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Abstract

Solving coupled multiphysics problems using finite elements and con-
ventional modeling approach requires building, from coupled finite ele-
ment formulation often in the same code, the monophysical operators
and the multiphysics coupling operators. In this work the data driven,
model-free computational approach is fitted in the multiphysics framework
adapted for ’smart’ materials. Thus, in this work we ought to expand the
phase space and propose a new norm for the distance based data driven
solver adapted to the problem at hands. Given the good material database
which naturally encodes the coupling interactions, we show that proposed
application of data driven approach enables to avoid the coupling tan-
gent terms altogether. In other words, the data driven approach permits
to decouple the different ’physics’ and to manage the coupling from the
data. We illustrate the performance and robustness of the approach on
two examples related to lattice model composed of planar, piezoelectric
truss network and of finite element discretized linear piezoelectric solids.
The numerical tests show a good convergence properties related to the
number of data points, as well as the choice of material and weighting
parameters.

Keywords— Data driven approach, model-free, data driven compu-
tational mechanics, multiphysics, coupled problem, piezoelectricity.

1 Introduction

Typical problem in computational mechanics considers the response of a solid
deformable body under applied loading, leading to the boundary value problem
(BVP). In this context one’s main interest is to compute three fields, namely, dis-
placements, strains and stresses, which have to be in agreement with prescribed
mechanical properties, applied external loading and the conditions imposed on
the boundary. The governing equations of the typical BVP are defined with
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(i) kinematics equations, (ii) equilibrium equations, and (iii) constitutive equa-
tions. While (i) and (ii) are related to geometry and conservation laws, one of
the fundamental issues that scientists and engineers are confronted with is the
characterization of the mechanical behaviour of material, given with (iii).
The classic approach in the computational mechanics considers the formula-
tion of material models whose development relies on the data usually collected
through ’testing’. A modern test (performed mostly in the design and develop-
ment phase) of engineering product concerns (a) real instrumented experiments
with a variety of sensors and setups, and (b) virtual experiments, simulations
using different models and numerical methods. Both (a) and (b) are performed
on different scales ranging from material to structural scale. In the 1960s the
available data were sparse across certain regimes and were gathered through
poorly instrumented experiments (a) using extensometry, strain gauges and
force cells. These experiments were complemented with analytical or rather
simple numerical methods. Thus, one needed a great deal of intuition and ex-
perience to develop a quality model from usually scarce input with the purpose
of generalizing experimental measurements mostly performed on simple tests.
This situation has changed: the models became more complex together with
the significant development of dedicated numerical methods. Accordingly, in-
strumented experiments (a) lean to full-field kinematic/thermal measurements
[1] giving rise to so-called data assimilation. That is, the transition to the
data rich era progressively happened in computational mechanics. On the other
hand, traditional models were developed in a different context which sometimes
makes them incompatible with the data rich environment, finally causing the
model with it’s assumed properties to downgrade the available data. In other
words, traditional fitting of a model to the ’big data’ is often ill-posed and can
cause modeling errors which might severely impact the accuracy of the solution.
Data driven computational mechanics (DDCM) [2] is a generalization of tradi-
tional, modeling approach in computational mechanics. More precisely, DDCM
is a reformulation of BVP aiming to search for the solution in the set of mechan-
ically admissible states by minimizing the distance to the material data set (a
point set). The basic idea behind DDCM is to use the provided measurements
(coming from tests (a) or (b)) as constitutive data directly in the computation,
skipping entirely the modeling step and the usage of the constitutive model.
In the narrow sense, a mechanically admissible state is a tuple (strain, stress)
which satisfies (i) kinematic and (ii) equilibrium relations, as well as the related
boundary conditions. In this context, the data driven problem is defined with
double minimization of the squared distance in the phase space and the objec-
tive is to find an admissible state the closest to the material state, also given
with the tuple (strain, stress). So called distance-based solver is introduced
in [2] to solve data driven problem, i.e., to iteratively minimize the distance
between admissible and material states. In each iteration within a staggered
solution scheme we are: 1) projecting the material state to an admissible set
which boils down to solving two linear systems resulting from finite element
discretization, and 2) searching the closest point in data set to the previously
calculated point in admissible set. Note that linearity of two linear systems
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solved in step 1) is completely independent of the linearity or non-linearity of
the material behavior. We note also, that in the frame of data driven approach
(DDA) the spatial (and temporal) discretization(s) are still kept the same as in
the classic approach and are mostly related to finite element method.
From it’s introduction the performance of the DDCM as the new ’model-free’
computational paradigm was presented in static [2, 3] and dynamic [4] con-
text. The convergence analysis of the proposed solver is presented for the linear
[2, 3] and non-linear [5, 6] elastic behavior. In the last five years the model-
free approach is emerging as an alternative to model-based computing and was
extended to inelasticity [7], fracture [8] and multiscale problems [9, 10]. We
also note the work related to data driven identification (DDI) introduced by
Leygue [11, 12], permitting to identify stress from mechanical tests and digital
image correlation. The idea of DDI is to identify the stresses from full-field
measurements without a priori knowledge of material model, see [13]. To the
author’s knowledge there were no attempts to extend the model-free approach
to coupled, multiphysics problems addressed in the sequel.

Modern consumer electronics has pushed the boundaries of technological
development towards miniaturization with weight/size limitations and power
demands being the two most stringent requirements. Smart (active) materials
fit nicely to those strict requirements and many of them are nowadays used in
various fields of engineering and modern technologies [14, 15]. The ’smartness’
of these materials relies on their transducer capabilities (actuation/sensing),
that is, the capability to receive, transmit, or process a stimulus and respond
by producing a useful effect. The receiving/responding capability of the smart
material is achieved by converting energy between different physical fields, for
instance: mechanical, thermal, electric and magnetic [16, 17, 18, 19]. In the
multi-field context one needs to take care, firstly, of so-called principal inter-
actions which govern the relation between work conjugate variables for each
physical field. Secondly, since smart materials rely on the significant coupling
between different physical fields, one needs to take care of coupled interactions.
These interactions are for magneto-electro-. . .-elastic solids governed by consti-
tutive relations (iii). In the multiphysics context, the constitutive relations are
formulated in an energy framework through thermodynamic potentials, see [18].
According to [18] eight different forms of constitutive relations can be developed
depending on the choice of independent variables. Regardless of the choice of
independent variables, the state is in the multi-coupled framework defined by
N -tuple, where N = 2n is the number of state variables and n is the num-
ber of coupled fields. For the four-field example (n = 4) mentioned above we
have 8-tuples (strain σ, stress ε; electric field E, polarization D; magnetic field
H, magnetization M; temperature T , entropy S). The relation between state
variables (choosing for instance ε,E,H, T as independent) for the reversible
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processes [17] can be given as
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 . (1)

