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We study in detail the role of covariant Lyapunov vectors and their respective an-11

gles for detecting transitions between metastable states in dynamical systems, as12

recently discussed in several atmospheric science applications. The underlying mod-13

els are built from data by the dynamical clustering method, called FEM-BV-VAR,14

and the Lyapunov vectors are approximated based on these models. We test this15

data-based numerical approach at the hand of three well-understood example sys-16

tems with increasing dynamical complexity, identifying crucial properties that allow17

for a successful application of the method: in particular, it turns out that the method18

requires a clear multiple time scale structure with fast transitions between slow sub-19

systems which can be dynamically characterized by invariant neutral directions of20

the linear approximation model.21

a)akim.viennet@gmail.com
b)nikki.vercauteren@geo.uio.no
c)maximilian.engel@fu-berlin.de
d)davide.faranda@lsce.ipsl.fr; also at London Mathematical Laboratory, 8 Margravine Gardens London, W6

8RH, UK; and also at LMD/IPSL, Ecole Normale Superieure, PSL research University, Paris, France

1



In climate science, systems with multiple metastable states are ubiquitous.22

Knowing their stability properties and the probability of transitioning from one23

state to another is of great help to understand and predict the dynamics of24

such systems. Many tools have been developed to address this challenge, among25

which covariant Lyapunov vectors have proven to be very useful. The numerical26

calculation of these vectors generally requires an a priori knowledge of the set of27

equations governing the dynamics, and therefore cannot be applied directly to28

experimental data. However, recent purely data-driven methods have been de-29

veloped to estimate the covariant Lyapunov vectors. Our study aims to identify30

the crucial conditions under which a data-driven factor model approach can suc-31

cessfully estimate the alignment of covariant Lyapunov vectors to predict critical32

transitions. To this end, we discuss in detail the FEM-BV-VAR approach for33

multiscale systems and test the method on three systems of increasing dynamic34

complexity, including two explicit classical models and experimental data for35

turbulent flow. As the tested method is expected to be relevant in a wide range36

of climate science applications, our key contribution is to show under which37

circumstances reliable results can be expected.38

I. INTRODUCTION39

Dynamical systems theory deals with the prediction of trajectories of natural systems40

originating by one given or a set of initial conditions. This task is particularly challenging41

when the system is chaotic and even more when the system features several metastable42

states or multiscale features1,2. Among all the possibilities, here we focus on the stability43

properties of certain meta-stable states, that organize the phase space, and the estimation44

of the probability of switching from one state to another. Many mathematical tools have45

been developed to address those questions, one of them being the study of the so-called46

covariant Lyapunov vectors (CLVs) (also known as Oseledets vectors), and the associated47

Lyapunov exponents (LEs). These vectors give a basis on the tangent space at points of48

trajectories, providing directions of linear perturbation growth along the dynamics3–5. They49

can be seen as a generalization of the linear stability theory for fixed points and of Floquet’s50
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theory for limit cycles, since Lyapunov vectors and exponents can be computed along any51

trajectory of a smooth dynamical system. The CLVs give the directions of growth or decay52

of a perturbation, and the LEs give the associated rate of asymptotic growth or decay. An53

increase of one of the unstable LEs has been associated to a higher instability for various54

theoretical and physical systems6,7.55

In many cases, transient (chaotic) behavior cannot be detected by asymptotic LEs which56

average out transient dynamics via ergodic limits; hence, finite-time Lyapunov exponents57

(FTLEs) are often more suitable to capture the degree of uncertainty at different points of58

trajectories and their small neighbourhoods.59

The directions of unstable CLVs indicate the directions towards which an error will grow60

with the rates given by the associated (FT)LEs. For example, this tool can be used in61

ensemble weather forecasting to identify how to enforce initial perturbations to optimally62

span the space of possible realizations of the weather8. Another quantity of interest is the63

angle between the flow direction and the most unstable CLV. An alignment of those vectors64

has been used as a predictor for transitions, tipping points or catastrophes (extreme events)65

in several systems9–11. In particular, this criterion has been proven to be an important early-66

warning sign for abrupt transitions in the Peña and Kalnay climate toy-model12. Finally,67

Quinn et al.13 suggested that the projection of the most unstable CLV just before a transition68

between two states could inform on the patterns that triggered the instability and then the69

transition.70

Summarizing, the computation of CLVs and associated LEs is of high interest for the71

analysis of dynamical systems. Recent progress was made to compute them numerically,72

due to various algorithms by Ginelli et al.4, Wolfe and Samelson5, and Froyland et al.14.73

However, all those algorithms rely on the knowledge of an analytic expression of the model,74

in order to differentiate the flow and compute the linear cocycles (see Section II B for an75

introduction to those methods). This suggests that it is rather difficult to use such methods76

based on observations for which the underlying model is unknown or only partially known,77

such as reanalysis atmospheric data.78

Yet, recent progress has been made to estimate CLVs from data series. Lately, Martin79

et al.15 suggested to use sparse identification of non-linear dynamics to infer the Jacobian80

matrices from trajectories. Quinn et al.13 recently introduced another method to compute81

CLVs directly from data, aimed at dealing with systems with stochastic transitions. This82
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latter method will be studied and tested in this paper. It relies on fitting a model to83

the observations via a dynamical, or model-based clustering method initially introduced by84

Horenko16,17: the FEM-BV-VAR (Finite Element clustering with bounded variation (FEM85

BV) vector autoregressive (VAR)) clustering approach. Differently from more classical,86

geometrical clustering methods, in this framework a state is not defined by a geometrical87

area in the phase space, but by an estimated auto-regressive dynamics (see Section IIIA88

for details). The whole system is then switching between those dynamical models. This89

method is particularly adapted to the purpose since it provides not only a cluster affiliation90

sequence, but also a linear (auto-regressive) model for each of the states. One can then91

use these (approximated) models to compute an approximation of the CLVs and of the LEs92

for the dynamical system underlying the data, and thus get some insights on the stability93

of the states and of the stable and unstable directions. Quinn et al.13 used this approach94

to analyse the dynamics of atmospheric circulation patterns in the northern hemisphere.95

They investigated the dynamical stability properties of recurrent and persistent states of96

the atmospheric circulation patterns or regimes known as the North Atlantic Oscillation97

