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Introduction: Coronavirus disease 2019 (COVID-19) can cause life-threatening acute
respiratory distress syndrome (ARDS). Recent data suggest a role for neutrophil
extracellular traps (NETs) in COVID-19-related lung damage partly due to microthrombus
formation. Besides, pulmonary embolism (PE) is frequent in severe COVID-19 patients,
suggesting that immunothrombosis could also be responsible for increased PE occurrence in
these patients. Here, we evaluate whether plasma levels of NET markers measured shorty
after admission of hospitalized COVID-19 patients are associated with clinical outcomes in
terms of clinical worsening, survival, and PE occurrence.

Patients and Methods: Ninety-six hospitalized COVID-19 patients were included, 50
with ARDS (severe disease) and 46 with moderate disease. We collected plasma early
after admission and measured 3 NET markers: total DNA, myeloperoxidase (MPO)–DNA
complexes, and citrullinated histone H3. Comparisons between survivors and non-
survivors and patients developing PE and those not developing PE were assessed by
Mann–Whitney test.

Results: Analysis in the whole population of hospitalized COVID-19 patients revealed
increased circulating biomarkers of NETs in patients who will die from COVID-19 and in
patients who will subsequently develop PE. Restriction of our analysis in the most severe
org March 2022 | Volume 13 | Article 8514971
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patients, i.e., the ones who enter the hospital for COVID-19-related ARDS, confirmed the
link between NET biomarker levels and survival but not PE occurrence.

Conclusion: Our results strongly reinforce the hypothesis that NETosis is an attractive
therapeutic target to prevent COVID-19 progression but that it does not seem to be linked
to PE occurrence in patients hospitalized with COVID-19.
Keywords: neutrophil extracellular trap, acute respiratory distress syndrome, COVID-19, immunothrombosis,
pulmonary embolism
INTRODUCTION

Coronavirus disease 2019 (COVID-19) is responsible for more
than 4,550,00 deaths worldwide at the beginning of September
2021 according to the World Health Organization (WHO). The
vast majority of the infected people have subclinical to moderate
forms, but some of them develop respiratory failure with acute
respiratory distress syndrome (ARDS) (1). Postmortem
histological analysis from COVID-19-related ARDS non-
survivor patients exhibited vascular microthrombi in lung
capillaries that participate in lung damage (2). Moreover, about
20% of critically ill COVID-19 patients develop pulmonary
embolism (PE), which can aggravate their pulmonary
condition and impair oxygenation because of shunt effect (3).
Immunothrombosis is a physiological innate immune response
that leads to formation of thrombi inside blood vessels in order
to contain and destroy pathogens such as bacteria, fungi, and
viruses (4). It involves neutrophils, monocytes, platelets, and
activation of hemostasis. Activation of neutrophils by pathogens
causes the emission of neutrophil extracellular traps (NETs) that
are DNA fragments decorated with proteins of neutrophil origin
such as myeloperoxidase (MPO) (5). When uncontrolled,
immunothrombosis becomes detrimental to the host. As NETs
are procoagulant (6, 7) and cytotoxic for lung vascular
endothelial cells (8, 9), increased NETosis has been found to
participate in various pathological processes such as arterial and
venous thrombosis (6), ARDS (10), and other critical conditions
not linked to COVID-19 (11).

It is now well-admitted that circulating markers of NET
formation are associated with COVID-19 severity (12–14).
Whether measurement of NET biomarkers early after
admission for COVID-19 can be of prognostic value is a major
question, as it would strengthen the rationale to target NETs and
may help in clinical decision-making. The aim of this study is
thus to evaluate whether plasma levels of NET markers measured
shorty after admission of hospitalized COVID-19 patients are
associated with clinical outcomes in terms of clinical worsening,
survival, and PE occurrence.
PATIENTS AND METHODS

Study Design and Participants
A prospective observational study was conducted in 3 French
university hospitals from April to July 2020. We enrolled all
patients with laboratory-confirmed COVID-19 admitted to
org 2
conventional hospitalization ward (moderate, i.e., non-ARDS
patients) and patients admitted to intensive care unit (ICU) for
COVID-19-related ARDS (critical illness) defined according to
National Institutes of Health treatment guidelines (15) with
available samples. ARDS was defined according to Berlin’s
criteria (16), and criteria for admission to ICU were
persistence of SpO2 <92% and/or clinical respiratory failure
despite conventional oxygen therapy. All ARDS patients
required high-flow nasal cannula oxygen (flow between 30 and
60 L/min) or mechanical ventilation. Patients could only be
included in the moderate or ARDS group for the subgroup
analyses according to their clinical condition at admission to
hospital. COVID-19 was defined as a positive result of real-time
reverse transcriptase–polymerase chain reaction (RT-PCR) on
nasal and pharyngeal swabs according to the WHO guidance. All
patients received prophylactic heparin treatment according to
the Groupe Français d'étude sur l'Hémostase et la Thrombose
(GFHT) / Groupe d'Intérêt en Hémostase Périoperatoire (GIHP)
proposals (17) or therapeutic treatment if indicated by their
comorbidities, but patients with PE at the time of sampling were
not included. PE was diagnosed by computerized tomography
angiography performed at clinician’s discretion according to
routine care. Routine criteria for receiving a computerized
tomography angiogram in patients with ARDS were
hypoxemia not improving with positive end-expiratory
pressure titration or PaO2 worsening without lung compliance
impairment or elevation of right heart pressure without lung
compliance worsening. Ten non-hospitalized, non-COVID-19,
healthy participants with no history of thromboembolic events,
hemorrhagic events, or pneumonia were included as a control
reference group.

