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ARTICLE INFO ABSTRACT

Keywords: Accurate indoor temperature forecasting can facilitate energy savings of the building without
Indoor temperature forecasting compromising the occupant comfort level, by providing more accurate control of the HVAC
Smart building (heating, ventilating, and air conditioning) system. In order to make the best use of different
Energy saving input variables, a long short-term memory (LSTM) based sequence to sequence (seq2seq) model
HVAC was proposed to make multi-step ahead forecasting. The out-of-sample forecasting capacity of
Recurrent neural network the model was evaluated with regard to different forecast horizons by various evaluation metrics.
LSTM A tailor-made metric was proposed to take account of the small daily-variation characteristic of
Seq2seq model indoor temperature. The model was benchmarked against Prophet and a seasonal naive model,
Multi-step forecasting showing that the current model is much more skillful and reliable in very short-term forecasting.
Prediction interval (PI) A cross-series learning strategy was adopted to enable multi-zone indoor temperature forecasting

with a more generalised model. Furthermore, the uncertainty in model parameters was quantified
by prediction intervals created by Monte-Carlo dropout (MC-dropout) technique.

1. Introduction

Energy consumption has long been one of the key concerns facing the crisis of global warming. The building
sector accounts for approximately 44% of the total energy consumption and emits more than 123 million tonnes of
CO2 in France [1]. On the other hand, people spend most of their time inside of buildings, the living conditions of
which need to be guaranteed. Therefore, how to optimise the energy consumption without necessarily compromising
thermal comfort level is a crucial issue in the domain of energy management. One efficient measure is to optimise the
HVAC system by leveraging the indoor temperature forecasting [2].

Traditionally, physical or semi-physical models were deployed in modelling the indoor temperature, but their input
parameters are based often on specific building characteristics and occupant behavior, which are not always easy to
access. ([2, 3, 4]).

Nowadays more and more buildings are being equipped with sensors, which can potentially carry valuable informa-
tion on characteristics of building, outdoor weather conditions (e.g. temperature, wind, solar radiation) and occupant
behaviour (e.g. temperature set points, CO2 level). Therefore, in the last decades, many studies have resorted to data-
driven models to predict the indoor temperature, electricity load or energy consumption. Generally speaking, two types
of models have been explored: statistical model and machine learning (ML) model. In the early 2000s, most of the
data-driven models were statistical models, including ARIMA (Auto-regressive Integrated moving average) [5] and
exponential smoothing such as Holt-Winters [6]. Traditional ML methods have also been widely tested, the popular
ones among which include SVR (support vector regression) [7, 8], random forest [9], XGBoost etc [10]. In the past
decade, Neural Network (NN) has gained popularity in the energy domain due to its ease of incorporating exogenous
variables, low requirements on feature engineering and capabilities of dealing with interactions among nonlinear fea-
tures [11, 12, 13]. In the early 2010s, most of the NN models were based on multilayer perceptron (MLP) [8, 14, 15]
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and Neural Network Auto-regressive model with eXogenous inputs (NNARX) architecture [3, 16, 17], but in recent
years, the LSTM and the attention-based architecture have gained great popularity in time series forecasting thanks to
its high accuracy and good scalability [18, 19].

Also, the building energy management becomes more complicated with the increasing complexity of buildings, as
the temperature pattern tends to vary with different zones of the building [20]. Traditionally, many individual models
were deployed to simulate temperatures of different zones, making it operationally difficult to have a centralised control
of the whole building. Unlike traditional statistical models which are only trained to predict one target variable (referred
to as "single-series learning" in this paper), the NN is able to train multiple related time series altogether in one lumped
model, and simultaneously predict the temperature for multiple locations in a building (referred to as "cross-series
learning" in this paper). Additionally, this kind of "cross-series learning" can also improve the performance of the
model, as many related time series augment the total volumes of the training set, rendering it more robust in handling
outliers. With the arrival of the big data era, this method has attracted strong attention among researchers and the
industry. For instance, the winner of M4 forecasting competition [21] has used a global hybrid model to cater for
characteristics of individual time series. The recent DeepAR model [22] developed by Amazon and a seq2seq model
of Uber [18, 23] both have adopted this type of cross-series learning approach.

This paper proposes a seq2seq LSTM model to forecast the indoor temperature of different zones of the building,
with the cross-series learning strategy. The whole preprocessing and training procedure is presented through its appli-
cation on 3-year real operational data collected from the GreEn-ER building, a dynamic and low-energy consumption
building located in the heart of Grenoble city, France.

2. Related studies

Many studies have been performed in leveraging the NN model to predict the indoor temperature or energy con-
sumption. NN model is a special ML model inspired by the network of biological neurons. The model usually consists
stacks of layers of artificial neurons (or units) and during a computation many neurons work in parallel to produce
the result. Compared to other ML methods, no explicit mathematical model structure is enforced in the first place
and the model tends to find the optimal solution via a heuristic approach.That’s also why NN model is often called a
"black-box" model, which is extremely flexible to approximate non-linear functions. Some of the previous studies are
listed below.