(NAO) and atmospheric blocking events. In particular, the CLVs were used to analyse98

the pressure distribution patterns related to transitions between the recurrent circulation99

regimes, leading to insightful observations since weather forecasting and climate models100

struggle to capture the onset and decay of blocking events.101

These results led to the question whether the method is applicable for other systems of102

interest and to which extent it more generally captures relevant information on the dynam-103

ics. The aim of this work is to explore this question by testing the method in several systems104

for which some a priori knowledge of the CLVs and of the transitions between regimes is105

available: a fast-slow FitzHugh-Nagumo oscillator, a well-studied Von Kármán turbulent106

flow from a laboratory experiment, and a Lorenz 63 system, where the order of our presen-107

tation follows an increase of dynamical complexity. Results on those different systems will108

show that the method provides several insights on the dynamics, quantifying the stability of109

different (meta-stable) states and thereby identifying transitions between them. This holds110

true in particular for the Von Kármán flow. However, we also demonstrate why such con-111

clusions may be treated with caution, considering the strong dependence on the existence of112

an dynamically invariant normal tangent flow direction, a visible time scale separation and113

a large number of hyper-parameters.114
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In this paper, we will first present the details of the method that allows one to compute115

approximated CLVs from a data series. Then we will try to assess its validity, by applying116

it on a FitzHugh-Nagumo oscillator, experimental data from the Von Kármán flow and the117

Lorenz 63 model. Finally, we will discuss the scope of the methods at the hand of these118

examples, illustrating its potential but also several caveats for its application.119

II. THE LYAPUNOV VECTORS AND THEIR NUMERICAL120

COMPUTATION121

A. Mathematical background122

Let us first introduce the notion of CLVs. They arise from a non-autonomous general-123

ization of the linear stability analysis at fixed points and Floquet theory at limit cycles to124

any point of the trajectory. For a dynamical system, the CLVs form a basis of the tangent125

space and give the directions of growth or decay of any perturbation around a background126

flow. The Lyapunov exponents (LEs) give the associated rate of growth or decay (see Fig.1).127

Assuming ergodicity of a dynamical system Φt(x0), whose trajectories we will simply denote128

by x(t), one observes that the LEs are global numbers that characterise the whole attrac-129

tor, whereas the CLVs may depend on the particular points of the trajectory (but are still130

asymptotic objects).131

In more detail, the existence of Lyapunov exponents with corresponding directions on

the tangent space is given by Oseledets’ Multiplicative Ergodic Theorem (MET)18. Under

a mild integrability condition with respect to an ergodic invariant measure, this theorem

gives us, in each point of the trajectory, the existence of a splitting of the tangent space into

p ≤ d subspaces

Rd = Y1(x(t))⊕ · · · ⊕ Yp(x(t)),

such that for all v ∈ Yi(x(t)),132

lim
τ→∞

1

τ
log ∥F (t, t+ τ) · v∥ = λi, (1)

where F denotes the linear propagator for the tangent flow, i.e.

v (t2) = F (t1, t2)v (t1)

5



and λ1 > λ2 > · · · > λp are the distinct LEs with multiplicities mi ≥ 1, i = 1, . . . , p. The133

CLVs vji (t), j = 1, . . . ,mi, are then representative vectors from the Oseledets subspaces134

Yi(x(t)), which are unique up to scalar factors if mi = 1 and chosen as a set of mi linearly135

indepedent vectors in Yi(x(t)) otherwise. Let us order them as ϕk, k = 1, . . . , d, where136

v11 = ϕ1, . . . , v
m1
1 = ϕm1 , and so on (see also Figure 1 where all mi = 1 as will be the case in137

our examples).138

FIG. 1: Contraction and expansion of CLVs along a trajectory with positive, negative and

zero Lyapunov exponent λi, i = 1, 2, 3. In this setting, we have at each point three CLVs

(ϕ1, ϕ2 and ϕ3). The solid line represents the unperturbed trajectory, while the dotted

lines represent the perturbed trajectories, along the stable (in green) and the unstable (in

red) directions. The so-called alignment θ12 is given by the cosine of the orange angle.
139

140

As described in Section I, LEs and CLVs give important information on the stability141

properties of the dynamics, and have been used to predict transitions and extreme events.142

One key quantity is the angle between the neutral CLV (the CLV associated with a zero LE,143

which is always tangent to the flow direction) and the most unstable CLV (the one associated144

with the largest positive LE), given that they both exist. Let us call θij the cosine of the145

angle between the CLVs ϕi and ϕj:146

θij(t) =
|ϕi(t) · ϕj(t)|
∥ϕi(t)∥∥̇ϕj(t)∥

(2)

Many studies suggest that, for ϕi representing the most unstable direction and ϕj a neutral147
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direction, this angle is related to the probability of transitions between characteristic states:148

the more these two vectors align, the higher such a switching probability is expected to149

be. Sharafi et al.9 have applied this criterion to various fast-slow systems, whereas Beims150

et al.10 have used it to predict extreme events in a Rössler oscillator. In the following, we151

will call “alignment of CLVs” the absolute value of the cosine of the angle between a most152

unstable CLV and a neutral one. In cases without a neutral direction, one may take the153

CLV associated with the Lyapunov exponent closest to 0 and consider this direction as a154

near-neutral one (see also Section IVC).155

Note that the CLVs and associated Lyapunov exponents are asymptotic objects whereas156

the transitions we are interested in happen on finite time scales and the analyzed time series157

are also naturally finite. Hence, in reality one analyzes Finite Time Lyapunov Exponents158

(FTLEs) which are defined analogously for a given finite τ in Eq.(1), depending on space and159

time. FTLEs associated to CLVs (or their finite time approximations one may also regard to160

as Finite Time Lyapunov vectors (FTLVs)) may change their signs depending on τ . In some161

cases, there can exist strictly positive FTLEs even though the trajectory is asymptotically162

stable (i.e. all LEs are negative). This is typical for globally asymptotically stable systems163

with transient chaos. In particular, an asymptotically stable (or unstable) CLV might be164

referred to as an unstable (or stable) CLV on certain finite time scales. Hence, we will call165

