduling: a review of concepts and applications[END_REF]. Even though such an approach is flexible, and it can overcome the complexity of DSP as well; there is not any guaranty about the optimality of the final solution. On the other hand, a centralized (singleagent) approach considers the overall scheduling problem to achieve the global optimum solution. Although due to the high level of complexity, the global optimum is hardly achieved; however, developing an efficient algorithm can guaranty achieving a high-quality solution within reasonable computation time.

Only a minor part of the literature has dealt with the distributed job-shop scheduling problem (DJSP) with a centralized decision-making approach (Chaouch et al. 2017a).

As one of the pioneer studies with successful implementation, the DJSP was studied by [START_REF] Jia | Web-based multi-functional scheduling system for a distributed manufacturing environment[END_REF] to facilitate collaboration among geographically distributed plants of multinational companies. The authors used the World Wide Web (WWW) technology to develop a web-based system. They utilized a genetic algorithm (GA) to solve the problem with the considerations of low cost and short makespan. Thereafter, [START_REF] Jia | A modified genetic algorithm for distributed scheduling problems[END_REF] developed a modified GA to solve the DJSP by introducing a two-step encoding method to assign and schedule the jobs. [START_REF] Naderi | Modeling and heuristics for scheduling of distributed job shops[END_REF] While the above-mentioned studies considered a traditional JSSP in a multi-factory environment to minimize a time-related objective (e.g., makespan or total tardiness), some recent papers in this field have tried to consider other aspects of the problem too. [START_REF] Chang | Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms[END_REF] developed a hybrid GA to minimize makespan in the distributed flexible job-shop scheduling problem (DFJSP), in which jobs could be performed on different machines in each facility. They used an encoding scheme based on a roulette wheel method to randomly allocate the jobs to facilities and assign the operations to eligible associated machines. [START_REF] Lu | A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems[END_REF] proposed a chromosome scheme to enhance the performance of the GA to minimize makespan in the DFJSP. In addition to makespan, some other criteria have been considered especially in multi-objective DJSPs. [START_REF] Li | A hybrid Pareto-based tabu search for the distributed flexible job shop scheduling problem with E/T criteria[END_REF] studied a multi-objective DFJSP and proposed a hybrid Paretobased tabu search algorithm to minimize four criteria including makespan, maximal workload, total workload, and earliness/tardiness (E/T). [START_REF] Wu | An improved differential evolution algorithm for solving a distributed assembly flexible job shop scheduling problem[END_REF] developed a mixed-integer linear programming (MILP) model for a DFJSP and proposed a multi-objective hybrid differential evolution and simulated annealing algorithm to minimize the E/T and total cost. [START_REF] Jiang | Solving energy-efficient distributed job shop scheduling via multi-objective evolutionary algorithm with decomposition[END_REF] proposed an effective modified multi-objective evolutionary algorithm with decomposition (MMOEA/D) to minimize energy consumption and makespan. While in all the abovementioned studies, it is assumed that all operations of a job should be performed on the machines of the same facility, [START_REF] Luo | An efficient memetic algorithm for distributed flexible job shop scheduling problem with transfers[END_REF] and [START_REF] Gong | A memetic algorithm for multiobjective distributed production scheduling: minimizing the makespan and total energy consumption[END_REF] assume that operations of a job can be transferred among different facilities taking into account the jobs' transfer time and transfer energy consumption. For an overview of more related studies on production planning and scheduling problems in multi-factory production networks as well as a more comprehensive classification, see [START_REF] Lohmer | Production planning and scheduling in multi-factory production networks: a systematic literature review[END_REF].

As can be observed in the reviewed papers, the studied approaches developed to solve the problem of static distributed scheduling are often impractical in real-world environments. Moreover, at the dawn of the fourth industrial revolution (Industry 4.0), smart and distributed production systems can be supported by new emerging technologies and paradigms such as IoT and CPS. Such technologies provide real-time data to make efficient decisions in dynamic distributed production systems. Hence, designing efficient methods and tools to utilize the provided data to make better decisions can be significant. In contrary to multi-factory issues, developing smart scheduling systems for single-factory applications has been considered recently. For example, Romero-Silva and Hernández (2019) studied the role of CPS in different manufacturing contexts to provide companies in order to carry out a better scheduling task. They found that especially production systems with un-certain demands and complex production processes can significantly benefit from implementing a CPS at their shop-floor levels. [START_REF] Tian | The internet of things enabled manufacturing enterprise information system design and shop floor dynamic scheduling optimization[END_REF] proposed a production information management system using the industrial IoT technology to tackle the dynamic FJSP on a rolling horizon. In this paper, inspired by such concepts, we aim to develop a dynamic scheduling model to be applied in a distributed manufacturing environment.

On the other hand, when we consider the dynamic aspects of a production environment, paying attention to changeable customer needs in terms of both product mix and volume can be significant. To support such requirements, utilizing a suitable substrate for production is inevitable. Hence, the paradigm of reconfigurable manufacturing systems (RMSs) has been introduced to answer the rapid changes in the variety or volume of the market demand. Indeed, reconfigurability in production can be defined as the ability to transform the system to be adjusted according to new requirements (Yelles-Chaouche et al. 2020). A production system can obtain such ability thanks to the reconfigurability features in its different components and subsystems such as machines, workforce mapping, line/facility layout, material handling, and transportation systems. Reconfigurable machines, as one of the most important resources, play a significant role in such manufacturing systems. Nonetheless, despite the special capabilities, utilizing these machines due to the high level of their flexibilities creates new operational challenges, especially in the scheduling issues.

Recently, Mahmoodjanloo et al. (2020a) presented a new variant of a job-shop scheduling problem with configuration-dependent setup times (CDST), which contains reconfigurable machine tools on the shop floor. They presented the mathematical formulations of a single-factory scheduling problem and a hybrid meta-heuristic namely self-adaptive differential evolution with Nelder-Mead mutation strategy (SADE-NM) to efficiently solve the problem. Later, they developed a mathematical model based on operation-position decision variables for a dynamic distributed scheduling problem considering RMTs in shop floors (Mahmoodjanloo et al. 2020b).

However, their research needs further improvements, which we will proceed to do by presenting the following contributions:

• Firstly, proposing a new mathematical model based on operation-sequence decision variables for a dynamic distributed flexible job-shop scheduling problem with configuration-dependent setup times (DFJSP-CDST) and comparing two models (i.e., sequence-and position-based formulations) based on their computational performances.

• Secondly, improving the performance of a newly introduced meta-heuristic, namely Equilibrium Optimizer presented by [START_REF] Faramarzi | Equilibrium optimizer: A novel optimization algorithm[END_REF], by adding a self-adaptive mechanism to effectively control its parameters and embedding a local search based on the VNS algorithm.

• Thirdly, developing an encoding scheme for the considered problem and applying the presented self-adaptive algorithm to solve real-world instances of reasonable large sizes.

• Finally, utilizing a simulation-optimization approach to evaluate the impact of using new modules for RMTs on the performance of a production system in a dynamic environment when demand is stochastic with Poisson distribution.

Problem statement and mathematical formulation

Problem definition

There is a distributed manufacturing system including several facilities, which have already been deployed in different geographical areas. Each facility 𝑓 ∈ 𝐹 contains a set of reconfigurable machine tools 𝑘 ∈ 𝐾 𝑓 to process the assigned jobs. For each RMT, there is a set of possible configurations 𝐶 𝑘,𝑓 that can be obtained using appropriate modules. The process of changing the modules needs a setup time 𝑆𝑇 𝑐 1 ,𝑐 2 ,𝑘 𝑓 that is dependent on two consecutive configurations 𝑐 1 and 𝑐 2 , where 𝑐 1 ≠ 𝑐 2 . Actually, on each machine 𝑘 ∈ 𝐾 𝑓 , to obtain a new configuration 𝑐 2 ∈ 𝐶 𝑘,𝑓 from the initial configuration 𝑐 1 ∈ 𝐶 𝑘,𝑓 , it is needed to remove some old modules and/or add some new ones. It is supposed that an RMT can perform one or more operations in each configuration. The new configuration of the machine can let us carry out some new operations or fulfill some of the old ones at a different rate.