Attoue et al. [14] conducted a study in 2018, which leveraged a MLP model to predict the indoor temperature of
an old building, using indoor and outdoor temperature, humidity as well as solar radiation data. The study concluded
that the MLP model can provide good forecasts up to 4-hour ahead for the reason that the Mean Squred Error (MSE)
is below 1. Mba et al. [24] used MLP model as well for indoor temperature forecasting with a time lead between
one day and one month. They concluded that the model gave good results up to one-day ahead, with a correlation
coefficient of 0.985. Afroz et al. [16] used a NARX model to predict multi-zone indoor temperatures, and claimed
that the model gave good performances up to 28-day ahead, with a MSE score of 0.083. However, inspection of their
qualitative results reveals that the model fails to predict the peaks, and since the test sample is very small, the model has
not been thoroughly tested with more anomalous events when the HVAC system is turned off or functions differently.
Mustafaraj et al. [17] used a NNARX model to predict multi-step ahead indoor temperature and relative humidity
for an open office, with a recursive strategy. They concluded that the model can provide accurate prediction up to
3-hour ahead, as after that the error exceeds a predefined threshold 0.78. Similarly, Lu and Viljanen [3] also trained
a NNARX model to predict indoor temperature and relative humidity in a test house, where one-month of data was
collected, with a resolution of 15 minutes. The indoor temperatures were forecasted four-step ahead (up to 1-hour
ahead) with a recursive strategy. A fast-adopted delta method was used to generate the prediction interval , the quality
of which is visually evaluated based on its coverage rate. A LSTM model was used in the study of Wang et al. [25]
to predict 24h-ahead thermal load. They concluded that LSTM is only suitable to predict very short term prediction
(one to several hours) , but not 24h-ahead, by comparing the result with XGBoost. Xu et. al [26] also used a LSTM
model to forecast very short-term (Smin and 30-min-ahead) indoor temperatures in a public building, and claimed that
their model outperforms other common machine learning methods, like Support Vector Machine (SVM). Similarly, the
study of Muzaffar et al. [27] used a LSTM to predict electricity load for multiple forecast horizons and they concluded
that the LSTM outperforms other statistical models (ARMA, SARIMA and ARMAX) for short-term prediction up
to 48h ahead. However, the model structure was not flexible enough in dealing with output sequences which have a
different sequence length than the input sequence. Besides, only historical variables were used.
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The shortcomings of many of the existing studies can be summarised in the following aspects:

e Most of the studies have only used historical records to predict the future indoor temperature, and among the ones
using both historical and future input variables, their related preprocessing procedure was often not explicitly
explained [26].

e The time series used to train the NN model were often very short, varying between a few days [28] to a few
months [14, 29]. This will to a large extent limit the performance of NN, as it is well known that the NN
performs better when it’s trained on large datasets [30]. Moreover, the metric score obtained from a small test
set can hardly generalise the model performance under different circumstances.

e Most of the studies have benchmarked their NNs with other sophisticated machine learning method, like random
forecast [28], XGBoost [25] with the metric of Symmetric Mean Absolute Percentage Errors (MAPE) or Root
Mean Squared Error (RMSE). However, surprisingly not many studies have performed a benchmark analysis
with the naive method [14], which sometimes is hard to be beaten by even the most advanced ML models [31].
Furthermore, since the indoor temperature does not have a strong daily variation, we need to take a more critical
look at those “low” forecast errors: an average RMSE of 0.8 degree might already be too big in comparison to
the average daily variation (as reflected in our studies see Figure 7).

e Most of the studies of indoor temperature forecasting target a very short predefined forecast horizon (1h - 1day)
[3, 26], instead of exploring the saturating point of the model with regard to the forecast horizon.

The current paper aims to cover the research gaps listed above, and provide a systematic working framework for
similar future studies. The main contributions can be summarised as follows:

1. A complete end-to-end methodology, including data preprocessing, model construction, calibration and com-
prehensive result analysis, was demonstrated with 3-year building operational data.

2. Three different LSTM-based seq2seq architectures were explored and compared under different forecasting con-
texts. The saturating point of the current model was addressed with regard to the forecast horizon.

3. A tailor-made evaluation metric was designed specifically for multi-zone indoor temperatures forecasting.

4. Benchmark analysis was conducted with Prophet model and a seasonal naive model.

5. A 95% prediction interval was generated to take a better account of model uncertainties.

The rest of this paper is organised as follows: Section 3 introduces the concept of LSTM-based seq2seq model
after a technical review of the study problem. Section 4 describes the end-to-end methodology with the experiment on
GreEn-ER building. The performance of the model is examined comprehensively in Section 5. Section 6 concludes
this paper with suggestions for future studies.

3. Model architecture

3.1. Problem statement

Technically speaking, this study is a multi-step time series forecasting problem, which aims to predict the indoor
temperature several time steps ahead. For a time series with strong seasonal patterns, like the indoor temperature,
typically we can use previous days (input sequence) of temperature to predict the following days (output sequence).
The length of the output sequence is predefined as the forecast horizon, while the length of the input sequence is a
parameter that needs to be calibrated according to the nature of the data.

It is also a multivariate time series forecasting problem, in the sense that the model does not only use historical
records of the target variable to make the forecast, but also exogenous variables. Depending if they can be forecasted
or known in advance or not, the input variables can be splitted into two groups: historical variables (e.g. past indoor
temperature of the room) and future variables (e.g. forecasted outdoor temperature, hour of day, etc).