The constitutive relations in the four-field context gather all the principal inter-
action given on the diagonal of the constitutive matrix in (1), that is, elasticity
between strain-stress, electric susceptibility1 for electric field-polarization, mag-
netic susceptibility for magnetic field-magnetization and heat capacity relating
temperature to entropy. Off-diagonal terms in (1) represent the coupled prop-
erties giving rise to well known effects like piezoelectricity related to electro-
mechanical coupling, magnetostriction related to magneto-mechanical coupling,
pyroelectricity related to coupling between heat and electric field, etc. These
coupled interactions are expressed as tensors gathering all the magnetoelectric,
piezoelectric, piezomagnetic, thermoelastic, and thermoelectric constants (both
for direct and inverse effects).
Lastly, we note that the finite element (FE) formulation of the coupled prob-
lem requires the assembly of a number of residual and tangent operators. The
latter are in the coupled context largely expanded, that is, in the four-field cou-
pled context we obtain by linearizing the mechanical residual (see section 5.2.3
in [17]) the direct mechanical stiffness (relating forces and displacements) but
also three coupling tangent operators relating displacements with other degrees
of freedom as for instance electrical and magnetic potentials and temperature.
Analogously, linearizing other residuals gives other direct and coupled tangent
operators. Clearly, the assembly of the FE operators that encode the coupling
scales with n(n − 1)/2 and will lead to increased computational cost in the
multi-coupled problems. In addition, a classic, model-based FE solution re-
quires a considerable number of material parameters to be measured and an
adequate model (the one governing all the principal and coupled interactions)
which implicitly directs the measuring procedure of the parameters.

The objective of the proposed work is to pave the way for data-driven com-
puting in the frame of coupled, multiphysics problems in solid mechanics. In
this work as a first step, we propose to extend the method of DDCM to a two-
field example of the coupled electro-mechanical interaction. In this context, we
focus on the common active materials in the form of piezoelectric solids [20, 15]
featuring a direct and inverse piezoelectric effect to exchange the energy between
mechanical and dielectric fields. More precisely, we will deal with ferroelectric
materials featuring a domain structure which permits a remanent polarization.

1In sequel of this paper we will use the electric permittivity and electrical displacement
directly knowing the relations between polarization and electrical displacement as well as
between susceptibility and relative permittivity.
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In the presented examples we focus primarily on the lead zirconate titanate
(PZT), which is the most common ferroelectric material used for piezoelectric
actuators and sensors. From it’s development piezoelectric transducers found
it’s application in many fields [21] which was followed by an effort in the de-
velopment of the FE modeling using continuum, and structural finite elements
[22, 23, 24, 25, 26].

To that end, we give in the next section a brief review of the piezoelectric
model and related governing equations as well as the FE formulation of the cou-
pled electro-mechanical problem. In section 3 the application of the model-free
approach to the electro-mechanical problem at hands is detailed. The conver-
gence and the robustness of the data driven algorithm for coupled material
response is firstly presented on the simple example of the piezoelectric lattice
structure comprising a number of 1D bars and then generalized to 2D problems
in the section 4. In the last section, a conclusion and a perspective for future
work is discussed.

2 Governing equations of the piezoelectric model

For completeness in this section we briefly revisit the BVP of the piezoelectric
continua, having the same general structure and properties, namely kinematic
(i), equilibirum (ii) and constitutive (iii) relations, as the standard, mechanical
BVP. The difference is that the governing equations are related to 1. mechanical
(M) sub-problem described by elastostatics / elastodynamics, related kinematics
and boundary conditions; 2. electrical (E) sub-problem related to the electro-
statics Gauss, Maxwell law and related boundary conditions; 3. coupling which
manifests itself only through the constitutive relations. All the quantities ap-
pearing in the model are summarized in Table 1. The number of indices in
Table 1 describes the order of the tensor ranging, in the presented model, from
scalar to 4th order tensor. For simplicity of notation index notation is in se-
quel abandoned in favor of the symbolic, denoting all the vectors and tensors in
bold. We focus in sequel on the piezoelectric body occupying a bounded domain

(M) (E)

ui [m] displacement vector ϕ [V= J
C

] electric potential
bi [ N

m3 ] body force vector ρvq [ C
m3 ] electric body charge

εij [m
m

] strain tensor Ei [ V
m

= N
C

] electric field vector
σij [ N

m2 ] stress tensor Di [ C
m2 ] el. displacement vector

Cijkl [ N
m2 ] stiffness tensor εij [ F

m
= C

Vm
] el. permittivity tensor

Sijkl [m
2

N
] compliance tensor ε−1

ij [m
F

] inverse of el. permit.

(M)(E) ekij [ C
m2 = N

Vm
] piezoelectric (stress) constants tensor

(M)(E) dkij [C
N

= m
V

] piezoelectric (strain) constants tensor

Table 1: Quantities used in the piezoelectric model with corresponding units in
SI system, where (M) denotes mechanical and (E) electrical quantities.
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Ω ⊂ R3 with the boundary Γ, see Fig. 1.

n

Figure 1: A piezoelectric slab of volume Ω with the boundary Γ. The boundary
Γ is split to Dirichlet and Neumann parts in both mechanical and electrical
problems: (M) the body is encastred on the left and loaded on the right while
the upper and lower surfaces are traction-free; (E) the electrodes are attached
to the upper and lower surfaces permitting to fix the electric potential, while
the surfaces on the right and left have the charge imposed.