There is a set 𝒥 of 𝑛 jobs, where each one should be performed in one of the existing facilities. Each job 𝑖 ∈ 𝒥 has a set of 𝑛 𝑖 operations with a prespecified order (e.g., 𝑂 𝑖,1 → 𝑂 𝑖,2 → ⋯ → 𝑂 𝑖,𝑛 𝑖 ). It is supposed that operation 𝑂 𝑖𝑗 can be performed at least on one configuration of the existing machines in each facility. It is worth noting that, no setup is needed to carry out the operations in a machine configuration, while to switch to a different configuration, the machine needs a setup. The main decisions that can be made in the problem environment contain allocating each job to a facility and scheduling the assigned jobs on the machines in the associated facility.

The objective is to minimize total weighted lateness. Moreover, the scheduling environment can be classified into two main classes including static (offline) and dynamic (online) scheduling. Herein, firstly, a static mathematical model is developed based on a sequence-based formulation. Afterward, the proposed model is extended for a dynamic situation where there are some jobs in each facility to be processed according to an incumbent schedule. Then the current schedule should be updated by arriving some new jobs. To perform such schedule updating tasks, we suppose a variable-order rescheduling strategy, in which all unprocessed operations can be rescheduled after assigning the new arriving jobs to the facilities, but to consider the stability of the current schedule as much as possible, deviation of the completion times in the new schedule will be controlled by adding a penalty term to objective function of the dynamic model.

Static scheduling model

In this subsection, we present a static mathematical model formulation, in which there are several jobs to be scheduled in the empty facilities. The objective of the proposed model is to minimize the total weighted lateness, which is presented in Eq. (1). Constraints (2) ensure each job to be allocated to one of the existing facilities. Constraints (3) guarantee that all operations of a job be performed on the allocated facility, where 𝑛 𝑖 = |𝑁 𝑖 | is the total number of operations for job 𝑖. Constraints (4) state that each operation should be processed. Constraints (5) also prevent assigning of the operations to the infeasible machine-configurations.

Sets and indices:

𝐹

Min 𝓏 = ∑ 𝜔 𝑖 𝐸 𝐸 𝑖 𝑖∈𝒥 + 𝜔 𝑖 𝑇 𝑇 𝑖 (1) s.t. ∑ 𝑥 𝑓𝑖 𝑓∈𝐹 = 1 ∀ 𝑖 ∈ 𝒥 (2) ∑ ∑ ∑ 𝑦 𝑖𝑗𝑘𝑐 𝑓 𝑐∈𝐶 𝑘,𝑓 𝑘∈𝐾 𝑓 𝑗∈𝑁 𝑖 ≤ 𝑛 𝑖 × 𝑥 𝑓𝑖 ∀ 𝑓 ∈ 𝐹, 𝑖 ∈ 𝒥 (3) ∑ ∑ ∑ 𝑦 𝑖𝑗𝑘𝑐 𝑓 𝑐∈𝐶 𝑘,𝑓 𝑘∈𝐾 𝑓 𝑓∈𝐹 = 1 ∀ 𝑖 ∈ 𝒥, 𝑗 ∈ 𝑁 𝑖 (4) 𝑦 𝑖𝑗𝑘𝑐 𝑓 ≤ 𝑅 𝑖𝑗𝑘𝑐 𝑓 ∀ 𝑖 ∈ 𝒥, 𝑗 ∈ 𝑁 𝑖 , 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾 𝑓 , 𝑐 ∈ 𝐶 𝑘,𝑓 (5) 
𝐶𝑂 𝑖𝑗 ≥ 𝐶𝑂 𝑖,𝑗-1 + ∑ ∑ ∑ 𝑃𝑇 𝑖𝑗𝑘𝑐 𝑓 𝑦 𝑖𝑗𝑘𝑐 𝑓 𝑐∈𝐶 𝑘,𝑓 𝑘∈𝐾 𝑓 𝑓∈𝐹 ∀ 𝑖 ∈ 𝒥, 𝑗 ∈ 𝑁 𝑖 (6) 𝐶𝑂 𝑖𝑗 ≥ 𝐶𝑂 𝑖 ′ 𝑗 ′ + 𝑃𝑇 𝑖𝑗𝑘𝑐 2 𝑓 + 𝑆𝑇 𝑐 1 ,𝑐 2 ,𝑘 𝑓 -(2 -𝑦 𝑖𝑗𝑘𝑐 2 𝑓 -𝑦 𝑖 ′ 𝑗 ′ 𝑘𝑐 1 𝑓 + 𝑈 𝑖𝑗𝑖 ′ 𝑗 ′ ) × 𝑀 ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾 𝑓 , 𝑐 1 , 𝑐 2 ∈ 𝐶 𝑘,𝑓 , 𝑖, 𝑖 ′ ∈ 𝒥, 𝑗 ∈ 𝑁 𝑖 , 𝑗 ′ ∈ 𝑁 𝑖 ′ , 𝑂 𝑖𝑗 ≠ 𝑂 𝑖 ′ 𝑗 ′ (7) 𝐶𝑂 𝑖 ′ 𝑗 ′ ≥ 𝐶𝑂 𝑖𝑗 + 𝑃𝑇 𝑖 ′ 𝑗 ′ 𝑘𝑐 2 𝑓 + 𝑆𝑇 𝑐 1 ,𝑐 2 ,𝑘 𝑓 -(3 -𝑦 𝑖𝑗𝑘𝑐 1 𝑓 -𝑦 𝑖 ′ 𝑗 ′ 𝑘𝑐 2 𝑓 -𝑈 𝑖𝑗𝑖 ′ 𝑗 ′ ) × 𝑀 ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾 𝑓 ,
Constraints ( 6) ensure that all operations of a job should be performed based on the prespecified sequence, and minimum time between two consequent operations (i.e., the processing time of the precedence operation) should be respected. On each RMT 𝑘 in a facility, Constraints ( 7) and ( 8) prevent the overlapping of the assigned operations,

where 𝑀 is a big positive number. For each job 𝑖, Constraints (9) calculate the amount of E/T time. Constraints ( 10) and ( 11) define the type of decision variables.

Rescheduling model

In this subsection, the presented static mathematical model is extended to be utilized in a dynamic environment. In this state, some new jobs arrive when several existing jobs have already been scheduled in each facility. The objective is to assign new jobs to the facilities as well as reschedule the operations of newly assigned jobs and the remained operations of the old jobs to minimize the total weighted lateness. The required real-time data of the distributed manufacturing system can be provided utilizing cyber-physical shop floors (CPSF). Herein, a scheduling module is designed to use the provided real-time data to update a current schedule in the shop floors. We can consider three basic levels under an IoT environment for the shop floors. To provide the autonomous analysis of system status as well as make a real-time response to dynamic events, a conceptual framework of information flow is presented in Fig. 1. To extend the static model to be applied in a dynamic environment, we need to update some old sets and define some new sets/parameters as well. It is supposed that new jobs arrive at time 𝑡 1 , and the responding times (∆𝑡 𝑓 ) can be estimated separately for each facility as different facilities maybe have different conditions to manage their logistic systems or provide the required materials. Hence, insertion time (𝑡 2 𝑓 ) can be calculated by:

𝑡 2 (𝑓) = 𝑡 1 + ∆𝑡 𝑓 ∀ 𝑓 ∈ 𝐹 (12)
Therefore, the updated sets can be defined as follows: As a new job arrives, the scheduling module uses the real-time data obtained from CPSF to extract the state of the shop floors and perform a rescheduling task. Hence, it needs to determine the earliest possible start time of each current job (𝑆𝐽 𝑖 ) and each machine (𝑆𝑀 𝑘,𝑓 ). Eq. ( 13) calculates the value of 𝑆𝐽 𝑖 for the existing jobs, and Eq (14

𝒥 ′ Set
)
states a constraint to calculate 𝑆𝐽 𝑖 for the new jobs.