Data Collection
Data were prospectively recorded by physicians in charge of the
patient by questioning the patients, patients’ family, and patients’
general practitioners. Electronic worksheet was completed by
physicians caring for the patients.

Sample Collection
Samples were collected early after admission to hospital for
moderate COVID-19 patients and at admission to ICU for
ARDS patients. Both non-ICU COVID-19 patients and
COVID-19 ARDS patients were included at direct admission
or after a short (<12 h) stay in the emergency room. It implies
that hospitalized patients who were further admitted to ICU were
not included again in the ARDS patient group. Plasma samples
March 2022 | Volume 13 | Article 851497
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were prepared from citrated blood after two 10-min
centrifugations at 2,500g and stored at -80°C.

Quantification of Plasmatic Cell-Free DNA
The Quant-it™ PicoGreen assay kit (Invitrogen, San Diego, CA,
USA) was used to quantify circulating cell-free double-strand
DNA according to manufacturer’s instructions. Fluorescence
intensity was measured using a microplate photometer
(Infinite® 200 PRO NanoQuant Multimode Microplate Reader,
Tecan; 480 nm excitation wavelength/523 nm emission wavelength).

Quantification of Myeloperoxidase–DNA
Complexes
MPO–DNA complexes were quantified by enzyme-linked
immunosorbent assay (ELISA) using a modified approach of
the Cell Death Detection ELISA kit (Roche, Basel, Switzerland)
and the capture of anti-MPO antibody (Bio-Rad®) (7). To limit
the inter-assay variability and because no international standard
preparation is available to measure MPO–DNA complexes, we
used a calibration range made from a stock solution of NETs, and
results are expressed as standard NETs (ST) (18). The detailed
protocol is available in the Supplementary Material.

Quantification of Citrullinated Histone H3
Citrullinated histone H3 (H3Cit) was quantified with a slight
modification of the ELISA previously described by Thalin et al.
(19) by using Cell Death detection kit without streptavidin-
precoated wells. The optical densities (ODs) were measured at a
wavelength of 450 nm with a reference correction wavelength at
620 nm using a microplate photometer (Infinite® 200 PRO
NanoQuant Multimode Microplate Reader, Tecan).

Statistical Analyses
No statistical sample size calculation was performed a priori, and
sample size was equal to the number of patients admitted for
COVID-19 with available frozen plasma. Continuous variables
are presented as median and interquartile range (IQR) and are
compared using the Mann–Whitney test for comparison
between two groups and Kruskal–Wallis test with Dunn’s
multiple comparison test for comparison between three
groups. Categorical variables are expressed as the number of
patients (percentage) and are compared using Fisher’s exact test.
Correlation analysis was performed using Pearson correlation
test. All analyses were performed on Prism 6.0 software
(GraphPad, La Jolla, CA) and R 3.6.1 statistical software (R
Foundation for Statistical Computing, Vienna, Austria).

Ethics Statement
According to French law and the French Data Protection
Authority, the handling of these data for research purposes
was declared to the Data Protection Officer of the University
Hospital of Bordeaux. Patients or relatives were notified about
the anonymized use of their healthcare data via the departments’
booklets, and non-opposition was recorded. All patients included
in the study gave their written informed consent for the use of
their plasma. The study complied with the Declaration of
Helsinki of 1975, revised in 2000. This study was approved by
Frontiers in Immunology | www.frontiersin.org 3
the French institutional authority for personal data protection
[Commission Nationale de l’Informatique et des Libertés
(CNIL), registration number DEC20-086] and ethics
committee (ID-CRB 2020-A00763-36) and by the institutional
review board of the University Hospital of Bordeaux (declaration
number CE-GP-2020-39). Samples from healthy controls were
authorized by the Comité de Protection des Personnes Sud Ouest
et Outre Mer III DC 2015/94.
RESULTS

