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A DIMENSIONAL MASS TRANSFERENCE PRINCIPLE FOR BOREL PROBABILITY MEASURES AND APPLICATIONS

In this article, we establish a dimensional mass transference principle valid when the ambient measure is nite. We provide two applications of this result. First we study certain dynamical coverings associated with some self-similar IFS with overlaps and then we give an application in Diophantine approximation to rational approximation among points of [0, 1] with few digit equal to 1 in their base-3 expansion.

Introduction

Estimating the Hausdor dimension of limsup sets obtained from the contractions of the elements of a given family of sets is a natural question of metric approximation theory, which arises in many contexts. In this article, given a sequence of balls of R d , B = (B n := B(x n , r n )) n∈N , we investigate in a very general frame the size properties of the limsup sets obtained from smaller sets, i.e sets of the form lim sup n→+∞ U n , where U n ⊂ B n .

Let us recall that the historical example of Jarnik-Besicovitch's theorem deals with the case U n = B δ n := B(x n , r δ n ), where δ > 1, x n is a rational number p q and r n = 1 q 2 . Generalizations of Jarnik-Besicovitch's Theorem often consider a given sequence (x n ) n∈N of points in R d , as well as a sequence of radii (r n ) n∈N for which the associated limsup set E 1 = lim sup n→+∞ B n has a controlled size (in terms of Lebesgue measure or Hausdor dimension for instance); then, given a sequence of sets U = (U n ) n∈N with, for every n ∈ N, U n ⊂ B n , one estimates the Hausdor dimension of the smaller limsup set E(U) = lim sup n→+∞ U n . The classical case above studies the case where U n = B δ n but dierent shapes for U n have also been considered (rectangles or ellipsoïds rather than balls for instance). Such problems are studied for instance in [START_REF] Jaard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF][START_REF] Barral | Ubiquity and large intersections properties under digit frequencies constraints[END_REF][START_REF] Wang | Mass transference principle for limsup sets generated by rectangles[END_REF][START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF] among many references.

The same question arises in any topological dynamical system (X, T ) endowed with some metric, when the sequence (x n ) n∈N is the orbit (T n (x)) n∈N of a well chosen point x. Some specic cases are for instance treated in [START_REF] Hill | The ergodic theory of shrinking targets[END_REF][START_REF] Liao | Diophantine approximation by orbits of expanding Markov maps[END_REF][START_REF] Persson | On shrinking targets for piecewise expanding interval maps[END_REF]. In probability theory, the famous Dvoretzky covering problem consists in computing, when it is possible, the Hausdor dimension of the limsup set associated with a sequence of random balls drawn independently and uniformly in a compact Baire space, see for instance [START_REF] Feng | Dimensions of random covering sets in Riemann manifolds[END_REF][START_REF] Ekström | Hausdor dimension of random limsup sets[END_REF][START_REF] Barral | Ubiquity and large intersections properties under digit frequencies constraints[END_REF]. In analysis, the value of the pointwise regularity exponents of measures and functions at a given point x often relies on the ability to understand how x is close to remarkable points x n . The reader may refer to [START_REF] Jaard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF][START_REF] Barral | The multifractal nature of heterogeneous sums of dirac masses[END_REF].

As mentioned above, in the largest part of the literature, a strong geometric measure theoretic condition is initially imposed on B to obtain results, for instance that the Lebesgue measure of lim sup n→+∞ B(x n , r n ) is full (cf [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF]). But there are 1 many situations in which the Lebesgue measure is not the relevant measure to work with (cf [START_REF] Barral | Heterogeneous ubiquitous systems in R d and Hausdor dimensions[END_REF]).

Our purpose in this article is to obtain a general lower bound for the Hausdor dimension lim sup n→+∞ U n , where the sets (U n ) are open sets in some balls (B n ) satisfying the property called µ-asymptotically covering property, where µ is a probability measure on R d . This property, introduced in [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF], is proved to be almost equivalent to verifying that µ(lim sup n→+∞ B n ) = 1 (e.g [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF]).

The results presented here extend, for instance, both the results of Koivusalo-Rams stated in [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF] and the result of ) which deals with balls and self-similar measures under the open set condition. It is worth noticing that the works of Koivusalo-Rams, Ghosh and Nandi and Bique-Eriksson in [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF][START_REF] Ghosh | Diophantine approximations, large intersections and geodesics in negative curvature[END_REF][START_REF] Eriksson-Bique | A new Hausdor content bound for limsup sets[END_REF] highlighted the importance of the Hausdor content to compute Hausdor dimension of limsup sets and this article makes further use of this fact.

An important advantage of the lower bound obtained in the present paper is that its value is tractable in many cases. For instance, as a rst application, a dimensional mass transference principle is given in the case where µ is a self-similar measure (we do not require any condition on the possible overlaps associated with such a µ).

Two other applications of our main result are treated in this article as well. The problem of self-similar dynamical coverings is studied when the corresponding iterated function system (in short IFS) is dimension-regular and has similarity dimension less than d (see Section 2.14, Denition 2.9).

Another application in Diophantine approximation is given. Let K (0) 1/3 the set of points of [0, 1] such that in their sequence of digits in basis 3, the asymptotic frequency of appearance of the digit 1 is innitely many often close to 0 (note that this set contains the middle-third Cantor set K 1/3 and dim H (K (0) 1/3 ) = dim H (K 1/3 )). We compute the Hausdor dimension of points of K (0) 1/3 well approximable by rationals (see Theorem 2.15 for a precise statement).

Definitions and main statements

Let us start with some notations Let d ∈ N. For x ∈ R d , r > 0, B(x, r) stands for the closed ball of (R d ,|| || ∞ ) of center x and radius r. Given a ball B, |B| stands for the diameter of B. For t ≥ 0, δ ∈ R and B = B(x, r), tB stand for B(x, tr), i.e. the ball with same center as B and radius multiplied by t, and the δ-contracted ball B δ is dened by B δ = B(x, r δ ).

Given a set E ⊂ R d , E stands for the interior of the E, E its closure and ∂E its boundary, i.e, ∂E = E \ E. If E is a Borel subset of R d , its Borel σ-algebra is denoted by B(E).

Given a topological space X, the Borel σ-algebra of X is denoted B(X) and the space of probability measure on B(X) is denoted M(X).

The d-dimensional Lebesgue measure on (R d , B(R d )) is denoted by L d . For µ ∈ M(R d ), supp(µ) = {x ∈ [0, 1] : ∀r > 0, µ(B(x, r)) > 0} is the topological support of µ.

Given E ⊂ R d , dim H (E) and dim P (E) denote respectively the Hausdor and the packing dimension of E. Then, the lower and upper Hausdor dimensions of µ are respectively dened by [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF] dim H (µ) = ess inf µ (dim loc (µ, x)) and dim P (µ) = ess sup µ (dim loc (µ, x)).

It is known (for more details see [START_REF] Falconer | Fractal geometry[END_REF]) that

dim H (µ) = inf{dim H (E) : E ∈ B(R d ), µ(E) > 0} dim P (µ) = inf{dim P (E) : E ∈ B(R d ), µ(E) = 1}.
When dim H (µ) = dim P (µ), this common value is simply denoted by dim(µ) and µ is said to be exact dimensional. The main property (introduced in [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF]) used for the sequence of balls B is meant to ensure that any set can be covered eciently by the limsup of the B n 's, with respect to a measure µ. This property is a general version of the key covering property used in the KGB Lemma of Beresnevitch and Velani, stated in [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF], using a Borel probability measure µ. Observe that such properties (like the KGB Lemma) are usually key (cf [START_REF] Jaard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF][START_REF] Barral | Heterogeneous ubiquitous systems in R d and Hausdor dimensions[END_REF] for instance) to prove ubiquity or mass transference results.

Denition 2.3. Let µ ∈ M(R d ). The sequence B = (B n ) n∈N of balls of R d is
said to be µ-asymptotically covering (in short, µ-a.c) when there exists a constant C > 0 such that for every open set Ω ⊂ R d and g ∈ N, there is an integer N Ω ∈ N as well as integers

{n i } 1≤i≤N Ω satisfying g ≤ n 1 ≤ ... ≤ n N Ω such that: (i) ∀ 1 ≤ i ≤ N Ω , B n i ⊂ Ω; (ii) ∀ 1 ≤ i ̸ = j ≤ N Ω , B n i ∩ B n j = ∅; (iii) also, (5) µ N Ω i=1 B n i ≥ Cµ(Ω).
In other words, for any open set Ω and any integer g ≥ 1, there exists a nite set of disjoint balls of {B n } n≥g supporting a xed proportion of µ(Ω).

This notion of µ-asymptotically covering is related to the way the balls of B are distributed according to the measure µ. This property is a priori slightly stronger than having a lim sup of full µ-measure when µ is not doubling, as suggested by the following proposition proved in [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF].

Proposition 2.1. Let µ ∈ M(R d ) and B = (B n := B(x n , r n )) n∈N be a sequence of balls of R d with lim n→+∞ r n = 0. ( 1 
) If B is µ-a.c, then µ(lim sup n→+∞ B n ) = 1. (2) If there exists v < 1 such that µ lim sup n→+∞ (vB n ) = 1, then B is µ-a.c.
The second item will be used to apply our main theorem to self-similar measures.

It follows from the proof of [8, Lemma 5] that these properties are equivalent when µ is doubling. 

H µ,s t (A) = inf {H s t (E) : E ⊂ A, µ(E) = µ(A)} .
One will almost exclusively look at these contents at scale t = +∞ and one refers to H µ,s ∞ (A) as the s-dimensional µ-essential Hausdor content of A. Basic properties of these quantities are studied in Section 3.3, and precise estimates of H µ,s ∞ (A) are achieved for the Lebesgue measure and self-similar measures in Section 5.

Note that in [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF]Theorem 3.1] the key underlying geometric notion used to handle the variety of shapes of the sets (U n ) n∈N is the Hausdor content. It is easily seen from ( 3) that the Hausdor content also carries some high scale geometric information (because there is no restriction concerning the diameter of the balls

(B n ) in (3)
). This will also be the case in this article to handle not only the shape of the sets (U n ) n∈N but also the geometric behavior related to the measure µ at high scale in the sets (U n ) n∈N . 

s µ (B, U ) = sup {s ≥ 0 : H µ,s ∞ (U ) ≥ µ(B)} .
Let B = (B n ) n∈N be a sequence of closed balls, U = (U n ) n∈N a sequence of Borel subsets of R d , and s ≥ 0.

Let

N µ (B, U, s) = {n ∈ N : s µ (B n , U n ) ≥ s} . (8) 
The µ-critical exponent of (B, U) is given by

s(µ, B, U) = sup s ≥ 0 : (B n ) n∈Nµ(B,U ,s) is µ-a.c. . (9) 
Note that, for s ′ ≤ s, one has N µ (B, U, s) ⊂ N µ (B, U, s ′ ) so that (9) makes sense.

The main result of this paper is the following. 

→ R + such that lim r→0 + log ζ(r) log r = min {s(µ, B, U), dim H (µ)} and H ζ (lim sup n→+∞ U n ) > 0.
In particular, for every µ ∈ M(R d ), one has [START_REF] Bugeaud | Metric Diophantine approximation on the middle-third Cantor set[END_REF] (2) It is proved in Section 3.3 that s(µ, B, U) ≤ dim H (µ). This implies that for exact dimensional measures, min {s(µ, B, U), dim H (µ)} = s(µ, B, U).

(3) The case where µ satises min {s(µ, B, U), dim H (µ)} = 0 could also be treated, but although [START_REF] Bugeaud | Metric Diophantine approximation on the middle-third Cantor set[END_REF] is still obviously true, some distinction should further be made when investigating the existence of the gauge function. If H µ,s ∞ (U n ) = 0 for any n ∈ N, the set lim sup n→+∞ U n could, for instance, be empty. On the other hand, if (B n ) n∈N is µ-a.c and s µ (B n , U n ) > 0 for any n ∈ N, a gauge function can be constructed in a similar way than in the proof of Theorem 2.2. However the existence of such a gauge function in the case min {s(µ, B, U), dim H (µ)} = 0 is of little interest for practical applications, and is not treated in this article.

A quite direct, but useful, corollary of Theorem 2.2 is the following:

Corollary 2.4. Let µ ∈ M(R d ) and B = (B n ) n∈N be a µ-a.c. sequence of closed balls of R d . Let U = (U n ) n∈N be a sequence of open sets such that U n ⊂ B n for all n ∈ N, and 0 ≤ s ≤ dim H (µ). If lim sup n→+∞ log H µ,s ∞ (Un) log µ(Bn) ≤ 1, then s(µ, B, U) ≥ s, so that dim H (lim sup n→+∞ U n ) ≥ s.
In the classical case where the sets U n are shrunk balls of the form B δ n (with δ ≥ 1), it is convenient to consider the following quantity: Denition 2.6. Let µ ∈ M(R d ), ε > 0 and B = (B n ) n∈N be a sequence of balls of

R d . For every δ ≥ 1, set (11) t(µ, δ, ε, B) = lim sup n→+∞ log(H µ,dim H (µ)-ε ∞ ( Bδ n )) log(|B δ n |)
.

Then the (µ, δ)-exponent of the sequence B is dened as [START_REF] Csörnyei | Upper conical density densities for general measure on R n[END_REF] t(µ, δ, B) = lim ε→0 t(µ, δ, ε, B).