Boundary conditions The boundary Γ is partitioned to mechanical and elec-
trical parts as : (M) Γ = Γu ∪ Γσ, and (E) Γ = Γϕ ∪ Γq, see Fig. 1 (right), with
Γu ∩ Γσ = ∅ and Γφ ∩ Γq = ∅ to ensure well-posedness of the BVP. It should be
noted that the boundary conditions (BC) in piezoelectricity are uncoupled, that
is, the standard mechanical conditions are applied separately from the electrical
boundary conditions. Moreover, the partition of the boundary into disjunctive
parts (related to Dirichlet and Neumann parts) can be done completely inde-
pendently for mechanical and electrical sub-problems. Thus, the parts: (M) Γu
and Γσ respectively support a prescribed displacement ū and prescribed trac-
tion t̄; while (E) Γϕ and Γq respectively support a prescribed electric potential
ϕ̄ and a prescribed surface charge density q̄.

Kinematics (i) The kinematics relations for mechanical part (M) define the
strain tensor (we limit our study to small displacement gradients), while the
dielectric equivalent (E) is given through the Maxwell’s law defining the electric
field vector E as the negative gradient of electric potential:

(M) : ε =
1

2
(grad u + grad uT), (E) : E = − gradϕ. (2)

Associated BC are given as

(M) : u = ū on Γu, (E) : ϕ = ϕ̄ on Γϕ. (3)

Equilibrium (ii) The local mechanical equilibrium (M) has it’s dielectric
equivalent in terms of the Gauss law. That is, for any point in Ω we have

(M) : divσ + b = 0, (E) : div D = ρvq = 0. (4)

Related BC with imposed quantities t̄, q̄ can be given as

(M) : σ n = t̄ on Γσ, (E) : D n = −q̄ on Γq. (5)
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where n represents the outward unit normal on Γ, and t̄, q̄ the imposed quanti-
ties.

Constitutive relations (iii) - to be replaced with data By extracting
the first two lines and columns from the general form given in (1) we can obtain
the piezoelectric constitutive relations. We note also (proof omitted) that the

off-diagonal, coupled properties in the extracted 2x2 matrix are equal
∂σ

∂E
=

∂D

∂ε
= e>, that is, the direct and converse piezoelectric effects are equivalent.

Integrating the subsystem related to electro-mechanical coupling we obtain the
constitutive relations of the linear piezoelectricity (in the so called stress form2

with independent variables (ε,E):

σ = C|E ε− e> E,

D = e ε+ ε|ε E.
(6)

The above relations are coupling linear elasticity (with Hooke’s stiffness operator
C) to the charge equation of electrostatics (with permittivity matrix ε) using
piezoelectric constants stored in e. We note that this group of equations is going
to be replaced with data in sequel within DDA.

Weak form and classic finite element (FE) formulation Before closing
this section we give a brief overview of the numerical solution of the presented
BVP in piezoelectricity and, following the usual practice, we abandon the strong
form in favor of the weak form of equilibrium (ii). On top of elasticity where
we weaken the equilibrium equation, we ought to weaken the conditions of the
Gauss law. Choosing kinematically admissible virtual displacement field u? and
virtual electric potential ϕ?, such that both fields are regular and u? = 0 on Γu,
and ϕ? = 0 on Γϕ we have

∀u?,
∫

Ω

u? divσ dΩ = 0 =

∫
Γ

u?σ n dΓ−
∫

Ω

grad u?σ dΩ, (7)

∀ϕ?,
∫

Ω

ϕ? div D dΩ = 0 =

∫
Γ

ϕ?D n dΓ−
∫

Ω

gradϕ?D dΩ. (8)

FE formulation resides on the standard continuum FEs, see e.g. [22], adding for
piezoelectric materials, the degree of freedom related to electric potential (ϕ) in
each node.

Remark. Standard FE solution of the coupled problem (here the piezoelectric
BVP) requires a custom-made FEs with added degrees of freedom. Since general,
multi-coupled formulation (e.g. four-field example from the Introduction, [17])
is rarely a part of the standard codes used in computational mechanics, one

2We are free to choose independent variables in the formulation of the constitutive law.
For many applications, different choices of independent variables may fit better. Strain form
with independent variables (σ,E) gives rise to coupling operator d shown in Table 1.
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needs to have an access to the code source or master user element routines. We
show in the sequel that DDA approach makes the electro-mechanical coupling
non-invasive (see [27]).

The discrete system arising from FE discretization consists of Nn nodes and
Ni integration (material) points. The spacial interpolation of displacement and
electric potential fields can be given using standard FE shape functions stored
in N

u(x) = NMun and ϕ(x) = NEϕ. (9)

Having the displacement and potential fields and related interpolation in hands,
using (2), we can express the strain and electric field in each material point i as

εi = BM
i u and Ei = BE

i ϕ, (10)

where BM
i is standard strain operator (symmetric gradient of FE shape func-

tions) for integration point i, while BE
i is simply the gradient of FE shape

functions. Performing analogous procedure for the virtual fields (u?, ϕ?), plug-
ging these interpolations into weak form (7), (8) and taking into account BC
(3), (5) we finally have

Ni∑
i

wiB
M,>
i σi = f and

Ni∑
i

wiB
E,>
i Di = fq, (11)

where wi denotes integration weights, while active nodal forces vector f and
nodal charges vector in fq read:

f =

∫
Γσ

NM>t̄ dΓ and fq =

∫
Γq

NE>q̄ dΓ. (12)

Moreover, by including the constitutive equations (6) we end up (details in e.g.
[22]) with the linear system[

KM KEM

KEM,> KE

] [
u
ϕ

]
=

[
f
−fq

]
, (13)

where KM and KE are the stiffness matrix and the dielectric ’stiffness’ matrix,
while KEM is the piezoelectric ’stiffness’ matrix governing the coupling.

Remark. Related to the previous remark, we note here that the classic FEM
solution resides on the coupling model encoded in the coupling stiffness-like op-
erator KEM which needs to be assembled requiring, thus, a specific multiphysics
code.