Patients’ Characteristics
Ninety-six COVID-19 patients were included, 50 (52%) with
ARDS and 46 (48%) with moderate disease. Samples were
collected with a median delay from admission of 2 days [1-3]
for moderate COVID-19 patients and of 1 day [1-2] for critical
COVID-19-related ARDS patients. Patients’ characteristics are
summarized in Table 1. Briefly, patients were mostly men (54%
for moderate patients and 68% for ARDS patients) with a median
age of 68 years for moderate patients and 61 for ARDS patients.
Hypertension and diabetes were the main comorbidities
(Table 1). PE occurred in 19 patients, one with moderate
disease and 18 with ARDS. Death occurred in 29/96 patients
(4/46 moderate patients and 25/50 ARDS patients). All patients
were on heparin treatment at the time of blood sampling, and
majority were on low-molecular weight heparin (LMWH) (66%).
Compared to moderate patients, ARDS patients were more
frequently treated with unfractionated heparin (UFH) than
with LMWH (64% vs. 13%, p = 0.0001) and on therapeutic
rather than prophylactic anticoagulant regimen (36% vs. 15%, p =
0.005). Median anti-Xa value for patients receiving UFH at
therapeutic dose (n = 13) was 0.34 (IQR 0.195–0.515), with no
difference between moderate and ARDS patients [respectively 0.35
(IQR 0.19–0.52) and 0.34 (IQR 0.21–0.49), p = 0.87). Indications for
therapeutic anticoagulation at the time of sampling were atrial
fibrillation (n = 9), history of phlebitis (n = 3), history of PE (n = 2),
essential thrombocythemia with history of PE (n = 1), early
initiation of veno-venous extracorporeal membrane oxygenation
(ECMO) (n = 1), physicians’ discretion in front of elevated
fibrinogen and/or D-dimer levels (n = 6), and unknown (n = 3).
Nine patients were treated with veno-venous ECMO during their
stay in the ICU.

Plasma Levels of Neutrophil Extracellular
Traps Increase With COVID-19
Clinical Severity
We quantified 3 NET markers in patients’ plasma collected
shortly after patients’ admission: one unspecific, i.e., total cell-
free DNA, and two more specific, i.e., MPO–DNA complexes
and H3Cit. For all 3 markers, we observed that all COVID-19
patients (n = 96) have significantly more NETs than healthy
donors (n = 10), respectively: total cell-free DNA concentrations
[304 ng/ml (209–443) vs. 140 ng/ml (124–151), p < 0.0001],
plasma MPO–DNA levels [0.63ST (0.15–3.10) vs. 0.044 ST
(0.012–0.093), p < 0.0001], and plasma H3Cit levels [0.37
March 2022 | Volume 13 | Article 851497
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(0.16–1.06) vs. 0.14 (0.088–0.18), p < 0.01]. The 3 NET markers
were significantly higher in ARDS patients compared to patients
with moderate COVID-19 disease (Figures 1A–C). Because one
study reported that heparin can dismantle already formed NETs
by removing histones from secreted DNA (20), we wondered
whether heparin anticoagulation, either at prophylactic or
therapeutic dose, modified NET dosages in COVID-19
patients. A first, analysis in all COVID-19 patients showed no
difference in plasma levels of NET markers (total DNA, MPO—
DNA, and H3Cit, respectively; Figures 1D–F) between patients
treated with prophylactic or therapeutic anticoagulant treatment.
As we were concerned that the more severe patients were the
ones who received the most therapeutic anticoagulation, thereby
inducing a bias in the analysis, we analyzed moderate and ARDS
patients separately. We did not observe any difference of NET
Frontiers in Immunology | www.frontiersin.org 4
markers whether patients were under prophylactic or therapeutic
heparin either for ARDS or moderate patients (respectively;
Figures 1G–L).

Levels of Neutrophil Extracellular Trap
Markers at the Time of Admission Are Not
Higher in Moderate COVID-19 Patients Who
Will Later Worsen Their Respiratory Condition
Compared With Those Who Will Not
We did not find any significant difference between patients
initially hospitalized for moderate COVID-19 disease (n = 46)
who later developed ARDS (n = 9) and those who did not (n =
37) [respectively, cell-free total DNA concentrations of 193 ng/
ml (177–226) vs. 240 ng/ml (191–290), p = 0.14; MPO–DNA:
0.60 ST (0.40–2.2) vs. 1.2 ST (0.60–2.3), p = 0.58; and H3Cit OD
TABLE 1 | Patients’ characteristics at the time of blood sampling.