It follows from the denitions that t(µ, δ, B) exists as a limit, since ε → t(µ, δ, ε, B) is monotonic. Moreover, one has dim H (µ) ≤ t(µ, δ, B) (see the proof of Corollary 2.5).

Next result provides an explicit lower bound for the Hausdor dimension of the limsup of δ-contracted balls; it is a consequence of Corollary 2.4.

Corollary 2.5. Let µ ∈ M(R d ) and let B = (B n ) n∈N be a µ-a.c sequence of closed balls of R d . Suppose that dim H (µ) > 0. For every δ ≥ 1, setting s δ = dim H (µ) δ • dim H (µ) t(µ, δ, B) , one has s µ, (B n ) n∈N , ( Bδ n ) n∈N ≥ s δ , hence dim H (lim sup n→+∞ B δ n ) ≥ dim H (lim sup n→+∞ Bδ n ) ≥ s δ .
2.3. Dimensional mass transference principle for self-similar measures.

Let us start by recalling the denition of a self-similar measure.

Denition 2.7. A self-similar IFS is a family

S = {f i } m i=1 of m ≥ 2 contracting similarities of R d .
Let (p i ) i=1,...,m ∈ (0, 1) m be a positive probability vector, i.e.

p 1 + • • • + p m = 1.
The self-similar measure µ associated with {f i } m i=1 and (p i ) m i=1 is the unique probability measure such that [START_REF] Daviaud | An anisotropic inhomogeneous ubiquity theorem[END_REF] 

µ = m i=1 p i µ • f -1 i .
The topological support of µ is the attractor of S, that is the unique non-empty compact set K ⊂ X such that K = m i=1 f i (K). The existence and uniqueness of K and µ are standard results [START_REF] Hutchinson | Fractals and self similarity[END_REF]. Recall that due to a result by Feng and Hu [START_REF] Feng | Dimension theory of iterated function systems[END_REF], any self-similar measure is exact dimensional.

The essential Hausdor content of a self-similar measure µ can be estimated quite precisely.

Theorem 2.6. Let S be a self-similar IFS of R d . Let K be the attractor of S.

Let µ be a self-similar measure associated with S. For any 0 ≤ s < dim(µ), there exists a constant c = c(d, µ, s) > 0 depending on the dimension d, µ and s only, such that for any ball B = B(x, r) centered on K and r ≤ 1, any open set Ω, one has

c(d, µ, s)|B| s ≤ H µ,s ∞ ( B) ≤ H µ,s ∞ (B) ≤ |B| s and c(d, µ, s)H s ∞ (Ω ∩ K) ≤ H µ,s ∞ (Ω) ≤ H s ∞ (Ω ∩ K). (14) 
For any s > dim(µ), H µ,s ∞ (Ω) = 0.

Note that The system S is not assumed to verify any separation condition.

Moreover, in the special case of the Lebesgue measure restricted to [0, 1] d (or some cube K), [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF] implies that for any 0 ≤ s ≤ d, the Lebesgue-essential s dimensional Hausdor content is strongly equivalent to the usual s-dimensional Hausdor content (it is even possible to take the constant c(d, µ, s) in ( 14), independent of s). In particular, Theorem 2.6 together with Theorem 2.2 in the this special case implies the main theorem of Koivusalo and Rams, [28, Theorem 3.2], recalled below. Theorem 2.7 ([28]). Let (B n ) n→+∞ be a sequence of balls of [0, 1] d verifying 

|B n | → 0 and L d (lim sup n→+∞ B n ) = 1. Let (U n ) n∈N be a sequence of open sets satisfying U n ⊂ B n . For any 0 ≤ s ≤ d such that, for all n ∈ N large enough, H s ∞ (U n ) ≥ L d (B n ), it holds that (15) dim H (lim sup n→+∞ U n ) ≥ s.
(U n ) ≥ µ(B n ), then dim H (lim sup n→+∞ U n ) ≥ s.
One also emphasizes that in the case of a self-similar measure, conversely, any

s ≥ 0 such that H µ,s ∞ (U n ) ≤ µ(B n
) for every n large enough is an upper-bound for dim H (lim sup n→+∞ U n ) if B veries that, for any p ∈ N, the balls B n with |B n | ≈ 2 -p does not overlap too much (which is the case for instance the case of the dynamic balls dened in Theorem 2.14 in the case of a real IFS satisfying the exponential separation and with similarity dimension smaller than 1). More precisely, in the companion paper of the present article, [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF], the following result is proved. Theorem 2.9 ([14]). Let µ ∈ M(R d ) be a self-similar measure, K its support and (B n ) n→+∞ be a weakly redundant sequence of balls of R d (see [7, (2) Suppose that µ(lim sup n→+∞ B n ) = 1. Then, [START_REF] Falconer | Fractal geometry[END_REF] For any x = (x i ) 1≤i≤d ∈ R d and r > 0, the τ -rectangle centered in x and associated with r is dened by

(18) R τ (x, r) = d i=1 [x i - r τ i 2 , x i + r τ i 2 ].
The theorem we get is the following:

Theorem 2.12. Let S be a self-similar IFS of R d such that the attractor K of

S satises K = K. Let µ be a self-similar measure associated with S. Let 1 ≤ τ 1 ≤ ... ≤ τ d , τ = (τ 1 , ..., τ d ) and (B n := B(x n , r n )) n∈N be a sequence of balls of R d satisfying r n → 0 and µ(lim sup n→+∞ B n ) = 1. Dene R n = Rτ (x n , r n ). Then (19) dim H (lim sup n→+∞ R n ) ≥ min 1≤i≤d ® dim(µ) + 1≤j≤i τ i -τ j τ i
´.

Remark 2.13. (1) Since

(τ 1 , ..., τ d ) → min 1≤i≤d dim(µ)+ 1≤j≤i τ i -τ j τ i
is continuous, the result stands for the sequence of closed rectangles as well.

(2) One may also apply any rotation to the shrunk rectangles, this would not change the bound (since Hausdor contents are invariant by rotation).

(3) Theorem 2.12 extends the results of [START_REF] Daviaud | An anisotropic inhomogeneous ubiquity theorem[END_REF], where the measure was quasi-Bernoulli or verifying the open set condition, and supported on

[0, 1] d . (4) When K = K it is easy to compute H s ∞ (R n ∩ K).
Without this assumption, the conclusion of Theorem 2.12 fails. Indeed, in general, no formula involving only the dimension of the measure and the contraction ratio can be accurate. For instance, consider a self-similar measure in R 2 carried by a line D and a sequence (B n ) n∈N of balls centered on the attractor K and verifying µ(lim sup n→+∞ B n ) = 1. Then, consider the sequence of rectangles R n with side-length

|B n | τ 1 × |B n | τ 2 , 1 ≤ τ 1 ≤ τ 2 and
where the largest side (of side-length |B n | τ 1 ) is in the direction of D. In this case, Theorem 2.10 yields the lower-bound dim H (lim

sup n→+∞ R n ) ≥ dim H (µ) τ 1 . Then if R n are the rectangles R n rotated by π 2 , Theorem 2.10 gives that dim H (lim sup n→+∞ R n ) ≥ dim H (µ) τ 2
. Moreover, under additional conditions, these lower bounds are equalities.

2.4. Application to self-similar dynamical coverings. We deal with points well approximable by orbits under an IFS with no exact overlap and satisfying the condition introduced by Barral and Feng ([3]) of being dimension regular with similarity dimension less than than d, after Hochman's work ( [START_REF] Hochman | On self-similar sets with overlaps and inverse theorems for entropy in R d[END_REF]). Denition 2.9. Let S = {f 1 , ..., f m } be a self-similar IFS of R d . Denote by 0 < c 1 , . . . , c m < 1 the contraction ratio of f 1 , . . . , f m . The system S is said to be dimension regular if, for any probability vector (p 1 , ..., p m ), the self-similar measure associated with S and the probability vector (p 1 , ..., p m ) veries

dim(µ) = min ® d, 1≤i≤m p i log(p i ) 1≤i≤m p i log(c i )
´.

Denoting by dim(S)(K) the unique real number s satisfying m i=1 c s i = 1, one has

dim H (K) = min {d, dim(S)(K)} .
Some notation useful when dealing with IFS are introduced now. These notations will be used repeatedly throughout this article.

Let S = {f 1 , ..., f m } be a self-similar IFS, 0 < c 1 . . . , c m < 1 the associated contraction ratios, and K the attractor of S. Let (p 1 , ..., p m ) be a probability vector with positive entries, µ the self-similar associated with S and (p 1 , ..., p m ).

Let Λ = {1, ..., m} and Λ * = k≥0 Λ k . For k ≥ 0 and i :

= (i 1 , ..., i k ) ∈ Λ k , dene c i = c i 1 • • • c i k , f i = f i 1 • • • • • f i k , Λ (k) = i = (i 1 , . . . , i s ) ∈ Λ * : c is 2 -k < c i ≤ 2 -k .
Theorem 2.14. Let S = {f 1 , ..., f m } be a dimension regular self-similar IFS with contraction ratio 0 < c 1 , . . . , c m < 1 and such that the attractor

K veries dim(S)(K) = dim H (K). For any x ∈ K, for any δ ≥ 1, (20) 
dim H lim sup

i∈Λ * B(f i (x), c δ i ) = dim H (K) δ .
This result extends some of the results obtained under the open set condition in [START_REF] Allen | On the Hausdor measure of shrinking target sets on self-conformal sets[END_REF] and [START_REF] Baker | Intrinsic Diophantine approximation for overlapping iterated function systems[END_REF]. Here are some examples of self-similar IFS satisfying the condition of Theorem 2.14 and some example of IFS for which the conclusion fails.

Any self-similar IFS satisfying the open set condition. This case was already established by Hill and Velani in [START_REF] Hill | The ergodic theory of shrinking targets[END_REF].

Any self-similar IFS on R satisfying the exponential separation condition (due to a result of Hochman [START_REF] Hochman | On self-similar sets with overlaps and inverse theorems for entropy in R d[END_REF]) or with algebraic contraction ratios, no exact overlaps dim(S) ≤ 1 (due to a result of Rapaport [START_REF] Rapaport | Proof of the exact overlaps conjecture for systems with algebraic contractions[END_REF]).

Let 0 < c 1 , ..., c m < 1 such that

1≤i≤m c i ≤ 1. For Lebesgue almost every (a 1 , ..., a d ) ∈ R d , the IFS S = {f 1 (•) = c 1 • +a 1 , ..., f m (•) = c m • +a m }
is also dimension regular (due to a result of Hochman [START_REF] Hochman | On self-similar sets with overlaps and inverse theorems for entropy in R d[END_REF]).

There exists some IFS satisfying dim(S) > d (so that dim H (K) ̸ = dim(S))

and for which

dim H W (x 0 , δ) = d
for every δ ∈ [1, δ 0 ] for some δ 0 > 1 (an explicit example can be found in [START_REF] Baker | Intrinsic Diophantine approximation for overlapping iterated function systems[END_REF]).

Let us also mention that it is known that it is equivalent for a self-similar IFS S to satisfy the open set condition and to satisfy H dim(S) (K) > 0, where K is the attractor of S (see [START_REF] Schief | Separation properties for self-similar sets[END_REF]). In particular, each of these examples which satises dim H (K) = dim(S) but not the open set condition also satises that H dim H (K) (K) = 0. In consequence, in such cases, the classical mass transference principle from Beresnevich and Velani [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF] cannot be applied.

2.5.

A result motivated by a question of Mahler.

Let Q = ¶ B( p q , q -2 ) © q∈N * , 0≤p≤q
. Remember the following result in Diophantine approximation [START_REF] Jarnik | Diophantischen approximationen und Hausdorsches mass[END_REF]:

• lim sup B∈Q B = [0, 1]. • For any δ ≥ 1, dim H (lim sup B∈Q B δ ) = 1 δ . (21) 
Unlike in the case of the points in [0, 1], the approximation by rational numbers of elements of the middle third Cantor set K 1/3 set is not well understood yet.

This question was raised by Mahler, and only some partial results are known (see [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF], [START_REF] Barral | Ubiquity and large intersections properties under digit frequencies constraints[END_REF], [START_REF] Bugeaud | Metric Diophantine approximation on the middle-third Cantor set[END_REF]). Here we consider the set K (0)

1/3 of points in [0, 1] having an asymptotic lower frequency of appearance of the digit 1 in basis 3 equal to 0. This set contains K 1/3 and has the same Hausdor dimension as K 1/3 . We compute the Hausdor dimension of sets of points in K (0) 1/3 which are well approximable by rational numbers.

To describe more precisely the problem, let S = {f 1 , f 2 , f 3 } where f 1 , f 2 and f 3 are the contracting ane maps of R dened by f 0

(x) = 1 3 x, f 1 (x) = 1 3 x + 1 3 and f 2 (x) = 1 3 x + 2 3 . The attractor of S is [0, 1]. Let Λ = {0, 1, 2}.
The shift operation on the symbolic space Λ N is dened by σ. The canonical projection from Λ N to [0, 1] is the mapping [START_REF] Heurteaux | Estimations de la dimension inférieure et de la dimension supérieure des mesures[END_REF] π :

x = (x n ) n∈N → lim n→+∞ f (x 1 ,...,xn) (0).
The set K 1/3 is the attractor of {f 0 , f 2 } and also the image by canonical projection of {0, 2} N . Denition 2.10. Let ϕ : Λ N → {0, 1} dened by

® ϕ(x) = 1 if x 1 = 1 ϕ(x) = 0 if x 1 = 0 or 2. and K (0) 1/3 = π Åß x ∈ Λ N : lim inf k→+∞ S k ϕ(x) k = 0 ™ã ,
where (S k ϕ) k∈N stands for the sequence of Birkho sums of ϕ.