RNN is one type of NN that is specially designed for dealing with sequential data. As illustrated in Figure 1, the
recurrent neuron receives at each time step not only the input Xt, but also its own output(or hidden state depends on
the complexity of the RNN model) from the previous time step. LSTM is a special type of RNN, which adds a cell
state in addition to the hidden state to conserve valuable information along the time sequence. The information and
gradient flow is also controlled by a special gate system, which can help cope with the vanishing and exploding gradient
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problems much better than the normal RNN model. For further details of the RNN and LSTM model, the readers can
refer to [32] and the references therein. In this paper, we will focus rather on the architecture of LSTM-based seq2seq
model.

Yt-1

Iﬁ\
=
>
—

&

Figure 1: lllustration of RNN architecture: X indicates the input sequence, Y indicates the output sequence, the hidden
state is represented by the connections along the time sequence t.

A common practical issue related to the RNN/LSTM model is that it cannot generate the output sequence of
different length to the input sequence easily. Many studies have therefore chosen a recursive / iterative strategy, which
iteratively uses the prediction at time t+1 as an input variable for the prediction of the next step (t+2). However, this
approach tends to accumulate prediction errors along time steps, as well illustrated in the studies of Wen et al.[33].
Another workaround is to directly predict a sequence of future values by using the seq2seq architecture. The seq2seq
(or named encoder-decoder) architecture was originally designed for neural machine translation [34], but has emerged
as a good architecture in solving various sequential problems, including time series.

The basic idea of this architecture is to use an encoder to extract important features from the input sequence, then
pass these features to the decoder to generate the forecast. Although originally the author used LSTM for both the
encoder and the decoder component, in practice different types of architectures can be used. For instance, Kim et
al. [35] has used a CNN-LSTM architecture to predict residential energy consumption for the next hour with the
information collected over the last hour; Wen et al.[33] has proposed a LSTM-MLP architecture for general time series
forecasting problems.

3.2. Seq2seq architecture

As mentioned in section 2, many previous studies have already used LSTM model to forecast indoor temperatures,
but they were rarely used in a seq2seq architecture. In this study, three basic LSTM-based seq2seq architectures were
explored in forecasting the indoor temperatures of the GreEn-ER building. The structures of these architectures are
explained in the following sections.

3.2.1. LSTM-Dense model

LSTM-dense model deploys one LSTM as encoder, from which the output of the last time step is then passed to
a dense layer ( or named fully-connected layer), which functions as a decoder to directly generate a vector of outputs
with a length equals to the forecast horizon. The historical variables and future variables are fusioned before being
passed into the encoder. The architecture is illustrated in Figure 2.

This architecture is, however, not really suitable for situations when the input sequence is shorter than the output
sequence, as then the future variables cannot cover the full forecast horizon. Nevertheless, it is empirically found that
the model works better with an input sequence covering at least the full length of the output sequence or a full length
of the most important seasonality.

3.2.2. LSTM-LSTM model

Compared to the LSTM-dense model, the LSTM-LSTM model passes the historical and future variables to the
encoder and decoder respectively. This structure is more flexible in dealing with cases when the output sequence is of
different length than the input sequence. Specifically, the LSTM encoder extracts features from the historical variables,

Fang et al.: Preprint submitted to Elsevier Page 4 of 27



Multi-zone indoor temperature prediction with LSTM-based seq2seq model

Yt Y2 Yz
1 1 1
| Dense
H Decoder

{LSTM J@{LSTM JIZ(>
Tt 1 1

Xt-2 xt-1 xt
X'm X‘t+2 X'm
Encoder

Figure 2: Illustration of LSTM-dense architecture: X indicates the historical variable; X' indicates the future variable, y
indicates the model output.

then the hidden state of its last time step is passed to the LSTM decoder. The future variables are passed directly to the
decoder at each output time step. A time-wrapped fully-connected layer transforms the output of the LSTM decoder
directly to predicted output at each future time step. The architecture is illustrated in Figure 3.

Vi1 Y2 Yz Yira
& PN P PN
I I | J

[ TimeDistributed dense |

Encoder

A PN
fr 1T 1 1
{LSTM J:>{LSTM J:> LsTM |: LSTM :|:> \: LSTM :\::> LSTM ( » LSTM |

1 1 1 I R

X'c+1 x t+2 Xlt+3 X':+4

Decoder

Figure 3: lllustration of LSTM-LSTM architecture: X indicates the historical variable; X' indicates the future variable, y
indicates the model output.

3.2.3. LSTM-dense-LSTM model

The LSTM-dense-LL.STM architecture can be seen as a variant of the LSTM-LSTM model. The key differences
between the two are: a dense layer, with a smaller dimension, is inserted between the encoder and the decoder to
further extract information out of the encoded features. Also, the last time step output of the encoder is firstly distilled
by a dense layer (with typically a lower dimension) before being concatenated with the future input variables at each
future time step. In this way, we ensure that important historical features can be passed successfully to the decoder at
each forecast time step. The contraction brought by the dense layer also has a regularization effect against overfitting.
The architecture is illustrated in Figure 4.
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Figure 4: lllustration of LSTM-dense-LSTM architecture: X indicates the historical variable; X' indicates the future
variable, y indicates the model output.

4. Case study
4.1. GreEn-ER buildings

GreEn-ER is a 6-floor institutional building, dedicated to foster innovation in energy use and renewable resource
research and training. With 4500 m? space per floor, the building receives ca. 2000 persons per day, out of whom
about 1500 are students.

Figure 5: GreEn-ER building global overview.

