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Integrated Planning of a Solar/Storage Collective
Jesus E. Contreras-Ocaña, Arshpreet Singh, Yvon Bésanger, Frédéric Wurtz

Abstract—French regulation allows consumers in low-voltage
networks to form collectives to produce, share, and consume
local energy under the collective self-consumption framework. A
natural consequence of collectively-owned generation projects is
the need to allocate production among consumers. In long-term
plans, production allocation determines each of the consumers’
benefits of joining the collective. In the short-term, energy should
be dynamically allocated to reflect operation. This paper presents
a framework that integrates long and short-term planning of a
collective that shares a solar plus energy storage system. In the
long-term planning stage, we maximize the collective’s welfare
and equitably allocate expected energy to each consumer. For
operation, we propose a model predictive control algorithm that
minimizes short-term costs and allocates energy to each consumer
on a 30-minute basis (as required by French regulation). We
adjust the energy allotment ex-post operation to reflect the
materialization of uncertainty. We present a case study where
we showcase the framework for a 15 consumer collective.

Index Terms—Planning, control, energy community, techno-
economic modeling.

NOMENCLATURE

Indices and sets

i Index of consumers
B Set of feasible ES charge/discharge actions
E Set of feasible annual energy allocation per con-

sumer
ω Index of uncertainty scenarios
Ω Set of uncertainty scenarios

Variables and parameters

A Number of years in planning horizon
Bnet Expected net benefit (EUR)
c/d ES Charged/discharged per time period (kWh)
Ci Consumer i’s cost (EUR)1

Cgrid Grid connection cost (EUR)
Ces

inv ES inverter cost (EUR)
Cpv

inv PV inverter cost (EUR)
CapEx Capital expenditures (EUR)
e Energy allocation per consumer (kWh) 2

Ees
cap Energy storage capacity (kWh)

G Key of repartition matrix (kWh)
gi Local generation assigned to consumer i (kWh)
gg Energy bought from the grid per time period (kWh)
gpv PV generation per time period (kWh)

This work was funded by the Make Our Planet Great Again Program of
the French Government and the interdisciplinary Eco-SESA Program of the
Univ. Grenoble Alpes.

1l, g, and C (without subscripts) represent aggregate load, local generation,
and cost, respectively.

2See Section V-A for the meaning of each of the superscripts and accents
of e.

gs Surplus energy sold to the grid per time period
(kWh)

L Consumer load per time period matrix (kWh)
li Load of consumer i (kWh)
m Expected mismatch between planned and delivered

energy (kWh)
N Number of consumers
OpEx Operational expenditures (EUR)
obj∗LT Objective of the long-term planning problem

(EUR)
p Price of local PV+S energy (EUR/kWh)
P es

cap Energy storage power capacity (kW)
P es

inv Energy storage inverter capacity (kW)
P pv

cap PV installed capacity (kW)
P pv

inv PV inverter capacity (kW)
r Discount rate
S Subsidies (EUR)
T Number of time periods for simulation in a year3

α Vector of per-unit PV production
βes/βpv Per-unit cost of ES/PV capacity

(EUR/kWh)/(EUR/kW)
βes u ES utilization cost coefficient (EUR/kWh)
βmnt Yearly PV maintenance cost per unit of intalled

capacity (EUR/kW)
∆ Length of time period (hours)
ε̂ Deviation between actual and expected PV+S gen-

eration in the control horizon (kWh)
γ Share of the net benefit kept by investor
κ Energy-to-power ratio of the energy storage system
λ Price of energy sold to the grid (EUR/kWh)
Π Investor’s profit (EUR)
τ Grid export tax (EUR/kWh)
θ Weight of energy mismatch (EUR/kWh)

I. INTRODUCTION

As part of an almost universal embrace of renewable ener-
gies by people and governments around the globe, many juris-
dictions today recognize and encourage the self-consumption
of local renewable energy generation. For example, the Eu-
ropean Commission put out a set of best practices for self-
consumption regulation [1] and several European countries
including Germany, France, Spain, and Switzerland have in
place laws and frameworks related to self-consumption [2].

In France, the practice of self-consumption (autoconsom-
mation) was recognized by the energy code in 2017 [3]. The
code defines the rate of self-consumption as the share of the
local production at each instant4 that is consumed locally.

3The subscripts c and p denote control and prediction horizon, respectively.
4In practice and as dictated by France’s Energy Regulatory Commission,

the rate of self-consumption is calculated every 30 minutes [4].
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Additionally, the code lays out a framework for collective self-
consumption. In the collective variant, a group of geograph-
ically proximal consumers connected to the low-voltage grid
can share locally produced energy [3]. In the French case,
collectives organize around a legal entity (personne morale)
who is in charge of communicating the repartition of energy
among consumers on a 30-minute basis.