It is proved in [START_REF] Fan | Recurrence, dimension and entropy[END_REF] that dim H K (0)

1/3 = log 2 log 3 (= dim H K 1/3
). As we will study the approximation of numbers of K (0) 1/3 , one introduces the irrationality exponent of a number. Denition 2.11. Let x ∈ R, we dene the irrationality of x ξ(x) by

ξ(x) = sup ß δ : x ∈ B( p q , 1 q δ ) for innitely many (p, q) ∈ Z × N * ™ .
Let us state the main results of this subsection.

Theorem 2.15. For every δ ≥ 1,

   dim H {x : ξ(x) ≥ 2δ} ∩ K (0) 1/3 = log 2 log 3 if 1 ≤ δ ≤ log 3 log 2 , dim H {x : ξ(x) = 2δ} ∩ K (0) 1/3 = 1 2δ if δ ≥ log 3 log 2 . (23) 
Observe that a saturation phenomenon occurs : for

1 ≤ δ ≤ log 3 log 2 dim H {x : ξ(x) ≥ 2δ} ∩ K (0) 1/3 = log 2 log 3
.

We also conjecture that for δ ∈ [1, log 3 log 2 ], [START_REF] Hill | The ergodic theory of shrinking targets[END_REF] should hold for the level set {x : ξ(x) = 2δ} .

In Section 3, the general mass transference principle, Theorem 2.2, is proved as well as Corollary 2.5. Section 4 gives estimations of essential contents in the self-similar case and Theorem 2.6 is proved.

Section 5 contains three applications to the main result, Theorem 2.2. More precisely, the mass transference principles for self-similar measures, Theorem 2.10 and Theorem 2.12, are proved in the rst sub-section. The second sub-section treats the case of self-similar dynamical coverings for dimension regular IFS with similarity dimension less than d, e.g, Theorem 2.14 is proved. In the last subsection, one gives an application in Diophantine approximation, Theorem 2.15 is proved.

3. Proof of Theorem 2.2 3.1. Preliminary facts. We gather in this subsection a series of results on which we will base the proof of Theorem 2.2.

The following lemma, which is a version of Besicovitch covering Lemma, as well as the subsequent one, both established in [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF], will be used several times.

Lemma 3.1. For any 0 < v ≤ 1 there exists Q d,v ∈ N ⋆ , a constant depending only on the dimension d and v, such that for every bounded subset E ⊂ R d , for every set F = B(x, r (x) ) :

x ∈ E, r (x) > 0 , there exists F 1 , ..., F Q d,v nite or countable sub-families of F such that:

• ∀1 ≤ i ≤ Q d,v , L ̸ = L ′ ∈ F i , one has 1 v L ∩ 1 v L ′ = ∅.
• E is covered by the families F i , i.e.

(

) E ⊂ 1≤i≤Q d,v L∈F i L. Lemma 3.2 ([14]). Let 0 < v ≤ 1, B = (B n 24 
) n∈N a family of balls, and B a ball such that

(i) ∀ n ≥ 1, |B n | ≥ 1 2 |B|, (ii) ∀ n 1 ̸ = n 2 ≥ 1, vB n 1 ∩ vB n 2 = ∅.
Then B intersects less than Q d,v elements of B, where Q d,v can be taken equal to the constant considered in Lemma 3.1.

The following lemma will also be useful later on and is also proved in [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF]. Lemma 3.3. Let L be a family of pairwise disjoint balls satisfying sup L∈L |L| < +∞. Then, for any v ≥ 1, there exists sub-families

L 1 , ..., L Q d,v (where Q d,v is the constant of the same name in Lemma 3.1) of L such that L = 1≤i≤Q d,v F i and for any L ̸ = L ′ ∈ L i , vL ∩ vL ′ = ∅.
Recall the following version of Frostman Lemma, due to Carleson. Proposition 3.4 ([11]). Let s ≥ 0. There is a constant κ d > 0 depending only on the dimension d such that for any bounded set E ⊂ R d with H s ∞ (E) > 0, there exists a probability measure supported by E, that we denote by m s E , such that [START_REF] Hutchinson | Fractals and self similarity[END_REF] for every ball B(x, r), m s

E (B(x, r)) ≤ κ d r s H s ∞ (E)
.

For s ≥ 0 and E ⊂ R d , a bounded subset such that H s ∞ (E) > 0, m s E will always denote such a measure associated with a (xed) constant κ d .

In the next two lemmas, the choice of the interval [START_REF] Barral | Heterogeneous ubiquitous systems in R d and Hausdor dimensions[END_REF][START_REF] Barral | The multifractal nature of heterogeneous sums of dirac masses[END_REF] is convenient to take enough space between the shrunk balls involved in the construction elaborated in Section 3.2.

Lemma 3.5.

Let t ∈ (5, 6), m ∈ M(R d ), and ε > 0. Let x ∈ R d be such that dim loc (m, x) ≤ β. Let C β,ε = 1 2 6 -β 2ε .
There exists an integer n x such that for every

n ≥ n x , (26) # 0 ≤ k ≤ n -1 : m(B(x, t -k-1 )) ≥ C β,ε m(B(x, t -k )) n ≥ 1 -ε.
Previous lemma is a slight extension of result by Käenmäki [12, Lemma 2.2],

which shows such a property at m-almost every point (where one has necessarily dim loc (m, x) ≤ d), and uses t integer (a choice that we could make). Thus, points with a given local dimension with respect to a measure m are for most scales locally doubling.

Proof. Observe rst that if for a constant 0 < C ≤ 1 and some integer n ∈ N one has

# 1 ≤ k ≤ n : m(B(x, t -k-1 )) ≥ Cm(B(x, t -k )) n ≤ 1 -ε, then there necessarily exist N = ⌊(n -1)ε⌋ integers 0 < k 1 < • • • < W n < n such that for every 1 ≤ i ≤ N , m(B(x, t -k i -1 )) ≤ Cm(B(x, t -k i )).
In particular, writing k N +1 = n and k 0 = 0, this implies that

m(B(x, t -n )) = N i=0 m(B(x, t -k i+1 )) m(B(x, t -k i )) ≤ N i=0 m(B(x, t -k i -1 )) m(B(x, t -k i )) ≤ C N ≤ C (n-1)ε ≤ C nε/2 = (t -n ) ε -log(C) 2 log(t) .
The inequality C (n-1)ε ≤ C nε/2 occurs when n is large enough. Recalling that dim loc (m, x) ≤ β, if this happens for innitely many n, one should have

β ≥ lim sup r→0 + log m(B(x, r)) log r ≥ ε -log(C) 2 log(t) , which is equivalent to C ≥ t -β 2ε .
Setting C ε,β = 1 2 6 -β 2ε , one concludes that there exists n x such that for every n ≥ n x , one necessarily has

# 0 ≤ k ≤ n -1 : m(B(x, t -k-1 )) ≥ C ε,β m(B(x, t -k )) n ≥ 1 -ε,
hence the result.

□

Lemma 3.6. Let m and µ be two elements of M([0, 1]), β ≥ 0 and ε > 0. For every x ∈ R d verifying dim loc (m, x) ≤ β, there exists ρ x > 0 and t x ∈ (5, 6) so that for all 0 < r ≤ ρ x there exists r ≤ r ′ ≤ r 1-ε such that [START_REF] Jarnik | Diophantischen approximationen und Hausdorsches mass[END_REF] m(B(x, r

′ /t x )) ≥ C β, ε 2 m(B(x, r ′ )) and µ(∂B(x, r ′ /t x )) = 0. Proof. Consider x ∈ R d such that dim loc (m, x) ≤ β.
We apply Lemma 3.5 to x and the measure m, and for an arbitrary t ∈ [START_REF] Barral | Heterogeneous ubiquitous systems in R d and Hausdor dimensions[END_REF][START_REF] Barral | The multifractal nature of heterogeneous sums of dirac masses[END_REF] and ε ′ = ε 2 : for n ≥ n x , there must be an integer n ′ such that n(1

-ε) ≤ n ′ ≤ n and m(B(x, t -n ′ -1 )) ≥ C β, ε 2 m(B(x, t -n ′ )). Let ρ x = min ¶ t -nx-1 , t -1 ε © . For r ∈ (0, ρ x ], let n be the integer such that t -n-1 < r ≤ t -n . The previous claim yields an integer n ′ ∈ [n(1 -ε 2 ), n] such that m(B(x, t -n ′ )) ≥ C β, ε 2 m(B(x, t -n ′ +1 )). Also, r ≤ r ′ = t -n ′ +1 ≤ t 1-(1-ε 2 )n = t 2 • t -n-1 • t ε 2 n ≤ t 2 • r • r -ε 2 ≤ r 1-ε . Consequently, m(B(x, r ′ /t)) ≥ C β, ε 2 m(B(x, r ′ )).
The desired conclusion holds if we choose t x ∈ (5, t) such that µ(∂B(x, r ′ /t x )) = 0. □

The previous lemma will be used in the case β = d in our proof the main theorem (see step 2 of the construction in Section 3.2).

Next, we introduce some some sets associated to a given element of M(R d ),

which will play a natural role in our construction.

Denition 3.1. Let β ≥ α ≥ 0 be real numbers, m ∈ M(R d ), and ε, ρ > 0 two positive real numbers. Then dene

(28) ‹ E [α,β],ρ,ε m = ¶ x ∈ R d : dim loc (m, x) ∈ [α, β] and ∀r ≤ ρ, m(B(x, r)) ≤ r dim loc (m,x)-ε © and (29) E [α,β],ρ,ε m = ß x ∈ ‹ E [α,β],ρ,ε m : ∀r ≤ ρ, 3 4 m(B(x, r)) ≤ m(B(x, r) ∩ ‹ E [α,β],ρ,ε m ) ™ Notice that, for every 0 < ρ < ρ ′ , one has E [α,β],ρ ′ ,ε m ⊂ E [α,β],ρ,ε m . Denition 3.2. Let β ≥ α ≥ 0 be real numbers, m ∈ M(R d ),
and ε > 0. Dene ( 30)

E [α,β],ε m = n≥1 E [α,β], 1 n ,ε m . Proposition 3.7. For every m ∈ M(R d ), every β ≥ α ≥ 0 and ε > 0, (31) m(E [α,β],ε m ) = m({x : dim loc (m, x) ∈ [α, β]}).
Notice that, for every 0 < ρ ′ < ρ, one has E

[α,β],ρ,ε m ⊂ E [α,β],ρ ′ ,ε m .
These sets play a key role in the proofs of Theorem 2.2 .

Proof. One rst recalls the following result. Lemma 3.8. [START_REF] Besicovitch | A general form of the covering principle and relative dierentiation of additive functions[END_REF] Let m ∈ M(R d ) and A be a Borel set with m(A) > 0. For every

r > 0, set (32) 
A(r) = ß x ∈ A : ∀r ≤ r, m(B(x, r) ∩ A) ≥ 3 4 m(B(x, r)) ™ Then (33) m r>0 A(r) = m(A).
Note that it is clear from Denition 2.2 that

{x : dim loc (m, x) ∈ [α, β]} = ρ>0 ‹ E [α,β],ρ,ε m .
Let ε ′ > 0. By Denition 2.2, there exists ρ ε ′ small enough so that (34)

m( ‹ E [α,β],ρ ε ′ ,ε m ) ≥ (1 -ε ′ )m({x : dim loc (m, x) ∈ [α, β]}).
By Lemma 3.8 (and the notations therein) applied to ‹ E

[α,β],ρ ε ′ ,ε m , there exists ρε ′ such that (35) m( ‹ E [α,β],ρ ε ′ ,ε m (ρ ε ′ )) ≥ (1 -ε ′ )m( ‹ E [α,β],ρ ε ′ ,ε m
).

Finally for ρ = min {ρ ε ′ , ρε ′ }, by Denition 3.1 and (32), one has ( ‹

E [α,β],ρ ε ′ ,ε m ) ρε ′ ⊂ E [α,β],ρ,ε m
, so that, by (34) and ( 35)

m(E [α,β],ρ,ε m ) ≥ m(( ‹ E [α,β],ρ ε ′ ,ε m (ρ ε ′ )) ≥ (1 -ε ′ )m(E [α,β],ε m ) ≥ (1 -ε ′ ) 2 m({x : dim loc (m, x) ∈ [α, β]}).
In particular

m({x : dim loc (m, x) ∈ [α, β]}) ≥ m(E [α,β],ε m ) ≥ (1-ε ′ ) 2 m({x : dim loc (m, x) ∈ [α, β]}).
Letting ε ′ → 0 proves the result. □ Corollary 3.9. For every m ∈ M(R d ), for α = dim H (m) and β = dim H (m), for any ε > 0, one has Let (ε k ) k∈N be a sequence decreasing to 0 and such that ε 1 < s(µ, B, U). For k ≥ 0, set (37)

(36) m(E [α,β],ε m ) = 1.
s k = min {s(µ, B, U), α} -ε k .
Along the construction of ζ, we only use that s k < s(µ, B, U) and the fact that s k < α is used at the end of our analysis (see equation ( 73)).