CLVs stable or unstable in our numerical studies based on the local stability within the166

investigated finite time scales. The FitzHugh-Nagumo oscillator discussed below exemplifies167

this: while the trajectories asymptotically approach a stable periodic orbit (one negative,168

one neutral LE), the CLVs and associated FTLEs can detect the local instability along the169

fast subsystem (see Section IVA for further explanations). Generally speaking, FTLEs can170

be used as a measure for the predictability of the local dynamics: the higher the largest171

FTLE, the lower the predictability on the respective time scale (see, for example, Deremble172

et al.19 for the classical Lorenz 63 attractor and a one-layer quasi-geostrophic atmospheric173

model). As suggested by Quinn et al.13 (and before by Deremble et al.19), the time length174

τ acts as a scale filter for the dynamics: with small τ the computed FTLEs and the related175

CLVs (or FTLVs) give insights on the short scale processes, whereas with larger τ we get176

closer and closer to asymptotic properties.177

7



B. Direct computation of the CLVs178

There exist several algorithms to numerically compute the CLVs. One of the most famous179

methods was developed in 2007 by Ginelli et al.4. However, here we will use a modified180

approach introduced in 2013 by Froyland et al.14 (algorithm 2.2 in this reference). This181

choice is motivated empirically by a faster convergence and by more consistent results in the182

considered setting, when compared to results obtained with Ginelli’s algorithm.183

The Froyland algorithm relies on a singular value decomposition of the forward cocyles

starting at past fibers, then propagating the obtained orthogonal directions into covariant

ones. Thus, computing the CLVs at a given point on the trajectory requires a pullback

procedure from the past to the present (and beyond). This involves a number of time

steps N for going to the past and a number of time steps M corresponding with the time

length τ in Eq. (1). In this study, for simplicity we always take M = N (as suggested in

Froyland’s article and validated empirically). In theory, increasing N and M improves the

approximation. However, our results show that convergence may fail due to the accumulation

of numerical errors. Therefore, N and M are key parameters that act as a scale filter,

similarly to τ in the previous subsection. Another internal parameter to be adapted is given

by the number of correction steps n for obtaining the covariant out of singular directions;

for details see algorithm 2.2 in Froyland et al.14. To sum up, this algorithm requires to set

three parameters:

M,N and n

with, in this study, N = M .184

Finally, let us emphasise that this algorithm requires an explicit expression for the lin-185

ear propagator at each point. For continuous-time systems ẋ = f(t, x), the linear prop-186

agator solves the variational linear differential equation with matrix generator J(x, t) :=187

(Dxf) (t, x), i.e. the Jacobian of the vector field f . For discrete-time systems xn+1 = g(xn),188

the propagator is the product of the matrices An = (Dxg) (xn). Hence, computing the quan-189

tities directly from data, for which the propagator is not known a priori, is out of reach.190

The aim of this article is to investigate the capabilities of the above-mentioned algorithm191

for computing approximate CLVs directly from observed time series, relying on a prior mod-192

elling step using a model-based clustering framework. We hence explore, based on systems193

of different complexity, the conditions under which the method first introduced in13 provides194
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reliable results.195

III. DYNAMICAL CLUSTERING METHOD196

A. FEM-BV-VAR approach197

In the literature, various approaches address the problem of identifying persistent states198

based on data. They can be roughly classified as either non-dynamical or dynamical meth-199

ods. The class of non-dynamical methods only exploits geometrical properties of the data for200

clustering, regardless of their temporal occurrence. The most used non-dynamical approach201

is the k-means method, which clusters data points according to their minimal distance to ge-202

ometrical centroids of point clouds20. Dynamical methods additionally take into account the203

temporal changes of data, based on latent variables models such as hidden Markov models21.204

This work considers a dynamical clustering method in which the existence of multiple states205

is presumed, each having time-independent properties. Those states are presumed to have206

a certain degree of persistence, and the system transitions between them during its evo-207

lution. A simplified description of the dynamics is then given in terms of a set of locally208

stationary linear vector autoregressive models (the cluster states). This method is coined209

as FEM-BV-VAR approach (Finite Element clustering with bounded variation (FEM BV)210

Vector autoregressive (VAR))16,17. Due to its proven utility in modeling transitional behav-211

ior between persistent meta-stable states directly from data, FEM-BV-VAR has recently212

become popular to study dynamical aspects of the atmosphere, ocean, and climate systems;213

studies have tackled small-scale processes in the atmospheric boundary layer22,23, as well214

as large-scale atmospheric and oceanic circulation13,24,25. Importantly, the method does not215

rely on any underlying assumptions regarding the statistical stationarity of the data and,216

hence, is applicable to problems where trends are present.217

In the FEM-BV-VAR approach, a cluster is defined as a subset of the observed time218

series of data whose evolution can be described approximately by a stationary linear vector219

autoregressive model. The full time series is modeled as a set of such stationary VAR models,220

with a switching process representing transitions between the cluster states. Since the states221

are assumed to have a certain degree of persistence, the dynamical evolution of the system222

is described by VAR models describing the fast-scale dynamics within a give state, while the223
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slow evolution is described by the switching process. Hence, the dynamics is decomposed224

into two parts:225

• a locally stationary fast auto-regressive (VAR) process,226

• a slow hidden process that makes the system switch between different forms of such227

auto-regressive processes (i.e. between the different states).228

Within a given state, we assume the time evolution of the vector of observables xt to be229

governed by230

xt = µ(i) +
m∑

τ=1

A(i)
τ xt−τ + ϵ

(i)
t (3)

where µ(i) is the mean of the i-th cluster, A
(i)
τ are matrices, and ϵ

(i)
t is a white noise with a

covariance matrix Σ(i) . A state of the system (or cluster) i is then characterized by its set

of parameters

Θi =
(
µ(i),A

(i)
1 , . . . ,A(i)

m ,Σ(i)
)
.