The benefit of the DDA extended to fit in the multiphysics context is two-
fold since in addition to skipping the material (inhere) coupling model, we aim
to completely decouple the problem. More precisely the DDA will permit a
numerical implementation which doesn’t take care of the coupling.
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3 Data driven approach for coupled electro-mechanical
problem

In this section DDA originally developed for elasticity (see [2] and references
cited in the Introduction) is applied to the coupled electro-mechanical problem
at hands. This development relies on three points: a) expansion of the phase
space, b) redefinition of the norm to metrize the new phase space and c) refor-
mulation of the DDA problem.
As opposed to ’standard’ DDA related to elasticity where the local state of the
system in every point i is characterized by solely the stress and strain pairs,
here we ought to expand the phase space. That is, for the two-field3 case we
describe the state with quadruples (εi,σi; Ei,Di) with: (εi,σi) ∈ RdM and
(Ei,Di) ∈ RdE , where dM , and dE are the dimensions of stress and strain,
and electrical field and displacement, respectively, at each point i. We denote,
thus, zi = (εi,σi; Ei,Di) a point in a phase space Z = R2dM × R2dE . The
internal states z = [(εi,σi; Ei,Di)]

Ni
i=1 which exactly satisfy the kinematics (10)

and equilibrium (11) are considered as the electro-mechanical states. In the
classic, modeling approach the set of equations (2) and (4) is closed with the
continuous relation between state variables expressed for instance in (6). The
main novelty of DDA, as discussed in the Introduction, is to avoid entirely the
usage of the material model in favor of the material database4. To that end,
the modeling approach is reformulated and in addition to being compatible (i)
and equilibrated (ii), the electro-mechanical state has to be close to the mate-
rial response stored in the database, and not any more verify the constitutive
law (iii). In other words, we tend to assign to each electro-mechanical state zi
closest material state from the database. The latter is in our context composed
of material data points zm = (εm,σm; Em,Dm) ∈ Z, where m = 1 . . . Nm, and
Nm denotes the number of the material points in the database. We denote the
material state zm assigned to the electro-mechanical state zi as zim, where im
denotes the pairing.
In order to metrize the distance in the extended phase space the following
electro-mechanical norm is proposed:

‖zi‖2EM = α(ε>i Cεi + σ>i C−1σi) + (1− α)(E>i εEi + D>i ε
−1Di), (14)

where synthetic operators C and ε gather numerical constants rather then the
ones related to the real material with the goal to weight the influence from the
work-conjugate pairs (ε−σ,E−D); α is used to weight the influence of the two
terms on the right-hand side related to (M) and (E) contribution. With this
norm in hands we can express the squared distance between electro-mechanical

3The two-field example, which is the focus of this paper, is a particular case of the general
multiphysics context discussed in the Introduction. We denote, thus, the two-fields case with
n = 2 for elasticity and electricity, and the electro-mechanical states which are defined with
quadruples, N = 2n = 4.

4Recall that the points in the database are obtained by ’tests’, either real (a) or virtual
(b) (see Introduction).
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state and associated data point as

d2
i = ‖zi − zim‖2EM . (15)

With the proposed expansion of the phase space and the redefinition of the
norm, the central problem of DDA for the case of piezoelectric continua is for-
mally written as:
Given: FE mesh (geometry and connectivity), boundary conditions and mate-
rial database zm,m = 1 . . . Nm,
Find: electro-mechanical states zi and their pairing im with corresponding
closest material states, such that it minimizes the global distance

1

2

(
Ni∑
i

wi ‖zi − zim‖2EM

)1/2

, (16)

under constraints (10) and (11).
Clearly, the extended DDA problem still represents a constrained minimization
problem with continuous and discrete variables as in standard DDA. Thus, we
are going to reuse the same staggered solution scheme proposed in the original
paper [2] with characteristic two steps in a single iteration:

1. Standard constrained minimisation problem for a given material pairing
im in each point i. The pairing is known from initialization or previous
iteration and stored to im.

2. Finding the closest material point for the known electro-mechanical state
(pairing update).

As suggested in [2] in this work the initialisation of the pairing given with
(im) relies simply on the random choice of data points paired to each mate-
rial/integration point. In the original work Kirchdoerfer and Ortiz demonstrated
insensitivity of the staggered solution scheme to such initialization, see Fig. 6
in [2]. The details of the reformulation of the distance-minimizing algorithm are
given in the sequel.

DDA algorithm We start by plugging constraints in the minimisation prob-
lem. The kinematic constraint (10) is imposed directly, while the equilibrium
(11) is enforced using Lagrange multipliers method which gives a functional
L = LM + LE , for mechanical (M) and electrical (E) parts

LM =

Nm∑
i

(
wiC

2
(BM

i u− εim)2 +
wiC

−1

2
(σi − σim)2 − (wiB

M
i σi − f)η

)
,

(17)

LE =

Nm∑
i

(
wiε

2
(BE

i ϕ− Eim)2 +
wiε
−1

2
(Di −Dim)2 − (wiB

E
i Ei − fq)ζ

)
,

(18)
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where multipliers η and ζ represent virtual displacement and electric potential
vectors, respectively. The minimisation of L with respect to u,σi and η for
the former, and with respect to ϕ,Di and ζ for the latter leads to four linear
systems (details omitted)(

Nm∑
i

wiB
M,>
i C BM

i

)
u =

Nm∑
i

wiB
M,>
i Cεim,(

Nm∑
i

wiB
M,>
i C BM

i

)
η = f −

Nm∑
i

wiB
M,>
i σim.

(19)

(
Nm∑
i

wiB
E,>
i ε BE

i

)
ϕ =

Nm∑
i

wiB
E,>
i εEim,(

Nm∑
i

wiB
E,>
i ε BE

i

)
ζ = fq −

Nm∑
i

wiB
E,>
i Dim.

(20)

Two systems in (19) featuring operator KM on the left-hand side are the stan-
dard product of DDA in elasticity. These systems have a standard form gov-
erning the displacements (u,η) generated by the forces associated to the quasi-
stiffness (’quasi’ in the sense of numerical, non-material parameters in C). On
the other hand, the systems in (20) featuring KE on the left-hand side are added
due to proposed application to the coupled problems. By analogy, a standard
form is kept governing the electric potentials (ϕ, ζ) generated by the general-
ized forces associated to the quasi-stiffness (featuring numerical, non-material
parameters in ε).

Remark. We note that the DDA approach turns the coupled problem (here
a two-field coupling) which is in the classic, modeling approach governed by
the system (13) into uncoupled. That is, in the equations above the coupling
operator KEM doesn’t appear and the coupling is completely encoded in the
material database.