Step 1. We need the following lemma. Lemma 3.10 ([14]). Let µ ∈ M(R d ) and B = (B n := B(x n , r n )) n∈N be a µ-a.c sequence of balls of R d with lim n→+∞ r n = 0.

Then for every open set Ω and every integer g ∈ N, there exists a subsequence

(B (Ω) (n) ) ⊂ {B n } n≥g such that: (1) ∀ n ∈ N, B (Ω) (n) ⊂ Ω, ( 2 
) ∀ 1 ≤ n 1 ̸ = n 2 , B (Ω) (n 1 ) ∩ B (Ω) (n 2 ) = ∅, (3) µ 
Ä n≥1 B (Ω) (n) ä = µ(Ω).
In addition, there exists an integer N Ω such that for the balls (B (Ω) (n) ) n=1,...,N Ω , the conditions (1) and ( 2) are realized, and (3) is replaced by µ

Ä N Ω n=1 B (Ω) (n) ä ≥ 3 4 µ(Ω).
The last part of Lemma 3.10 simply follows from item (3) and the σ-additivity of µ.

Using Lemma 3.10 with,

(B n ) n∈Nµ(B,U ,s 1 ) (which is µ-a.c since s 1 < s(µ, B, U)), g = 0 and Ω = R d , one nds integers N 1 and n 1 < ... < n N 1 ∈ N µ (B, U, s 1 ) such that : (i) : ∀ 1 ≤ i ≤ N 1 , B n i ∩ B n j = ∅, (ii) : µ( 1≤i≤N 1 B n i ) ≥ 1 2 . By Lemma 3.3 applied to {B n i } 1≤i≤N 1 and v = 4, the balls {B n i } 1≤i≤N 1 can be sorted in Q d,4 families of balls L 1 , ..., L Q d,4 such that for any 1 ≤ i ≤ Q d,4 , any L ̸ = L ′ ∈ L i , 4L ∩ 4L ′ = ∅, 1≤i≤Q d,4 L i = {B n i } 1≤1≤N 1 .
At least one of these families, L i 0 , must satisfy [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF] .

µ L∈L i 0 L ≥ 1 2Q d,
In particular, if one must rename the balls of the family L i 0 , we can assume that the family [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF] .

{B n i } 1≤i≤N 1 satises (i ′ ) : for any 1 ≤ i < j ≤ N 1 , 4B n i ∩ 4B n j = ∅ (ii ′ ) : and (38) µ 1≤i≤N 1 B n i ≥ 1 2Q d,
Set

W 1 = {U n i } 1≤i≤N 1 and W 1 = 1≤i≤N 1 U n i .
Along the construction of the Cantor set, for every U ∈ U, the ball of B naturally associated with U will be denoted

B [U ] (that is B [Un] = B n ).
The pre-measure η on the σ-algebra generated by the sets of W 1 is dened by

(39) for every U ∈ W 1 , η(U ) = µ(B [U ] ) ‹ U ∈W 1 µ(B [ ‹ U ] ) . It is obvious that η(R d ) = η(W 1 ) = 1.
Recalling ( 8) and ( 9), since s 1 < s(µ, B, U), the sub-sequence (B n ) n∈Nµ(B,U ,s 1 ) is µ-a.-c. Recall also that lim n→+∞ r n = 0 and for every n ∈ N, |U n | ≤ r n .

So, for every n ∈ N µ (B, U, s 1 ),

H µ,s 1 ∞ (U n ) ≥ µ(B n ) and |U n | ≤ r n . (40) 
In particular, by Denition 2.4, for every n ∈ N µ (B, U, s 1 ) for any set

E n ⊂ U n with µ(E n ) = µ(U n ), µ(B n ) ≤ H µ,s 1 ∞ (U n ) ≤ H s 1 ∞ (E n ).
By Lemma 3.4, and the notations therein, one has

m s 1 En (U n ) = 1 ≤ κ d |U n | s 1 H s 1 ∞ (E n ) ≤ κ d |U n | s 1 µ(B n ) .
This implies that (41)

µ(B n ) ≤ κ d |U n | s 1 .
By equation (41), recalling the fact that the sets W 1 ⊂ {U n } n∈N , one has for every U ∈ W 1 ,

(42) η(U ) ≤ µ(B [U ] ) 1 2Q d,4 ≤ 2Q d,4 κ d |U | s 1 .
Step 2. This step (and all the following steps) is split into two sub-steps. First, into each open set U of W 1 , smaller intermediary balls are selected according to the µ-essential content of U . Then in a second time, each intermediary ball will be covered by balls of the sequence (B n ) n∈N according to the measure µ and, as in step 1, the sets U n associated with this covering will form the generation W 2 .

Let g ∈ N be such that for every n ≥ g, r n ≤ 1 3 min(|U | : U ∈ W 1 ). As above, since s 2 < s(µ, B, U), the sub-sequence (B n ) n∈Nµ(B,U ,s 2 ),n≥g is µ-a.c. The same arguments as above yield for every n ∈ N µ (B, U, s 2 ),

(43) H µ,s 2 ∞ (U n ) ≥ µ(B n ) and |U n | ≤ r n and (44) µ(B n ) ≤ κ d |U n | s 2 .
Covering with respect to the µ-essential content.

Consider U ∈ W 1 . Set β = dim H (µ). For 0 ≤ k ≤ ⌊ β-α ε 2 ⌋ + 1, dene θ k = α + kε 2 . Write (45) E U = U ∩ E [α,β],ε 2 µ ∩ lim sup n→+∞ B n .
Notice that by Proposition 3.7 and by item (1) of Proposition 2.1, one has µ(E U ) = µ(U ).

In addition, using the denition ( 6) of H µ,s 2 ∞ , the fact that E U ⊂ U and µ(E U ) = µ(U ), and nally [START_REF] Barral | Ubiquity and large intersections properties under digit frequencies constraints[END_REF] 

applied with B n = B [U ] , one gets (46) H s 2 ∞ (E U ) ≥ H µ,s 2 ∞ (U ) ≥ µ(B [U ] ) > 0.
This allows us to apply Proposition 3.4: there exists a Borel probability measure

m s 2 E U
supported on E U such that for every ball B := B(x, r), one has

m s 2 E U (B) ≤ κ d r s 2 H s 2 ∞ (E U ) . Also, since m s 2 E U (E U ) = 1 and E U ⊂ E [α,β],ε 2 µ
, and recalling [START_REF] Persson | On shrinking targets for piecewise expanding interval maps[END_REF], for any 0

≤ k ≤ ⌊ β-α ε 2 ⌋ + 1, there exists ρ k,ε 2 such that m s 2 E U (E [θ k ,θ k+1 ],ρ k,ε 2 ,ε 2 µ ) ≥ 1 2 m s 2 E U (E [θ k ,θ k+1 ],ε µ ). Setting ρ U = min 0≤k≤⌊ β-α ε 2 ⌋+1 ρ k,ε 2 one has, for any 0 ≤ k ≤ ⌊ β-α ε 2 ⌋ + 1, (47) 
m s 2 E U (E [θ k ,θ k+1 ],ρ U ,ε 2 µ ) ≥ 1 2 m s 2 E U (E [θ k ,θ k+1 ],ε µ ).
In particular, (48)

m s 2 E U (E [α,β],ρ U ,ε 2 µ ) ≥ 1 2 Let (49) S U := 0≤k≤⌊ β-α ε 2 ⌋+1 E [θ k ,θ k+1 ],ρ U ,ε 2 µ ∩ E U ∩ x ∈ R d : dim loc (m s 2 E U , x) ≤ d .
Recalling that for every probability measure m, m({x

= dim loc (m, x) ≤ d}) = 1, one necessarily has m s 2 E U (S U ) ≥ 1/2. Let x ∈ S U ; consider 0 ≤ k x ≤ ⌊ β-α ε 2 ⌋+1 such that x ∈ E [θ kx ,θ kx+1 ],ρ U ,ε 2 µ
. Applying Lemma 3.6, there exists 0 < r x < min ρ x , 1 3 min {|V | : V ∈ W 1 } and t x ∈ [START_REF] Barral | Heterogeneous ubiquitous systems in R d and Hausdor dimensions[END_REF][START_REF] Barral | The multifractal nature of heterogeneous sums of dirac masses[END_REF] such that:

10 r x < ρ U ;

(50) B(x, r x ) ⊂ U and µ(∂B(x, r x /t x )) = 0;

(51) ] ) ;

r -ε 2 x ≥ 5 d 4Q d,1 C ε 3 ,d η(U ) µ(B [U ] ) ≥ 5 s 2 4Q d,1 C ε 2 ,d η(U ) µ(B [U
(52)

r θ kx +2ε 2 x ≤ µ(B(x, r x )) ≤ r θ kx -2ε 2 x ; (53) m s 2 E U (B(x, r x /t x )) ≥ C ε 2 ,d • m s 2 E U (B(x, r x )).
Note that in (52) the second inequality follows automatically from the rst one since s 2 ≤ α ≤ d and the constant C ε,d is an increasing function of ε.

The family {B(x, r x ) : x ∈ S U } forms a covering of S U . We apply Lemma 3.1 with v = 1 (i.e., the standard Besicovich covering Theorem) to this family to

extract Q d,1 subfamilies of balls, G U 1 , ..., G U Q d,1
such that:

• ∀1 ≤ i ≤ Q d,1 , ∀B ̸ = B ′ ∈ G U i , one has B ∩ B ′ = ∅, • S U ⊂ Q d,1 i=1 B∈G U i B.
In particular, m s 2

E U Ä Q d,1 i=1 B∈G U i B ä ≥ m s 2 E U (S U ) ≥ 1/2. At least one of these families, say G U i 0 , veries that m s 2 E U Ö B∈G U i 0 B è ≥ m s 2 E U (S U ) Q d,1 ≥ 1 2Q d,1
.

Writing G U i 0 = B U i 0 ,k k∈N
, one can nd an integer N U so large that

m s 2 E U 1≤k≤N U B U i 0 ,k ≥ 1 4Q d,1
.

Remind that each B U i 0 ,k is a ball B(x, r x ) satisfying (51), ( 52) and (54). Finally, setting G U = B(x, r x /t x ) : B(x, r x ) ∈ F U i 0

, one has by construction (55)

m s 2 E U B∈G U B = B∈G U m s 2 E U (B) ≥ C ε 2 ,d 4Q d,1 .
One then extends the pre-measure η to the Borel σ-algebra generated by the balls of G U , by the formula (56)

for every B ∈ G U , η(B) = η(U ) × m s 2 E U (B) B ′ ∈G U m s 2 E U (B ′ )
.

By construction, this formula is consistent since η(U ) = B∈G U η(B).

Observe that by ( 25), ( 55) and ( 46), one has for every

B ∈ G U , η(B) ≤ η(U )κ d |B| s 2 H s 2 ∞ (E U ) 4Q d,1 C ε 2 ,d ≤ 4Q d,1 κ d C ε 2 ,d η(U ) µ(B [U ] ) |B| s 2 ≤ |B| s 2 -ε 2 , ( 57 
)
where the second inequality of (52) was used. This is achieved simultaneously for all U ∈ W 1 .

Covering with respect to µ. Now, in order to build the second generation of the Cantor set K, we select balls of B that lie in the interior of these intermediate balls B ∈ G U . Let U ∈ W 1 and B ∈ G U be one of these intermediary balls. Since B is µ-a.c., the last part of Lemma 3.10 proves the existence of a nite family

F B = {U n i } 1≤i≤N B such that (i 1 ) for every 1 ≤ i ≤ N B , one has B n i ⊂ B and (58) max ß 2Q d,4 η(B) µ(B) , 5 d 4Q d,1 κ d C ε 3 ,d ™ ≤ r -ε 2 n i , (i 2 ) for every 1 ≤ i ̸ = j ≤ N B , one has B n i ∩ B n j = ∅.
In addition, recalling that µ(∂B) = 0 by (51), one has

µ(B n i ) > 0 and µ 1≤i≤N B B n i ≥ 3µ( B) 4 = 3µ(B) 4 .
Recall the denitions ( 29) and (49) of the sets E

[a,b],ρ U ,ε 2 µ and S U . By equations ( 50)-( 54), there exists α ≤ a ≤ β such that the center of B belongs to

S U ⊂ E [a,a+ε 2 ],ρ U ε 2 , µ and |B| ≤ ρ U , hence one has µ(B ∩ ‹ E [a,a+ε 2 ],ρ U ,ε 2 µ ) ≥ 3 4 µ(B).
By (i 2 ), and recalling ( 29), one has

µ Bn i :Bn i ∩ ‹ E [a,a+ε 2 ],ρ U ,ε 2 µ ̸ =∅ B n i ≥ µ 1≤i≤N B B n i ∩ ‹ E [a,a+ε 2 ],ρ U ,ε 2 µ = µ 1≤i≤N B B n i + µ Ä ‹ E [a,a+ε 2 ],ρ U ,ε 2 µ ä -µ ‹ E [a,a+ε 2 ],ρ U ,ε 2 µ 1≤i≤N B B n i ≥ 3 4 µ(B) + 3 4 µ(B) -µ(B) = 1 2 µ(B).
By a slight abuse of notations, up to an extraction, we still denote by

{B n i } 1≤i≤N B the balls B n i such that B n i ∩ ‹ E [a,a+ε 2 ],ε 2 ,ρ U µ ̸ = ∅.
The last inequality implies that the family of balls {B n i } 1≤i≤N B can be chosen so that it veries conditions (i 1 ) and (i 2 ), as well as the two following additional conditions:

(i 3 ) µ(B n i ) > 0 and µ 1≤i≤N B B n i ≥ µ( B) 2 = µ(B) 2 , (i 4 ) for every 1 ≤ i ≤ N B , B n i ∩ ‹ E [a,a+ε 2 ],ρ U ,ε 2 µ ̸ = ∅.
The obtained family is still denoted by F B . Applying again Lemma 3.3 to F B with v = 4, as in step one (see ( 38), (i ′ ) and (ii ′ )), if one must consider a subfamily, one can assume that the family F B satises (i 1 ) and (i 4 ) as well as the following condition (i ′

2 ) and (i ′ 3 ):

(i ′ 2 ) : for every 1 ≤ i ̸ = j ≤ N B , one has 4B n i ∩ 4B n j = ∅. (i ′ 3 ) : µ(B n i ) > 0 and µ 1≤i≤N B B n i ≥ µ( B) 2Q d,4 = µ(B) 2Q d,4 ,
Finally one denes

W 2 = U ∈W 1 B∈F 1,U F B and W 2 = L∈W 2 L.
The pre-measure η is then extended to the σ-algebra generated by the elements of W 2 by setting for every U ∈ W 1 , every B ∈ G U and V ∈ F B , (59)

η(V ) = η(B) × µ(B [V ] ) V ′ ∈F B µ(B [V ′ ] )
.