With more than 1000 measuring points in total, all rooms are closely monitored with different sensors. Figure
6 shows the distribution of temperature sensors of the 4th floor. One specific zone called Predis-MHI is especially
monitored (lower-left corner of 6). Predis-MHI has an energy control system for each room, based on ventilation and
water-to-air heat exchange. Each room is equipped with different sensors, including set points of the room temperature,
ventilation flow, ventilation temperature, indoor temperature, CO2 concentration, lighting and occupancy.

4.2. Data description
3 years of data were collected from the GreEn-ER building between 01/01/2017 and 31/12/2019, including:

e 8 rooms of ca. half-hourly indoor temperature
e CO2 values of the room “4A016” with a resolution of 4 minutes

e hourly outdoor temperature
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e hourly solar radiation DHI (Diffuse Horizontal Irradiance) and DNI (Direct Normal Irradiance)

e discontinuous room temperature set points of the 8 rooms

: !
o

) €

Figure 6: Temperature monitoring on each zone; example of the 4th floor.

In addition to the measured outdoor temperature, a discontinuous, 2-day ahead forecasted time series of outdoor
temperature is available as well for the same period. A comparison of the two time series shows that, despite some
oscillations in the first half year of 2017, the forecasted time series matches the measured very well, demonstrating
that the 2-day ahead weather forecast is of very high accuracy. Although the forecast outdoor temperature should be
used as a dominating future variable for the model, the time series is not continuous and of limited horizon, which
would limit the testing capacity of the model. Considering that the two time series are of close similarity, the measured
outdoor temperature is used in place of the forecasted in this study.

All the data were first scrutinized for outliers, defined as values outside the normal range ( median + 3std ). Then
they were resampled to an one-hour resolution. The standard deviations of the daily indoor temperatures at different
months of the year are illustrated in Figure 7, for the selected 8 rooms.

A scatter plot was used to visualize the correlation relations between the indoor temperature and the other measured
exogenous variables (see figure 23). Obviously, the outdoor temperature has the highest positive correlation with the
indoor temperature, followed by the solar radiation variables (DNI and DHI).

The CO2 variable does not exhibit a direct relation with the indoor temperature, but as illustrated in figure 24 , it
actually has rather a non-linear positive correlation with the indoor temperature at low temperatures. Since CO2 is
a good indicator of the occupancy level of the room, the CO2 may have a direct influence on the indoor temperature
during the cold season.

4.2.1. Missing values

All input data contain to some degree missing values. An overview of the missing values in the time series of
indoor temperature is shown in figure 20. In order to avoid information leaking caused by one-shot interpolation over
the whole time series, the missing values were interpolated per sliding window (see chapter 4.3.2) when preparing the
input and output sequence vectors. For missing values located in the front or end of the sliding window, a back-filling
and forward-filling was implemented respectively.

4.2.2. Seasonality
For classic statistical methods, like ARIMA and exponential smoothing, the time series need to be first deseason-
alized. However, this is not always necessary for an NN model if all the series in the dataset follows homogeneous
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Figure 7: Daily standard deviation of the indoor temperature measured at the 8 rooms.

seasonal patterns, covering the same duration and with sufficient lengths, as demonstrated by the studies of Hewa-
malage H. et al.[36]. Thus the seasonalities of the indoor temperature in this project were addressed by several selected
temporal variables.

Three strong seasonalities are clearly manifested in the time series of indoor temperature: intrayear cycles, in-
traweek and intraday cycles.

Figure 8 shows that there is a strong difference between the weekdays and the weekends during the summer (July-
September) and winter season (December to March), while the difference is much diluted during the mid-season (April-
June & October-November). Additionally, no clear difference was found among weekdays, except for the early morning
of Monday, during which a transition effect is observed. Hence, a binary indicator was created to encode the weekly
seasonality, where the weekend was encoded as 1 and the weekday was encoded as 0.

The hourly and monthly patterns were encoded by a sine-cosine transformation, as illustrated by the formula 1, to
ensure a continuous representation of the temporal variable while preserving the distance between adjacent values.

2rx

. 2;x
Xin = SIN == and Xx,,, = cos T ¢))

T — length of the seasonality feature

x — variable to be transformed

Considering that the HVAC system is turned off during the public holidays, a binary variable was added to indicate
the period of public holidays. As the period of Christmas is inherently very different from the other public holidays
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due to the long suspension time of the heating, a binary variable was specially designated to the period of Christmas
holiday (23/December to 01/January).

summer winter mid-season
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Figure 8: Indoor temperature distribution over week and day, along with the seasons.

4.3. Preprocessing
4.3.1. Normalisation

All the input variables were normalised to the range of [-1, +1] before being fed to the LSTM model. This normal-
isation method was also tested against another two common methods: normalisation to the range of [0, 1] and stan-
dardization (F—mean x'"e”") The model result later showed that the two normalisation methods gave similar performance,

and both were better than the standardization method.

4.3.2. Data preparation

Despite that LSTM is specially designed to treat relatively long sequence data, the model has a capacity limit to
deal with extremely long time sequences as a result of numerical instabilities and exploding weights. Therefore, a
common practice is to split the very long individual time series into many small time sequences with a sliding window.
Besides, it can function as a data-augmentation technique as well. Considering that it is a supervised learning problem,
we can prepare two coupled matrices X and Y so that each sample x; has its correspondent target label y;. The detailed
procedure is explained below:

The historical variables are decomposed into two components: historical indoor temperature and historical exoge-
nous estimators. The whole input feature space is given by X; = [x,x5,...,X,] € R, where t denotes the input
sequence length and ¢ = m + 1 (m is the number of historical exogenous estimators and 1 represents the historical
indoor temperature).