𝑆𝐽 𝑖 = max {𝐶𝑂 𝑖,𝑗 1 (𝑖) -1 , 𝑡 2 (𝑓) } ∀𝑖 ∈ 𝒥 ′ if 𝑥 𝑓𝑖 * = 1 (13) 𝑆𝐽 𝑖 = ∑ 𝑡 2 (𝑓) 𝑥 𝑓𝑖 𝑓∈𝐹 ∀𝑖 ∈ 𝒥 ′′ (14)
Also, the earliest possible start time of machine 𝑘 in facility 𝑓 can be extracted using Eq. ( 15).

𝑆𝑀 𝑘,𝑓 = { 𝑡 2 (𝑓)
No operation is being processed on the machine at time 𝑡 2 (𝑓)

𝐶𝑂 𝑖,𝑗 1 (𝑖) -1 Operation 𝑂 𝑖,𝑗 1 (𝑖) -1 is being processed on the machine at time 𝑡 2 Moreover, as the existing jobs cannot be reassigned to another facility, in Constraints

(𝑓) (15) 
(3) and ( 9), the previous optimum value of the related decision variable should be considered as a parameter (𝑥 𝑓𝑖 * ∀𝑖 ∈ 𝒥 ′ ). For Constraints ( 7) and ( 8), the job-related sets should be updated as 𝑖, 𝑖 ′ ∈ 𝒥 ′ ∪ 𝒥 ′′ , 𝑗 ∈ 𝑁 𝑖 ′ , 𝑗 ′ ∈ 𝑁 𝑖 ′ ′ . Constraint (6) should be replaced by Eqs. ( 16) -( 18).

𝐶𝑂 𝑖𝑗 ≥ 𝐶𝑂 

𝐶𝑂 𝑖,𝑛 𝑖 + 𝐸 𝑖 ′ -𝑇 𝑖 ′ = 𝐶𝐽 𝑖 ∀ 𝑖 ∈ 𝒥 ′ (20) 

Solution approach

A distributed job-shop scheduling problem with reconfigurable machine tools is an extension of the classical job-shop scheduling problem. Hence, it is an NP-hard problem [START_REF] Garey | The Complexity of Flow-shop and Job-shop Scheduling[END_REF]. In this section, to efficiently search the solution space of the problem a self-adaptive version of a new presented meta-heuristic algorithm, named Equilibrium Optimizer (EO), is developed. The EO algorithm has recently been introduced based on the concept of the behavior of dynamic and equilibrium state of the control volume mass balance models, i.e., inspired from the physics principle of mass conservation during entering, generating, and leaving in a control volume [START_REF] Faramarzi | Equilibrium optimizer: A novel optimization algorithm[END_REF]). In the following section, firstly the main steps of EO are presented, and subsequently, the procedure of self-adaptive control parameters is introduced.

Equilibrium optimizer (EO) algorithm

Faramarzi et al. ( 2020) introduced EO that is a population-based meta-heuristic algorithm, in which the particles (i.e., solutions) and the associated concentrations (i.e., positions) can be considered as search agents. The concentration of each agent is randomly updated for a set of best-so-far particles (i.e., equilibrium candidates) to achieve the equilibrium state (i.e., the best result). The concentration of search agents is updated based on Eq. ( 21) in each control volume (i.e., iteration).

𝐶 ⃗ 𝑛𝑒𝑤 = 𝐶 ⃗ 𝑒𝑞 + (𝐶 ⃗ -𝐶 ⃗ 𝑒𝑞 ). 𝐹 ⃗ + 𝐺 ⃗ 𝜆 ⃗ . 𝑉 (1 -𝐹 ⃗ ) (21) 
where 𝐶 ⃗ and 𝐶 ⃗ 𝑛𝑒𝑤 are the concentration vectors in the current and next iterations, respectively. 𝐶 ⃗ 𝑒𝑞 is a randomly selected candidate from a set of equilibrium concentrations, namely equilibrium pool (𝐶 𝑒𝑞,𝑝𝑜𝑜𝑙 ). The updating equation contains three terms. The first and second terms have an important role in exploration aims, and the third term dependent on the value of random vector 𝜆 ⃗ , namely turnover rate, mostly plays the role of an exploiter to search solutions closer to the selected candidate.

It is worth noting that small values in the turnover rate vector lead to exploration in the related dimensions. Besides, control volume 𝑉 as a constant parameter can help the searching process by adjusting the scale of the denominator. Moreover, vector 𝐹 ⃗ is an exponential term to control exploration and exploitation aims in a searching process, which is presented by:

𝐹 ⃗ = 𝑎 1 . 𝑆𝑖𝑔𝑛(𝑟 ⃗ -0.5). [𝑒 -𝜆 ⃗ ⃗⃗ 𝑡 -1] (22) 
In the formulation of 𝐹 ⃗ , the function sign is used to control the direction of search depending on 𝑟 ⃗, which is a random vector between 0 and 1. Time parameter 𝑡 that is dependent on the iterations is used to control the behavior of parameter 𝜆 ⃗ during the implementation of the algorithm. Eq. ( 23) is proposed for this parameter.

𝑡 = (1 - 𝐼𝑡𝑒𝑟 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 ) 𝑎 2 × 𝐼𝑡𝑒𝑟 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 (23)
where 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 is the maximum number of iterations and 𝐼𝑡𝑒𝑟 is the current iteration of the algorithm which is equal to a position update for each particle. Besides, parameters 𝑎 1 and 𝑎 2 are respectively used to control exploration and exploitation aims.

Another important vector introduced in the algorithm is generation rate 𝐺 ⃗ . It is utilized to help in the exploration using the participation probability of the selected equilibrium concentration. This vector is defined as Eq. ( 24).

𝐺 ⃗ = 𝐺𝐶𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗ . (𝐶 ⃗ 𝑒𝑞 -𝜆 ⃗ . 𝐶 ⃗ ). 𝐹 ⃗ (24)

where the vector 𝐺𝐶𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗ is a generation rate control parameter, which is constructed by the repetition of the same value resulted from Eq. ( 25). In this formula, parameters 𝑟 1 and 𝑟 2 are random parameters between 0 and 1, and the generation probability (𝐺𝑃) is another input parameter of EO. The 𝐺𝑃 is the percentage of particles, which uses a generation term to update their states.

𝐺𝐶𝑃 ⃗⃗⃗⃗⃗⃗⃗⃗⃗ = { 0.5 𝑟 1 𝑟 2 ≥ 𝐺𝑃 0 𝑟 2 < 𝐺𝑃 (25)
Finally, it is worth noting that all multiplications of vectors used in the abovementioned formulas are a type of element-wise multiplication (Hadamard product).

Proposed Self-Adaptive Equilibrium optimizer (SAEO)

In the classic EO presented in the previous subsection, there are three input control parameters including 𝑎 1 , 𝑎 2 , and 𝐺𝑃. The authors proposed a value for each parameter, (i.e., 𝑎 1 = 2, 𝑎 2 = 1, and 𝐺𝑃 = 0.5). It is also mentioned that the value of parameters can be tuned for each problem to achieve an efficient level of exchanges between exploration and exploitation mechanisms. In addition to these control parameters, there is a random vector 𝜆 ⃗ , which has an important role in the search process especially by affecting the vector 𝐹 ⃗ . This role is considerable because the turnover rate 𝜆 ⃗ has an important effect simultaneously on exploration and exploitation mechanisms in different aspects of a solution space. The classic EO uses time-dependent parameter 𝑡 to control the behavior of 𝜆 ⃗ during the implementation of the algorithm. However, it seems that the utilized control mechanism has not enough effectiveness because it does not utilize the experience of used particles during the search process. Hence, we propose a self-adaptive mechanism to automatically control the turnover rate by the algorithm.