By construction, one has

V ∈F B η(V ) = η(B)
. Also, (58),(59), and (i ′ 3 ) imply ( 60)

η(V ) µ(B [V ] ) ≤ 2Q d,4 η(B) µ(B) ≤ |V | -ε 2 ,
so that by ( 44) and (60) one has

η(V ) ≤ 2Q d,4 η(B) µ(B) × µ(B [V ] ) ≤ |B [V ] | -ε 2 |V | s 2 ≤ |V | s 2 -ε 2 .
(61) 3.2.1. Recurrence scheme and end of the construction. Let p ∈ N * be an integer, and set W 0 = R d . Suppose that sets of balls W 1 , ..., W p as well as the measure η are constructed such that :

(1) for every 1 ≤ q ≤ p, W q ⊂ {U n } n≥q , W q ⊂ W q-1 , and η is dened on the σ-algebra generated by the elements of p q=1 W q . (2) For every 1 ≤ q ≤ p -1, for every U ∈ W q , setting, as in step 2,

E U = lim sup n∈Nµ(B,U ,sq) B n ∩ U ∩ E [α,β],εq µ , then H sq ∞ (E U ) > 0. If m sq E U stands for
the measure associated with E U provided by Proposition 3.4, there exists ρ U > 0 such that, for every 0

≤ k ≤ ⌊ β-α εq ⌋ + 1, setting θ k = θ (q) k = α + kε q , one has m sq E U (E U ∩ E [θ k ,θ k+1 ],ρ U ,εq µ ) ≥ 1 2 m sq E U (E U ∩ E [θ k ,θ k+1 ],εq µ ).
In particular,

m sq E U (E U ∩ 0≤k≤⌊ β-α εq ⌋+1 E [θ k ,θ k+1 ],ρ U ,εq µ ) ≥ 1 2 .
(3) For every 1 ≤ q ≤ p -1, for every U ∈ W q , there exists a nite family G U of balls B(x, r x /t x ), where x, r x < 1 3 min ¶ | U | : U ∈ W q © and t x satisfy (50), ( 51), ( 52), ( 54) and (55). Also, if

B ̸ = B ′ ∈ G U , 3B ∩ 3B ′ = ∅.
Also, for every B ∈ G U , ( 56) and (57) hold true. Moreover W q+1 ⊂ U ∈Wq G U . (4) For every 1 ≤ q ≤ p -1, for every U ∈ W q , for every B ∈ G U there exists a family F B ⊂ {U n } n≥q of pairwise disjoint open sets such that :

• for every U ̸ = U ∈ F B , one has (62) 4B [ ‹ U ] ∩ 4B [ " U ] = ∅;
• for every U ∈ F B , U ⊂ B, (59) and (61) hold true, as well as

(63) 2Q d,4 η(B) µ(B) ≤ |B [ ‹ U ] | -ε q+1
and (64)

B [ ‹ U ] ∩ ‹ E [θ k B ,θ k B +1 ],ρ U ,ε q+1 µ ̸ = ∅;
• the following inequality also holds true: [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF] .

(65) µ Ñ ‹ U ∈F B B [ ‹ U ] é ≥ µ(B) 2Q d,
In item (3), the fact that 3B ∩3B ′ = ∅ just follows from the choice of B(x, r x /t x ) instead of simply B(x, r x ).

The proof follows then exactly and rigorously the same lines as in Step 2. We do not reproduce it here, the only dierences are that W 1 , W 2 and s 2 are replaced by W p , W p+1 and s p+1 .

Finally, dene the Cantor set

K = p≥1 W p = p≥1 V ∈Wp B [V ] .
Applying Caratheodory's extension Theorem to the pre-measure η yields a probability outer-measure on R d that we still denote by η, which is metric, so that Borel sets are η-measurable and its restriction to Borel sets belongs to M(R d ).

The so obtained measure η is fully supported on K. Also, for every p ≥ 2, for any U ∈ W p , B ∈ G U , and U ∈ F B , the inequalities (56), ( 57),( 59) and (61) holds with s p and ε p instead of s 2 and ε 2 .

3.2.2.

Upper-bound for the mass of a ball. One rst recall the following lemma (see, e.g., [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF]). Lemma 3.11. Let A = B(x, r) and B = B(x ′ , r ′ ) be two closed balls, q ≥ 3 such that A ∩ B ̸ = ∅ and A \ (qB) ̸ = ∅. Then r ′ ≤ r and qB ⊂ 5A.

Dene the gauge function ζ : R + → R + as follows:

• if for some p ≥ 1,

1 3 min {|U | : U ∈ W p+1 } ≤ r < 1 3 min {|U | : U ∈ W p }, then ζ(r) = 2Q d,4 10 d r sp-5εp , • if r ≥ 1 3 min {|U | : U ∈ W 1 }, ζ(r) = 1, • ζ(0) = 0. Since ε p → 0, one checks that lim r→0 + log(ζ(r)) log(r) = min {s(µ, B, U), dim H (µ)}. Let A be a ball of radius r. If there exists n ∈ N such that A does not intersect K n then η(A) = η(A ∩ K n ) = 0. Suppose that for every n ∈ N, A intersects K n .
The goal is to prove that η(A) ≤ ζ(|A|) when |A| is small. Some cases must be distinguished.

First if for every n ∈ N, A intersects only one contracted set V n of K n , then by (57)

η(A) ≤ η(V n ) ≤ |V n | sn-εn → n→+∞ 0.
In the other case, there exists p ∈ N such that A intersects only one element of W p , and at least two elements of W p+1 . Denote by U the unique element of W p intersecting A. 

η(A) = η(U ) × B∈G U :B∩A̸ =∅ m s p+1 E U (B) B ′ ∈G U m s p+1 E U (B ′ ) ≤ 4Q d,1 C ε p+1 ,d η(U )m s p+1 E U (5A).
Then, by ( 25), ( 46), ( 58) and ( 60)

η(A) ≤ 4Q d,1 C ε p+1 ,d η(U )κ d (5|A|) s p+1 H µ,s p+1 ∞ (E U ) ≤ 5 s p+1 4Q d,1 κ d C ε p+1 ,d η(U ) µ(B [U ] ) |A| s p+1 ≤ |A| s p+1 |U | -2εp ≤ |A| s p+1 -2ε p+1 ≤ ζ(|A|), (67) 
where we used that|A| < |U |, and the mappings x → |U | -x and x → x -ε p+1 are decreasing.

(3) Case 3: If A intersects only one ball of G U : calling B this particular ball and r B its radius (at this stage there should be no confusion with the radii of the terms of the sequence (B n ) n≥1 ), two cases must again be distinguished:

(a) Subcase 3.1: |B| ≤ |A|: by (57), 

η(A) ≤ η(B) ≤ |B| s p+1 -ε p+1 ≤ |A| s p+1 -ε p+1 ≤ ζ(|A|). (68) 
V ∩A̸ =∅ B [V ] ⊂ 5A.
Then, ( 59) and (65) imply that

η(A) = η(B) • V ∈W p+1 :V ∩A̸ =∅ µ(B [V ] ) V ′ ∈F B µ(B [V ′ ] ) ≤ 2Q d,4 η(B) µ(B) µ(5A). (70) 
Recalling (69), the ball 5A contains some of the balls of F B : Hence, by (64), ‹ E

[θ k B ,θ k B +1 ],ρ U ,ε p+1 µ ∩ 5A ̸ = ∅. Since |A| ≤ |B|, by (50), since r B < 1 10 ρ U , for any x ∈ ‹ E [θ k B ,θ k B +1 ],ρ U ,ε p+1 µ ∩ 5A one has (71) µ(5A) ≤ µ(B(x, 10r)) ≤ (10r) θ k B -2ε p+1 .
Recalling (53) (applied to the ball B), one has

(72) µ(B) ≥ (r B ) θ k B +2ε p+1 .
Using (57) (applied to B) (70), ( 71) and (72), one obtains

η(A) ≤ 2Q d,4 r s p+1 -ε p+1 B 10r θ k B -2ε p+1 r θ k B +2ε p+1 B = 2Q d,4 10 θ k B -2ε p+1 r s p+1 -θ k B - ε p+1 δ -2ε p+1 B r s p+1 -θ k B -ε p+1 -2ε p+1 r s p+1 -θ k B -ε p+1 -4ε p+1 ≤ 2Q d,4 10 θ k B -2ε p+1 r s p+1 -5ε p+1 .
Finally, recalling (37), s p+1 -5ε p+1 ≤ α ≤ θ k , and since r B ≥ r and s p ≤ s p+1 , one gets

η(A) ≤ 2Q d,4 10 θ k -ε p+1 r s p+1 -5ε p+1 ≤ 2Q d,4 10 d-ε p+1 |A| sp-5εp ≤ 2Q d,4 10 d-ε p+1 |A| sp-5εp , hence (73) 
η(A) ≤ ζ(|A|).
Since for any p ∈ N and any ball A satisfying |A| ≤ 1 3 min {|U | : U ∈ W p }, if A intersects at most one element of W p , the inequalities (66), ( 67), ( 68), (73) proves that for any such ball, one has η(A) ≤ ζ(|A|). The following propositions are directly derived from the properties of the standard Hausdor measures. Proposition 3.12. Let µ ∈ M(R d ), s ≥ 0 and A ⊂ R d be a Borel set. The s-dimensional H µ,s ∞ (•) outer measure satises the following properties:

(1) If |A| ≤ 1, the mapping s ≥ 0 → H µ,s ∞ (A) is decreasing from H µ,0 ∞ (A) = 1 to lim t→+∞ H µ,t ∞ (A) = 0.
(

) 0 ≤ H µ,s ∞ (A) ≤ min {|A| s , H s ∞ (A)}. 2 
(3) For every subset

B ⊂ A with µ(A) = µ(B), H µ,s ∞ (A) = H µ,s ∞ (B). ( 4 
) For every δ ≥ 1, H µ, s δ ∞ (A) ≥ (H µ,s ∞ (A)) 1 δ .
(5) For every s > dim H (µ), H µ,s

∞ (A) = 0.
Proof. Items (1), ( 2), (3) directly follow from the denition. Item (4) is obtained by concavity of the mapping x → |x| 1/δ .

(5) By Denition 2.2, for any s > dim H (µ), there exists a set E with dim H (E) < s and µ(E) = 1. Using item (2), one has then 0 ≤ H µ,s

∞ (A) = H µ,s ∞ (A ∩ E) ≤ H s ∞ (A ∩ E) ≤ H s (E) = 0. □ 3.3.2.
Proof of Corollary 2.5. One starts with a lemma, the proof of which can be found in [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF].

Lemma 3.13. Let µ ∈ M(R d ). Let B = (B n := B(x n , r n )) n∈N be a µ-a.c sequence of balls of R d . Then for every ε > 0, there exists a µ-a.c sub-sequence

(B ϕ(n) ) n∈N of B such that for every n ∈ N, µ(B ϕ(n) ) ≤ (r ϕ(n) ) dim H (µ)-ε .
Proof of Corollary 2.5. [START_REF] Allen | On the Hausdor measure of shrinking target sets on self-conformal sets[END_REF] Observe that item (2) of Proposition 3.12 implies that t(µ, δ, ε, B) ≥ dim H (µ) -ε, and t(µ, δ, B) ≥ dim H (µ).