The future variables contain two components as well: temporal variables and future outdoor temperature. Together
they form a matrix space of Q; = [g,41>dr425 - - @4 ] € R¥9 , where k denotes the forecast horizon and ¢ = n+ 1 (n
denotes the number of temporal variables and 1 represents the future outdoor temperature).

Depending on the specific type of the seq2seq architecture, the historical variables and the future variables are
either concatenated to form a total input matrix before being passed directly to the encoder (LSTM-dense), or are
passed separately to the encoder and decoder component (LSTM-LSTM, LSTM-dense-LSTM).

Time series forecasting has a strong chronological attribute, which makes it inappropriate to predict old records
with recent data. A common practice is to use a sliding window, as illustrated in Figure 9. The input (X) and output(Y)
windows slide simultaneously through the whole time series with step size of one hour. In this perspective, historical
variables are the ones contained in the time frame of X window, future variables and the target variable are the ones
contained in the time frame of the Y window. Since we want to train a global model for all of the 8 rooms, the X and
Y matrices of the 8 rooms were shuffled and stacked together to form a lumped X and Y matrix.

As mentioned in section 4.2.1, the missing values were interpolated along with the sliding window to avoid infor-
mation leaking from the future values.
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Figure 9: lllustration of the sliding window technique.

4.3.3. Train-dev-test dataset

The 3-year target variables were split into three datasets: the first 2 years were used as the training set, the last
year of room ‘4A016° was used as the test set, and 50-100 (depending on the length of the output sequence) random
samples drawn from the last year of the other rooms were used as the validation set. The other exogenous variables
were sampled the same way, except that the exogenous datasets were the same for both the validation and the test
dataset.

4.4. Model Training

The mean squared error (MSE) loss function was minimised using the Adam optimizer [37], thanks to its excellent
performance in handling the complex training dynamics of LSTM and the fast rate of convergence.

The model was trained for two forecast horizons: very short-term (48h-ahead) and short-term (7-day ahead). For
7-day ahead forecasting, it was observed that the exploding gradient problem persists due to the long input sequence.
Therefore, the gradient clipping technique was deployed to scale down gradients that exceed the normal range. The
maximum gradient was set to 3 based on observations of the gradient norm during training.

The model in this work was developed and evaluated in python language using Pytorch framework.

4.4.1. Tuning of hyperparameters

A grid of hyperparameter values were firstly defined, and a set of random combinations of the hyperparameters
were drawn from this space (technically named Random search). For each random set of hyperparameters, the model
was evaluated based on its average RMSE on the validation set. Since random search does not try every combination
in the set of possible values, it does not guarantee to find the optimal set of hyperparameters. A manual fine-tuning
was thus later made for the most sensitive parameters.

The optimal hyperparameter values of the LSTM-dense model are shown below, together with their corresponding
search range. The predefined search range covers the most probable searching space of each hyperparameter.

Table 1

Random search of the hyperparameters

hyperparameters optimal value search range

initial learning rate for Adam optimizer 0.0025 [0.0005, 0.001, 0.0025, 0.005,0.01]
mini-batch size 128 [32, 64, 128, 256]

dropout probability 0.2 [0, 0.2, 0.4, 0.6, 0.8]

nr. of hidden units 128 [32, 64, 128, 256]

nr. of hidden layer 1 [1, 2]

length of the input sequence 168 (for 7d-ahead forecasting) [120,168,216,336]

It was discovered that the most important hyperparameter are the learning rate, followed by the number of hidden
units, dropout probability, and length of the input sequence.
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4.4.2. Overfitting

While tuning the hyperparameters, it was found that the model performed better with a large number of units
combined with relatively strong regularization, rather than a small number of units with little regularization. The
drawback of using such a large-capacity model was that the model tended to overfit very fast, especially with an
efficient optimizer like Adam.

Two different dropout schemes were explored to regularize the model. The first dropout scheme, also the most
common one, is to use a different dropout mask at each time step for only the inputs and outputs of the recurrent unit,
and no dropout is applied on the recurrent unit [38].

The second dropout scheme is called weight-dropped technique [39], a variant to variational dropout [40], which
applies the same dropout mask through the time sequence,as illustrated in Figure 10. The difference between the two
is that the variational dropout applies the dropout on the hidden units, while the weight-dropped on the weights within
the hidden units directly to further strengthen the regularization.

Yi—1 Yt Yit1 Yr—1 Y Yr+1

[ 1 1 [ 1 1
----- J-------0-------0----= > > > ?

T

----- - -2 | a |

T T [

T Ty Tig1 Ti_1 T Tg1

(a) Naive dropout RNN (b) Variational RNN

Figure 10: Naive dropout vs. variational dropout in RNN model. source: [40].

The training curve of the 48h-ahead forecasting is shown in Figure 11. The training curve of the 7d-ahead forecast-
ing is shown in appendix A.4. It was observed that the weight-dropped technique can indeed bring stronger regular-
ization on the RNN model, resulting in slightly better performance on the validation set. Compared to the 48h-ahead
forecasting, the overfitting was manifested strongly for the 7d-ahead forecasting, indicating that the current model is
less capable of forecasting the far future. In addition, the early-stopping mechanism was used as well to further prevent
the overfitting.