For a minimization problem, the gap between the concentration of each particle 𝑝 and the worst particle in the iteration 𝐼𝑡𝑒𝑟 is calculated by:

∆𝑓𝑖𝑡 𝑝 𝐼𝑡𝑒𝑟 = 𝑓𝑖𝑡 𝑚𝑎𝑥 𝐼𝑡𝑒𝑟 -𝑓𝑖𝑡(𝐶 ⃗ 𝑝 𝐼𝑡𝑒𝑟 ) (26) 
where 𝑓𝑖𝑡(𝐶 ⃗ 𝑝 𝐼𝑡𝑒𝑟 ) represent the fitness value of particle 𝑝 in iteration 𝐼𝑡𝑒𝑟, and 𝑓𝑖𝑡 𝑚𝑎𝑥 𝐼𝑡𝑒𝑟 is the fitness value of the worst particle in iteration 𝐼𝑡𝑒𝑟, i.e., 𝑓𝑖𝑡 𝑚𝑎𝑥 𝐼𝑡𝑒𝑟 = max 𝑝 {𝑓𝑖𝑡(𝐶 ⃗ 𝑝 𝐼𝑡𝑒𝑟 )}.

The weighted average value in search direction 𝑑 of the solution space can be calculated by:

𝜆 ̅ 𝑑 𝐼𝑡𝑒𝑟 = ∑ 𝑤 𝑝 𝐼𝑡𝑒𝑟 × 𝜆 𝑝,𝑑 𝐼𝑡𝑒𝑟 𝑝 (27)
where 𝜆 𝑝,𝑑 𝐼𝑡𝑒𝑟 is the 𝑑-th vector element, i.e., the value of turnover rate in search direction 𝑑 of the vector 𝜆 ⃗ 𝑝 𝐼𝑡𝑒𝑟 = ‖𝜆 𝑝,𝑑 𝐼𝑡𝑒𝑟 ‖. Besides, 𝑤 𝑝 𝐼𝑡𝑒𝑟 is the associated weight of particle 𝑝 in the iteration 𝐼𝑡𝑒𝑟 that is calculated by:

𝑤 𝑝 𝐼𝑡𝑒𝑟 = ∆𝑓𝑖𝑡 𝑝 𝐼𝑡𝑒𝑟 ∑ ∆𝑓𝑖𝑡 𝑝 𝐼𝑡𝑒𝑟 𝑛𝑃𝑜𝑝 𝑝=1 (28)
Finally, the turnover rate of the particle 𝑝 in the next iteration can be updated as Eq. ( 29), where N is the normal distribution function with the mean 𝜆 ̅ 𝑑 𝐼𝑡𝑒𝑟 and the standard deviation 𝜎 𝐼𝑡𝑒𝑟 .

𝜆 𝑝,𝑑 𝐼𝑡𝑒𝑟+1 = 𝑁(𝜆 ̅ 𝑑 𝐼𝑡𝑒𝑟 , 𝜎 𝐼𝑡𝑒𝑟 )

Hence, the next turnover vector can be obtained as 𝜆 ⃗ 𝑝 𝐼𝑡𝑒𝑟+1 = ‖𝜆 𝑝,𝑑 𝐼𝑡𝑒𝑟+1 ‖ while the considered standard deviation in each iteration is calculated as Eq. ( 30). This mechanism lets the algorithm generate a wider range of dispersion in its initial iterations. Thereafter, the standard deviation should be reduced to extract a less dispersion range around the weighted mean of obtained turnover rates. The value (limit) of 𝜎 𝐼𝑡𝑒𝑟 approaches from 𝜎 1 + 𝜎 2 (at the beginning of a search process) to 𝜎 1 (at the end of the search process). Theoretically, we should consider the constraint 0 < 𝜎 1 + 𝜎 2 ≤ 1 while 𝜎 1 , 𝜎 2 > 0.

𝜎 𝐼𝑡𝑒𝑟 = 𝜎 1 + 𝜎 2 (1 -( 𝐼𝑡𝑒𝑟 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 ) 2 ) (30)

Details of the proposed hybrid SAEO to solve dynamic DFJSP-CDST

In this section, the main steps of the proposed hybrid SAEO-VNS algorithm are presented to solve DFJSSP-CDST.

Encoding procedure:

An equilibrium optimizer is a continuous algorithm. To solve DFJSSP-CDST as a discrete combinatorial optimization problem, we need to use an encoding approach.

Herein, the approach proposed by Mahmoodjanloo et al. (2020a) ).

Table 1 represents a simple instance designed to illustrate the encoding scheme. In this instance, there are two facilities each one contains two RMTs. Four jobs should be assigned and scheduled in these facilities. The random matrix presented in Fig. 3 illustrates the encoding scheme for this instance as well. To extract the random solution associated with this code, three steps should be followed. At Step 1, each job is assigned to one of the facilities based on the average value of its related elements in the third row of matrix 𝐴. For this purpose, we divide the interval [0,1] to |𝐹| equal and incompatible subsets.

In the illustrated example of Fig. 3, in which there are two facilities (|𝐹| = 2), if the average value of elements for a job be smaller than 0.5, the job should be assigned to the first facility, otherwise, it should be assigned to the second facility. Thereafter, the sequence priority of operations in each facility will be determined based on their elements in the second row of matrix 𝐴. Based on this procedure, after considering the precedence relation of operations for each job, each operation, which has a smaller value, achieves the next position in the sequence priority list. Moreover, for each operation, a machine-configuration will be selected based on a greedy method, utilizing the related elements in the first row of matrix 𝐴. For this purpose, a probability matrix (𝑃 ̅ 𝑓 = ‖𝑃 ̅ 𝑖𝑗𝑘𝑐 𝑓 ‖) is first calculated for each facility based on Eq. ( 31). For example, as the first job has already been assigned to the second facility (in Step 1), the related probability values of 𝑂 11 is calculated as [0.43, 0, 0.57, 0, 0] 𝑇 (i.e., the associated column in matrix 𝑃 ̅ 2 , see Appendix A). Eventually, since 𝐴 11 = 0.53 > 0.43, operation 𝑂 11 should be processed on the third configuration of machine 2 in the second facility. Hence, considering the structure of solutions in the studied problem, seven heuristic neighborhood search (HNS) methods are proposed as follows:

𝐻𝑁𝑆 1 : Select two facilities randomly, select a random job in each facility, and replace two selected jobs.

𝐻𝑁𝑆 2 : Select two facilities based on a random greedy approach. The first facility should be selected regarding to the total tardiness-related probability (𝑃𝑟𝑇𝑇 𝑓 ) (i.e., calculated in Eq. ( 32)), and the second facility should be selected regarding to the total earliness-related probability (𝑃𝑟𝑇𝐸 𝑓 ) (i.e., calculated in Eq. ( 33)). Remove a random selected job from the first facility, and insert it to the second one.

𝑃𝑟𝑇𝑇 𝑓 = ∑ 𝑇 𝑖 × 𝑥 ̂𝑓𝑖 𝑖∈𝒥 ′ ∪𝒥 ′′ ∑ 𝑇 𝑖 𝑖∈𝒥 ′ ∪𝒥 ′′ ∀𝑓 ∈ 𝐹 (32) 
𝑃𝑟𝑇𝐸 𝑓 = ∑ 𝐸 𝑖 × 𝑥 ̂𝑓𝑖 𝑖∈𝒥 ′ ∪𝒥 ′′ ∑ 𝐸 𝑖 𝑖∈𝒥 ′ ∪𝒥 ′′ ∀𝑓 ∈ 𝐹 (33) 
where 𝑥 ̂𝑓𝑖 represents the value of the assignment variable in the related solution.

𝐻𝑁𝑆 3 : Select a facility randomly, and change the priorities of its two randomly selected operations.

