Lucas Albarede 
  
Philippe Mulhem 
  
Lorraine Goeuriot 
  
Claude Le Pape-Gardeux 
  
Sylvain Marié 
  
Trinidad Chardin-Segui 
  
Sylvain Marie 
  
Passage Retrieval on Structured Documents using Graph Attention Networks

Keywords: Passage Retrieval, Graph Attention Networks, Experiments, Document Representation

come   L'archive ouverte pluridisciplinaire

Introduction

Passage Retrieval is a long lasting topic for Information Retrieval (IR)that is concerned with the retrieval of passages, i.e. small textual elements. This task is faced with one key problem: as passages are small excerpts of longer documents, their content is not always sufficient to adequately estimate their relevance. To cope with this phenomenon, current approaches resort to contextualization [1, 5-7, 21, 28]; that is, the consideration of a passage's context in its relevance estimation. We study here how to perform passage contextualization with methods akin to neural IR, as their expressive power have created a gap in performances compared with classical methods [START_REF] Guo | A deep look into neural ranking models for information retrieval[END_REF]. Multiple approaches represent a passage's context based on the various types of relations it has with other parts of the document [START_REF] Albarede | Passage retrieval in context: Experiments on patents[END_REF][START_REF] Beigbeder | Focused retrieval with proximity scoring[END_REF][START_REF] Fernández | Extending the language modeling framework for sentence retrieval to include local context[END_REF]15,[START_REF] Norozi | Kinship contextualization: Utilizing the preceding and following structural elements[END_REF][START_REF] Norozi | Contextualization using hyperlinks and internal hierarchical structure of wikipedia documents[END_REF][START_REF] Sheetrit | A passage-based approach to learning to rank documents[END_REF]. We investigate how such a representation, encoded as a graph, may be leveraged by graph neural networks. Graph neural networks, successfully applied on different Information Retrieval tasks [START_REF] Han | Inferring search queries from web documents via a graph-augmented sequence to attention network[END_REF][START_REF] Li | Learning better representations for neural information retrieval with graph information[END_REF][START_REF] Yu | Modeling text with graph convolutional network for cross-modal information retrieval[END_REF][START_REF] Zhang | Multiresolution graph attention networks for relevance matching[END_REF], aim at computing the embedding of nodes in a graph by considering their relations with other nodesMore precisely, we investigate the use of attention-based graph neural networks, known as Graph Attention Networks (GATs) [START_REF] Veličković | Graph attention networks[END_REF]. GATs rely on dense representation (embeddings) of the nodes' content. Many embeddings approaches have been proposed for text retrieval [START_REF] Karpukhin | Dense passage retrieval for open-domain question answering[END_REF][START_REF] Khattab | Colbert: Efficient and effective passage search via contextualized late interaction over BERT[END_REF][START_REF] Xiong | Approximate nearest neighbor negative contrastive learning for dense text retrieval[END_REF] and multiple embeddings [START_REF] Khattab | Colbert: Efficient and effective passage search via contextualized late interaction over BERT[END_REF][START_REF] Macdonald | On single and multiple representations in dense passage retrieval[END_REF] have been proved to be the most effective. To our knowledge, this is the first time GATs have been exploited in a Passage Retrieval task. We present our proposal in section 2, describing the graph document representation and our two models leveraging GATs to perform passage contextualization. In section 3, we conduct an evaluation on a patent passage retrieval task and conclude in section 4.

2 Proposal: Merged and Late Interaction Models

Document graph representation

We represent a document corpus as a graph where nodes are document parts and edges are the intra and inter relations between these documents parts. The document parts come from the logical structure of documents. To cope with the variation of such structure, we define two types of document parts: sections, i.e., non-textual units with a title, and passages, textual units without titles. The intra-document relations considered are: (1) the order of passages [START_REF] Beigbeder | Focused retrieval with proximity scoring[END_REF][START_REF] Fernández | Extending the language modeling framework for sentence retrieval to include local context[END_REF]15,[START_REF] Sheetrit | A passage-based approach to learning to rank documents[END_REF],

