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Abstract. Passage Retrieval systems aim at retrieving and ranking
small text units according to their estimated relevance to a query. A
usual practice is to consider the context a passage appears in (its con-
taining document, neighbour passages, etc.) to improve its relevance es-
timation. In this work, we study the use of Graph Attention Networks
(GATs), a graph node embedding method, to perform passage contex-
tualization. More precisely, we first propose a document graph represen-
tation based on several inter- and intra-document relations. Then, we
investigate two ways of leveraging the use of GATs on this representa-
tion in order to incorporate contextual information for passage retrieval.
We evaluate our approach on a Passage Retrieval task for structured
documents: CLEF-IP2013. Our results show that our document graph
representation coupled with the expressive power of GATs allows for a
better context representation leading to improved performances.

Keywords: Passage Retrieval · Graph Attention Networks · Experi-
ments · Document Representation.

1 Introduction

Passage Retrieval is a long lasting topic for Information Retrieval (IR)that is
concerned with the retrieval of passages, i.e. small textual elements. This task is
faced with one key problem: as passages are small excerpts of longer documents,
their content is not always sufficient to adequately estimate their relevance. To
cope with this phenomenon, current approaches resort to contextualization [1,
5–7, 21, 28]; that is, the consideration of a passage’s context in its relevance esti-
mation. We study here how to perform passage contextualization with methods
akin to neural IR, as their expressive power have created a gap in performances
compared with classical methods [10]. Multiple approaches represent a passage’s
context based on the various types of relations it has with other parts of the doc-
ument [1, 4, 7, 15, 23, 24, 28]. We investigate how such a representation, encoded
as a graph, may be leveraged by graph neural networks. Graph neural networks,
successfully applied on different Information Retrieval tasks [11, 16, 34, 35], aim
at computing the embedding of nodes in a graph by considering their relations
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with other nodesMore precisely, we investigate the use of attention-based graph
neural networks, known as Graph Attention Networks (GATs) [30]. GATs rely
on dense representation (embeddings) of the nodes’ content. Many embeddings
approaches have been proposed for text retrieval [12, 13, 32] and multiple embed-
dings [13, 18] have been proved to be the most effective. To our knowledge, this is
the first time GATs have been exploited in a Passage Retrieval task. We present
our proposal in section 2, describing the graph document representation and our
two models leveraging GATs to perform passage contextualization. In section 3,
we conduct an evaluation on a patent passage retrieval task and conclude in
section 4.

2 Proposal: Merged and Late Interaction Models

2.1 Document graph representation

We represent a document corpus as a graph where nodes are document parts
and edges are the intra and inter relations between these documents parts. The
document parts come from the logical structure of documents. To cope with the
variation of such structure, we define two types of document parts: sections, i.e.,
non-textual units with a title, and passages, textual units without titles. The
intra-document relations considered are: (1) the order of passages [4, 7, 15, 28],
(2) the hierarchical structure [1, 23, 24] and (3) internal citations. The inter -
document relation considered is: the (4) citation of one document by another
one. We also include the inverse relations of these four relations [24, 25].

Our graph document representation is therefore composed of two types of
node: passage nodes that represent textual units and section nodes that repre-
sent titled structural units – and eight types of edge (one for each relation and
its symmetrical): order characterizing the relation orderbetween passage nodes
(orderi its symmetrical), structural characterizing the composition between a
passage node and a section nodeor between two section nodes (structurali
its symmetrical), internal characterizing the intra-document citations between
nodes (internali its symmetrical) and external characterizing the inter -document
citations between nodes (externali its symmetrical). Formally, the document
corpus is a directed graph G = (V,E,A,R) where each node v ∈ V and each
edge e ∈ E are associated with their type mapping functions τ(v) : V → A and
ϕ(e) : E → R, respectively. We have A = {passage, section} and R = {order,
orderi, structural, structurali, internal, internali, external, externali}.

2.2 Models architecture

We explore ways to compute a passage’s score by taking into account information
about its content and information about its context using GATs. We derive
two models leveraging the power of GATs: Merged Interaction Model (MiM)
and Late Interaction Model (LiM). They both follow a ColBERT-inspired [13]
efficient design and they differ in the way they consider the content of a passage.
We first describe the elements that are shared by our two models before focusing
on the motivations behind their differences.
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Encoder We use the multiple representation text-encoder taken from the Col-
BERT model [13, 18] to embed text into a dense semantic space. A passage is
embedded using its text, a section using its title and a query is using its text.