𝐻𝑁𝑆 4 : Select an operation randomly, and change its machine-configuration based on the random greedy approach (if possible).

𝐻𝑁𝑆 5 : Select randomly an operation that is immediately positioned after a setup operation. Change the configuration of the related machine to a randomly selected possible configuration.

𝐻𝑁𝑆 6 : Select randomly an operation that is immediately positioned before a setup operation. Change the configuration of the related machine to a randomly selected possible configuration. It is worth noting that, after applying each HNS in decoding space, the related action should be transformed by an appropriate random change in encoding space. The proposed local search process can be developed based on the introduced HNSs as presented in Procedure_1 utilizing a pipe neighborhood change step [START_REF] Hansen | Variable neighborhood search: Basics and variants[END_REF].

Procedure_1. Variable Neighborhood Search.

Inputs: Particle (𝐶 ⃗ ) Algorithm parameter: 𝑅 𝑚𝑎𝑥 1 Set 𝐶 ⃗ ′ = 𝐶 ⃗
2 Set 𝑟 = 0, i.e., the number of iterations without improvement 3 Set 𝑘 = 1, i.e., the index of Heuristic Neighborhood Search method 4 While 𝑟 ≤ 𝑅 𝑚𝑎𝑥 5

Find 𝐶 ⃗ 𝑛𝑒𝑤 ′ Calling 𝐻𝑁𝑆 𝑘 (𝐶 ⃗ ′ ) 6 if 𝑓𝑖𝑡(𝐶 ⃗ 𝑛𝑒𝑤 ′ ) < 𝑓𝑖𝑡(𝐶 ⃗ ′ ) Then 7 Set 𝐶 ⃗ ′ = 𝐶 ⃗ 𝑛𝑒𝑤 ′ 8 Set 𝑟 = 0 9 else 10 Set 𝑘 ⟵ 𝑘 + 1 11 If 𝑘 = 7 Then 𝑘 = 1 12 Set 𝑟 ⟵ 𝑟 + 1 13 end 14
Apply 𝐻𝑁𝑆 7 (𝐶 ⃗ ′ ) 15 end

Output: Improved particle (𝐶 ⃗ ′ )
The following pseudo-code presents the steps of the hybrid SAEO-VNS algorithm to solve the dynamic DFJSSP-CDST.

Procedure_3. Pseudo-code of the hybrid SAEO-VNS to solve the dynamic DFJSSP-CDST.

Problem parameters: Old particles, Updated list of jobs, and Updated technical data Algorithm parameters: (𝑎 1 , 𝐺𝑃, 𝜎 1 , 𝜎 2 ) and (𝑀𝑎𝑥_𝐼𝑡𝑒𝑟, 𝑛𝑃𝑜𝑝)

1. Initialization: 2.

For 𝑝 = 1: 𝑛𝑃𝑜𝑝

3.

Update the particle 𝐶 ⃗ 𝑝 Calling Procedure_2(𝐶 ⃗ 𝑝 , Updated list, Updated data)

4.

Extract resultant schedule of the updated particle 𝐶 ⃗ 𝑝 Calling Procedure_B1

5.

Calculate 𝑓𝑖𝑡(𝐶 ⃗ 𝑝 ), i.e., the fitness of resultant schedule (Total weighted lateness) 6. Set 𝐼𝑡𝑒𝑟 = 1 7. While 𝐼𝑡𝑒𝑟 ≤ 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 8.

Update equilibrium pool (𝐶 𝑒𝑞,𝑝𝑜𝑜𝑙 )

9.

Find four best particles as 𝐶 ⃗ 𝑒𝑞_1 , 𝐶 ⃗ 𝑒𝑞_2 , 𝐶 ⃗ 𝑒𝑞_3 , 𝐶 ⃗ 𝑒𝑞_4 10.

Calculate 𝐶 ⃗ 𝑒𝑞_𝑎𝑣𝑒 = (𝐶 ⃗ 𝑒𝑞_1 , +𝐶 ⃗ 𝑒𝑞_2 + 𝐶 ⃗ 𝑒𝑞_3 + 𝐶 ⃗ 𝑒𝑞_4 )/4 11. Construct 𝐶 𝑒𝑞,𝑝𝑜𝑜𝑙 = {𝐶 ⃗ 𝑒𝑞_1 , 𝐶 ⃗ 𝑒𝑞_2 , 𝐶 ⃗ 𝑒𝑞_3 , 𝐶 ⃗ 𝑒𝑞_4 , 𝐶 ⃗ 𝑒𝑞_𝑎𝑣𝑒 }

12.

For Each particle in 𝐶 𝑒𝑞,𝑝𝑜𝑜𝑙 Do local search Calling Procedure_1 13.

Calculate 𝜆 ̅ 𝐼𝑡𝑒𝑟 , i.e., the weighted average value of turnover rate using Eqs. ( 26)-( 28)

14.

Calculate 𝜎 𝐼𝑡𝑒𝑟 using Eq. ( 30) 15.

Set 𝐼𝑡𝑒𝑟 ⟵ 𝐼𝑡𝑒𝑟 + 1 16.

For 𝑝 = 1: 𝑛𝑃𝑜𝑝 17.

Select a random particle (𝐶 ⃗ 𝑒𝑞_ * ) from 𝐶 𝑒𝑞,𝑝𝑜𝑜𝑙

18.

Generate random vector 𝑟 ⃗ and 𝜆 ⃗ 𝑝 𝐼𝑡𝑒𝑟 using Eq. ( 29)

19.

Calculate 𝐹 ⃗ using Eq. ( 22) 20.

Calculate 𝐺 ⃗ using Eqs. ( 24) and ( 25 (1 -𝐹 ⃗ )

22.

Extract resultant schedule of the updated particle 𝐶 ⃗ 𝑝 Calling Procedure_B1

23.

Calculate 𝑓𝑖𝑡(𝐶 ⃗ 𝑝 ) Outputs: The best schedule, Data of the last generation

Computational results

The purpose of this section is to verify the performance of the proposed algorithm based on numerical experiments. Hence, the performance of algorithm SAEO-VNS is compared with the results from the MILP model solved by the CPLEX solver and the results obtained from applying three other meta-heuristics. The comparisons are performed among outputs of the mentioned algorithms based on 32 randomly generated instance problems. The MILP model is implemented in GAMS 24.1.3 and solved utilizing the solver CPLEX. Also, the meta-heuristic algorithms are coded on MATLAB 2019. All test instances are performed on a computer with a 2.90 GHz Intel (R) Core (TM) i7-7820HK CPU and with RAM 32.0 GB.

Random instance generation

To evaluate the results of the proposed algorithm, two computational experiments are designed based on several random instance problems. Using the range of parameters, which are presented in Table C1 (in Appendix C), two sets of problems are generated to test the methods in static and dynamic states. At the first set, 16 instance problems in different sizes are generated to test the scheduling methods (static state). Afterward, 16 instance problems are considered to test the rescheduling methods (dynamic state).

General specification of the instance problems utilized for static (Subset-S) and dynamic (Subset-D) states respectively are presented in Tables C2 andC3.

Evaluation of results

This section aims to test the performance of the proposed MILP models and the proposed algorithm. The obtained results of the proposed SB models (in both static and dynamic states) are compared with the results of the PB models introduced by Mahmoodjanloo et al (2020b). Moreover, to test the performance of the SAEO-VNS algorithm, the obtained results are compared with the results of the classic EO [START_REF] Faramarzi | Equilibrium optimizer: A novel optimization algorithm[END_REF] embedded by VNS (EO-VNS) and two self-adaptive algorithms which have been recently used in the literature (i.e., including SADE-NM (Mahmoodjanloo et al. 2020a) and SA-COA (Abdollahzadeh-Sangroudi and Ranjbar-Bourani 2019)).