Solving the four systems for u,η,ϕ, ζ is the hidden step within the DDA
algorithm and the true result is the post-processed electro-mechanical state
(εi,σi; Ei,Di),∀i obtained by means of:

1. relation (10) and u,ϕ to compute εi,Ei, and

2. η, ζ and the optimality conditions of ∇L = 0 with respect to σi and Di

yielding

σi = σim + C BMη, Di = Dim + ε BEζ. (21)

This solution represents a projection of the given material state (known pairing
im for each i) to the electro-mechanical state respecting the kinematical and
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equilibrium constraints.
In the second step of the single iteration within proposed algorithm we take the
newly found electro-mechanical state and seek to reassign the material states
for each point i such that

im = arg min
m
‖zi − zm‖2EM . (22)

This step can be seen as a projection of the electro-material states to the material
database. Both of these projections are performed with the help of electro-
mechanical norm (14).
This characteristic two-step iteration is repeated within distance-based solver
until convergence. While the initialisation is often simply a random choice of
pairings (im), the convergence considers that no closer material points can be
found. The implementation and performance of the proposed reformulation of
DDA is shown in the next section.

4 Numerical examples

4.1 Piezoelectric truss in lattice model

We consider in this section a lattice model [28] composed of planar truss network
[29]. Contrarily to the standard FE discretization, in presented lattice model
the domain is represented by the Voronoi tessellation with random geometry, as
shown in the upper subplot on the Fig. 2 (a). In this case a planar truss network
is forming the Delaunay triangulation, the dual of the Voronoi diagram, see the
lower subplot on the Fig. 2 (a). Trusses in lattice model represent the cohesive
links (tpk) which hold the particles p and k together, see Fig. 2 (a). A zoom
on those two particles p and k is given on the Fig. 2 (b) showing the charac-
teristic height of the cross-section hpk of the truss tpk which is extracted from
the underlying Voronoi tessellation. An overlap of the truss network (Delau-
nay) holding particles (Voronoi) together constructed on the rectangular domain
100×100 mm2 is depicted on the Fig. 2 (c). We note in passing that the lattice
modeling described above is usually applied to the inelastic and failure behav-
ior of quasi-brittle materials. To that end the truss network described above
is often replaced by beams or so-called rigid-body springs [30, 31] to properly
describe shear failure modes.
Herein, we focus on the linear coupled elasto-dielectric behaviour, and we fit it
in the context of the lattice modeling. For simplicity we are neglecting the time
dependent features of inelastic response with the goal of testing the proposed
application of DDA to the coupled problem. To that end, we consider lattice
electroded on the upper and lower surfaces as depicted on Fig. 2 (c). This lat-
tice represents a truss network composed of bi-articulated, cylindrical bars (tpk).
Each bar has the cross-section defined by the geometry (hpk) of the shared edge
of the two Voronoi cells and is polarized in the axial direction of the bar. The
lateral surface of each bar is traction-free and without electrodes, while the end
surfaces can be electroded and under uniform traction/compression leading to
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Figure 2: The lattice model represents truss network of bars tpk holding together
particles p and k (a). A zoom on particles p and k (b) is showing characteristic
hight of the cross-section hpk. The test case (c) is related to a lattice (100 ×
100 mm2) electroded on the top and bottom surfaces. Undeformed and deformed
shapes (d) of the lattice with a scale factor of 1e5.

uniaxial stress state.
This context greatly simplifies the linear piezoelectric constitutive equations (6)
reducing to two equations featuring only scalars, nemaely σ = C ε− e E, D =
e ε + ε E. That is, for piezoelectric truss the state is defined by four-tuple
(ε, σ, E,D) of scalars related to uniaxial components of the given tensors and
vectors, while the material parameters reduce to Young’s modulus (C), dielectric
permittivity (ε) and a piezoelectric constant (e) handling the coupling.

Piezoelectric material database A prerequisite for the model-free approach
is the existence of the material database. As mentioned in the Introduction ma-
terial data can be obtained either through instrumented or virtual experiments.
For the former we acknowledge the recent effort related to so-called data driven
identification (DDI) which permits us to identify the stresses directly from the
full-field measurement ([11, 13, 12]). The extension of DDI to the problem at
hands, that is, to the multiphysics case, will undoubtedly be the subject of
future research. Some of the techniques for the surface electric potential/field
measurement can be found in [32]. In this context other fields apart from stress
need to be identified, in the presented piezoelectric case this is the electrical
displacement vector.
The lattice model at hands boils down to one-dimensional (1D) bar problem
and permits to easily deduce an analytical solution with the help of the reduced
constitutive relations. Regardless of the simplicity of this 1D piezoelectric model
we note that it still describes a full volume coupling. The 1D truss problem is
spanning a four-dimensional phase space (Z = R2dM ×R2dE and dE = dM = 1)
related to strain, electric field, electric displacement and stress. In this rather
simple context, the four-dimensional phase space resulting from the 1D problem,
we can manufacture data using full factorial phase space sampling. That is, syn-
thetic data is obtained using as two independent variables: strain and electrical
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field, which are varied such that εmin ≤ ε ≤ εmax and Emin ≤ E ≤ Emax. The
stress σ and electrical displacement D are then obtained following the piezo-
electric constitutive law (6) in reduced scalar form, and the paramters which
are choosen to be C = 54 GPa, ε = 1.638 · 10−8 N/V2, e = 12.96e-3 N/V mm.
Manufactured data for the simplest possible configuration are defined in four-
dimensional phase space, as shown on the Fig. 3 (left). Equally this data created
with the given limits in terms of ε and E can be represented as the shaded re-
gions in the four planes(σ− ε, σ−E,D− ε,D−E) shown on the Fig. 3 (right).
Three different databases are generated featuring Nm = 102, 104 and 106 data

2
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1e 5

0

1

2
D

1e 6

0 50 100
E

Figure 3: Manufactured data (left) for the truss problem are defined in four-
dimensional phase space. In the three-dimensional plot the stress is given with
the colorbar. The same database shown in the four planes(σ−ε, σ−E,D−ε,D−
E). The material data points fall in the shaded regions (right). Noisy data is
schematically shown in the projected planes for one fixed electrical field, on the
two left subplots, and for one fixed strain shown on the two right subplots.

points. More precisely, we take 10, 100 and 1000 equally spaced points for both
vectors εmin ≤ ε ≤ εmax and Emin ≤ E ≤ Emax creating a regular grid. This
synthetic data is used in sequel to test the convergence and performance of the
proposed approach. Moreover, we will add on top of the previously generated
datasets the Gaussian noise. To that end, we use a normal distribution with
zero mean and standard deviation computed as the percentage p of the range

stdX =
p

100
(max(X)−min(X)) (23)

for p = [0.5, 1, 2, 5], and X being σ and D. A noisy dataset is depicted on the
Fig. 3 (right) which shows the variation of stress and electrical displacement
with: respect to strain for one fixed electrical field, on the two left subplots;
and with respect to electrical field for one fixed strain shown on the two right
subplots. The same variations without noise are depicted with black lines,
resulting from the linear coupled constitutive law.