(2) the hierarchical structure [START_REF] Albarede | Passage retrieval in context: Experiments on patents[END_REF][START_REF] Norozi | Kinship contextualization: Utilizing the preceding and following structural elements[END_REF][START_REF] Norozi | Contextualization using hyperlinks and internal hierarchical structure of wikipedia documents[END_REF] and (3) internal citations. The interdocument relation considered is: the (4) citation of one document by another one. We also include the inverse relations of these four relations [START_REF] Norozi | Contextualization using hyperlinks and internal hierarchical structure of wikipedia documents[END_REF][START_REF] Norozi | Contextualization from the bibliographic structure[END_REF].

Our graph document representation is therefore composed of two types of node: passage nodes that represent textual units and section nodes that represent titled structural units -and eight types of edge (one for each relation and its symmetrical): order characterizing the relation orderbetween passage nodes (order i its symmetrical), structural characterizing the composition between a passage node and a section nodeor between two section nodes (structural i its symmetrical), internal characterizing the intra-document citations between nodes (internal i its symmetrical) and external characterizing the inter -document citations between nodes (external i its symmetrical). Formally, the document corpus is a directed graph G = (V, E, A, R) where each node v ∈ V and each edge e ∈ E are associated with their type mapping functions τ (v) : V → A and ϕ(e) : E → R, respectively. We have A = {passage, section} and R = {order, order i , structural, structural i , internal, internal i , external, external i }.

Models architecture

We explore ways to compute a passage's score by taking into account information about its content and information about its context using GATs. We derive two models leveraging the power of GATs: Merged Interaction Model (MiM) and Late Interaction Model (LiM). They both follow a ColBERT-inspired [START_REF] Khattab | Colbert: Efficient and effective passage search via contextualized late interaction over BERT[END_REF] efficient design and they differ in the way they consider the content of a passage. We first describe the elements that are shared by our two models before focusing on the motivations behind their differences.

Encoder We use the multiple representation text-encoder taken from the Col-BERT model [START_REF] Khattab | Colbert: Efficient and effective passage search via contextualized late interaction over BERT[END_REF][START_REF] Macdonald | On single and multiple representations in dense passage retrieval[END_REF] to embed text into a dense semantic space. A passage is embedded using its text, a section using its title and a query is using its text.

Graph Attention Network GATs are multi-layer graph neural networks which compute an embedding for each node in a graph by taking into account information from its neighbours [START_REF] Veličković | Graph attention networks[END_REF]. Each layer aggregates, for each node, its embedding with the embedding of its neighbours using attention functions [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF]. Stacking n layers allows a node to gather information about nodes that are at a distance of n hops in the graph. One element worth mentioning is that GATs implicitly add self-edges connecting each node to itself to build the embedding of a node.

Our model uses Attention is all you need [START_REF] Vaswani | Attention is all you need[END_REF] definition of attention and uses one attention function M ultiHead r per type of edge r, so the model treats the interaction between nodes differently according to the type of their relation [START_REF] Wang | Heterogeneous graph attention network[END_REF]. The model defines a learnable weight vector W r for each type of edge in the graph, representing the global importance of the relation. For a node i, we define its neighbour nodes N i , and the edge between nodes i and j e ij (with j in N i ) . For h i and h j , their respective intermediate representation, the output of a layer is computed as:

h ′ i = j∈Ni sof tmax(W ϕ(eij ) ) * M ultiHead ϕ(eij ) (h i , h j , h j ) (1) 
Query Similarity Measure As described in [START_REF] Khattab | Colbert: Efficient and effective passage search via contextualized late interaction over BERT[END_REF], the similarity between E q and E p , the multiple representation embeddings from a query q and a passage p is: Merged Interaction Model The M iM , described in Figure 1, proposes a incontext representation by simultaneously considering the content and the context for each passage. We compute such a representation of each passage by feeding its embedding, its neighbours' embedding and the neighbouring graph structure to the GAT. To obtain a passage's relevance to a query, the model computes using the above-mentioned query similarity measure (2). Late Interaction Model The LiM , shown in Figure 2, computes two embeddingbased representations for a passage: one based on its content and one solely based on its context. Its relevance to a query is estimated using two similarity measures, computed using each representation. We are questioning here if mixing content and context information inside a single representation cannot impair its expressive power. For a passage p, the LiM computes a content-based embedding by feeding its text to the encoder, and a context-based embedding by making use of a Context-only Graph Attention Network (CGAT), a modified Graph Attention Network that does not consider p's content to compute its embedding.