To guarantee the best performance, each algorithm needs some accurately calibrated parameters. Fortunately, three of the four foregoing algorithms have a selfadaptive approach to control the main parameters while only needing some initial values. Hence, we use the proposed initial values in associated original papers in our study. For the classic EO, we find that the proposed input parameters (𝑎 1 = 2, 𝑎 2 = 1, and 𝐺𝑃 = 0.5) have acceptable performance in our problem too. We also use 𝑎 1 = 2 and 𝐺𝑃 = 0.5 as two input parameters in SAEO; however, about the parameters 𝜎 1 and 𝜎 2 , a computational experiment is performed. In this experiment, we consider the first data set as the test problem. The analysis of variance (ANOVA) test is used to analyze the results. The means plot and least significant difference (LSD) intervals (at the 95% confidence level) for different levels of these parameters are represented in Fig. 6. Hence, the selected values 𝜎 1 = 𝜎 2 = 0.25 are used in the following experiments.

Moreover, for both hybrid algorithms (i.e., EO-VNS and SAEO-VNS), the maximum number of iterations without improvement in the embedded VNS is considered as 𝑅 𝑚𝑎𝑥 = 20. Besides, for each instance, the best solution obtained by meta-heuristics was used to run a dynamic version of algorithms for the related instance in Subset-D. We consider a maximum run time of 3600 seconds for both mathematical models. However, the ANOVA test is used to better understand the performance of algorithms. The results show that SAEO-VNS outperforms other algorithms as well (Fig. 8). We also use the Fisher individual tests, to pairwise compare the differences of mean RPDs (Fig. 9a). Based on this test performed at the 95% confidence level, if an interval does not contain the zero line, it means that the related two algorithms are not To have a more stable analysis, we can consider the first 1000 events as a worming period and focus on the remaining results. The simulation shows that on average 4.3071% (at most 20.4819%) of jobs will face tardiness. This provides managers the possibility of evaluating various scenarios to more effectively control the production system.

For example, to reduce the mean value of tardy jobs, the capacity of the distributed production system should be increased. On the other hand, each facility utilizes several RMTs. This leads to a level of higher flexibility in the production system. In fact, 

Conclusions

Due to the globalization of the economy and rapidly changing market requirements, some companies have started to use the benefits of distributed manufacturing systems to have the opportunity of more adaptation by becoming closer to both customers and suppliers. Moreover, to increase the flexibility in manufacturing systems, RMTs have been developed to benefit from using several different machines that share many costly and common modules while being rarely used at the same time. Job scheduling in a distributed system that contains RMTs is very complex especially when the decisionmaking environment is dynamic. Today, interconnection in a network of geographically dispersed facilities thanks to the use of the new emerging technologies of Industry 4.0 can provide manufacturers to utilize real-time data to make efficient decisions in a dynamic environment. To the best of our knowledge, there is no study to tackle this problem. In this paper, we studied a distributed job-shop rescheduling problem, in which the facilities benefit from reconfigurable machines. Firstly, the problem was modeled and solved using mathematical programming. Then, regarding the high level of complexity, a self-adaptive version of a newly introduced metaheuristic algorithm named Equilibrium Optimizer (EO) was developed to efficiently solve medium-and larger-sized problems in a reasonable time. And finally, a simulation-optimization model was developed to evaluate the performance of the manufacturing system facing stochastically arriving jobs.

Obtained results show that the production system can be very flexible relying on its distributed facilities and reconfigurable machines. Moreover, accessibility to real-time data and using efficient decision tools can provide managers with a quick response to changing market requirements. For future studies, some of the other dynamic jobrelated events (e.g., rush jobs and job cancelation) or resource-related events (e.g., machine breakdowns and shortage of materials) can be considered. Moreover, in this research, we used a single-agent approach which can better operate in optimality measures rather than multi-agent (MA) approaches. However, MA can be more effective in adjusting with dynamic environment. Hence, developing a multi-agent approach can be recommended in such an environment.

  for the first time utilized mathematical programming to model the DJSP and proposed two different mathematical formulations, which used sequence-and position-based variables to minimize makespan. They also proposed six simple heuristics to solve the problem. Later, Naderi and Azab (2015) improved the sequence-based mathematical model and developed a hybrid simulated annealing (SA) algorithm using a greedy local search method. Chaouch et al. (2017b) proposed an improved version of the classic ant system algorithm by introducing an elitism mechanism and using the job-facility assignment heuristic (i.e., introduced by Naderi and Azab (2014)), to solve the DJSP. Wu et al. (2017) studied the effect of using different encoding methods on the performance of the GA in solving the DJSP. They also introduced a new chromosome representation and two heuristic rules to represent/extract three decisions including (1) job-to-facility assignment, (2) operation-to-machine assignment, and (3) operation sequencing decision. Their research confirmed the effect of appropriate chromosome representations on the output of the used algorithms. Chaouch et al. (2019) used a hybrid ant colony algorithm combined with a local search to minimize the global makespan over all the factories in the DJSP.
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 1 Fig. 1. Dynamic scheduling task using CPSF capabilities (Mahmoodjanloo et al. 2020b).
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 2 Fig. 2 presents a simple example to illustrate how the value of 𝑆𝐽 𝑖 and 𝑆𝑀 𝑘,𝑓 can be extracted based on the introduced equations. In this example, there are two jobs (i.e., job_1 and job_2 with four and three operations, respectively), which have already been scheduled on two existing machines. It is supposed that a new job arrives at time 𝑡 1 = 90, and the rescheduling task (new job insertion) can be applied at time 𝑡 2 (𝑓) = 𝑡 1 + ∆𝑡 𝑓 = 180. At this time, operation 𝑂 2,2 is being processed on the second machine. Hence, the earliest possible start time of the second machine is equal to the completion time of 𝑂 2,2 , i.e., 𝑆𝑀 2,𝑓 = 200, while such time for the first machine is equal to 𝑡 2 (𝑓) , i.e., 𝑆𝑀 1,𝑓 = 180. Also, we can determine the earliest possible start time of the jobs as 𝑆𝐽 1 = max{170, 180} = 180, and 𝑆𝐽 2 = max{200, 180} = 200.
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 2 Fig. 2. An example to extract 𝑆𝐽 𝑖 and 𝑆𝑀 𝑘,𝑓

  is utilized to represent feasible solutions to the problem. They used a two-dimensional matrix (𝐴 2×𝑛 ) with real random values to determine operations scheduling and machine configuration decisions in a static single-facility FJSSP-CDST problem. We enhance their encoding approach by adding the possibility of job assignment decisions for a dynamic distributed version. Hence, a new row is added to the matrix. The new matrix (𝐴 3×𝑛 ) can be utilized to randomly generate a solution that represents a feasible schedule for the DFJSSP-CDST. In this matrix, the number of columns is equal to the total number of operations of uncompleted jobs in the distributed production systems (i.e., 𝑛 = ∑ |𝑁 𝑖 | 𝑖∈𝒥 ′

Fig. 3 .

 3 Fig. 3. Random solution (i.e., particle) for the example.
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 4 Fig. 4. Resultant schedule of the particle

𝐻𝑁𝑆 7 :

 7 Identify the operations which are immediately positioned between two setup operations. For each identified operation, if the related configurations of the previous and the next operations are same, change the configuration of the selected operation to it (if possible).

) 21 .

 21 Update concentration 𝐶 ⃗ 𝑝 ⟵ 𝐶 ⃗ 𝑒𝑞_ * + (𝐶 ⃗ 𝑝 -𝐶 ⃗ 𝑒𝑞_ * ).

Fig. 6 .