Numerical example The superposition of the deformed and undeformed
shapes of the lattice is depicted on the Fig. 2 (d). We note that the relative

14



displacement error between the reference FE solution and our DD approach us-
ing the previously created database is less than 0.2% resulting in the virtually
coincident deformed shapes. We note in passing that the distribution of the
electric potential (not shown here) within the lattice also corresponds perfectly
to the reference solution, totaling to the relative error less than 0.08%.
We proceed further with the convergence study. It should be noted that each
cohesive element in the lattice model is naturally discretized with one single FE,
and no mesh convergence analysis is necessary. We will pass on the standard
convergence study in the frame of DDA related to the quality of the database. To
that end we compute the global distance between computed electro-mechanical
states and associated (paired) material states of the lattice as d =

∑Ni
i widi.

For this first convergence study depicted in the Fig. 4 the exact material
parameters (namely C = 54 GPa, ε = 16.38 10−9 N/V2) are used in the DDA
solver to assemble the operators KM and KE . The evolution of the distance d
with respect to the number of iterations of the DDA solver is given on Fig. 4 (left)
for different database sizes, featuring Nm = 102, 104 and 106 data points. These
results show a good convergence, that is, the decay of the distance d with in-
creasing number of iterations, and significant improvement in the distance is
visible for the databases comprising more data points (in the manner described
above), with the price of some more iterations (namely 13, 20 and 22, respect-
fully for the three databases). These results are following the observations from
the standard DDA, see for instance [2]. On the Fig. 4 (left) the convergence
curves are overlapped for the three databases without (markers) and with noise
(no markers), here with the noise p = 1 (see (23)). We observe that the noise
seems to impact more the database with fine sampling (106) than the one with
the coarse sampling (102). More specifically, the analysis of the impact of noise
in a multiphysics data-driven approach would deserve more analysis. Indeed,
one could define a length D associated with the uncertainty of the data. This
length could be used to clean the database in a relevant way, to avoid un-
necessary over-calculations. Next, we study the influence of the noise on the
convergence using the database comprising 104 points. As expected increasing
the noise level proportionally on stress σ and electric displacement D, curves
labeled as ’equal’ on the Fig. 4 (right), deteriorates the convergence in terms
of converged distance, convergence speed and number of iterations till conver-
gence. Note that the convergence curves (without markers) for noisy databases
represent in fact the mean of five runs with random perturbations as explained
above. For the visibility purpose, the spread related to five runs is depicted with
the shaded band only for one curve labeled ’equal 1’ on the Fig. 4 (right). In
addition to equal percentage of perturbation for mechanical (M) and electrical
(E) part, the convergence is plotted for the databases where either (M) or (E)
parts are perturbed, corresponding to curves labeled ’mix’. From this analy-
sis we can conclude, as visible from the Fig. 4 (right), perturbing only (M) -
corresponding to curve labeled ’mix 1,0’ with respect to perturbing only (E) -
corresponding to curve labeled ’mix 0,1’, doesn’t change so much the distance
at convergence. It impacts mainly the number of iteration till convergence.

On top of the (standard DDA) convergence analysis, we examine the influ-
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Figure 4: The convergence of the DDA solver in terms of the distance between
electro-mechanical and material states d. On the left subplot the convergence is
presented for different database sizes without noise (curves with markers) and
for noise p = 1. On the right subplot the influence of the noise level is presented
on the database featuring 104 points. For the noisy database analysis weighting
parameters are taken to be C = Cex, ε = εex, and α = 0.5.
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Figure 5: The convergence of the DDA solver in terms of the distance between
electro-mechanical and material states d given for different weighting: (left) in
terms of quasi-material parameters for (M) C and for (E) ε, and (right) in terms
of α. In this study no noise is taken into account.

ence of parameters appearing in the norm (14). Therefore, we vary the weight-
ing parameters C, ε (used in the construction of the operators KM ,KE and to
weight σ and ε for (M) and D and E for (E)) and α (which weights mechani-
cal end electrical terms in (14)) as follows. The parameters C and ε are taken
to be (·)(−50,−30,−10, 10, 30, 50)% of the exact values, that is (·) stands for
C = 54 GPa, ε = 16.38 10−9 N/V25. The parameter α is taken to be 0.2, 0.4
to give more importance to (E) part, and 0.6 and 0.8 to give more importance
to (M) part.
For the former, the quasi-material parameters variation, we noticed that for
the smaller variations up to ±30% the influence on the convergence is virtually

5Even though the parameters C and ε represent numerical constants rather than real
material parameters, they are still based on the real physical parameters. Thus, we present
here the results where those numerical parameters are under/over estimated within max 50%
error which is unlikely to happen in practice.
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imperceptible. The exception is for highly underestimating the parameter C
(DDA equivalent of the Young’s modulus) as shown on the Fig. 5 (left). For
the latter, the weighting parameter α, we do not notice significant effect on the
convergence in the studied range. These results show finally an unimportant
influence of weighting parameters on the convergence of the DDA solver in the
coupled electro-mechanical context.

4.2 Piezoelectric DDA for Plane Stress

We move on with the example considering a more general case of linear piezo-
electricity in the limit of plane stress. In this context, the major change with
respect to previous example is related to the much higher dimensionality of the
phase space. That is, each point describing either material or electro-mechanical
state z = (σ, ε; E,D), now lives in the 10-dimensional space Z = R2dM × R2dE

with dM = 3 for σ, ε and dE = 2 for E, D.