A set of K such models is assumed, with different model coefficients in (3), leading to K231

clusters. Determination of the optimal coefficients in (3) is done via minimization based on232

the distance between the observations and the deterministic part of the model233

g (xt, θ(t)) = ∥xt − µ(i)(t)−
m∑

τ=1

A(i)
τ (t)xt−τ∥, (4)

calculated for a fixed temporal realisation of parameters θ(t). The functional to minimize234

also includes a cluster affiliation term that determines the set of model parameters the data235

should be associated with and is then given as236

L (Θ,Γ(t)) =
T∑
t=0

K∑
i=1

γi(t)g (xt,Θi) , (5)

where Θ denotes the collection of all Θi, i.e. Θ = (Θ1, · · · ,ΘK) and T the time length of237

the observed dynamics. The functions Γ(t) = (γ1(t), · · · , γK(t)) are the cluster affiliation238

functions whose values give the probability of the data at time t to belong to cluster i and239

should satisfy the following property at a given time t240

K∑
i=1

γi = 1, γi ≥ 0 ∀i = 1, · · · , K (6)
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The number K and the memory depth m are hyper-parameters that must be selected.241

The assumption of local stationarity of the statistical process is finally enforced by setting a242

persistence parameter C, which defines the maximum allowed number of transitions between243

a total of K different statistical processes. This step regularises the minimization problem244

by introducing the additional constraint on the total variation norm of the sequence245

T−1∑
t=0

|γi(t+ 1)− γi(t)| ≤ C, ∀i = 1, · · · , K. (7)

This last hyper-parameter C is also more conveniently defined via the average persistence p246

as C = T
p
− 1. The reader is referred to Horenko16 and references therein for further details247

about the method and the minimization process.248

This method makes it possible to detect dynamical patterns that would not be detected249

by a geometrical method such as the k-means: for instance, a change in frequency of the250

signal or some oscillations with multiple amplitudes. It also provides a local linear model251

for the data, on which the computation of the Covariant Lyapunov Vectors will be based.252

However, it is important to bear in mind that three hyper-parameters (K,m, p) have to be253

selected when fitting a model.254

B. Choosing the hyper-parameters255

Statistical techniques based on information theory were developed to find the best hyper-256

parameters of the FEM-BV-VAR (namely the number of clusters K, the memory depth m257

and the average persistence p)16,17. Here, physical understanding of the systems is also used258

to choose K and m, as will be detailed when presenting the results. The persistence p is259

selected via the so called L-curve method: as shown by Horenko16, the optimal value of p can260

be determined as the edge point (or the point of maximal curvature) on a two- dimensional261

plot, where one plots the total distance between the model and the data against the value262

of p. In the application of the FEM-BV-VAR algorithm, the reconstructed signal has been263

found to diverge in some configurations; hence, we have checked the output of the algorithm264

manually and sometimes slightly modified p around its optimal value if the model, indeed,265

diverges (results not shown).266
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C. Data-driven computation of the CLVs through the FEM-BV-VAR267

The direct computation of CLVs requires an analytical expression of the linearized dy-268

namics (in order to apply Froyland’s algorithms to the linear propagator). Hence, such a269

computation is not feasible via purely data-driven approaches. The idea introduced by13 is270

to use the auto-regressive linear model obtained by the FEM-BV-VAR clustering step as an271

underlying model to describe the dynamical system. Let us recall that the FEM-BV-VAR272

gives us a VAR model for each of the K states273

xt = µ(i)(t) +
m∑

τ=1

A(i)
τ (t)xt−τ + ϵ

(i)
t

From this we deduce a discrete linear dynamical system (here given for m = 3) :
xt+1

xt

xt−1

 =


A

(it+1)
1 A

(it+1)
2 A

(it+1)
3

I 0 0

0 I 0




xt

xt−1

xt−2


where it+1 is the index of the state of the system at time t + 1. We can therefore compute

the cocycle F (t, t+ τ) = A(t+ τ) . . .A(t), with

A(t) =


A

(it+1)
1 A

(it+1)
2 A

(it+1)
3

I 0 0

0 I 0


Using the described approach, Quinn et al.13 analyzed the dynamics of the North Atlantic274

Oscillation, using daily means of the 500 hPa geopotential height as input data. The cluster-275

ing framework was used to characterise the persistent states in the atmospheric circulation,276

and the uncovered model was used to analyse the dynamical properties of different regimes.277

In particular, a finite-time dimension measure for the linear dynamical system was used to278

characterize the instability of each regime, thereby identifying the largest dimension to be279

associated with a given state of the NAO, namely the blocked state. They also considered280

the most unstable CLVs just before a transition from one state to another, to investigate281

which atmospheric pattern was driving the instability. The results appeared consistent with282

previous studies based on different methodologies. This raised the following question: to283

what extent are the CLVs, computed in such a manner, significant dynamic indicators and284
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can this method be applied to a large class of systems? In the following, we will test thor-285

oughly this method on systems for which many dynamical aspects are known: a fast-slow286

FitzHugh-Nagumo oscillator, a well-studied Von Kármán turbulent flow from a laboratory287

experiment, and a Lorenz 63 system.288

IV. OBSERVATIONS AND GUIDELINES289

The purpose of the study is to determine the conditions under which the results obtained290

by computing the CLVs of a data series through the FEM-BV-VAR model are reliable. The291

method is applied to systems for which a priori knowledge of the states and of their stability292

exists. In terms of dynamical structure, the examples are introduced following an increase293

in complexity: the method is first applied on a fast-slow FitzHugh-Nagumo oscillator with294

two distinct time scales, then on data extracted from a laboratory experiment of a flow295

whose dynamics highlight a periodic orbit and a saddle point. Finally, the chaotic Lorenz296

attractor, which presents the most complex dynamics, is investigated.297

Our main finding is that this procedure works well provided the studied system exhibits298

two properties (which are related to each other). Firstly, it should have a clear scale sepa-299

ration in time, that is, one should be able to distinguish a time scale gap between two (or300

more) phenomena in the dynamics, as, for instance, in standard fast-slow systems. Scale301

separation can be estimated in several different ways, depending on the availability of data302

and on the existence of differential equations to describe the dynamics26–29. Secondly, the303

system needs a (near-)neutral direction along trajectories which is invariant under the lin-304

ear(ized) dynamics: indeed, if the system does not have any neutral direction, the angle305

θ is no longer a relevant quantity to evaluate the stability of a state. This condition is306

frequently satisfied in physical systems, exhibiting invariant center manifolds where the hy-307

perbolic dynamics take place; these are exactly the slow manifolds in the fast-slow situation.308

For the data-driven approach to be successful, this neutral direction has to be preserved by309

the FEM-BV-VAR reconstructed model. This is a crucial challenge as we will see in the310

following.311
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A. The case of a fast-slow FitzHugh-Nagumo oscillator312