Moderate COVID-19 patients COVID-19 ARDS patients p-value
N = 46 N = 50

Age (years) 68 [62–78] 61 [54–68] 0.008
Sex (male) 25 (54%) 34 (68%) 0.18
Body mass index (kg/m²) 26 [24–30] 29 [26–36] 0.008
Hypertension 29 (63%) 29 (58%) 0.82
Diabetes mellitus 8 (17%) 16 (32%) 0.19
Chronic kidney disease 3 (7%) 0 (0%) 0.25
Chronic heart disease 8 (17%) 9 (18%) 1.00
Chronic obstructive pulmonary disease 5 (10%) 10 (20%) 0.35
Immunosuppressive drug before COVID-19 6 (14%) 10 (20%) 0.55
Respiratory rate (/min) 24 [18–22] 30 [24–35] 0.04
Oxygen flow (L/min) 4 [2–6] – –

FiO2 (%) – 60 [45–90] –

Heart rate (/min) 97 [78–123] 105 [68–137] 0.90
Mean blood pressure (mmHg) 72 [64–91] 68 [59–94] 0.82
Temperature (°C) 37 [36.8–37.3] 38 [37–39] 0.08
Fibrinogen (g/L) 6 [5.45–6.5] 7.5 [5.8–8.5] 0.22
D-dimers (mg/L) 625 [513–838] 2,123 [1,230–6,308] <0.001
Platelets (/mm3) 175,000 [111,250–252,500] 210,000 [130,000–320,000] 0.78
Neutrophils (/mm3) 3,300 [2,510–5,450] 6,300 [4,430–11,750] 0.02
Lymphocytes (/mm3) 1,000 [700–1,315] 820 [400–1,240] 0.07
C-reactive protein (mg/L) 49 [27–78] 132 [73–256] <0.01

Anticoagulant treatment at the time of blood sampling

Prophylactic vs. therapeutic anticoagulation regimen 39 (85%)/7 (15%) 32 (64%)/18 (36%) 0.05

Care during hospitalization

Corticosteroids use 5 (11%) 16 (32%) 0.01
Immunomodulating agents 2 (5%) 8 (16%) 0.13
Tocilizumab 0 6 –

Anakinra 1 0 –

Interferon-b 1 0 –

Antiviral agents 3 (7%) 18 (36%) 0.001
Lopinavir-ritonavir 2 10 –

Remdesivir 1 1 –

Oseltamivir 0 2 –

Clinical evolution after blood sampling

PE 1 18

In-hospital mortality 4 25
March 2022 | Volume 13 | Article
Continuous variables are presented as median and interquartile range and are compared using Mann–Whitney test. Categorical variables are expressed as the number of patients
(percentage) and are compared using Fisher’s exact test.
ARDS, acute respiratory distress syndrome; FiO2, fractional inspired oxygen; PE, pulmonary embolism.
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Prével et al. NETs in Critical COVID-19
measures: 0.21 (0.081–0.23) vs. 0.16 (0.10–0.31), p = 0.78]
(Figures 2A–C).

Levels of Neutrophil Extracellular Trap
Markers Are Higher in COVID-19 Patients
Who Will Not Survive, Even in the
Subgroup of Patients Admitted With ARDS
We found that the plasma levels of the 3 NET markers were
higher in non-survivor COVID-19 patients than those in
Frontiers in Immunology | www.frontiersin.org 5
survivors [respectively, cell-free total DNA concentration:
437 ng/ml (362–600) vs. 264 ng/ml (200–382), p < 0.0001;
MPO–DNA: 3.60 ST (1.65–5.85) vs. 1.20 ST (0.68–2.52), p <
0.001; and H3Cit OD: 0.91 (0.33–1.43) vs. 0.30 (0.14–0.85), p
< 0.01] (Figures 3A–C). Given that our population of COVID
patients includes patients who arrive at the hospital with
either moderate or severe disease, we were concerned that
analysis of the whole population induces a bias, as the patients
who arrive at the hospital with a severe form have de facto a
A B