Piezoelectric material database Higher dimensionality of the phase space
motivates somewhat different approach to manufacture material database. Con-
trary to the truss case from the previous example where the synthetic data is
generated in a naive way in the manner of the full factorial design of experiment,
here the manufactured data for the material database are obtained by perform-
ing a series of virtual tests. In the truss example, we used a full factorial design
using an equidistant meshgrid whose step decreases in each dimension increased
the total number of points in the database. In this manner the database was
truly enriched by increasing the number of points. In this section, we propose
to build the database in a different way than the previous example. We inves-
tigate the possibility to build the database from the set of simulations which
are performed in the offline phase. There is no indication that increasing the
number of data points with the offline simulations will lead to the database
with better sampling of the material response. Offline tests are performed by
running FE simulations on the 2-dimensional sample modeling a piezoelectric
plate polarized in horizontal direction (this assumption is held throughout the
example) featuring three holes, see Fig. 6. This particular geometry with holes
is chosen merely to ensure sufficiently heterogeneous distribution of the electro-
mechanical fields. The plate is discretized with 1525 piezoelectric6, quadrilat-
eral, plane stress elements, so-called CPS4E [33] with four integration points.
The material behaviour chosen for the synthetic data creation is following the
linear piezoelectric constitutive relations (6) with the parameters chosen for
PZT: mechanical E = 54 GPa, ν = 0.41, dielectric ε = 1.63 · 10−8 F/m, and
coupling e111 = e122 = −9.91 Cb/m2 and e212 = 30.24 Cb/m2. For simplicity
we assumed here that the material behaviour is isotropic.
A synthetic data set is generated by applying different ’loading conditions’ to
the plate, see Fig. 7 (a) and collecting the calculated states in the integration

6As mentioned, the standard FE solution of the coupled problem requires a special FE
formulation with added degrees of freedom.
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Figure 6: Piezoelectric plate polarized in x− direction featuring three holes used
to run virtual tests and manufacture the material database used in second ex-
ample. The mesh is composed of 1525 piezoelectric, plane stress finite elements.
The size of the plate is given in mm.

points. The loading cases used for the material database creation consider var-
ious positions of the electrodes placed on left, right, top and bottom surfaces,
schematically shown in red on Fig. 7 (a). An example of the calculated states
is shown on the Fig. 7 (b) showing the normal component of the stress and
electrical displacement (i.e. el. flux) in vertical direction. Contour plots on the
Fig. 7 (b) are related to the so called ’shear bender’, a piezoelectric actuator
working in the shear mode. The coupling parameter e212 is mostly governing
the deformation mode of the chosen actuator with the polarization in the hori-
zontal direction and the electrodes being placed on the upper and lower surfaces
generating, more or less, vertical electrical field.
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Figure 7: The loading cases (a) varied for the material database creation. These
loading cases consider various positions of the electrodes placed on the left, right,
top and bottom surfaces, shown in red. The distributions (b) of the normal stress
in vertical direction (σyy, top) and electrical displacement (Dy, bottom) plotted
on the contour of the deformed piezoelectric plate for the fully electroded top
and bottom surfaces. A deformed shape of the ’shear bender’ is clearly visible
in spite of the heterogeneity related to the holes.

Clearly, this choice is less naive than the one used for the previous (lattice)
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Figure 8: Representation of the 2D, plane stress electro-mechanical database for
one choice of boundary conditions: in the space of principal deformation, resul-
tant electrical field, maximal principal stress, resultant electrical displacement
given with the color of the points (left); and in the input-output space (right)
for the shear bender actuator, that is, Er vs. shear deformation εxy.

example resulting in the database depicted in the left subplot of the Fig. 8. We
note, however, that our virtual experiments result in the partial coverage of the
electro-mechanical phase space and, more importantly, it generates significant
overlap of the data points. Similarly as for the lattice example (Fig. 3 (left)),
on the Fig. 8 (left) the representation of the electro-mechanical database for
plane stress case (here points in 10-dimensional space) and one choice of bound-
ary conditions is given in terms of maximal principal deformation ε1, resultant
(norm) electrical field Er and maximal principal stress σ1 given on the three
axes. The resultant electrical displacement is given with the color of the points
and the associated colorbar. Evidently, in this synthetic database we don’t
have states covering each deformation-electric field pair (which would lead in
10-dimensional space to huge database), but the heterogeneity of the sample
provides a sufficient spread of the data points. This can be seen also on the
Fig. 8 (right) for the same database which is expressed in the input-output
space for the ’shear bender actuator’, that is, electrical field Er vs. shear de-
formation εxy. The entire material database is created by stacking the results
obtained from the simulations with varying boundary conditions.

Numerical examples With the material database in hands, we proceed with
two numerical examples where we are using the created material database to
drive piezoelectric actuators. Namely, we consider a PZT slab polarized in
the horizontal direction, electroded on the upper and lower surfaces creating a
vertical electrical field, which in turn causes the in-plane shear deformation, as
shown on the Fig. 9. We choose, thus, the quantity of interest for the shear
bender to be the output vertical displacement, the maximal value of the output
displacement is denoted as vmax on the Fig. 9 (b).

The first actuator shown on the Fig. 9 (b) subjected to the vertical electri-
cal field results in homogeneous in-plane shear. In this simple case the exact
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Figure 9: Boundary conditions (a) and finite element mesh (b) and (c) of the
two variants of the so-called shear bender actuator made of PZT yielding a: ho-
mogeneous (b) and non-homogeneous (c) electro-mechanical states. The overall
dimension of the actuators is 400x200 mm. The actuators are polarized in the
horizontal direction (direction of P on the subplot (a)). The upper and lower
surfaces are electroded causing a vertical electrical field (direction of E on the
subplot (a)).