4.4.3. Selection of input variables

As mentioned in Section 4.2, not all collected sensor data were used as input variables for the final model. In this
study, the model was constructed with a stepwise approach: the model was firstly constructed with the historical records
and the future outdoor temperature (the most important exogenous variable reflected from the correlation analysis A.3).
Then the selected temporal variables and other weakly correlated exogenous variables were added one by one according
to their contributions to the model performance. In this way, two variables, CO2 and room temperature set points, were
excluded from the final model structure, as they both brought a negative contribution to the model.

Despite the fact that the CO2 is a strong indicator of the occupancy level of the room, it did not bring extra values in
the current model setting. As illustrated in Figure 24, the CO2 has a nonlinear correlation with the indoor temperature
during low temperatures and this effect is diminished with the increase of temperature. Since the extremely low
temperatures often occur during special events that were already addressed by the holiday and weekend indicators,
it is possible that the addition of the CO2 variable was superfluous. Moreover, manifested by its strong intrahour
variations, CO2 has a highly volatile nature, indicating that its historical hourly-averaged value would probably bring
little information for the upcoming hours.

As illustrated in Figure 22, the set-point values are almost constant throughout the whole winter/summer season,
and the increase or decrease of the value does not bring a corresponding change of the indoor temperature. This
“strange” behavior comes from the fact that the GreEn-ER building is a self-sufficient building, in which the heating
and cooling capacity is to large extent limited by the other factors (e.g. the energy production of the solar panels, the
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capacity of the local data centre, etc.) which were not explicitly addressed by the current model.
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Figure 11: training and validation loss of two different seq2seq models for 48h-ahead forecasting, with the two dropout
schemes.

4.5. Benchmarking

The developed LSTM-based seq2seq model is benchmarked against Prophet and a seasonal naive model.

4.5.1. Naive model

Considering the strong seasonal patterns of the indoor temperature, the naive model was defined as the average
temperature of the first two years on the same hour and date.
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4.5.2. Prophet model

Prophet model, developed by Facebook research, is known for its ease of use, explicability and flexibility in dealing
with seasonal time series. It is therefore used as another benchmark model. The purpose is to test if the LSTM-
based seq2seq model is more attractive than an easy-to-use model like Prophet in terms of model performance and
generalization capability.

Prophet is an additive time series forecasting model which contains three key components: trend, seasonality and
holiday. Three types of seasonalities were modeled explicitly in this project: the daily, weekly and yearly seasonality,
among which the weekly seasonality is set as a conditional seasonality of summer, winter and mid-season, as mentioned
in section 4.2.2.

Grid search was applied together with a cross-validation procedure to tune the hyperparameters. Since it does not
make sense to use recent data to predict historical events, the cross-validation procedure is defined as follows: firstly
we define a list of cutoff dates from the last year’s time series, then we construct an X and Y vector for each of the cutoff
dates. The X vector contains the first two-year’s data up to the cutoff date, while the Y vector contains the forecast
horizon (7 day) starting from the cutoff date. In this project, the cutoff dates were selected every 7 days from the last
year. The model performance was evaluated by the average root mean squared error (RMSE) of all the test sets (Y
vectors).

The optimal parameters and their corresponding searching range are listed in Table 2.

Table 2

Calibration of Prophet model

hyperparameters optimal value search range
change-point prior scale 0.01 [0.001, 0.01, 0.05, 0.1]
seasonality prior scale 10 [1, 5, 10, 20, 30]
holidays prior scale 20 [5, 10, 20, 30]

weekly seasonality prior 10 [1, 5, 10, 20, 30]
outdoor temperature prior scale(exogenous variable) 30 [5, 10, 30]

mode multiplicative [additive, multiplicative]

5. Result analysis

With the trained and well fine-tuned model architectures, we would like to answer the following questions based
on the model’s performance on the test set:

1. To which forecast horizon can the model give competitive results in comparison to the in-sample seasonal naive
model and daily variations of the temperature?

2. Given the same training data, how does the seq2seq model perform in comparison to Prophet model and the
seasonal naive model?

3. With a fixed forecast horizon, is there a huge deviation in model performance among the selected seq2seq ar-
chitectures?

4. How does the cross-series model perform in comparison to the single-series model?

5.1. Performance measures

Four metrics were used to evaluate the model results for each test sample: RMSE, coefficient of determination
(R2), mean absolute scaled error (MASE) and mean normalised absolute error (MNAE). The metric-scores over all
the samples were averaged to generate the final score. However, the R2 was calculated directly on the total output
(flattened matrix) to avoid having too few values during short forecast horizons.

RMSE and R2 are fairly standard evaluation metrics in time series forecasting, so they will not be explained in
detail here. MASE, introduced firstly in 2006 by Hyndman et al. [41], is the mean absolute error of the forecast values,
divided by the mean absolute error of the in-sample naive forecast. Typically, a value bigger than one will indicate
that the current model performs worse than the in-sample seasonal naive model.
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As demonstrated in Figure 7, the daily variation of the indoor temperature is fairly small and varies strongly among
different rooms. Based on this particular property, a tailor-made metric MNAE (formula 3) was introduced as the mean
absolute error normalised by the average daily standard deviation of the target variable.
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T — the forecast horizon
o — the average daily standard deviation of the room temperature
y — out-of-sample target value

y — out-of-sample prediction

5.2. Performance with forecast horizon

The three seq2seq architectures were trained to predict indoor temperatures up to 7 days ahead, while the evaluation
metrics were aggregated for the following intermediate horizons: 1h, 6h, 12h, 24h, 48h, 96h, 120h and 168h. The out-
of-sample evaluation metrics are plotted versus the forecast horizon in Figure 12, to gauge how the model’s performance
deteriorates with longer horizons.