D

E F

G
IH

J
K L

C

FIGURE 1 | Critically ill COVID-19 patients have higher plasma neutrophil extracellular trap (NET) levels than those of moderate COVID-19 patients and controls.
Plasma NET levels were compared between healthy donors (“controls”, n = 10), moderate [without acute respiratory distress syndrome (ARDS) “non-ARDS”] COVID-
19 patients (n = 46), and patients with ARDS (n = 50) admitted to the intensive care unit. Levels of NET markers were as follows: plasma total DNA concentrations
[140 ng/ml (124–151) vs. 220 ng/ml (188–271) vs. 428 ng/ml (324–560), p < 0.0001], plasma MPO–DNA levels [0.044 ST (0.012–0.093) vs. 10.15 ST (0.10–0.31)
vs. 3.00 (1.38–4.63), p < 0.0001] and plasma H3Cit levels [0.14 (0.088–0.18) vs. 0.17 (0.10–0.30) vs. 0.97 (0.41–1.75), p < 0.0001]. (A) Total DNA concentration (ng/ml). (B)
Myeloperoxidase–DNA levels (% standard NETs). (C) Histone H3 citrullinated (absorbance 450 nm). Plasma NET levels were compared between COVID-19 patients treated
with prophylactic (n = 71) or therapeutic (n = 25) heparin treatment. (D) Total DNA concentration (ng/ml). (E) Myeloperoxidase–DNA levels (% standard NETs). (F) Histone H3
citrullinated (absorbance 450 nm). Plasma NET levels were compared between COVID-19-related ARDS patients treated with prophylactic (n = 32) or therapeutic (n = 18)
heparin treatment. (G) Total DNA concentration (ng/ml). (H) Myeloperoxidase–DNA levels (% standard NETs). (I) Histone H3 citrullinated (absorbance 450 nm). Plasma NET
levels were compared between COVID-19 moderate patients treated with prophylactic (n = 39) or therapeutic (n = 7) heparin treatment. (I) Total DNA concentration (ng/ml). (J)
Myeloperoxidase–DNA levels (% standard NETs). (K) Histone H3 citrullinated (absorbance 450 nm). Threshold for statistical significance was a p-value of 0.05. *p < 0.05,
***p < 0.0001. NS, statistically non-significant.
March 2022 | Volume 13 | Article 851497

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Prével et al. NETs in Critical COVID-19
worse prognosis than the ones who arrive with a moderate
disease. We thus analyzed both populations separately.

In COVID-19 moderate patients, only total DNA concentration,
but not MPO-DNA nor H3Cit levels, was higher in non-survivors
than that in survivors (Supplementary Figure S1), but the low
number of events deters from firm conclusions.

We then focused on the more severe patients with the higher
mortality rate, i.e., COVID-19-related ARDS patients (n = 50).
Cell-free total DNA concentrations and MPO–DNA complex
levels measured within the first 3 days after ICU admission were
significantly higher in non-survivors (n = 25) than those in
survivors (n = 25) (respectively, cell-free total DNA
concentration: 475 ng/ml (391–760) vs. 393 ng/ml (303–460),
Frontiers in Immunology | www.frontiersin.org 6
p = 0.03; MPO–DNA: 3.70 ST (2.25–6.25) vs. 2.00 ST (0.70–
3.10), p < 0.001] but not plasma H3Cit levels [H3Cit OD: 0.97
(0.41–1.66) vs. 0.97 (0.39–1.81), p = 0.91] (Table 2 and
Figures 3D–F). Median time between dosage of NET markers
and death was 5 days [3-13]. We did not observe any correlation
between plasma levels of NET markers and time to death
(Supplementary Figure S2).

When going back to the clinical and biological characteristics
of non-survivor and survivor ARDS patients at inclusion, we did
not observe major significant differences except a higher
proportion of patients with chronic obstructive pulmonary
disease (COPD) and higher levels of plasmatic d-dimers in
non-survivors compared to survivors (Table 2).
A
B C

FIGURE 2 | Plasma NET levels are not different between COVID-19 moderate patients who will subsequently need a transfer to the ICU than those who will not.
Plasma NET levels were compared between moderate COVID-19 patients who will subsequently have a worsened respiratory condition needing a transfer to the
intensive care unit because of acute respiratory distress syndrome (ARDS) (n = 9) and those who will not (n = 37). (A) Total DNA concentration (ng/ml).
(B) Myeloperoxidase–DNA levels (% standard NETs). (C) Histone H3 citrullinated (absorbance 450 nm). NS, non-significant.
A
B

D E F

C

FIGURE 3 | COVID-19 acute respiratory distress syndrome non-survivors have higher plasma total DNA concentrations and myeloperoxidase–DNA levels than
survivors. Plasma NET levels were compared in all COVID-19 patients between survivors (n = 67) and non-survivors (n = 29). (A) Total DNA concentration (ng/ml).
(B) Myeloperoxidase–DNA levels (% standard NETs). (C) Histone H3 citrullinated (absorbance 450 nm). Plasma NET levels were compared between COVID-19-
related acute respiratory distress syndrome (ARDS) survivors (n = 25) and non-survivors (n = 25). (D) Total DNA concentration (ng/ml). (E) Myeloperoxidase–DNA
levels (% standard NETs). (F) Histone H3 citrullinated (absorbance 450 nm). Threshold for statistical significance was a p-value of 0.05. *p < 0.05, **p < 0.01,
***p < 0.001. NS, statistically non-significant.
March 2022 | Volume 13 | Article 851497