solution can be deduced directly from the constitutive relations and we use it
to verify the proposed approach in the 2D context. To that end, a course mesh
with only four finite elements is used. Since the standard shear actuator results
in the homogeneous deformation we consider as the second example a PZT slab
featuring a central hole, see Fig. 9 (c), which causes a somewhat heterogeneous
electro-mechanical state. In what follows we extract from the overall database
comprising Nm = 50000 points the random subsets of material states with vary-
ing size of Ns

m = 100, 1000, 10000 points and finally the whole generated set of
50000 points. These random samples represent different density of phase-space
sampling and are used for the DDA convergence tests performed in the following
analysis.
Firstly we present a comparative numerical convergence analysis of the both
actuator realizations related to homogeneous and non-homogeneous cases. As
before for the convergence study, we compute the global distance d between
electro-mechanical states and associated (paired) material states. The evolu-
tion of d with iteration number is presented on the Fig 10 (left) for different
database sizes. In the same way as for the 1D case shown above, we can see a
good convergence of the local electro-mechanical-to-material states assignment,
however, there is no important effect of the database size as was observed in
the first example. More precisely, the whole generated database have a signif-
icant doubling of points and randomly drawing a larger subset of points (e.g.
comprising 1000, 10000 or 50000 points) does not really improve the database
quality. On the other side, the number of iterations is increased, moreover, the
number of iterations is somewhat larger than in the lattice example due to the
higher dimension of the phase-space. Not surprisingly, we note that the homo-
geneous case converges faster.
Secondly, we present the convergence of the output displacement for the shear
bender with respect to the data driven solver iterations, see Fig 10 (right). The
average displacement error between data driven solution (vDD) and the refer-
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ence, FE solution (vFE) is given as

eu = ‖vDD − vFE‖2 / ‖vFE‖2 . (24)

We note from Fig 10 that the displacement error shows the same convergence
behaviour. However, we note that on average we end up with about 11% of
error in displacement. Surprisingly, analysis of the displacement error is not
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Figure 10: The convergence of the distance between electro-mechanical and
material states (left) and of the average displacement error (right) for different
databases.

performed in the cited references related to standard DDA. As mentioned before,
in the data driven approach the displacement is merely a hidden variable within
the DD solver with the energy criteria related to the chosen norm. However,
the overall displacement error in our electro-mechanical case signifies that at the
convergence some of the material states are still not close enough to admissible
states as presented in the sequel.
The quality of a certain data (sub)set is it’s ability to cover as closely as possible
the phase space occupied by all the electro-mechanical states related to the
chosen test case. Following this definition, we can interpret the quality of data
subsets by plotting the distribution of the distances widi computed in terms
of the norm (14), see Fig. 11 (a). Naturally, the distances between electro-
mechanical and material states are decreasing for larger datasets, which can be
observed as moving the distribution to the left on the Fig. 11 (a). The spread of
the presented datasets illustrates the fact that some of the electro-mechanical
states are at the convergence still far from the material states in the sense of the
proposed norm. In other words reducing, the dataset spread and moving it to the
left results in the increase of the quality of the dataset for the actuator problem
at hands. Finally, we present on the Fig. 11 (b) the distribution of the error on
the contour of the non-homogeneous version of the actuator at the convergence
of the data driven solver with the closest pairings found for all the integration
points and the database featuring 50000 data points. On the top plot we give
the contour plot of the relative error calculated as |(uDD − uFE)|/max(uFE).
This local error is consistent with the global error shown in the convergence
plot 10 (right). The lower plot on the Fig. 11 (b) presents a contour plot of the
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Figure 11: Distribution of the distances widi for converged solution of the non-
homogeneous shear bender example (a), The contour plot of the displacement
and shear strain errors (b).

shear strain error between the proposed DDA and the reference FE solution,
calculated analogously as the displacement error. We note that in the majority
of the domain we have the local relative error close to zero. However, in the
vicinity of the hole we have the error which is important even though it spreads
in the limited zone.

5 Conclusion and perspectives

In this work the application of the data driven approach is proposed to adapt to
the multiphysics problems. The principal idea in the data driven computational
mechanics is to relax the boundary value problem and replace the explicit and
empirical constitutive model in favor of the experimental data. The data driven
solver then seeks to assign to each integration point of the discretized model
the closest material state from the database. More precisely, the solver turns a
classic solution to the constrained minimization with kinematic and equilibrium
equations being the constraints. The former can be directly plugged in the op-
timization functional, while the latter is enforced using Lagrange multipliers.
We focus here on the active (smart) materials which owe their transducer ca-
pability to important coupling between different physical fields. In the rather
general, multi-coupled context where n different fields are taken into account,
the number of the coupling interactions which need to be taken into account
scales with n(n− 1)/2. Using a conventional, model-based approach one needs
to have a good model that takes all the couplings into account on one hand,
and the access to the custom-made finite elements featuring all the necessary
degrees of freedom and their interpolation on the other. This is rarely the case
in the conventional FE codes.

We have shown here that the problem being only coupled in terms of consti-
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tutive equations is decoupled if there is no precise graph, say σ(ε, E), D(ε, E).
That is, the proposed application of DDA to coupled problems turns the cou-
pled problem to uncoupled one and the coupling is completely encoded in the
material database. The proposed application of the DDA to coupled problems
is related mostly to the extension of the phase space and the related norm. We
have investigated the performance of the data-driven solver using two particular
examples of application, namely, lattice model created from planar, piezoelec-
tric truss network and of finite element discretized linear piezoelectric solids. In
both of these examples the key interaction property is due to electro-mechanical
coupling. Thus, the equilibrium constraints are related to both mechanical equi-
librium and Gauss law. Both of these constraints are plugged in the functional
L by means of Lagrange multipliers. The stationarity equations correspond to
the solution of four linear equilibrium problems which are followed by the near-
est neighbour search in the phase space. Numerical tests show that the distance
based data-driven solver possesses good convergence properties with respect to
the database density. A prerequisite for the DD approach is the existence of the
material database and herein a synthetic database is created for both problems.
In the performed numerical tests we did not observe significant influence of the
’material’ nor weighting parameters defined in the norm.

Although the proposed application of the DDA has been formulated in the
context of electro-mechanical solids and quasistatic problems, we believe that
its scope could be much larger. That is, it can be directly extrapolated to
the multiphysics problems considering n coupled fields as in [16]. To facili-
tate the database creation (besides virtual experiments), an extension of data
driven identification for the multiphysics problem should be considered. In the
multiphysics case the dimensionality of the material phase space becomes even
more important than in the ’monophysics DDA’ case. Thus, different clustering
(e.g. k−means, [34]) methods should be tested for the nearest neighbour search
speed-up. Finally, imposing the non-zero Dirichlet boundary conditions (dis-
placement, electric potential, . . . ) within DDA may lead to erroneous results
since the loading term has a part of the stiffness comprising numerical parame-
ters which can be under/over estimated. This study is in progress and will be
a part of the next contribution.
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