As described in Section IIIA, the FEM-BV-VAR method is developed to study systems

with a certain fast-slow structure, detecting the transition between states that are character-

ized by their respective fast dynamics. Therefore, the method is well-suited for models with

time scale separation, expressed by a parameter 0 < ϵ ≪ 1, that exhibit switches between

different branches of the slow manifold consisting of equilibria of the fast subsystem. A by

now canonical example of such a fast-slow system is the FitzHugh-Nagumo ODE (8) (see

also Figure 2), which was derived as a simplification of the Hodgkin-Huxley model for an

electric potential of a nerve axon30:

ϵdx
dτ

= ϵẋ = x− x3

3
− y,

dy
dτ

= ẏ = x+ a− by.
(8)

Note that by a time change t = τ/ϵ, we may also write

dx
dt

= x′ = x− x3

3
− y,

dy
dt

= y′ = ϵ(x+ a− by).
(9)

Setting ϵ = 0 in equation (9), one can study the fast subsystem for which y is a bifurcation313

parameter and whose y-dependent set of equilibria is given by the curve y = x − x3/3,314

also called critical manifold S0. The cubic nonlinearity entails a bistable structure with315

two fold points that mark a change of stability of the fast subsystem. Considering one of316

the two (hyperbolically) stable branches of S0, one may also take ϵ = 0 in equation (8)317

and observe how the slow subsystem evolves along S0. This gives a normal (or neutral)318

y-direction together with a hyperbolic x-direction, yielding, for ϵ > 0, two branches of a319

slow manifold Sϵ around the stable branches of S0 with the same stability properties31. At320321

the mentioned fold points this normal hyperbolicity breaks down and fast switches occur322

between the two branches of the slow manifold (in accordance with the coloring in Figure 2323

(a).) The described behavior is also called relaxation-oscillation, famously associated with324

the van der Pol oscillator as a paradigm model, for which the FitzHugh-Nagumo ODE is a325

slight generalization32. Summarizing, Figure 2 shows transitions between a left and a right326

branch of a slow manifold. Along each of these branches, there is an actual neutral direction327

complemented by a stable one for most of the time until both directions (almost) coincide328

into a locally unstable direction around the fold (or transition) points. Hence, the alignment329
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variable θ12, where the stability of the CLVs is associated with the respective FTLEs, is an330

appropriate observable for detecting such transitions, see also Figure 2 (b).331

In Figure 2, the CLVs are computed via the FEM-BV-VAR clustering method: a FEM-332

BV-VAR auto-regressive model is first fitted to the timeseries of observations (x, y) (see333

Section IIIA), for which the best hyper-parameters are found to be K = 2 (number of334

clusters), m = 1 (memory depth) and p = 175 (persistence), with an integration step335

τ = 0.003. In this example, the choice of K, m and p is straightforward: the system has336

two well identifiable states, leading to K = 2, and the averaged persistence can easily be337

estimated by measuring the time spent by the system in each branch, leading to the estimate338

for p. Then, the result is fairly robust to variations in m, such that the simplest value m = 1339

is selected for the analysis. Having obtained an explicit linear model purely from the time340

series, the CLVs are approximated using the SVD-based algorithm (see Section II B), taking341

N = M = 10 and n = 3. The CLV directions are robust under higher choices of N,M and342

n. Note that the sign of the associated FTLEs depends on these choices; however, since343

we are interested in manifesting the transition behavior happening on short time scales, the344

small choices of N,M, n are suitable. The alignment θ12 follows precisely the same profile345

(a) (b)

FIG. 2: (a) Trajectory in the x− y plane of the FitzHugh-Nagumo system, colored

according to the alignment θ12, taking ϵ = 0.01, a = 0.4, b = 0.3 (standard choices, as in

Sharafi et al.9). Yellow areas correspond to unstable CLVs being close to the neutral

direction. (b) Time series of the x coordinate (blue) and of the alignment θ12 (red).
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as the one obtained through a direct computation of the CLVs from the linearization of the346

explicit FitzHugh-Nagumo ODE (8). Sharafi et al.9 also obtained a very similar pattern347

when they studied the CLVs of the FitzHugh-Nagumo system, based on another algorithmic348

procedure. Thus, the data-based method is successful for this example: via a pattern for349

θ12, one can clearly identify transitions between metastable states (corresponding with slow350

manifolds) through the most (finite time) unstable CLV direction (corresponding with the351

fast one).352

The results confirm the hypothesis that systems with a clear time scale separation and353

a slow manifold with an actual neutral mode are well-suited for using the FEM-BV-VAR354

method on time series and then detecting transitions between branches of such a slow man-355

ifold via the observable θ12.356

B. The case of the von Kármán attractor357

Next, the method is tested on a more complex example issued from laboratory turbulent358

flows. In this case, the dynamics is indeed slightly more complex than in the FitzHug-359

Nagumo model: as will be shown in this section, an attractor can be constructed for this360

flow using an embedding procedure. This embedded attractor shows a periodic orbit as well361

as a saddle point.362

The experimental set-up is that of a von Kármán swirling flow, a device designed and363

maintained at the Service de Physique de l’état Condensé of the Commissariat de l’Energie364

Atomique in Saclay, France33–36. The von Kármán turbulent flow is generated in a vertical365

cylinder filled with water and stirred by two coaxial, counter-rotating impellers. Those366

impellers provide energy and momentum flux at the upper and lower ends of the cylinder367

(see Fig. 2 in Dubrulle 202236). We focus on the case where the impellers are driven by two368

independent motors, operating in conditions such that the torques C1 and C2 applied by369

the flow onto the top and bottom impellers are stationary. A control parameter is defined,370

which is capable of tracking the symmetry of the forcing, namely ζ = (C1 −C2)/(C1 +C2).371

To quantify the global response of the flow to the forcing, the rotating frequencies f1 and f2372

of the two impellers are measured independently. This leads to the definition of the variable373

T = (f1 − f2)/(f1 + f2), useful to characterize the symmetries of the flow. Indeed, previous374

studies34,35 have identified a precise relationship between values of T and instantaneous375
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configuration of the flow: T ≃ 0 corresponds to a quasi-symmetric turbulent flow with two376

large scale circulation cells close to the impellers, and turbulence concentrated around the377

central section of the cylinder. For increasing |ζ|, bifurcations of the flow are observed and378

lead to positive or negative values of T . Those correspond to flow geometries where a single379

large scale circulation structure occupies all the flow except for a turbulent boundary layer380

located close to the upper or lower turbine, depending on the sign of T . When |ζ| > 0.06,381

the von Kármán flow spontaneously switches among symmetric and bifurcated states and382

the dynamical switches can be approximately described by a low-dimensional attractor35.383

This attractor can be visualised with the embedding procedure, plotting (Tm, Tm+τ , Tm+2τ ).