From the consumer’s point of view, we identify two major
advantages of collective over individual self-consumption.
First, it facilitates investment by increasing the viability of
larger systems and enable economies of scale [5], opens up
otherwise unavailable physical resources (e.g., better-located
rooftops), and allows for the participation of institutional
investors that can provide attractive financing and absorb
risk [6], [7]. The second advantage is that by sharing energy,
collectives can reach higher rates of self-consumption than
equivalent individual projects. This is especially true if the
loads are heterogeneous. Thus, if the electricity tariff structure
rewards self-consumption, collectives reap higher benefits.

However, organizing a collective also represents challenges.
For one, the interconnection process and operation one large
system be complicated [8]. Or, if one aggregates several
smaller systems, then the challenge becomes one of coordina-
tion and control. In any case, coordination among consumers
and the grid represents a challenge [9]. Beyond technical
challenges, several studies identify the difficulty of reaching
an acceptable deal to all parties - investor and consumers -
as significant challenges [5], [7], [9]. In particular, Goedkoop
and Devine-Wright in [7] stress the need for mechanisms that
create trust among the participants and lead to stable collective
arrangements.

A. Summary and contribution of this work

In this paper, we present a cooperative planning framework
that integrates long-term planning and short-term operation of
an energy collective of consumers sharing a photovoltaic plus
storage (PV+S) system and an investor that provides capital.
By “cooperative”, we mean a planning framework that puts the
welfare of the collective ahead of individuals. We designed
the framework with cooperation rather than competition as
a guiding principle because we agree with Goedkoop and
Devine-Wright: an overly-competitive environment may lead
to tense relations, lack of trust, and ultimately jeopardize the
financial stability of the collective [7].

Furthermore, we adopt simplicity5 as a guiding design
principle for the mechanisms that frame the relationship be-
tween participants. As outlined in [1] simple procedures are
important if we want to encourage healthy energy collectives.
Concretely, our framework is designed with transparent and
simple-to-understand prices and operational rules.

In our framework, the long-term plan answers two important
questions: what PV+S system size is optimal? and what
benefits can consumers and the investor expect from joining

5Developing a technical and quantitative meaning of “simple” is not trivial
and outside the scope of our work. In our work, mechanism 1 is simpler than
mechanism 2 if we believe that it is easier to explain in layman’s terms and
its input-output relationship is easier to understand.

sizing benefit
allocation

long-term (off-line)

PV+S system size

expected energy per consumer

control

PV+S system operation

settlement

final energy
allocation

Fig. 1. Diagram representing the framework proposed in this paper.

the collective? The answer to the first question is important
because we want to use resources as efficiently as possible.
Knowing how much each consumer can expect to save and
how much the investor can expect to earn is important because
it allows them to decide whether or not to join the collective.

The main determinant of the investor’s profit is the price p
at which PV+S energy is sold to consumers. For the investor,
p should be high enough to recover its capital and operating
costs (CapEx and OpEx). However, for the consumers to
benefit from joining the collective, p should be (roughly
speaking) lower than grid prices. In this work, we present a
method to determine the range of values that p can take such
that all participants benefit. The existence of such a range is
necessary for the collective to be financial sustainable, i.e., a
collective in which all participants benefit financially.

Part of the long-term plan is to calculate the repartition of
local energy production. French regulation requires the legal
entity to produce a “key of repartition” to determine the share
of local production received by each consumer on a 30 minutes
basis. Thus, we propose a method to determine a key of
repartition that equitably allocates energy among consumers
throughout a year. This key determines the expected amount
of PV+S energy that each consumer can expect to receive in
a year. The expected energy allotment for each consumer and
the price p are the two ingredients needed for each consumer
to estimate the benefits of joining the collective. The yellow
section of Fig. 1 illustrates the long-term planning portion of
our framework.

The two main goals of the real-time operation portion of
our framework are to efficiently operate the PV+S system and
fulfill the energy expectations of each customer. Real-time
operation is composed of a control stage (the middle blue
section in Fig. 1) and a settlement stage (the green section of
Fig. 1). In the control stage, we propose a model predictive
control (MPC)- based algorithm to minimize operating costs
and determine a key of repartition that tracks the expected
energy allotment from the long-term plan. In the settlement
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stage, we propose an optimization-based method to adjust
the key of repartition from the control strategy such that it
complies with the actual operation (which differs from the
control strategy due to materialization of uncertainty) of the
PV+S system.

We would like to emphasize that energy allocation is done
for financial and billing purposes. That is, for each consumer,
the algorithm decides how much of their energy consumption
should be paid to the grid and how much to the local PV+S. We
do not control the actual power flows as these are determined
by Kirchhoff’s Laws.