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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Levels of Neutrophil Extracellular Trap
Markers Are Higher in COVID-19 Patients
Who Will Subsequently Develop Pulmonary
Embolism Compared With Those Who Will
Not, but Not When Assessed in the Subset
Group of ARDS Patients
Besides being implicated in microthrombus formation leading to
lung damage, NETs are also involved in thrombosis in the
macrocirculation, especially in veins (21, 22). Consistent with
data in conditions other than COVID-19, we found that cell-free
total DNA in plasma and H3Cit levels were higher in COVID-19
patients who subsequently developed PE (n = 19) than those who
did not (n = 73) [respectively, cell-free DNA concentrations: 437
ng/ml (333–529) vs. 263 ng/ml (198–409), p < 0.01; H3Cit OD:
1.09 (0.72–1.55) vs. 0.26 (0.14–0.85), p < 0.0001] (Figures 4A, C).
Plasma MPO–DNA levels were not different [2.60 ST (1.30–3.90)
vs. 1.90 ST (0.73–3.50), p = 0.27] (Figure 4B). PE occurred 4 days
(3–6) after the time of sampling [8 days (6–11) after admission].

PE is of particular concern in COVID-19 ARDS patients, as it
occurs in about 20% of them (23) vs. only in 3.1% of non-
critically ill patients (24). Consistent with these data, only 1
patient in the moderate COVID-19 group subsequently
developed PE, 5 days before he died. We thus focused our
analysis on those patients (n = 50), and neither plasma cell-
free DNA concentrations, MPO–DNA, nor H3Cit levels were
different between ARDS patients who later developed PE (n = 18)
and those who did not (n = 32) (Figures 4D–F). The occurrence
of PE did not seem to be associated with death in this subset of
critical patients, as 7/25 (28%) non-survivors developed PE vs.
Frontiers in Immunology | www.frontiersin.org 7
11/25 (44%) in survivors (p = 0.38). No patient died from severe
gas exchange impairment or circulatory failure attributed to PE.
As D-dimers are a classical biomarker of venous thrombosis, we
assessed the correlation between plasma levels of NET markers
and D-dimers. Interestingly, only MPO–DNA, but not plasma
total DNA concentration nor H3Cit, correlated with D-dimer
levels in ARDS patients but with a poor correlation coefficient (r =
0.43) (Supplementary Figure S3).
DISCUSSION

The prediction of disease evolution is a challenge among
COVID-19 patients and especially among the most severe
ones, i.e., with COVID-19-related ARDS. Our study was
designed to assess the involvement of circulating markers of
NETs for COVID-19 evolution among inpatients who were
admitted at the hospital for moderate and severe COVID-19.
We thus included 46 COVID-19 patients with moderate disease
and 50 with ARDS. We studied the association between 3
circulating markers of NETs measured shortly after hospital
admission and disease evolution in terms of survival,
aggravation (for patients with moderate disease only), and PE
occurrence. Our findings confirm previous reports showing that
circulating markers of NETs correlate with the clinical severity at
the time of blood sampling (12–14), but we also report an
association between circulating markers of NETs and later
survival within the subgroup of patients admitted to the
hospital for severe COVID-19 (ARDS patients). The study of
Ng et al. (14) previously reported an association between
TABLE 2 | COVID-19-related ARDS patients’ characteristics at the time of blood sampling.

Survivors Non-survivors p-value
N = 25 N = 25

Age (years) 60 [54–70] 62 [52–69] 0.99
Sex (male) 17 (68%) 17 (68%) 1.00
Body mass index (kg/m²) 28 [25–38] 31 [27–36] 0.65
Hypertension 13 (52%) 18 (72%) 0.48
Diabetes mellitus 5 (20%) 11 (44%) 0.15
Chronic kidney disease 0 (0%) 0 (0%) 1.00
Chronic heart disease 5 (20%) 2 (8%) 0.39
Chronic obstructive pulmonary disease 1 (4%) 11 (44%) <0.01
Immunosuppressive drug before COVID-19 3 (12%) 8 (32%) 0.39
SOFA 4 [2–9] 5 [2–8] 0.99
PaO2/FiO2 (mmHg) 149 [115–275] 160 [86–212] 0.39
Fibrinogen (g/L) 7.6 [6.7–9] 7.5 [5.1–8.5] 0.39
D-dimers (mg/L) 1,342 [751–3,760] 3,450 [1,930–8,850] 0.05
Platelets (/mm3) 294,000 [178,000–393,000] 166,000 [107,000–297,000] 0.06
Neutrophils (/mm3) 5,240 [4,100–9,000] 7,850 [4,430–13,980] 0.26
Lymphocytes (/mm3) 840 [680–1,400] 750 [325–1,025] 0.12
Albumin (g/L) 23 [18–26.8] 25 [18–28.5] 0.64
C-reactive protein (mg/L) 137 [77–229] 118 [69–267] 0.88
Invasive ventilation 19 (83%) 25 (100%) 0.27
ECMO 1 (4%) 8 (32%) 0.005
Corticosteroids 8 (32%) 10 (40%) 0.72
Immunomodulating agents 4 (16%) 4 (16%) 1.00
Antiviral agents 8 (32%) 9 (36%) 1.00
March 2022 | Volume 13 | Article
Continuous variables are presented as median and interquartile range and are compared using Mann–Whitney test. Categorical variables are expressed as the number of patients
(percentage) and are compared using Fisher’s exact test. ARDS, acute respiratory distress syndrome; ECMO, extracorporeal membrane oxygenation; MPO–DNA, myeloperoxidase–DNA;
SOFA, sequential organ failure assessment score; %ST, % Standard NETs.
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circulating markers of NETs and clinical outcome in a cohort of
106 patients with moderate to severe COVID-19 patients, but
this study did not analyze the prognostic value of circulating
markers of NETs specifically in each group of patients. Here we
did not report any significant association between circulating
markers of NETs and disease evolution in the moderate COVID-
19 patients in terms of clinical aggravation (i.e., transfer to ICU,
PE occurrence, or death). On the contrary, we did find an
association between plasma levels of NET markers and survival
in ARDS patients.