Here we will consider the case τ = 500 and we refer to Faranda et al.35 for further details

on the experiment and the choice of the parameters. The obtained embedded attractor

is represented in Fig.3. It shows two persistent states: on the left a meta-stable periodic

orbit, and on the right a saddle point. The system spends more time spinning around the

periodic orbit than around the saddle point. From the experimental data, one can only

be hypothetical about the number of unstable directions of the saddle node; however, it is

clear that this fixed point supports at least one stable (attracting) and at least one unstable

(repulsive) direction. We apply the FEM-BV-VAR clustering method (see Section IIIA)

to the time series of T . To that end, the first step is to choose the best FEM-BV-VAR

hyper-parameters, namely the number of states K, the memory depth m and the persistence

p. The embedding procedure highlights the existence of two clear states, a periodic orbit

and a saddle node, thus K = 2. Then a grid search is performed to select values for m and

p. As a criterion, we select the parameters that magnify the distinction between the periodic

orbit and the saddle point, which corresponds to our intuition of the system behavior. The

choice is based on a visual inspection of the output of the FEM-BV-VAR. The following

values are finally selected:

k = 2, m = 1, p = 90.

The corresponding state affiliation is shown in Fig. 3, where each point of the embedded384

attractor (Tm, Tm+τ , Tm+2τ ) is colored according to its affiliated FEM-BV-VAR cluster (also385

called state). One sees that the yellow state clearly corresponds to the cycle, and the blue one386

to the neighbourhood of the saddle point. The FEM-BV-VAR thus successfully captures the387

dynamical states. Let us recall that beyond the state affiliation, the FEM-BV-VAR provides388
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a linear auto-regressive model to describe the local dynamics within a state.389

FIG. 3: FEM-BV-VAR clustering on the embedded attractor for the time series of the

variable T , from the Von Kármán experimental data. Points that the algorithm detected

as part of a neighbourhood of the periodic orbit are colored in yellow, and points that are

associated to the saddle point, in blue. Parameters for the FEM-BV-VAR: K = 2, m = 1,

p = 90.

The CLVs are then computed based on the linear model given by the FEM-BV-VAR.390

We do not expect to have an accurate computation of the CLVs in each point, but aim at391

estimating the relative stability of each state. Previous work35,36 on the von Kármán flow392

experiment provide the results that can be expected: the periodic orbit is more strongly393
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stable than the saddle point, as it is associated with the symmetric flow (see Fig. 2 in394

Faranda et al.35). We show that the data-driven approach to compute the CLVs can retrieve395

this result directly from the data, looking at the alignment θ12 between the most unstable396

CLV and the near-neutral one.397

To that end, Froyland’s algorithm (see Section II B) is applied to the linear auto-regressive398

model given by the FEM-BV-VAR clustering. Three parameters need to be selected to apply399

the algorithm: the number of push forward steps M , the number of backward steps N and400

the correction step n. For simplicity we take N = M . A grid search is then applied on401

N(= M) and n. For each configuration, the CLVs and the alignment θ12 (as defined in402

Eq. (2)) are computed. Fig. 4 shows the obtained result for one configuration of N(= M)403

and n, which is consistent with the expected result. The color corresponds to the value of404

the alignment θ12, plotted on the embedded attractor, for N = M = 30 and n = 1. Around405

the periodic orbit the values of θ12 are clearly lower than around the saddle point, which406

means that the orbit is more strongly stable. However, the grid search (Fig. 5) shows that407

the result is not completely robust and depends on the choice of N and n.408

To highlight the relative stability of the periodic orbit compared to the saddle point, the409

following difference is defined:410

∆V KM = average of θ12 around the periodic orbit− average of θ12 around the saddle point

(10)

Fig. 5 shows, for each choice of (N , n), the value of the difference ∆ between the average411

alignment θ12 on the orbit and around the saddle point. In most configurations, the difference412

is negative, that is to say the periodic orbit is more strongly stable than the saddle point413

(which is the expected result). However, care is needed because for some choices of (N , n)414

the result is precisely the opposite. Thus, N and n should be large enough, but for larger415

values of N , θ12 appears to become noisy (likely due to accumulation of numerical errors).416

Therefore the choice of N and n is a sensitive step, for which no systematic guidelines417

are available. However, the grid search used in this study supports a suitable selection of418

parameters, in combination with some a priori knowledge of the dynamics.419

Nonetheless, this shows that for well suited values of the FEM-BV-VAR parameters (the420

number of states K, the memory depth m and the persistence p) and of Froyland’s algorithm421

parameters N and n, one can obtain a very insightful information on the relative stability422
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FIG. 4: CLVs alignment θ12 on the VKM embedded attractor. Colors correspond to the

value of θ12. In this configuration, the periodic orbit (in blue) appears to be more strongly

stable than the saddle point (in yellow), which is the expected result. Parameters for the

FEM-BV-VAR: K = 2, m = 1, p = 80. Parameters for Froyland’s algorithm: N = 30,

n = 1

of the states of the system, without any a priori information other than the raw data. This423

illustrates the potential validity of this method, even with experimental data. The example424

also supports our hypothesis that the existence of both a scale separation and a neutral425

direction is essential for the success of this method. In the von Kármán flow embedded426

attractor, one clearly has a scale separation in the sense that the trajectory oscillates for427

some time around one state (either the cycle or the point), and then quickly switches to428

the other state, with a characteristic time much faster than the oscillation. The existence429

of a neutral direction is more delicate to conclude, given that we do not have an underlying430
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FIG. 5: Difference ∆V KM between the average alignment in state 1 (periodic orbit) and 2

(saddle point), as defined in Eq. (10). N is the number of backward and forward steps

(note that M = N), and n is the correction step (see II B). The blue areas correspond to

the set of parameters for which the cycle is more strongly stable than the saddle point,

which is expected.

analytical model. However, the existence of the anticipated neutral direction is consistent431

with the observed quasi-periodic motion.432

C. On a Lorenz 63 model433

To complete the study, the method is tested on a single Lorenz 63 system, with the usual434

parameters for obtaining a chaotic attractor (σ = 10, β = 8/3, ρ = 28)37 :435
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dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz.