sim(E q , E p ) = i∈[1,|Eq|] max j∈[1,|Ep|] E qi • E T pj (2) 
To do that, a CGAT removes every edge going out of p's node in the graph. Note that this does not affect equation [START_REF] Albarede | Passage retrieval in context: Experiments on patents[END_REF]. To obtain a passage's relevance to a query, the model first computes the content-based and the context-based query similarities with the above-mentioned similarity measure (2). Then, it aggregates the two similarities using a linear combination with a parameter λ ∈ [0, 1]:

relevance(q, p) = (1 -λ) * sim(E q , E p ) + λ * sim(E q , E contextp ) (3) 
where E p is the content-based embedding and E contextp is the context-based embedding of passage p.

Experiments

Experimental setup

We use a classical neural approach [START_REF] Khattab | Colbert: Efficient and effective passage search via contextualized late interaction over BERT[END_REF] to re-rank passages extracted from the top 1000 documents retrieved by BM25 [START_REF] Robertson | [END_REF] (with Terrier [START_REF] Macdonald | From puppy to maturity: Experiences in developing terrier[END_REF] default parameters).

Dataset We use the CLEF-IP2013 Passage Retrieval task [START_REF] Piroi | Overview of clef-ip 2013 lab[END_REF]. This dataset, split between a training and testing set, contains structured patent documents with both internal and external citations. To derive the structure of documents and the internal citations, we use handcrafted features either based on XML tags, case or number of characters. Each query is a set of "claims" along with a full patent document, that must be transformed into more refinedqueries [START_REF] Andersson | When is the time ripe for natural language processing for patent passage retrieval?[END_REF][START_REF] Mahdabi | Leveraging conceptual lexicon: Query disambiguation using proximity information for patent retrieval[END_REF][START_REF] Mahdabi | Building queries for prior-art search[END_REF][START_REF] Xue | Automatic query generation for patent search[END_REF]. We use a state-of-the-art method [START_REF] Mahdabi | Building queries for prior-art search[END_REF]: let d be a query patent document with a set of claims, we build a first form of the query with the top-10 words with highest tf-idf in d's abstract to perform document retrieval, and a second form composed of d's natural language claims to perform passage reranking. We report the five official evaluation measures of the task: PRES@100,Recall@100, and MAP@100 at the document-level; MAP(D) and PREC(D) at the passagelevel.

Model characteristics We use a text encoder from the ColBERT model trained on MSMARCO [START_REF] Nguyen | MS MARCO: A human generated machine reading comprehension dataset[END_REF] with a maximum passage length of 180 tokens and a maximum query length of 120 tokens. Our GAT and CGAT are composed of 3 layers, each layer having several attention function M ultiHead r with 8 heads with dropout=0.7. The retrieval filters documents based on the International Patent Classification codes they share with the query patent document [START_REF] Gobeill | Bitem site report for the claims to passage task in CLEF-IP 2012[END_REF].

Learning process The Adam optimizer [START_REF] Kingma | Utilizing inter-passage and inter-document similarities for reranking search results[END_REF] is used to jointly learn the GATs or CGATs parameters and to fine-tune the encoder. For the encoder, we use the advised learning rate of 3 * 10 -6 [START_REF] Khattab | Colbert: Efficient and effective passage search via contextualized late interaction over BERT[END_REF] and freeze the first six layers. For the graphbased model, the weight vectors W r and the parameter λ, we use a learning rate of 1 * 10 -3 . Our learning process is as follows: given a triple ⟨q, p + , p -⟩ with query second form q, positive passage p + and negative passage p -, the model is optimised via pairwise softmax cross-entropy loss over the computed scores of p + and p -. The negative passage sampling for a pair ⟨q, p + ⟩ is done as follows: we randomly sample a passage from the corpus with a probability of 0.6 and randomly sample a non-relevant passage from the set of relevant documents with a probability of 0.4. The model is therefore confronted with positive and negative passages having similar contexts. This sampling process is repeated 1000 times for each ⟨q, p + ⟩, yielding a training on 3.5M triplets.