Now choose ε > 0 so small that

(1-ε)dim H (µ) δ•t(µ,δ,ε,B) ≤ 1.
Recalling Lemma 3.13, up to an extraction, one can assume that for any n ∈ N,

µ(B n ) ≤ |B n | (1-ε 2 ).dim H (µ) .
Due to [START_REF] Carleson | Selected Problems on Exceptional Sets[END_REF], there exists N ε ∈ N such that for any n ≥ N ε ,

H µ,dim H (µ)-ε ∞ ( Bδ n ) ≥ |B δ n | (1+ε).t(µ,δ,ε,B
) . Then, Proposition 3.12 (4) implies that for every n ≥ N ε ,

H µ, (1-ε)dim H (µ)×(dim H (µ)-ε) δ•t(µ,δ,ε,B) ∞ ( Bδ n ) ≥ (H µ,dim H (µ)-ε ∞ (B δ n )) (1-ε)dim H (µ) δ•t(µ,δ,ε,B) ≥ |B δ n | (1+ε)t(µ,δ,ε,B) δ•t(µ,δ,ε,B) (1-ε) 
.dim H (µ) ≥ |B n | (1+ε)(1-ε)dim H (µ) ≥ µ(B n ). Thus, setting s δ,ε = (1-ε)dim H (µ)×(dim H (µ)-ε) δ•t(µ,δ,ε,B) , Corollary 2.4 yields dim H (lim sup n→+∞ Bδ n ) ≥ s δ,ε .
Since the result holds for any ε > 0, one gets the desired conclusion. □

Estimation of essential content for self-similar measures

In this section one computes the Hausdor content of balls in the case of the Lebesgue measure, and estimates it for any self-similar measure. 

≤ s ≤ d, H L d ,s ∞ (B) = H L d ,s ∞ ( B) = r s .
Proof. One starts rst by computing

H L d ,d ∞ (B). Let ε > 0, and let E ⊂ B be a Borel set with L d (E) = L d (B). Notice rst that since B covers E, recalling that R d is endowed with || • || ∞ one has H L d ,d ∞ (E) ≤ H d ∞ (B) ≤ |B| d . Consider a sequence of balls (L n ) n∈N such that H d ∞ (E) ≤ n≥0 |L n | d ≤ (1 + ε)H d ∞ (E).
This implies

(1 + ε)|B| d ≥ (1 + ε)H d ∞ (B) ≥ (1 + ε)H d ∞ (E) ≥ n≥0 |L n | d ≥ n≥0 L d (L n ) ≥ L d (E) = L d (B) = |B| d .
Taking the inmum on the Borel sets

E ⊂ B such that L d (E) = L d (A) gives |B| d ≤ (1 + ε)H L d ,d ∞ (B).
In particular,

1 1 + ε |B| d ≤ H L d ,d ∞ (B) ≤ |B| d . Letting ε → 0 shows that H L d ,d ∞ (B) = |B| d .
This implies, with item (4) of Proposition 3.12, that for any δ ≥ 1,

|B| d δ ≥ H L d , d δ ∞ (B) ≥ (H L d ,d ∞ (B)) 1 δ = |B| d δ , hence the result. □ 4.2.
Proof of Theorem 2.6. Proposition 4.2. Let µ be a self-similar measure. For any 0 < ε ≤ dim(µ), there exists a constant κ(d, µ, ε) ∈ (0, 1) such that for any ball B = B(x, r) with x ∈ K (the attractor of the underlying IFS) and r ≤ 1, one has

κ(d, µ, ε)|B| dim(µ)-ε ≤ H µ,dim(µ)-ε ∞ ( B) ≤ H µ,dim(µ)-ε ∞ (B) ≤ |B| dim(µ)-ε .
In addition, for any s > dim(µ) one has H µ,s ∞ (B) = 0.

Proof. Let {f 1 , ..., f m } the underlying IFS. Denote by c i the contraction ration of f i , and (p 1 , ..., p m ) the probability vector with positive entries associated with µ so that (13) is satised. Set α = dim(µ) and Λ = {1, ..., m}. For k ≥ 0 and i :

= (i 1 , ..., i k ) ∈ Λ k , dene • c i = c i 1 ...c i k , f i = f i 1 • ... • f i k and K i = f i (K), so that |K i | = c i |K|. • Λ (k) = i := (i i , ..., i s ) : c is 2 -k < c i ≤ 2 -k .
Note rst that item (5) of Proposition 3.12 implies that for any s > dim(µ), H µ,s ∞ (B) = 0.

Let us consider 0 ≤ s < dim H (µ) and start by few remarks. Recalling [START_REF] Liao | Diophantine approximation by orbits of expanding Markov maps[END_REF] and Proposition 3.7, let us x ρ ε so that µ(E

[α,α],ρε,ε µ ) ≥ 1 2 and write E = E [α,α],ρε,ε µ . Set Λ * := k≥0 Λ k , and for i ∈ Λ * , dene E i = f i (E) and µ i = µ(f -1 i ). One has E i = f i (x) ∈ R d : x ∈ K∀ r ≤ ρ ε , µ(B(x, r)) ≤ r α-ε = ® f i (x) : x ∈ K, ∀, c i r ≤ c i ρ ε , µ(f -1 i (B(f i (x), rc i ))) ≤ Å rc i c i ã α-ε = ® y ∈ K i : ∀r ′ ≤ c i ρ ε , µ i (B(y, r ′ )) ≤ Å r ′ c i ã α-ε ´, (74) 
Also, µ i (E i ) = µ(E) ≥ 1 2 .

One emphasizes that iterating the self-similarity equation gives

µ = i ′ ∈Λ k p i ′ µ i ′ ,
which implies that µ i is absolutely continuous with respect to µ (since all p i 's are strictly positive).

We are now ready to estimate the µ-essential content of a ball B centered on K.

Let B = B(x, r) with x ∈ K and r ≤ min 1≤i≤m c i .

Since x ∈ K, there exists an i such that min 1≤j≤m c j r ≤ c i |K| ≤ r and K i ⊂ B.

By construction, E i ⊂ B. Consider a Borel set A ⊂ B such that µ(A) = µ(B). One aims at giving a lower-bound of the Hausdor content of A which does not depends on A.

Consider a sequence of balls (L n = B(z n , ℓ n )) n≥1 covering A ∩ E i , such that ℓ n < ρ ε c i and z n ∈ A ∩ E i . Since µ i is absolutely continuous with respect to µ, it holds that µ i (A) = 1.

By (74) applied to every n ∈ N , one has Ä

|Ln| c i ä α-ε ≥ µ i (L n ), so that (75) n∈N |L n | α-ε ≥ n∈N c α-ε i µ i (L n ) ≥ c α-ε i µ i n∈N L n ≥ c α-ε i µ i (E i ) ≥ 1 2 c α-ε i .
This series of inequalities holds for any sequence of balls (L n ) n∈N with radius less than ρ ε c i centered on A ∩ E i and covering A ∩ E i . Now, assume that (L n ) n∈N is a sequence of balls covering A ∩ E i , which still veries ℓ n < ρ ε c i but z n does not necessarily belongs to A ∩ E i .

Let n ∈ N. One constructs recursively a sequence of balls (L n,j ) 1≤j≤Jn such that the following properties hold for any 1 ≤ j ≤ J n :

L n,j is centered on

A ∩ E i ∩ L n ; A ∩ E i ∩ L n ⊂ 1≤j≤Jn L n,j ; for all 1 ≤ j ≤ J n , |L n,j | = |L n |;
the center of L n,j does not belong to any L n,j ′ for 1 ≤ j ′ ̸ = j ≤ J n .

To achieve this, simply consider

y 1 ∈ A ∩ E i ∩ L n and set L 1,n = B(y 1 , ℓ n ). If A ∩ E i ∩ L n ⊈ L 1,n , consider y 2 ∈ A ∩ E i ∩ L n \ L 1,n and set L 2,n = B(y 2 , ℓ n ). If A ∩ E i ∩ L n ⊈ L 1,n ∪ L 2,n , consider y 3 ∈ A ∩ E i ∩ L n \ L 1,n ∪ L 2,
n and set L 3,n = B(y 3 , ℓ n ), and so on... Note that, for any 1 ≤ j ≤ J n , any ball L j,n has radius ℓ n , intersects L n (which also has radius ℓ n ) and, because y j / ∈ 1≤j ′ ̸ =j≤Jn L j ′ ,n , it holds that, for any j ̸ = j ′ ,

1 3 L n,j ∩ 1 3 L n,j ′ = ∅. By Lemma 3.2, this implies that J n ≤ Q d, 1 3 .
Hence, denoting by ( L n ) n∈N the collection of the corresponding balls centered on A ∩ E i associated with all the balls L n , one has by (75) applied to ( L n ) n∈N :

n∈N |L n | α-ε ≥ 1 Q d, 1 3 n∈N | L n | α-ε ≥ 1 2Q d, 1 3 c α-ε i .
Remark also that any ball of radius smaller that r can be covered by at most ( 2 ρε ) d balls of radius rρ ε . This proves that, for any sequence of balls L n covering A ∩ E i , since c i ≥

min 1≤j≤m c j |K| |B|, it holds that (76) n∈N | L n | α-ε ≥ ρ d ε 2 d+1 Q d, 1 3 c α-ε i ≥ min 1≤j≤m c α-ε j ρ d ε |K| α-ε 2 d+1 Q d, 1 3 |B| α-ε .
Recall [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF]. Since (76) is valid for any covering ( L n ) n∈N of A ∩ E i , one has (77)

|B| α-ε ≥ H α-ε ∞ (A) ≥ H α-ε ∞ (A ∩ E i ) ≥ min 1≤j≤m c α-ε j ρ d ε |K| α-ε 2 d+1 Q d, 1 3 |B| α-ε .
Taking the inmum over all the Borel sets A ⊂ B satisfying µ(A) = µ(B), one gets

|B| α-ε ≥ H µ,α-ε ∞ (B) ≥ min 1≤j≤m c α-ε j ρ d ε |K| α-ε 2 d+1 Q d, 1 3 |B| α-ε .
The results stands for balls of diameter less than min 1≤j≤m c j . Then for any ball B centered on K with |B| ≤ 1, remarking that

|B| α-ε ≥ H µ,α-ε ∞ (B) ≥ H µ,α-ε ∞ ( min 1≤j≤m c j B)
and setting κ(d, µ, ε) =

min 1≤j≤m c 2(α-ε) j ρ d ε |K| α-ε 2 d+1 Q d, 1 3 
yields the desired inequality.

□

Remark 4.3. Note that in the proof of Proposition 4.2, the estimate of H µ,s

∞ (B)
for s < dim(µ) only relies on the absolute continuity of µ(f -1 i (•)), for any i ∈ Λ * . In particular, the same estimates holds for any quasi-Bernoulli measures (which are proved to be exact-dimensional, see [START_REF] Heurteaux | Estimations de la dimension inférieure et de la dimension supérieure des mesures[END_REF]). This result in hand, one establishes the more general Theorem 2.6.

Proof of Theorem 2.6. Note rst, that by item [START_REF] Barral | Heterogeneous ubiquitous systems in R d and Hausdor dimensions[END_REF] of Proposition 3.12, for any s > dim(µ) and any set E, one has H µ,s ∞ (E) = 0. Let us x s < dim(µ) and set ε = dim(µ) -s > 0. 

Since K ∩ Ω ⊂ Ω and µ(K ∩ Ω) = µ(Ω), it holds that H µ,s ∞ (Ω) ≤ H s ∞ (Ω ∩ K).
c(d, µ, s)H s ∞ (Ω ∩ K) ≤ H µ,s ∞ (Ω)
holds.

Let E ⊂ Ω be a Borel set such that µ(E) = µ(Ω) and

(78)

H s ∞ (E) ≤ 2H µ,s ∞ (Ω). Let {L n } n∈N be a covering of E by balls verifying (79) H s ∞ (E) ≤ n≥0 |L n | s ≤ 2H s ∞ (E).
The covering (L n ) n∈N will be modied to get a covering ( L n ) n∈N which veries the following properties:

• K ∩ Ω ⊂ n∈N L n ; • n∈N L n ⊂ n∈N L n ; • one has n≥0 | L n | s ≤ 8 • 2 s Q 2 d,1 κ(d, µ, ε) n≥0 |L n | s ,
where κ(d, µ, ε) is the constant introduced in Proposition 4.2 and Q d,1 is the constant arising in Proposition 3.8 applied with v = 1. Last item together with (78) and (79) then immediately imply that

κ(d, µ, ε) 8 • 2 s Q 2 d,1 H s ∞ (K ∩ Ω) ≤ H µ,s ∞ (Ω),
and setting c(d, µ, s) = κ(d,µ,dim(µ)-s)

8•2 s Q 2 d,1
concludes the proof.

Let us start the construction of the sequence of balls

( L n ) n∈N . Let X = (K \ n∈N L n ) ∩ Ω.
For every x ∈ X, x 0 < r x ≤ 1 such that B(x, r x ) ⊂ Ω. One of the following alternatives must occur:

(1) for any ball

L n such that L n ∩ B(x, r x ) ̸ = ∅, it holds that |L n | ≤ r x , or (2) there exists n x ∈ N such that L nx ∩ B(x, r x ) ̸ = ∅ and |L nx | ≥ r x .
Consider the set S 1 be the set of points in X for which the rst alternative holds. By Lemma 3.1 applied with v = 1, it is possible to extract from the covering of S 1 , {B(x, r

x ), x ∈ S 1 }, Q d,1 families of pairwise disjoint balls, F 1 , ..., F Q d,1 , such that S 1 ⊂ 1≤i≤Q d,1 L∈F i L.
Now, any ball L n intersecting a ball L ∈ 1≤i≤Q d,1 F i must satisfy |L n | ≤ |L|. In particular, since for any 1 ≤ i ≤ Q d,1 the balls of F i are pairwise disjoint, applying Lemma 3.2 to the balls of F i intersecting L n we get that L n intersects at most

Q d,1 balls of F i , hence at most Q 2 d,1 balls of 1≤i≤Q d,1 F i . Let L ∈ 1≤i≤Q d,1 F i .
One aims at replacing all the balls L n intersecting L by the ball 2L.