These results reinforce the hypothesis that immunothrombosis
and in particular NETosis are involved in the complications of
COVID-19, especially in the most severe forms (13, 25–27). Only
experiments in animal models could definitely prove the pathogenic
role of NETosis in COVID-19 progression but, at present, several
lines of evidence show a link between severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection and NET
formation. First of all, several studies reported induction of NET
release during COVID-19 either by the virus itself (28), plasma and
serum from severe COVID-19 patients (probably through the
hyperinflammation typical of severe forms of COVID-19),
activated platelets from severe patients (12, 13, 29), and anti-
phospholipid antibodies (30). Second, a recent study compared
lung specimens from four patients who died from COVID-19 and
four from a COVID-19-unrelated cause. The authors reported that
NETs infiltrated the lung airways and interstitial and vascular
compartments only in severe COVID-19 patients but not in
controls, supporting the hypothesis that NETs may drive severe
pulmonary complications of COVID-19 (31). The third range of
evidence comes from the known role of NETs in thrombosis (32)
and the observation that severe SARS-CoV-2 infection induces a
Frontiers in Immunology | www.frontiersin.org 8
prothrombotic state manifesting especially with microthrombosis
(33). In line with that, a consortium of authors recently proposed
that exaggerated immunothrombosis, occurring for the most part
within lung microvessels, drives the clinical manifestations of
COVID-19 (32), with the atypical ARDS of COVID-19 being
summarized as “microvascular COVID-19 lung vessels obstructive
thromboinflammatory syndrome” (MicroCLOTS) (34).

It may look contradictory that we observe an association
between circulating NET markers and survival in patients who
arrive at the hospital for an already severe form of COVID-19
but that we do not find any association with transfer to ICU in
the moderate ones. Part of the explanation could be that host
response is still regulated in moderate patients but not in ARDS
patients, causing the accumulation of NETs. Another plausible
explanation is that NETosis generation could occur mostly
within the lung tissue (31, 35) and not the circulation. Lung
biopsies are not available in these patients for ethical reasons, as
their complications are frequent and possibly lethal.

From a therapeutic point of view, as our results show that
NETosis is already highly activated in severe patients who will die,
we wonder whether targeting NETosis in severe patients is not
already too late. In our opinion, our results suggest that NETosis
should be targeted to prevent COVID-19 aggravation, before
ARDS occurrence. There are ongoing clinical trials that aim to
either prevent NET formation or degrade already-formed NETs.
The first ones use anti-inflammatory drugs such as the Janus
Kinases 1/2 (JAK1/2) inhibitor ruxolitinib (NCT04338958),
dipyridamole (NCT 04391179), and ticagrelor (NCT02735707,
NCT04518735). We suspect that these drugs should be more
efficient in the less severe patients. DNase I (dornase alpha) can
degrade already formed NETs and is currently tested by inhalation
A B