Results

We evaluate the performances of our two models (M iM , LiM ), a SoTA nonneural passage contextualization model (QSF sectionP ropagateAV G [START_REF] Albarede | Passage retrieval in context: Experiments on patents[END_REF]), and two baseline models that do not consider context (fine-tuned ColBERT [START_REF] Khattab | Colbert: Efficient and effective passage search via contextualized late interaction over BERT[END_REF], BM25 [START_REF] Robertson | [END_REF]). For the sake of comparison, we also evaluate the performances of a model (M ix-iM ) that mixes our two proposed approaches: it computes a M iM incontext passage embedding along with a LiM content-based passage embedding and combines them the same way as the LiM model. As explained earlier, each of these approaches has been used to rank the passages of the documents retrieved initially by the BM25 model. We also report the results of a state-of-the-art approach focusing on the query generation [START_REF] Andersson | When is the time ripe for natural language processing for patent passage retrieval?[END_REF], namely Query-gen. Additionally, we report the learned value of parameter λ for the LiM and M ix-iM models.

Table 1 shows that QSF sectionP ropagateAV G and our three approaches (M iM , LiM , M ix-iM ) improve upon BM25 and ColBERT, which focus solely on the content of passages, confirming the importance of taking context into account during passage relevance estimation [START_REF] Albarede | Passage retrieval in context: Experiments on patents[END_REF]. Comparing our models, we see that M iM falls behind both LiM and M ix-iM , especially on the passage-level metrics. We hypothesize that M iM fails to correctly condense content and context information into a single representation leading to an over-prioritization of the context, which causes the model to rank high every (relevant or not-relevant) passages appearing in a relevant document. LiM outperforms M ix-iM , indicating that the model benefits from fully separating content and context information. Finally, we see that two of our approaches (LiM , M ix-iM ) outperform QSF sectionP ropagateAV G (significantly) and Query-gen on every evaluation measures, showing the strength of our methods for the patent passage retrieval task.

Model PRES@100 Recall@100 MAP@100 MAP(D) PREC(D) 1. Performance over CLEF-IP2013 (in boldface: best result in a column). o, i, j, k and l represent statistical significance (two tailed Student paired t-test, p≤5%) over BM25, ColBERT, QSFsectionP ropagateAV G, M iM and M ix-iM respectively. Statistical significance over Query-gen could not be computed (data not available from [START_REF] Andersson | When is the time ripe for natural language processing for patent passage retrieval?[END_REF]).

Conclusion

In this work, we investigated the use of GATs to perform passage contextualization. First, we proposed a document graph representation based on document parts and their relations. Then, we presented two models leveraging GATs on this representation to estimate the relevance of a passage (to a query) according to both its content and its context. We evaluated our proposals on the CLEF-IP2013 patent passage retrieval task. Our results show that, while the use of GATs for passage contextualization improves the results, separately considering the content and context information of a passage leads to a significant gap in performances. In the future, we would like to conduct a parameter study on both our models in order to analyse more precisely how the context is taken into consideration. It would also be interesting to investigate other negative sampling techniques [START_REF] Xiong | Approximate nearest neighbor negative contrastive learning for dense text retrieval[END_REF]. Finally, we plan to extend our experiments on more datasets such as the INEX Wikipedia dataset [START_REF] Geva | Overview of the inex 2009 ad hoc track[END_REF].
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 1 Fig. 1. Overview of the Merged Interaction Model.
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 2 Fig. 2. Overview of the Late Interaction Model.
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