In general, all the metrics reflect the same pattern: the performance of the model degrades significantly with time,
especially after the first 48 hours. The MASE-score shows that the model produces far better results than the in-sample
naive model for all the forecast horizons considered. The MNAE indicates that the MAE of the forecasts is lower than
the average daily standard deviation during the first 2-3 days.

Considering that the outdoor temperature is only provided for the first 48 hours during the forecasts, it is important
to know if the model performance could be significantly improved or not if a longer sequence of outdoor temperature
was available. Thus, a scenario was tested by providing the same model architectures with 7-day ahead outdoor temper-
ature information. The test was only made for the 1stm-dense-Istm and Istm-dense architecture, as the Istm-dense-lstm
is just a slight variant of the lstm-Istm.

The resultant metrics (Figure 13) show that both models give very similar performance when the outdoor tem-
perature is only provided for the first 48 hours. However, the Istm-dense-Istm architecture exhibits a considerable
performance boosting when the 7-day ahead outdoor temperature is provided, while the Istm-dense benefits much
less from this valuable information. This difference implies that the seq2seq model can make better use of the future
variables when the historical and future variables are fed separately to the encoder and decoder.

The same models were trained again for very short-term forecasting in order to compare the performances among
the three seq2seq architectures. The result (Table 3), shows that the Istm-dense model slightly outperforms (8-10%)
the other two.
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Figure 12: Average aggregated metrics of 7-day ahead indoor temperature forecasting, with weather forecast provided
2-day ahead. The performance threshold in term of MNAE and MASE are indicated by the dash horizontal lines.
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Figure 13: Average aggregated metrics of 7-day ahead indoor temperature forecasting, with weather forecast provided

7-day ahead and 2-day ahead respectively for the Istm-dense-Istm and the Istm-dense model. The performance threshold
in term of MNAE and MASE are indicated by the dash horizontal lines.

5.3. Performance comparison with the benchmarks
The Istm-dense-1stm model was then benchmarked against Prophet model and a seasonal naive model mentioned
in section 4.5. As Prophet model does not allow cross-series learning, the Istm-dense-lstm model for this test was only
trained with one room’s (4A016) indoor temperature. Both models were trained with 7-day ahead outdoor temperature.
Prophet model was trained individually up to each cutoff date, and a 7-day ahead forecasting was made for each
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Table 3

Comparison of the model performance on very short-term forecasting (48h-ahead)

Seq2seq architecture RMSE-mean (°C) std dev (°C) %
LSTM-dense 0.458 0.26 ref
LSTM-dense-LSTM 0.493 0.26 7.6%
LSTM-LSTM 0.505 0.28 10.30%

cutoff date. The results of Prophet model were compared with that of the 1stm-dense-Istm model for the same forecast
periods, both quantitatively (Figure 14) and qualitatively (Figure 15).

Figure 14a shows that the LSTM-based seq2seq model gives a much better performance than Prophet for all the
predefined forecast horizons. Although both models beat the in-sample naive model for a large margin, the MNAE-
score shows that the average errors of Prophet are all above the daily standard deviation. The boxplot 14b shows that
the error variance of Prophet is significantly higher than the seq2seq model, indicating that the model’s performance
is not very consistent. The benchmarking result is also summarised in Table 4.

Table 4
Tabular illustration of the benchmarking in terms of RMSE (°C)
Forecast horizon (hours) seq2seq Prophet seasonal naive
1h 0.267 0.787 1.275
6h 0.288 0.69 1.013
12h 0.36 0.705 1.013
24h 0.428 0.762 1.012
48h 0.496 0.731 1.011
96h 0.583 0.755 1.011
120h 0.615 0.789 1.011
168h 0.663 0.806 1.011
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Figure 14: Quantitative comparison between Prophet model and the seq2seq model trained for room 4A016

5.4. Cross-series learning vs single-series learning

The cross-series model was compared with the single-series model (room 4A016) in predicting the indoor temper-
atures of all the rooms based on the Istm-dense-1stm architecture. For the single-series model, since no additional test
set was available, the validation set was also used for the final test set (this would give the single-series model a better
performance on the forecasting of room 4A016 than it should have been).
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Figure 15: Qualitative comparison among Prophet model (blue line), naive model (grey line) and the seq2seq model (red
line) against the ground truth (thick black line). The forecasting was initiated at each sampling date (cutoff date) indicated
by the blue points.

The result is illustrated in Figure 16. It shows that the cross-series model outperforms the single-series model
in forecasting the temperatures of almost all the rooms, especially during the first 48 hours.The single-room model,
despite that it is trained only on one room (4A016), can forecast actually quite well its neighboring rooms (4A018,
4A019) which posses similar time-series pattern. For the same reason, the rooms (4A013, 4A014) which are located
far from the training room get much less accurate results from the single-series model. The aggregated RMSE scores
of both strategies are also shown in Table 5 for room 4A017.