 6 Fig. 6. Calibration of input parameters 𝜎 1 and 𝜎 2 for SAEO

  significantly different. The comparison of differences between the results obtained by EO-VNS and SAEO-VNS algorithms shows that the proposed self-adaptive policy to control the parameters of the EO algorithm is significantly efficient. Moreover, the obtained individual values by the rival algorithms (presented in Fig.9b) illustrate a more suitable performance for SAEO-VNS because it obtains a greater number of the most qualified solutions. Moreover, we also checked the performance of the proposed algorithm without applying the local search step. Results show that the proposed local search can improve the performance of the hybrid algorithm about 5%.
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 78910 Fig. 7. Comparison SBM vs. the best solution obtained by SAEO-VNS
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 11 Fig. 11. Simulation results of a dynamic distributed job-shop scheduling problem for Ins. S10_v2

  

  𝑐 1 ≠ 𝑐 2 and 𝑐 1 , 𝑐 2 ∈ 𝐶 𝑘,𝑓 ) on machine 𝑘 in the facility 𝑓 𝑈 𝑖𝑗𝑖 ′ 𝑗 ′ 1 if operation 𝑂 𝑖𝑗 is scheduled before operation 𝑂 𝑖 ′ 𝑗 ′ ; 0, otherwise

	𝐶𝑂 𝑖𝑗	Completion time of operation 𝑂 𝑖𝑗
	𝐸 𝑖	Earliness of job 𝑖
	𝑇 𝑖	Tardiness of job 𝑖
	Static model formulation:
	𝑇𝑇 𝑖	
	𝐷 𝑖	Due date of job 𝑖
	𝜔 𝑖 𝐸	Earliness penalty of job 𝑖 per time unit
	𝜔 𝑖	

Set of facilities, where facility index 𝑓 ∈ 𝐹 𝐾 𝑓 Set of machines in the facility 𝑓 ∈ 𝐹, where machine index 𝑘 ∈ 𝐾 𝑓 𝐶 𝑘,𝑓 Set of configurations of machine 𝑘 ∈ 𝐾 𝑓 , where configuration index 𝑐 ∈ 𝐶 𝑘,𝑓 𝒥 Set of jobs, where job index 𝑖 ∈ 𝒥 𝑁 𝑖 Set of all operations of job 𝑖 ∈ 𝒥, where operation 𝑗 of job 𝑖 is denoted by 𝑂 𝑖𝑗 Parameters: 𝑃𝑇 𝑖𝑗𝑘𝑐 𝑓 Processing time of operation 𝑂 𝑖𝑗 on machine-configuration 𝑘𝑐 in facility 𝑓 𝑅 𝑖𝑗𝑘𝑐 𝑓 Binary parameter. 1 if operation 𝑂 𝑖𝑗 can be processed on machineconfiguration 𝑘𝑐 in facility 𝑓; 0, otherwise. 𝑓 Transportation time to the related customer when job 𝑖 be sent from facility 𝑓 𝑆𝑇 𝑐 1 ,𝑐 2 ,𝑘 𝑓 Configuration-dependent setup time when the configuration is changed from 𝑐 1 to 𝑐 2 (i.e., 𝑇 Tardiness penalty of job 𝑖 per time unit Decision variables: 𝑥 𝑓𝑖 1 if job 𝑖 be assigned to facility 𝑓; 0, otherwise. 𝑦 𝑖𝑗𝑘𝑐 𝑓 1 if operation 𝑂 𝑖𝑗 is processed on machine-configuration 𝑘𝑐 in facility 𝑓; 0, otherwise.

  𝑐 1 , 𝑐 2 ∈ 𝐶 𝑘,𝑓 , 𝑖, 𝑖 ′ ∈ 𝒥, 𝑗 ∈ 𝑁 𝑖 , 𝑗 ′ ∈ 𝑁 𝑖 ′ , 𝑂 𝑖𝑗 ≠ 𝑂 𝑖 ′ 𝑗 ′

			(8)
	𝐶𝑂 𝑖,𝑛 𝑖 + ∑ 𝑇𝑇 𝑖 𝑓 𝑥 𝑓𝑖	+ 𝐸 𝑖 -𝑇 𝑖 ≤ 𝐷 𝑖 ∀ 𝑖 ∈ 𝒥	(9)
	𝑓∈𝐹		
	𝑦 𝑖𝑗𝑘𝑐 𝑓 , 𝑥		

𝑓𝑖 ∈ {0, 1} ∀ 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾 𝑓 , 𝑐 ∈ 𝐶 𝑘,𝑓 , 𝑖 ∈ 𝒥, 𝑗 ∈ 𝑁 𝑖 (10) 𝐶𝑂 𝑖𝑗 , 𝐸 𝑖 , 𝑇 𝑖 ≥ 0 ∀ 𝑖 ∈ 𝒥, 𝑗 ∈ 𝑁 𝑖

(11) 

  Completion time of job 𝑖 in the current schedule (𝐶𝐽 𝑖 = 𝐶𝑂 𝑖,𝑛 𝑖

	𝑁 𝑖 ′	Set of all new job operations (for 𝑖 ∈ 𝒥 ′′ ) or unprocessed operations of
		existing jobs, where 𝑁 𝑖 ′ ⊆ 𝑁 𝑖 for 𝑖 ∈ 𝒥 ′
	𝑗 1 (𝑖) Index of the first unprocessed operation of job 𝑖, where 𝑗 1 (𝑖) ∈ 𝑁 𝑖 ′ and
		𝑗 1 (𝑖) -1 ∉ 𝑁 𝑖 ′ (note that 𝑗 1 (𝑖) = 1 for 𝑖 ∈ 𝒥 ′′ )
	𝑐 𝑘,𝑓 ′	Index of the current configuration of machine 𝑘 in facility 𝑓 at time 𝑡 2 𝑓 ,
		where 𝑐 𝑘,𝑓 ′ ∈ 𝐶 𝑘,𝑓
	𝐶𝐽 𝑖	

of all uncompleted jobs (WIPs) until the insertion time, where 𝒥 ′ ⊆ 𝒥 𝒥 ′′ Set of new arrived jobs * )

  Eventually, the rescheduling problem can be solved considering the objective function (19), where new variables 𝐸 𝑖 ′ and 𝑇 𝑖 ′ measure the deviation of new schedule for the old jobs 𝑖 ∈ 𝒥 ′ based on Equation (20) considering associated weights 𝛿 1 and 𝛿 2 .

	𝑖,𝑗-1 + ∑ ∑ ∑ 𝑃𝑇 𝑖𝑗𝑘𝑐 𝑓 𝑦 𝑖𝑗𝑘𝑐 𝑓	∀ 𝑖 ∈ 𝒥 ′ ∪ 𝒥 ′′ , 𝑗 ∈ 𝑁 𝑖 ′ -{𝑗 1 (𝑖) } (16)
	𝑓∈𝐹	𝑘∈𝐾 𝑓	𝑐∈𝐶 𝑘,𝑓	
	𝐶𝑂 𝑖,𝑗 1 (𝑖) ≥ 𝑆𝐽 𝑖 + 𝑃𝑇 𝑖𝑗 1 (𝑖) 𝑘𝑐 𝑓	+ 𝑆𝑇 𝑐 𝑘,𝑓 ′ ,𝑐,𝑘 𝑓	-(1 -𝑦 𝑖𝑗 1 (𝑖) 𝑘𝑐 𝑓	) × 𝑀 ∀𝑖 ∈ 𝒥 ′ ∪ 𝒥 ′′	(17)
	𝐶𝑂 𝑖,𝑗 1 (𝑖) ≥ 𝑆𝑀 𝑘,𝑓 + 𝑃𝑇 𝑖𝑗 1 (𝑖) 𝑘𝑐 𝑓	+ 𝑆𝑇 𝑐 𝑘,𝑓 ′ ,𝑐,𝑘 𝑓	-(1 -𝑦 𝑖𝑗 1 (𝑖) 𝑘𝑐 𝑓	) × 𝑀 ∀𝑖 ∈ 𝒥 ′ ∪ 𝒥 ′′ (18)
	Min 𝓏 = ∑ 𝜔 𝑖 𝐸 𝐸 𝑖	+ 𝜔 𝑖 𝑇 𝑇 𝑖 + ∑ 𝛿 1 𝐸 𝑖 ′	+ 𝛿 2 𝑇 𝑖 ′	(19)
		𝑖∈𝒥 ′ ∪𝒥 ′′		𝑖∈𝒥 ′

Table 1 .