Graph Attention Network GATs are multi-layer graph neural networks which
compute an embedding for each node in a graph by taking into account informa-
tion from its neighbours [30]. Each layer aggregates, for each node, its embedding
with the embedding of its neighbours using attention functions [3]. Stacking n
layers allows a node to gather information about nodes that are at a distance
of n hops in the graph. One element worth mentioning is that GATs implicitly
add self-edges connecting each node to itself to build the embedding of a node.

Our model uses Attention is all you need [29] definition of attention and
uses one attention function MultiHeadr per type of edge r, so the model treats
the interaction between nodes differently according to the type of their relation
[31]. The model defines a learnable weight vector Wr for each type of edge in
the graph, representing the global importance of the relation. For a node i, we
define its neighbour nodes Ni, and the edge between nodes i and j eij (with j
in Ni) . For hi and hj , their respective intermediate representation, the output
of a layer is computed as:

h′
i =

∑
j∈Ni

softmax(Wϕ(eij)) ∗MultiHeadϕ(eij)(hi, hj , hj) (1)

Query Similarity Measure As described in [13], the similarity between Eq

and Ep, the multiple representation embeddings from a query q and a passage
p is:

sim(Eq, Ep) =
∑

i∈[1,|Eq|]

max
j∈[1,|Ep|]

Eqi · ET
pj

(2)

Fig. 1. Overview of the Merged Interaction Model.

Merged Interaction Model The MiM , described in Figure 1, proposes a in-
context representation by simultaneously considering the content and the context
for each passage. We compute such a representation of each passage by feeding
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its embedding, its neighbours’ embedding and the neighbouring graph structure
to the GAT. To obtain a passage’s relevance to a query, the model computes
using the above-mentioned query similarity measure (2).

Fig. 2. Overview of the Late Interaction Model.

Late Interaction Model The LiM , shown in Figure 2, computes two embedding-
based representations for a passage: one based on its content and one solely based
on its context. Its relevance to a query is estimated using two similarity mea-
sures, computed using each representation. We are questioning here if mixing
content and context information inside a single representation cannot impair
its expressive power. For a passage p, the LiM computes a content-based em-
bedding by feeding its text to the encoder, and a context-based embedding by
making use of a Context-only Graph Attention Network (CGAT), a modified
Graph Attention Network that does not consider p’s content to compute its
embedding.

To do that, a CGAT removes every edge going out of p’s node in the graph.
Note that this does not affect equation (1). To obtain a passage’s relevance to a
query, the model first computes the content-based and the context-based query
similarities with the above-mentioned similarity measure (2). Then, it aggregates
the two similarities using a linear combination with a parameter λ ∈ [0, 1]:

relevance(q, p) = (1− λ) ∗ sim(Eq, Ep) + λ ∗ sim(Eq, Econtextp) (3)

where Ep is the content-based embedding and Econtextp is the context-based em-
bedding of passage p.

3 Experiments

3.1 Experimental setup

We use a classical neural approach [13] to re-rank passages extracted from the top
1000 documents retrieved by BM25 [27] (with Terrier [17] default parameters).

Dataset We use the CLEF-IP2013 Passage Retrieval task [26]. This dataset,
split between a training and testing set, contains structured patent documents
with both internal and external citations. To derive the structure of documents
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and the internal citations, we use handcrafted features either based on XML
tags, case or number of characters. Each query is a set of “claims” along with a
full patent document, that must be transformed into more refinedqueries [2, 19,
20, 33]. We use a state-of-the-art method [20]: let d be a query patent document
with a set of claims, we build a first form of the query with the top-10 words
with highest tf-idf in d’s abstract to perform document retrieval, and a second
form composed of d’s natural language claims to perform passage reranking. We
report the five official evaluation measures of the task: PRES@100,Recall@100,
and MAP@100 at the document-level; MAP(D) and PREC(D) at the passage-
level.
Model characteristics We use a text encoder from the ColBERT model
trained on MSMARCO [22] with a maximum passage length of 180 tokens and
a maximum query length of 120 tokens. Our GAT and CGAT are composed of
3 layers, each layer having several attention function MultiHeadr with 8 heads
with dropout=0.7. The retrieval filters documents based on the International
Patent Classification codes they share with the query patent document [9].
Learning process The Adam optimizer [14] is used to jointly learn the GATs
or CGATs parameters and to fine-tune the encoder. For the encoder, we use the
advised learning rate of 3∗10−6 [13] and freeze the first six layers. For the graph-
based model, the weight vectors Wr and the parameter λ, we use a learning rate
of 1 ∗ 10−3. Our learning process is as follows: given a triple ⟨q, p+, p−⟩ with
query second form q, positive passage p+ and negative passage p−, the model is
optimised via pairwise softmax cross-entropy loss over the computed scores of
p+ and p−. The negative passage sampling for a pair ⟨q, p+⟩ is done as follows:
we randomly sample a passage from the corpus with a probability of 0.6 and
randomly sample a non-relevant passage from the set of relevant documents
with a probability of 0.4. The model is therefore confronted with positive and
negative passages having similar contexts. This sampling process is repeated
1000 times for each ⟨q, p+⟩, yielding a training on 3.5M triplets.