D E F

C

FIGURE 4 | Plasma total DNA concentrations and myeloperoxidase–DNA levels are higher in COVID-19 patients who will subsequently have pulmonary embolism
but not when assessed by comparable severity. Plasma NET levels were compared between COVID-19 patients who will subsequently develop pulmonary embolism
(PE) (n = 19) and those who will not (n = 77). (A) Total DNA concentration (ng/ml). (B) Myeloperoxidase–DNA levels (standard NETs). (C) Histone H3 citrullinated
(absorbance 450 nm). Plasma NET levels were compared between COVID-19-related acute respiratory distress syndrome patients who will subsequently develop
pulmonary embolism (PE) (n = 18) and those who will not (n = 32). (D) Total DNA concentration (ng/ml). (E) Myeloperoxidase–DNA levels (standard NETs).
(F) Histone H3 citrullinated (absorbance 450 nm). **p < 0.01, ***p < 0.001, NS, statistically non-significant.
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in patients with COVID-19 (NCT04402944, NCT04355364,
NCT04432987, NCT04359654, NCT04445285, NCT04402970).
A major issue with the nebulizing administration route in severe
COVID-19 is that there is concern that it will not reach the
perialveolar vessels due to the high amounts of platelet factor 4
(PF4) (13) that compacts NETs and decrease their susceptibility to
DNase degradation (36).

Thrombosis, and especially PE, is a frequent feature in
COVID-19 patients and is an independent risk factor for death
(37). It should be noted that the embolic origin of the pulmonary
vessel occlusions is questionable, and it may be that the so-called
PEs are rather pulmonary thrombi that occur directly in
pulmonary arteries (38, 39). Given the known role of NETs in
venous thrombosis, we looked for differences in circulating
markers of NETs. We found that 2 markers were higher in
hospitalized COVID-19 patients who subsequently developed PE
than those who did not. But when we restricted our analysis within
the specific subgroup of COVID-19-related ARDS patients, who
are the ones at more risk to develop PE, we did not find any
difference between patients who will develop PE or not. This
suggests, if confirmed in a larger cohort, that NETosis in itself is
not a major driver for PE (venous thromboembolic event in the
macrocirculation). Whereas there is an abundant literature to
search for biological markers of clinical aggravation, there are only
very few studies that report an association between a biological
marker or a clinical parameter that is associated with occurrence of
thrombosis among severe COVID-19 patients. D-dimers, which
are reported to have a significant predictive value for mortality
both in non-critical and critical COVID-19 patients (40, 41), have
a limited predictive value for venous thromboembolism (VTE)
occurrence, with an area under the curve (AUC) of 0.565 (42).

Our study has several limitations. First, we observe, as others
in COVID-19 patients (12), dichotomies between the three
circulating NET markers. This could be due to the relatively
small number of samples we analyzed and also to the lack of
standardization for NET marker measurement. We used 3
different plasma markers to measure NETs. Indeed, despite the
discovery of the process of NETosis in 2004 (5), there is still no
reference test for NET quantification (6). NETs can be visualized
and quantified with conventional fluorescence microscopy, but
this assay is hardly reproducible and time-consuming and is
better when performed right after blood sampling. To overcome
this issue and quantify NETosis that occurs in vivo, various
plasmatic tests, and mostly ELISAs, have been developed. Given
the large amount of tests available and the lack of homogeneity
between them, we decided to perform 3 of them: total DNA,
MPO–DNA complexes, and H3Cit. Total DNA dosage is not
specific for NETs, as it also measures DNA coming from necrotic
cells. MPO–DNA complexes are more specific, as it measures
DNA together with MPO that specifically comes from
neutrophils, but this assay is often not standardized in
publications. Here we used a standardized method, with a
calibration curve, to allow precise measurement and
reproducibility. Lastly, H3Cit measurement can appear to be
the most reliable marker, as it directly measures histone H3 that
has been citrullinated, a process that is specific from NETosis.
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But currently, all available ELISAs lack reproducibility and
standardization (43). A Scientific and Standardization
Subcommittee of the International Society of Thrombosis and
Haemostasis is currently running a study aiming at providing
recommendation for NETs’ dosage standardization.

Second, computerized tomography pulmonary angiograms were
not systematically performed because of in-hospital transport issues
regarding these critically ill patients. We only considered here
clinically relevant PE. PE occurrence might have been
underestimated, as the pretest probability and clinical likelihood
of PE could have presumably been lower in patients treated with
therapeutic heparin, especially in the ARDS subgroup. Moreover,
transportation to CT scan may have been avoided in the more
severe patients because of the risks of transferring patients with
critical respiratory failure. As catheter-related thrombosis and limb
deep-vein thrombosis screening strategy was heterogeneous among
centers, we did not analyze those outcomes.
CONCLUSION

Taken together, our data demonstrate that circulating markers of
NETs are linked to survival but not to PE occurrence in patients
with COVID-19 and especially among the most severe ones.
Even if measuring NETmarkers could not be easily implemented
in clinical practice to become prognostic biomarkers, our
findings are important, as they strengthen the fact that
NETosis is a proper therapeutic target in COVID-19 disease,
but, more specifically, they argue that NETosis should be
targeted before COVID-19 aggravation and ARDS occurrence
to be the most efficient.
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