For any 

1 ≤ i ≤ Q d,1 and any ball L ∈ F i , denote by G L the set of balls L n intersecting L. Since E ⊂ n∈N L n and µ(E) = µ(Ω), one has E ∩ L ⊂ B∈G L B and µ(E ∩ L) = µ(L).
κ(d, µ, ε)|L| s ≤ H µ,s ∞ (L) ≤ B∈G L H µ,s ∞ (B) ≤ B∈G L |B| s .
Replace the balls of G L by the ball L = 2L (recall that B∈G L B ⊂ 2L). The new sequence of balls so obtained by the previous construction applied to all the balls L ∈ ≤i≤Q d,1 F i is denoted by ( L k ) 1≤k≤K , where 0 ≤ K ≤ +∞.

It follows from the construction and (80) that S 1 ⊂ 1≤k≤K L k and (81)

1≤k≤K | L k | 2 s ≤ Q 2 d,1 κ(d, µ, ε) n≥0 |L n | s .
On the other hand, since for any x ∈ S 2 = X \ S 1 , there exists n

x ∈ N such that L nx ∩ B(x, r x ) ̸ = ∅ and r x ≤ |L nx |, one has S 2 ⊂ n∈N 2L n , so that n∈N L n ∪ K ∩ Ω \ n∈N L n ⊂ 1≤k≤K L k ∪ n∈N 2L n .
Putting the elements of ( L k ) 1≤k≤K and (2L n ) n≥0 in a single sequence ( L n ) n≥0 , writing ( L n := 2 L n ) n∈N , by construction, K ∩ Ω ⊂ n∈N L n and due to (81): 

H s ∞ (K ∩ Ω) ≤ n∈N | L n | s ≤ 2 s Q 2 d,1 κ(d, µ, ε) + 1 n∈N |L n | s ≤ 8 • 2 s Q 2 d,1 κ(d, µ, ε) H µ,s ∞ (Ω). □ Remark 4.4.
B n ) = 1. Fix ε > 0, v > 1 and δ ≥ 1 and set B v = {vB n } n∈N . Proposition 2.1 shows that B v is µ-a.c.
H µ,α-ε ∞ ( (vB n ) δ ) ≥ κ(d, µ, ε)(vr n ) δ(α-ε) ≥ (vr n ) δ(α-ε 2 ) . Consequently, t(µ, δ, ε, B v ) = lim sup n→+∞ log H µ,α-ε ∞ ( (vB n ) δ ) δ log |vB n | ≤ α - ε 2 so t(µ, δ, ε, B v ) ≤ α. Due to Corollary 2.5, one concludes that dim H (lim sup n→+∞ (vB n ) δ ) ≥ α δ . But for any ε ′ > 0, lim sup n→+∞ (vB n ) δ ⊂ lim sup n→+∞ B δ-ε ′ n , so that dim H (lim sup n→+∞ B δ-ε ′ n ) ≥ α δ .
It follows that for any ε ′ > 0 and δ ≥ 1 one has Let us also notice that the computation in the proof of Theorem 2.10 actually shows that, under the assumption that lim n→+∞ log µ(Bn)

dim H (lim sup n→+∞ B δ n ) ≥ α δ + ε ′ . Letting ε ′ → 0 proves that dim H (lim sup n→+∞ B δ n ) ≥ dim(µ)
log |Bn| = dim(µ), it holds that, for n large enough, H µ,s ∞ (B δ n ) ≥ µ(B n ) ⇔ s < dim(µ) δ .
5.1.2. Proof of Theorem 2.12. Given τ 1 = 1 ≤ τ 2 ≤ ... ≤ τ d and s ≥ 0, set τ = (τ 1 , . . . , τ d ) and

g τ (s) = max 1≤k≤d sτ k - 1≤i≤k τ k -τ i .
We will need the following lemma (one refers to [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF], Proposition 2.1 for the proof, although it is stated in terms of singular values functions).

Lemma 5.2.

Let τ 1 = 1 ≤ τ 2 ≤ ... ≤ τ d .
The are two positive constants C 1 and C 2 depending on d only such that for all s ≥ 0, r > 0 and x ∈ R d one has s) . Recall that K is the closure of its interior, and note that since the weights p i are taken positive in Denition 2.7, one must have µ( K) > 0.

C 1 r gτ (s) ≤ H s ∞ (R τ (x, r)) = H s ∞ ( Rτ (x, r)) ≤ C 2 r gτ ( 
Denote µ = µ(•) µ( K) 

and α = dim(µ) = dim( µ).
® c(µ, d, s)H s ∞ (Ω) ≤ H μ,s ∞ (Ω) ≤ H s ∞ (Ω) if s < α H μ,s ∞ (Ω) = 0 if s > α.
Also, µ being absolutely continuous with respect to µ, the sequence (B n ) n∈N is µ-a.c. Furthermore, up to a µ-a.c extraction, we can assume that each ball (B n ) n∈N is included in K (and we will do so).

Let ε > 0. Set R = {R n } n≥0 . By Lemma 3.13, up to a µ-a.c extraction, one can assume that for every n ∈ N, the ball B n satises µ

(B n ) ≤ r α-ε n . Setting τ ′ = ( τ i τ 1 ) 1≤i≤d , for all 0 ≤ s < α -ε, one has g τ ′ (s) = max 1≤k≤d ® sτ k -1≤i≤k τ k -τ i τ 1
´.

From equation (82) and Lemma 5.2, one deduces that (83)

C 1 c(d, µ, s)r τ 1 g τ ′ (s) n ≤ H μ,s ∞ (R n ).
In particular, for any s verifying (84)

τ 1 g τ ′ (s) ≤ α - ε 2 , if r n ≤ 1 one has C 1 c(d, µ, s)r α-1 2 ε n ≤ C 1 c(d, µ, s)r τ 1 g τ ′ (s) n ≤ H μ,s ∞ (R n ). Since r n → 0, for n large enough, this yields (85) µ(B n ) ≤ r α-ε n ≤ C 1 c(d, µ, s)r τ 1 g τ ′ (s) n ≤ H μ,s ∞ (R n ), hence (B n ) n∈N μ(B,R,s
) is µ-a.c., and s( µ, R, B) ≥ s.

It remains to note that

(84) ⇔ max 1≤k≤d ® sτ k -1≤i≤k τ k -τ i τ 1 ´≤ α -ε 2 τ 1 ⇔ ∀1 ≤ k ≤ d, sτ k -1≤i≤k τ k -τ i τ 1 ≤ α -ε 2 τ 1 ⇔ ∀1 ≤ k ≤ d, s ≤ α -1 2 ε + 1≤i≤k τ k -τ i τ k ⇔ s ≤ min 1≤k≤d ® α -1 2 ε + 1≤i≤k τ k -τ i τ k
´.

(
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Since ε > 0 was arbitrary, this implies that

s( µ, R, B) ≥ min 1≤k≤d ® α + 1≤i≤k τ k -τ i τ k
´, and applying Theorem 2.2 gives the desired lower bound estimate.

Remark 5.3. Note that the estimates made in the proof of Theorem 2.12, together with Lemma 5.2, can be used to show that, under the assumption that lim n→∞ log µ(Bn) log |Bn| = dim(µ), one has the following properties: Proof. In this section, Theorem 2.14 is proved and we adopt the notation of the proof of Proposition 4.2.

If s < min 1≤k≤d dim(µ)+ 1≤i≤k τ k -τ i τ k then, for n ∈ N large enough, H µ,s ∞ (R n ) ≥ µ(B n ). If s > min 1≤k≤d dim(µ)+ 1≤i≤k τ k -τ i τ k then, for n large enough, H µ,s ∞ (R n ) ≤ µ(B n ).
Set s = dim H (K). Note that, for each k ∈ N, the set {B(f i (x), 2|K|c i )} i∈Λ k covers K. In particular, for any measure µ supported on K, the family {B(f i (x), 2|K|c i )} i∈Σ * is µ-a.c.

Set B i = B(f i (x), 2|K|c i ). ∞ (K 1/3 ) > 0 (this is well known and easily follows from the fact that K 1/3 carries an Alfhors regular measure of dimension log 2 log 3 ). Moreover, for every k ∈ N, setting K k = {f i ([0, 1])} i∈{0,2} k , one has to T . For every I ∈ J∈K k F T (J), for all n ≤ k ′ ≤ n + k and all x = (x n ) n∈N ∈ Σ such that π(x) ∈ I, one has (92)

S n+k ′ ϕ(x) n + k ′ = S n ϕ(x) n × n n + k ′ .
We are now ready to nish the proof of Theorem 2.15.

Let (ε q ) q∈N be a positive sequence such that lim q→∞ ε q = 0. One constructs a family {U p,q,δ } δ≥1, q∈N, 0≤p≤q of open sets as follows: Let δ ≥ 1, q ∈ N * and 0 ≤ p ≤ q. Consider T a triadic interval of generation n q = ⌊log 3 (q 2δ )⌋ + 1 included in B( p q , q -2δ ). Let N p,q,δ be large enough to ensure that for any x ∈ Σ verifying π(x) ∈ T , one has (93) S nq ϕ(x) n q × n q n q + N p,q,δ ≤ ε q .

Set (94)

U p,q,δ = F T (Ω N p,q,δ ).

By ( 92) and ( 93), for all x ∈ U p,q,δ one has S nq+Np,q ϕ(x) n q + N p,q ≤ ε q .

This implies that Q≥1 q≥Q 0≤p≤q U p,q,δ ⊂ K B( p q , q -2δ ).

Since U p,q,δ is an homothetic copy of Ω N p,q,δ (see (94)), by (91), due to the choice of n q there exists C > 0 independent of p, q and δ such that (95) H log 2 log 3 ∞ (U p,q,δ ) ≥ Cq -2δ log(2) log (3) . ∞ (U p,q,δ ) ≥ Cq -2 = L B p q , q -2 .

For δ ≥ log 3 log 2

, by concavity of x → x log 3

δ log 2 , H 1 δ ∞ (U p,q,δ ) ≥ (H log 2 log 3
∞ (U p,q,δ ))

log 3
δ log 2 ≥ C(q -2δ log 2 log 3 ) log 3

δ log 2 = CL B p q , q -2 .

(97) By Theorem 2.2 applied to Q = (B( p q , 1 q 2 )) q∈N * ,0≤p≤q , U = (U p,q,δ ) q∈N * ,0≤p≤q and the Lebesgue measure, there exists a gauge function ζ : R + → R + satisfying lim r→0 + log ζ(r) log r = s 0 and H ζ ( lim sup q∈N * ,0≤p≤q

U p,q,δ ) > 0.

Since lim sup q∈N * ,0≤p≤q B( p q , 1 q 2δ ) ⊂ {x : ξ(x) ≥ 2δ}, for δ ∈ [1, satises the desired properties. But attractors associated with IFS satisfying the open set condition are known to be Alfhors-regular, so in this case this result is not useful for the dynamical covering problem we considered. We nally add that, when the measure µ is not doubling, even verifying for δ > 1 lim n→+∞ µ(B δ n ) µ(Bn) = 0

is not free in general.

In addition, we recall again that it is established in [START_REF] Schief | Separation properties for self-similar sets[END_REF] that, given a selfsimilar IFS S of attractor K, H dim(S) (K) > 0 if and only if S satises the open set condition. This in particular implies that H dim 

Denition 2 . 2 .

 22 Let µ ∈ M(R d ). For x ∈ supp(µ), the lower and upper local dimensions of µ at x are dened as dim loc (µ, x) = lim inf r→0 + log(µ(B(x, r))) log(r) and dim loc (µ, x) = lim sup r→0 + log(µ(B(x, r))) log(r) .

2. 1 .

 1 The µ-a.c property. We x a sequence of closed balls B = (B n ) n∈N such that lim n→+∞ |B n | = 0 (otherwise the situation is trivial for the questions we consider).

  It is then convenient to assume that K is the closure of its interior. Here is an example. Let 1 ≤ τ 1 ≤ ... ≤ τ d be d real numbers and τ = (τ 1 , ..., τ d ). One starts by dening a family of rectangles of R d associated with τ . Denition 2.8. Let 1 ≤ τ 1 ≤ ... ≤ τ d and τ = (τ 1 , ..., τ d ).

3. 2 .

 2 Construction of the Cantor set and the measure. Recall that µ is a probability measure on R d , and that B = (B n := B(x n , r n )) n∈N is a µ-a.c sequence of balls of R d with lim n→+∞ r n = 0. Fix U = (U n ) n∈N a sequence of open sets satisfying U n ⊂ B n for every n ∈ N.Set α = dim H (µ), and assume that min {s(µ, B, U), α} > 0.Our goal is to construct a gauge function ζ : R + → R + such that lim r→0 + log ζ(r) log r = min {s(µ, B, U), dim H (µ)} as well as η ∈ M(R d ) supported on lim sup n→∞ U n such that for all r ∈ (0, 1] and x ∈ R d one has η(B(x, r)) ≤ ζ(2r).