(11)

The attractor is self-excited with respect to three equilibria: two unstable equilibria at

the center of each wing and one saddle node at the origin, see Fig. 6. The system exhibits

no attracting limit cycle such that the oscillations within each wing are aperiodic, exhibiting

no asymptotically exact neutral direction for the linearization. The dynamics in each of the

wings is sometimes described as metastable, with fast switches between them, such that

one might think of a time scale separation. However, the associated patterns are highly

irregular and not clearly associated to fast-slow dynamics (see also Figure 7). Dynamically

speaking, this system is the most complex of this study. Regarding the Lyapunov expo-

nents, a computation from the set of equations (11) gives (as computed through Ginelli’s

procedure4):

λ1 = 0.9, λ2 = 0.005, λ3 = −14.5.

These correspond to an unstable, a near-neutral and a stable direction respectively. Using436

the Froyland algorithm, one can compute the CLVs along the trajectory using the analytical437

expression of the equations (see Section II B). Fig. 6 shows the value of the alignment θ12438

(cosine of the angle between the most unstable CLV and the near-neutral one), plotted439

onto the trajectory of the Lorenz 63 system. Blue areas correspond to low values of θ12,440

therefore to more stable regions, and yellow areas to more unstable accordingly. Previous441

studies showed that the alignment of CLVs computed directly from the set of equations was442

a relevant tool to predict regime transition in the Lorenz 63 model11. In this study, we aim443

at assessing whether the FEM-BV-VAR model captures enough dynamical information for444

the approximated data-driven CLVs to follow a similar pattern as in Fig. 6.445

As for the previous examples, one has first to choose the three parameters of the FEM-

BV-VAR (namely the number of states K, the memory depth m and the persistence p, see

Section IIIA), which is harder in this example. K = 2 comes naturally as the attractor has

two wings. As explained in Section III B, the value of the persistence p can be optimally

chosen thanks to the L-curve method, provided we already fixed K and m. To choose m,
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FIG. 6: Froyland’s algorithm on a simple Lorenz 63, N = 100, τ = 0.01 (integration step).

The colors show the alignment θ12, as defined in Eq. 2. Blue areas correspond to more

stable areas, where the most unstable CLV and the near-neutral one are close to being

orthogonal. Conversely, yellow areas are very unstable. This result proves robust under an

increase of N , provided N ≥ 50.

the method is tested with different values of m ranging from 1 to 5. For m ≤ 2, the CLVs

algorithm does not converge well on the FEM-BV-VAR reconstructed model. Thus we take

m = 3, the smallest value for which the convergence is good enough. The higher m, the more

complex the model can be (since the dimension of the auto-regressive model is dim ×m).

With m ≤ 2, the model may be too simple and may not capture the oscillatory patterns of

the original system. Hence, the final choice is

K = 2, m = 3, p = 29,

where p is chosen thanks to the L-curve method. Fig. 7 shows an extract of the time series446
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of the original data (in yellow), the reconstructed model (in red) and the states affiliation447

found by the FEM-BV-VAR clustering (background in blue). Note that the neutral direction448

almost exists in the Lorenz system and leads to the oscillating dynamics. However, the FEM-449

BV-VAR reconstruction in Fig. 7 shows that the oscillations within a state are lost. This is a450

sign that the fitted AR model looses the near-neutral direction: an insight that is important451

for the following CLV analysis.452

FIG. 7: FEM-BV-VAR clustering applied to a Lorenz 63. First component of the Lorenz

system (yellow), states affiliation (blue and white strips) and reconstruction by the

FEM-BV-VAR (red). For K = 2, m = 3, p = 29.

The next step is to choose N = M (the number of push backward and push forward453

steps) and n (the correction steps) to run the CLVs algorithms (see Section II B). It turns454

out that the obtained result depends highly on this choice, as for the Von Kármán flow data,455

except that for the Lorenz system the range of validity of the method is much narrower.456

For intermediate values, such as N = 10 and n = 5, one can get some information on the457

attractor thanks to the alignment θ12 obtained through the FEM-BV-VAR approach. Fig. 8458

provides a picture that can be compared with the expected result from Fig. 6. The absolute459

values of θ12 along the trajectories are not the same as expected. However, one can see that460

the outbound of the wings is found to be less stable than the bulk. Hence, the method461

provides again an insight on the dynamics which is, however, less precise and accurate than462

in the two previous examples.463
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FIG. 8: Alignment of CLVs on a Lorenz 63 system, obtained thanks to the FEM-BV-VAR

model. In color: θ12. One can see that the outbound of the wings is found to be less stable

than the bulk. CLVs computed with the Froyland algorithm (N = 10, n = 5), from the

FEM-BV-VAR reconstruction with K = 2, m = 3, p = 29.

To evaluate the range of validity of the method, the same picture is generated for N464

ranging from 3 to 100 and n from 1 to 100. Two criteria are used to assess the relevance of465

the obtained result. First, given that the distribution of the value θ12 has to be the same in466

each wing (the two wings are dynamically symmetric), the average of θ12 is expected to be467

the same in each wing. To monitor that, one can look at the difference between the average468

value of θ12 over the two wings:469

∆Lorenz = average of θ12 over the left wing− average of θ12 over the right wing (12)

Secondly, to have an indicator of noisiness of the obtained time series for θ12, one can look470

at the total variation471
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TV =
∑
i

|θ12(i+ 1)− θ12(i)| (13)

The previously shown Fig. 8 was chosen to be the configuration that minimizes the total472

variation, keeping it strictly positive.473

Fig. 9 shows, for each choice of (N , n), the value of the difference ∆Lorenz between the474

average alignment θ12 over the left wing and over the right one. This value is expected to be475

as close as possible to zero. One can see that for small values of N and n, the output is very476

asymmetric (blue zone in the bottom left), as well as for large values of N (red strip on the477

top). As previously explained, such an asymmetry is not physically relevant. Moreover, the478

total variation (Eq. (13)) tends to increase as N and n increase. Thus, unlike for the von479