5.5. Prediction interval (PI)

In order to quantify the level of uncertainty associated with the point forecasts, MC-dropout was applied to generate
the prediction interval. According to the studies of Gal et al.[40], the MC-dropout of the NN model can be interpreted
as a Bayesian approximation of Gaussian process, which has shown strong generalization ability and scalability. The
MC simulation in this study was repeated 100 times during the inference with stochastic variational dropouts, then the
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Figure 16: Comparison of the cross-series learning with the single-series learning strategy

Table 5
Average RMSE (°) of the model trained with cross-series learning strategy in comparison to the single-series
learning strategy for room 4A017

Forecast horizon (hours) cross-series single-series
1h 0.233 0.348

6h 0.232 0.351

12h 0.28 0.438

24h 0.336 0.526

48h 0.407 0.626

96h 0.544 0.75

120h 0.608 0.797

168h 0.718 0.875

model’s uncertainty was approximated by the sample variance. Specifically, the 95% prediction interval was calculated
aS Vyedian = 1.96 * stddev. A qualitative overview of the prediction interval is shown in section A.5 for three periods
of the year (January, July and December) that are most difficult to be forecasted.

The quality of the prediction interval was also evaluated quantitatively by Prediction Interval Coverage Probability
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(PICP) and Mean Prediction Interval Width (MPIW) proposed by Khosravi et al. [42].
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Figure 17: Quantitative evaluation of the PI

We observe that the average width of the PI increases only slightly with the forecast horizon, while the coverage
rate decreases quickly. This implies that the confidence interval cannot fully address the increased uncertainty with
time.

The qualitative plot shows that the model can well represent the large uncertainties during certain periods of the
year (like the Christmas, the summer period), where the big variance is already manifested in the training dataset. But
it is out of the current model’s capacity to address the uncertainties related to model misspecifications[43], such as
the omission of input variables that are not explicitly modelled, e.g. occupancy level and capacity of the heating and
cooling system.

5.6. Residual analysis and model limitations

As the test set covers a full-year time span, we can have a more detailed look at the model performance across the
year. A boxplot of the absolute error at one-hour ahead and 12-hour ahead is shown in Figure 18. It can be seen that
the model has more difficulties in forecasting during the winter (November - March) period when the heating is on, and
the transition period between spring and summer (June) when the cooling system begins to dominate the temperature
control of the whole building. Since no input variables have been assigned to address these mechanisms in this project,
their impact cannot be well simulated by the current model.

Further, a qualitative check also showed that some large residuals are actually caused by unexpected indoor activ-
ities: sudden opening of windows, unexpected energy consumption during the weekend and holidays etc.
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Figure 18: Distribution of forecast errors over the year

6. Conclusion and suggestion

This paper has presented an end-to-end methodology in predicting multi-zone indoor temperatures with LSTM-
based seq2seq model architecture. A tailor-made metric was proposed to take account of the small daily-variation
characteristic of indoor temperature. The result shows that provided a 2-day ahead weather forecast information, the
model is able to provide skillful forecasting up to 2-3 days ahead. The current model outperforms Prophet and the
seasonal naive model by a great margin, especially on the very short-term (48h-ahead) forecast horizon. Also, a cross-
series learning strategy was adopted to enable multi-zone indoor temperature forecasting. This greatly enhanced the
model performance on different thermal zones. Among the tested three seq2seq model architectures, the LSTM-dense
model is more skillful for very short-term forecasting, while the LSTM-dense-LSTM and LSTM-LSTM model can
make better use of the future variable, and thus performs better for forecasting with longer horizons.

Furthermore, the uncertainty in model parameters was quantified by prediction intervals created by Monte-Carlo
dropout (MC-dropout) technique. The quality of the prediction interval was guaranteed by its high coverage rate and
restricted coverage width for very short-term forecasting.

The model performance can be further improved from two perspectives: firstly and most importantly, relevant
information could be collected to address important mechanisms that were not covered by the current model: the
heating and cooling capacity of the building, the scheduled indoor activities (e.g., big gatherings like meetings, parties,
extra loads of the data centre etc). Secondly, modelling is a continuous process. The current model should be kept
updated with more advanced model architecture and newly acquired data set. In this study, only LSTM-based seq2seq
model was tested. It would be interesting to test other seq2seq architecture, like CNN-LSTM and transformer-based
seq2Seq architecture. Future studies will also be devoted to the deployment and integration of the model in the real
building energy management system to achieve better energy savings.
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A. Appendix
A.1. Indoor temperatures of the modelled 8 rooms
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Figure 19: Overview of the measured indoor temperatures
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Figure 20: Overview of the missing values in the time series of indoor temperatures
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A.2. Overview of the exogenous variables
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Figure 21: Overview of the solar radiation, outdoor temperature and CO2 in room 4A016
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Figure 22: Overview of the room temperature set points in room 4A020
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A.3. Scatter plot of the variables
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Figure 24: Scatter plot of CO2 and indoor temperature of room 4A016
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A.4. Loss curve of two different dropout techniques for short-term forecasting (7d-ahead)
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Figure 25: training and validation loss of two different seq2seq model for 7d-ahead forecasting, with the two dropout
schemes.

Fang et al.: Preprint submitted to Elsevier Page 24 of 27



Multi-zone indoor temperature prediction with LSTM-based seq2seq model

A.5. Prediction interval of selected periods of the year
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Figure 26: Prediction interval during January
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Figure 27: Prediction interval during summer
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Figure 28: Prediction interval during December
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