3.2 Results

We evaluate the performances of our two models (MiM , LiM), a SoTA non-
neural passage contextualization model (QSFsectionPropagateAV G [1]), and two
baseline models that do not consider context (fine-tuned ColBERT [13], BM25
[27]). For the sake of comparison, we also evaluate the performances of a model
(Mix-iM) that mixes our two proposed approaches: it computes a MiM in-
context passage embedding along with a LiM content-based passage embedding
and combines them the same way as the LiM model. As explained earlier, each of
these approaches has been used to rank the passages of the documents retrieved
initially by the BM25 model. We also report the results of a state-of-the-art
approach focusing on the query generation [2], namely Query-gen. Additionally,
we report the learned value of parameter λ for the LiM and Mix-iM models.
Table 1 shows that QSFsectionPropagateAV G and our three approaches (MiM ,
LiM , Mix-iM) improve upon BM25 and ColBERT, which focus solely on the
content of passages, confirming the importance of taking context into account
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during passage relevance estimation [1]. Comparing our models, we see that
MiM falls behind both LiM and Mix-iM , especially on the passage-level met-
rics. We hypothesize that MiM fails to correctly condense content and context
information into a single representation leading to an over-prioritization of the
context, which causes the model to rank high every (relevant or not-relevant)
passages appearing in a relevant document. LiM outperforms Mix-iM , indicat-
ing that the model benefits from fully separating content and context informa-
tion. Finally, we see that two of our approaches (LiM , Mix-iM) outperform
QSFsectionPropagateAV G (significantly) and Query-gen on every evaluation mea-
sures, showing the strength of our methods for the patent passage retrieval task.

Model PRES@100 Recall@100 MAP@100 MAP(D) PREC(D)

Content
only

BM25 [27] 0.385 0.482 0.125 0.142k 0.21k

ColBERT [13] 0.402 0.518o 0.161o 0.145k 0.214k

Query-gen [2] 0.444 0.560 0.187 0.146 0.282

Content
&

Context

QSFsectionPropagateAV G [1] 0.460oi 0.609oi 0.169o 0.201oik 0.237ok

MiM 0.470oi 0.568oi 0.181o 0.104 0.141

Mix-iM (λ = 0.518) 0.541oijk 0.631oijk 0.257oijk 0.246oijk 0.299oijk

LiM (λ = 0.307) 0.564oijk 0.651oijk 0.296oijkl 0.270oijkl 0.322oijk

Table 1. Performance over CLEF-IP2013 (in boldface: best result in a column). o, i, j,
k and l represent statistical significance (two tailed Student paired t-test, p≤5%) over
BM25, ColBERT, QSFsectionPropagateAV G, MiM and Mix-iM respectively. Statistical
significance over Query-gen could not be computed (data not available from [2]).

4 Conclusion

In this work, we investigated the use of GATs to perform passage contextualiza-
tion. First, we proposed a document graph representation based on document
parts and their relations. Then, we presented two models leveraging GATs on
this representation to estimate the relevance of a passage (to a query) according
to both its content and its context. We evaluated our proposals on the CLEF-
IP2013 patent passage retrieval task. Our results show that, while the use of
GATs for passage contextualization improves the results, separately considering
the content and context information of a passage leads to a significant gap in
performances. In the future, we would like to conduct a parameter study on both
our models in order to analyse more precisely how the context is taken into con-
sideration. It would also be interesting to investigate other negative sampling
techniques [32]. Finally, we plan to extend our experiments on more datasets
such as the INEX Wikipedia dataset [8].
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