Kármán flow data, the range of validity of this method in the N -n plane is small, making480

this method hardly usable in practice for the Lorenz system. While one can have some481

systematic methods to tune the FEM-BV-VAR parameters (K, m and p, see Section III B),482

no such tools exist to choose N and n.483

This observation supports our key finding: the procedure does not work well when the484

system has no clear time-scale separation and when the FEM-BV-VAR reconstruction does485

not preserve the existence of an invariant neutral direction. As mentioned above, one can486

see in Figure 7 that the FEM-BV-VAR reconstructed model (in red) does not exhibit the487

oscillations within the wings that are characteristic of the original model (in yellow). Yet,488

those oscillations are important to capture the dynamics and predict the transition from489

one wing to the other, as suggested by Lorenz in his original paper37. In fact, the FEM-BV-490

VAR model seems not be able to preserve the existence of a neutral direction (of which the491

oscillatory dynamics are a characteristic feature). Figure 10 shows the alignment θ (that492

is to say the cosine of the angle) between the tangent to the trajectory and the expected493

near-neutral CLV (as there are only three dimensions, the near-neutral CLV is the second494

one in this case). On the left, this alignment is computed for the Lorenz 63 system directly495

from the analytical expression. One clearly sees that almost everywhere the second CLV496

and the flow are aligned, which confirms the existence of a neutral direction in this system.497

However, the same computation but with the CLVs computed through the FEM-BV-VAR498

model shows different results. The picture is completely erratic, which means that the499

neutral direction is (almost) entirely lost. In summary the FEM-BV-VAR model fails to500
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FIG. 9: Pcolor plot of ∆Lorenz, the difference between the average value of θ12 over the two

wings (see Eq. 12). N is in ordinate and n in abscissa. As the two wings are symmetric, in

theory this difference should be close to zero (white area). One can see that for N and n

not large enough, ∆Lorenz can be far from zero, which means that the method does not

converge well with this values.

capture the irregular oscillations of the system within each wing associated with such near-501

neutral directions. This is most likely related to the simple, linear model structure assumed502

in the FEM-BV-VAR approach.503
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(a)

(b)

FIG. 10: (a) Alignment θ between the flow (tangent to the trajectory in each point) and

the near neutral CLV, directly computed on a Lorenz system. Yellow corresponds to

closely aligned vectors. (b) Same angle, but this time with the near neutral CLV computed

on the FEM-BV-VAR reconstructed model. One can clearly see that in the first case, the

near neutral CLV does correspond to the direction of the flow. However with the

FEM-BV-VAR reconstruction, one completely looses this alignment.

V. CONCLUSION504

The method described in this paper and suggested in earlier work by Quinn et al.13 makes505

it possible to compute an approximation of the Covariant Lyapunov Vectors (CLVs) from506

data series. It is based on the FEM-BV-VAR clustering scheme, which provides piece-wise507

auto-regressive linear models for the data. This model being built, one can compute an508

approximation of the CLVs. Under some conditions, the procedure seems to capture enough509

information on the dynamics to be able to give us the relative stability of the different areas510

of the phase space (that is to say, in this framework, the stability of the trajectory within511

each of the FEM-BV-VAR cluster). Information about stability of the trajectory is given512

by the analysis of the alignment between the most unstable (finite time) Lyapunov vector513

and the nearly neutral one (denoted θ12).514

We claim that this procedure works well provided the studied system exhibits two proper-515
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ties. First, it should have a clear scale separation in time, that is to say one should be able to516

distinguish a temporal scale gap between two (or more) phenomena in the dynamics, as, for517

instance, in standard fast-slow systems. Secondly, the system has to support a dynamically518

invariant neutral direction in its linearization and, importantly, this neutral direction has to519

be preserved as much as possible by the FEM-BV-VAR reconstructed model. To support520

this hypothesis, we have tested the validity of the method on three different systems with an521

increasing dynamical complexity: the fast-slow FitzHugh-Nagumo oscillator, an embedded522

attractor built from von Kármán flow data that exhibits a periodic orbit along with an523

saddle point, and finally a classic Lorenz 63 chaotic attractor.524

In the case of the FitzHugh-Nagumo oscillator, the method yields good performances: one525

can find transitions precisely via the pattern of θ12, as the method clearly identifies switches526

between slow metastable regimes via unstable fast dynamics. This system exhibits a clear527

time-scale separation that makes it possible for the FEM-BV-VAR model to capture most528

of the relevant dynamical information, and especially to preserve the neutral direction. The529

case of the von Kármán flow shows that the method can be relevant even with experimental530

data, provided the dynamics exhibits a clear scale separation that allows the FEM-BV-VAR531

to preserve the existence of a neutral direction in the reconstructed model. It also indicates532

that one should be careful when tuning the values of N , M and n: they must be large533

enough for Froyland’s algorithm to converge, but not too large to avoid the accumulation of534

numerical errors. Finally, the Lorenz 63 example shows that for a system without a clear time535

scale separation, the results are highly dependent on the hyper-parameters and therefore the536

method is prone to fail. Due to its simple, linear model structure, the FEM-BV-VAR cannot537

capture irregular, complicated short term dynamical patterns (as the oscillation around the538

wing centers), and the reconstructed model does not show any direction that can be seen as539

(near-)neutral.540

Note that, while the reference approach by Quinn et al.13 assumes VAR models within541

clusters, the clustering framework introduced by Horenko16 is general and can accommodate542

more flexible model structures. Some alternative examples using different model structures543

can be found in Metzner et al.17 and in de Wiljes et al.38. In particular, Boyko et al.39544

recently extended this model-based clustering approach to enable the use of continuous545

models, effectively fitting a nonstationary, nonlinear stochastic differential equation (SDE)546

to timeseries of observations. Hence the data-driven computations of the CLVs could be547
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extended to using such a SDE-based clustering for the required model fitting step. Such548

a future extension, based on a likely more faithful representation of complex multiscale549

dynamics, may lead to more accurate estimation of the CLVs and hence to a better approach550

to study transitions in complex systems such as the climate system.551
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