 1 Data for the illustrated instance

			Job1		Job2	Job3		Job4
	𝑓, 𝑘, 𝑐	1	2	3 4	1	2 3	1 2	3	1 2 3
	1, 1, 1				75		87 91	52 57
	1, 1, 2		72	86	54		96		
	1, 2, 1		65 55 61		62 81		59	86	76
	1, 2, 2 93 97 63			67 96 62	
	2, 1, 1 81	71			83 85		95
	2, 1, 2			80		97 77	75 60		60
	2, 1, 3 60 58						84
	2, 2, 1				75		87 91	52
	2, 2, 2		72	86	54		96			55
	𝐷 𝑖		430			650	400		400

  The objective function value (OFV) and the related CPU times (if an optimum solution is obtained in time limitation, otherwise the optimality gap) are presented in Table2. Also, each instance is solved 30 times by each meta-heuristic. The mean values (Ave.) and the standard deviations (S.D.) have been presented in Table2. As can be seen in this table, none of the SB and PB models can find a feasible solution for the instances with more than three facilities within the predefined time limit. Moreover, they only solve respectively four and two instances optimally. Anyway, the experiments show that the SB model outperforms the PB model. On the other hand, SAEO-VNS has obtained better results among the meta-heuristics. A comparison among the best solutions obtained by SAEO-VNS and the SB model can prove the acceptable performance of the proposed algorithm because SAEO-VNS can find more qualified solutions in a reasonable time (Fig.7).

Table 2 .

 2 Computational comparison of the algorithms on instance problems of two data sets.

	Ins. ID	SB model OFV. Time/ Gap%	PB model OFV. Time/ Gap%	SADE-NM Ave. S.D.	SA-COA Ave. S.D.	EO-VNS Ave. S.D.	SAEO-VNS Ave. S.D.
	S1	87.3	182	87.3	305	98.2	6.8	105.7	7.0	106.4	7.5	90.2	3.6
	S2	63.6	1905	68.7	8%	72.5	5.2	75.6	7.3	78.5	7.5	67.5	3.5
	S3	99.3	15%	135.6	59%	111.1 10.0 121.9	11.4 134.9 14.8 110.0	6.3
	S4	172.1	43%	-	-	187.2 13.2 214.4 12.2 193.7 21.8 168.4 14.5
	S5	144	23%	211.2	83%	159.4 10.3 168.5 14.4 152.8 16.9 148.2 9.0
	S6	191.2	51%	-	-	184.6 16.2 207.8 17.1	215.1 20.3 167.9 14.4
	S7	136.6	29%	204.5 96%	146.3	9.3	157.3 13.1 156.7 17.2	137.1 10.1
	S8	-	-	-	-	219.8 18.7 242.3 20.1 244.5 24.1 209.4 15.2
	S9	-	-	-	-	302.5 17.8 326.7 19.7 318.5 33.9 264.5 17.4
	S10	-	-	-	-	359.6 21.4 405.9 27.8 414.7 44.1 316.7 22.2
	S11	-	-	-	-	364.6 23.3 420.8 31.2 423.1 33.3 338.7 25.0
	S12	-	-	-	-	366.1 23.9 412.2 28.3 439.6 42.9 356.6 28.2
	S13	-	-	-	-	280.8 15.9 296.7 22.8 310.8 27.5 260.4 19.7
	S14	-	-	-	-	321.5 26.0 359.6 30.1 350.8 35.9 297.1 24.4
	S15	-	-	-	-	348.0 23.2 386.9 27.1 429.9 43.5 308.5 23.9
	S16	-	-	-	-	356.3 24.0 370.3 30.8 384.7 44.1 327.4 20.9
	D1	91.3	146	91.3	270	99.9	4.2	104.1	4.6	104.6	7.2	96.5	4.4
	D2	77.6	2304	85.2	11%	86.1	4.9	93.0	5.2	83.4	7.6	80.4	3.5
	D3	103.5	8%	126.6	32%	115.3	6.8	128.4	8.5	123.9 10.6 109.4	5.2
	D4	212.4	41%	-	-	197.6 10.1 201.0 12.2 198.0 18.8 190.5	9.8

Rescheduling function:

To apply the proposed algorithm in a dynamic environment, it is needed to be adjusted for the implementation of a rescheduling function. Moreover, the required data can be provided utilizing industrial IoT. Digital twin sends real-time data from shop floors, so the last situation of all machines and works in progress (i.e., uncompleted jobs) will be specified once a new event occurred (e.g., arriving at a new job). The conceptual framework of the scheduling module has been presented in Fig. 5. Based on the presented data flow system in Fig. 5, the introduced encoding procedure should be updated to be used in a dynamic environment. The updating process of a particle has been presented in Procedure_2.

Procedure_2. Updating process of a particle.

Inputs: Old particle, Updated list, Updated data (see Fig. 5) 1 Delete all columns related to the operations of completed jobs 2 Freeze all columns related to the completed operations of WIPs 3 Freeze the third row of the particle (for WIPs) 4 Generate a random particle for newly arrived jobs 5 Add the new particle at the end of the old one Output: Updated particle Appendix A. Calculation of the probability matrix 𝑃 ̅ 𝑓 For the presented instance in Table 1, the associated probability matrix 𝑃 ̅ 𝑓 can be calculated as Table A1. For example, the first column of the probability matrix 𝑃 ̅ 2 , i.e., the probability vector to select a random machine-configuration to perform operation 𝑂 11 in the second facility, can be calculated using the related vector of processing time [81, 0, 60, 0, 0] 𝑇 andutilizing Eq. (31) as [0.43, 0, 0.57, 0, 0 It is worth noting that the procedure is called for each facility after assigning the jobs to the facilities and allocation of each operation to a machine-configuration. Hence, in the above-mentioned notations, the indices of facilities and machine-configurations are ignored.

Procedure_B1. Pseudo-code of the decoding method based on the G&T approach.

Inputs: 𝑃𝑇 𝑖𝑗𝑘 , 𝑆𝑇 𝑘 , Sequence priority

Extract all operations without predecessors and set them in Ω 4.

Set 𝑆𝑡𝑜𝑝 = 𝐹𝑎𝑙𝑠𝑒 5. Do 6.

Calculate 𝐸𝑆 𝑖𝑗 for 𝑂 𝑖𝑗 ∈ Ω, i.e., equal to the maximum of completion time of the previous operation of job 𝑗 and sum of the completion time of machine 𝑘 and its related sequence-dependent setup time in 𝑃𝑆 7.

Set 𝐸𝐹 𝑖𝑗 = 𝐸𝑆 𝑖𝑗 + 𝑃𝑇 𝑖𝑗

8.

Determine EF * = min 𝑂 𝑖𝑗 ∈Ω {𝐸𝐹 𝑖𝑗 }

9.

Find the related machine 𝑘 * that present EF * 10.

Identify the subset of operations 𝑂 𝑖𝑗 ∈ Ω ′ (Ω ′ ⊆ Ω) which requires machine 𝑘 * and 𝐸𝑆 𝑖𝑗 < EF * 11.

Select the operation 𝑂 𝑖𝑗 ∈ Ω ′ which has the highest priority in the Sequence priority 12.

Add the selected operation to 𝑃𝑆 13.

Update the set Ω by removing the selected operation and adding its successor (if there is any) 14.

If Ω = ∅ Then set 𝑆𝑡𝑜𝑝 = 𝑇𝑟𝑢𝑒 15. Until 𝑆𝑡𝑜𝑝 = 𝐹𝑎𝑙𝑠𝑒 16 Return 𝑃𝑆 Appendix C. Test data Table C1 presents the parameter levels for random instance generation. Also, general specification of the instance problems utilized for static and dynamic states respectively are presented in Tables C2 andC3.