( 1 )

 1 Case 1: If |A| ≥ |U |, then by (61) (66) η(A) ≤ η(U ) ≤ |U | sp-εp ≤ ζ(|A|).

( 2 )

 2 Case 2: If |A| < |U | and A intersects at least two balls of G U : Observe that when A intersects two balls B and B ′ of G U , since by item (3) of the recurrence scheme 3B ∩ 3B ′ = ∅, one necessarily has (by Lemma 3.11) B ∪ B ′ ⊂ 5A. Hence, B∈G U :B∩A̸ =∅ B ⊂ 5A and by (56) and (55),

(b) Subcase 3 . 2 :

 32 |A| ≤ |B|: Denote by k B the integer such that its center belongs to E [θ k B ,θ k B +1 ],ρ U ,ε p+1 µ . The ball A must intersect at least two elements V ̸ = V ′ of W p+1 (by denition of p). Note that these sets must belong to F B (because A intersects only B). Applying Lemma 3.11 to the ball A with any of these balls V ∈ F p+1 , since A ∩ V ̸ = ∅ and A \ B [V ] ̸ = ∅ (because A intersects an other dilated ball, B [V ′ ] by hypothesis and two such balls veries (62)), one has (69)

  Hence recalling Denition 2.1, by the mass distribution principle, one deduces that H ζ (K) ≥ 1, which concludes the proof of Theorem 2.2. 3.3. Proof of Corollary 2.5.

3. 3 . 1 .

 31 Some basic properties about the µ-essential Hausdor content. In this subsection, basic properties of the µ-essential content are established. First, we work in this article with the || • || ∞ norm for convenience. Any other norm could have been chosen, the corresponding quantities would have been equivalent. In (3), only closed balls are considered. Choosing open balls does not change the value of (6) in Denition 2.4.

4. 1 .

 1 Computation of essential content for the Lebesgue measure. When the measure µ is the Lebesgue measure, the computations are quite easy. Proposition 4.1. Let B = B(x, r) be a ball in R d , and L d be the d-dimensional Lebesgue measure. Then for any 0

5. 2 .

 2 Application to self-similar dynamical coverings.

•∞∞log 3 ∞

 3 For every k ∈ N, let us dene( I∈K k I \ Ω k ) = 0 (it is a nite set of points), it follows from (89(Ω k ) ≤ 1, with C = H log 2 (K 1/3 ) > 0. • If n ∈ N and T ∈ T n = [ k 3 n , k+1 3 n [, 0 ≤ k ≤ 3 n -1 isa triadic interval of generation n, denote by F T the canonical homothetical mapping which sends[0,[START_REF] Allen | On the Hausdor measure of shrinking target sets on self-conformal sets[END_REF] 

For 1 ≤ δ ≤ log 3

 13 

log 3 log 2 3 .

 23 [ one gets dim H {x : ξ(x) ≥ 2δ} ∩ K an IFS satisfying the open set condition, it was established in [6] that the mapping f : R + → R + f (r) = r α-log log | log r| log | log r| .

1/ 3 ? 6 . 3 .

 363 H (H) (K) = 0 for every IFS S satisfying the hypothesis of Theorem 2.14 but not the open set condition. Is that true that, in the settings of Theorem 2.14,H dim H (K) δ W (x 0 , δ) > 0 ⇔ Ssatises the open set condition ? 6.2. Some perspective in Diophantine approximation. The problem raised by Mahler of understanding the rational approximation in the middle-third Cantor set seems currently out of reach. In this sens, Theorem 2.15 raises the following natural interesting problem suggested by Bugeaud. Fix ε > 0 and denoteK 0,ε 1/3 = ß x ∈ [0, 1] : lim inf k→+∞ ϕ 1,k (x) = 0 and lim sup k→+∞ ϕ 1,k (x) ≤ ε ™ .Can we get an analog of Theorem 2.15 for K 0,ε Study of dierent dynamical coverings. Theorem 2.14 establishes the Hausdor dimension of certain dynamical coverings associated with self-similar IFS. In such results, the estimates of the essential Hausdor content associated with self-similar measures plays a key role. Can we estimate such contents for conformal measures or self-ane measures? If so, can we get an analog of Theorem 2.14 in such cases?

  Now we recall some denitions. Denition 2.1. Let ζ : R + → R + . Suppose that ζ is increasing in a neighborhood of 0 and ζ(0) = 0. The Hausdor outer measure at scale t ∈ (0, +∞] associated with ζ of a set E is dened by t ∈ (0, +∞], s ≥ 0 and ζ : x → x s , one simply uses the usual notation H ζ t (E) = H s t (E) and H ζ (E) = H s (E), and these measures are called s-dimensional Hausdor outer measure at scale t ∈ (0, +∞] and s-dimensional Hausdor measure

	(1)	H ζ t (E) = inf
	The Hausdor measure associated with ζ of a set E is dened by
	(2)	H ζ (E) = lim t→0 + H ζ t (E).
	respectively. Thus,
	(3)	H s t (E) = inf

n∈N ζ(|B n |) : |B n | ≤ t, B n closed ball and E ⊂ n∈N B n . For n∈N |B n | s : |B n | ≤ t, B n closed ball and E ⊂ n∈N B n .

The quantity H s ∞ (E) (obtained for t = +∞) is called the s-dimensional Hausdor content of the set E.

  Denition 2.5. Let µ ∈ M(R d ). If B and U are Borel subsets of R d , the µ-critical

exponent of (B, U ) is dened as

[START_REF] Barral | Ubiquity and large intersections properties under digit frequencies constraints[END_REF] 

  sequence of closed balls of R d centered in supp(µ). Let U = (U n ) n∈N be a sequence of open sets such that U n ⊂ B n for all n ∈ N, and 0 ≤ s ≤ dim(µ). If, for n ∈ N large enough, H µ,s ∞

	As a consequence of Theorem 2.6 and Corollary 2.4, one gets
	Corollary 2.8. Let µ ∈ M(R d ) be a self-similar measure and B = (B n ) n∈N be a
	µ-a.c.

  Denition 1.5] ) verifying |B n | → 0 and, for anyn ∈ N, B n ∩ K ̸ = ∅. Let (U n ) n∈N be a sequence of open sets satisfying U n ⊂ B n . For any 0 ≤ s < dim(µ) such that, for all large enough n ∈ N, H µ,s ∞ (U n ) ≤ µ(B n ), itholds that Theorem 2.10. Let S be a self-similar IFS of R d with attractor K and µ be a self-similar measure associated with S. Let (B n ) n∈N be a sequence of closed balls centered on K, such that lim n→+∞ |B n | = 0.

	Combining Theorem 2.2 and Corollary 2.5 with Theorem 2.6 and Proposition 2.1
	yields the following consequence for self-similar measures.
	(1) Suppose that (B n ) n∈N is µ-a.c. Then t µ, δ, (B n ) n∈N ≤ dim(µ); conse-
		quently s µ, (B n ) n∈N , ( Bδ n ) n∈N ≥ dim(µ) δ	and there exists a gauge function ζ
		such that lim r→0 + log(ζ(r)) log(r) ≥ dim(µ) δ ular	and H ζ (lim sup n→∞ Bδ n ) > 0. In partic-
	(17)	dim H (lim sup n→+∞	Bδ n ) ≥	dim(µ) δ	.
	(16)	dim H (lim sup	

n→+∞ U n ) ≤ s.

  still holds but the existence of the gauge function is not ensured. Furthermore if µ is doubling, then (B n ) n∈N is µ-a.c, so that the conclusion of item (1) holds.Remark 2.11. Since no separation condition is assumed about the system S, Theorem 2.10 implies[START_REF] Barral | Ubiquity and large intersections properties under digit frequencies constraints[END_REF] Theorem 1.6] in the special case where the sequence of measures (µ p ) p∈N is constant and equal to some self-similar measure with open set condition µ and the sequence of contraction ratio (δ p ) p∈N is constant as well. Corollary 2.4 and Theorem 2.6 make it possible to deal with more general open sets (U n ) n≥1 than contracted balls ( Bδ n ), if one is able to compare eciently the s-dimensional Hausdor contents of the sets U n ∩ K with a power of |B n |.

  It remains to show that there exists a constant c(d, µ, s) such that for any open set Ω, the converse inequality

  The proof of Theorem 2.6 only uses Proposition 2.10. In particular, Theorem 2.6 holds for any measure µ ∈ M(R d ) supported on K and verifying, forany i ∈ Λ * , µ(f -1 i (•)) is absolutely continuous with respect to µ.

	5. Applications of Theorem 2.2
	5.1. Mass transference principle for self-similar measures.

5.1.1. Proof of Theorem 2.10. Let µ be a self-similar measure with support K, and set α = dim(µ). Let (B n := B(x n , r n )) n∈N be a sequence of balls such that x n ∈ K for all n ∈ N, lim n→+∞ r n = 0 and µ(lim sup n→+∞

  Then, by Proposition 4.2, for n large enough, one has

  It is easily veried that the computation made in the proof of Theorem 2.6 implies that, for any open set

Ω ⊂ K, there exists a constant c(d, µ, s) given by Theorem 2.6, so that (82)

  One now focuses on proving that, for any δ ≥ 1, dim H (lim sup i∈Σ * B δ i ) = s δ . If this holds, since for any ε > 0, also holds that dim H (lim sup i∈Σ * B(f i (x), c δ i )) = s δ . Note that s satises the equation 1≤i≤m c s i = 1. Let also be ν s , the measure on (Σ, B(Σ)) associated with the probability vector (p i = c s i ) 1≤i≤m and µ s its projection on K by the canonical coding map.Then for any δ ≥ 1, one has, for any ε > 0, kε ν s ([i]) .One now establishes the lower-bound estimate. By the dimension regularity assumption (see Denition 2.9), dimH (µ s ) = s. Since (B i ) i∈Σ * is µ s -a.c, Theorem 2.10 yields dim H (lim sup i∈Σ * B δ i ) ≥ s δ . □ 5.3. Study of a problem related to a question of Mahler. Let us rst notice that by Theorem 21, one has dim H lim sup In particular, this proves that the expected upper-bound in Theorem 2.15 stands.Before showing that the lower-bound also holds, let us start with some facts and remarks.

						|B i | δ s+ε δ	= (4|K|) s+ε	c s+ε i
				k≥0 i∈Λ	(k) t		k≥0 i∈Λ	(k) t
							≤ (4|K|) s+ε
							k≥0 i∈Λ	(k) t
	Since	i∈Λ	(k) t	ν s (i) ≤ 1, one obtains
						|B i | δ s+ε δ	≤ (4|K|) s+ε	t kε < +∞.
				k≥0 i∈Λ (k) t	k≥0
	This shows that		
	(88)					dim H lim sup i∈Λ *	B δ i	≤	s δ	.
							(0) 1/3 ≤ min	ß 1 δ	,	log 2 log 3	™	.
						log 2
						log 3
	(87)			lim sup i∈Σ *	B δ+ε i	⊂ lim sup i∈Σ *	B(f i (x), c δ i ) ⊂ lim sup i∈Σ *	B δ i ,

it Let 0 < t < min 1≤i≤m c i and

Λ (k) t = i = (i 1 , . . . , i ℓ ) ∈ Λ * : c i ℓ t k < c i ≤ t k . If i ∈ Λ (k) t , then for any ℓ ∈ Λ, the word iℓ / ∈ Λ (k)

t . This implies that for any

i ̸ = j ∈ Λ (k) t , [i] ∩ [j] = ∅.

t B∈Q B δ ∩ K Remark 5.4. • One has H

The s-dimensional µ-essential Hausdor content is now used to associate a critical exponent to any sequence of open sets (U n ) n∈N such that U n ⊂ B n for all n ∈ N. This exponent is involved in our lower bound estimate for dim H (lim sup n→+∞ U n ).

(54) 

To prove a full Hausdor measure statement, in order to build oors of small sets as in[START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF], one would need for each n ∈ N to nd some compact sets K n ⊂ U n with roughly the same essential content as U n . To be able to do that, Lemma 3.4 is crucial and the doubling assumption is needed in its proof.

For δ ≥ log 3 log 2

, observe that {x : ξ(x) = 2δ} = lim sup q∈N * ,0≤p≤q

Since for every δ ′ > δ, dim H lim sup q∈N * ,0≤p≤q B( p q , 1 q 2δ ′ )∩K (0)

, one also has

6. Remarks, comments and perspectives 6.1. Some remarks about Hausdor measures associated with MTP. The historical mass transference principle from Beresnevich-Velani (established in [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF])

provides estimates on the Hausdor measure rather than only on the dimension. In the case where the ambient measure is not Alfhors regular, one could also establish the following analog of the Beresnevich-Velani's mass transference principle. 

If lim n→+∞ µ(Un) µ(Bn) = 0 and for every n ∈ N,

The only issue with such a formulation is that, in general nding a gauge as in (98) is not an easy task. Only one such non trivial example is known by the author. In the case of self-similar measure µ of dimension α ≥ 0 associated with