We would like to emphasize that while this work was
inspired by the French collective self-consumption case, the
proposed framework is generic and widely applicable. Within
European regulation, the proposed framework could be used
under the definitions for “Renewable Energy Communities”
from [10] and “Citizen Energy Communities” from [11]. To
this day, Portugal, Spain, Wallonia (Belgium), and Greece have
adopted regulations on energy communities and the rest of the
European Member States should follow within the next few
years. Beyond European regulation, our framework could be
used for the planning and operation of a generic microgrid
with community or investor-owned assets.

Finally, we provide a case study of a PV+S energy collective
in the South of France. In it, we showcase each of the elements
of the proposed integrated planning framework using realistic
data.

To recapitulate the contributions of this work, we restate
them as follows.
• A cooperative planning framework that integrates long-

term planning and short-term operation of an energy
collective.

• A long-term plan determines that determines the optimal
PV+S system and the conditions for the financial sustain-
ability of the collective.

• A method to equitably allocate yearly local PV+S energy
to the consumers.

• An MPC-based algorithm to minimize operating costs
and determine the key of repartition that tracks the
expected energy allotment of the long-term plan.

• A method to adjust the key of repartition ex-post op-
eration to reflect the realization of uncertainties and
operation of the system.

• A case study of our framework for a 15 consumer energy
collective.

B. Literature review

Energy communities are not an entirely new concept (long-
existing cooperatives in the U.S. and microgrids are related
concepts) but following the unveiling of the Clean Energy
Package for All Europeans set of legislation, have gained re-
newed interest [12], [13]. In [14], Moret and Pinson introduce
the concept of an “Energy Collective” composed of prosumers
that interact with each other and with the grid through a third
party. Their work introduces a structure similar to the one
presented in this paper and analyses the operation and fairness
of the collective. However, it does not explicitly deal with the

problem of energy repartition by community-owned assets and
ignores the problem of long-term planning. The work in [15]
presents a review of several business models under which a
collective can be organized. Some of those business models
could in principle be applied within our framework (e.g.,
customer and mixed ownership, energy service company).

One of the central issues introduced by the collective
self-consumption framework is the problem of local energy
allocation among consumers. Market-based mechanisms are
some of the most common ways of allocating shared resources,
e.g., the works in [16], [17], [18], [19], [20], [21] for the case
of microgrids. Alternative non-market methods of resource
allocation also exist. For example, in [22], Erinski and Schülke
propose a method to fairly allocate energy from a central wind
or solar generator. In [23], the authors propose an energy
credit-based system to share solar energy surplus within a
community. The authors of [5] and [21] present cooperative
game-theoretic analyses of energy collectives. In [21], the
authors present a nucleolus-based solution that leads to a stable
and fair payoff distribution scheme for all players. Abada et
al.’s work in [5] touches on many of the questions that we
deal with in this paper, e.g., optimal investment and financial
stability of an energy collective. While [5] presents a deeper
and more theoretical analysis of the question of financial
stability, they ignore some of the elements of our work such
as the energy storage (ES) system, the key of repartition, real-
time operation, and ex-post operation settlements.

PV+S system sizing is a key topic of this paper and also a
heavily studied subject. Works such as as [24], [25], [26], [27]
focus on the techno-economics of sizing while works such as
as [28], [29], [30] direct their focus to more technical aspects.
In [24], Khare and Ragnekar develop a methodology that
minimizes the annual cost of a PV system. The work in [25]
goes a step further and considers a PV+S system. The authors
of [26] present a sizing problem of distributed energy resources
that incorporates the value of delaying capacity expansion.
The work in [27] presents a planning problem of an isolated
microgrid. The algorithm in [27] is especially interesting
because it exploits the complementary of solar energy and
biogas to reduce the need for ES. The authors of [28] propose
a sizing method for solar, wind, and battery microgrids that
considers reliability metrics, the specific characteristics of
wind and solar production, among others. The work in [29]
proposes a microgrid sizing algorithm that, in addition to
wind, solar, and batteries, also considers dispatchable diesel
generation. Similar to this work, [26] and [30], embed the
short-term operation of the system in their sizing problems.
However, the question of how to allocate local production is
outside the scope of all the aforementioned works.

C. Organization of the rest of the paper

Section II describes the consumer, investor, and legal entity
models. Section III presents the PV+S system sizing problem
and Section IV presents the problem of benefit allocation.
Section V presents the system operation algorithms (control
and ex-post operation settlement). Section VI presents a case
study of a PV+S collective in the south of France and
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Section VII concludes this paper and provides suggestions for
future work.

II. PARTICIPANTS IN THE COLLECTIVE

A. Consumers

We model consumers as inflexible loads partially fulfilled by
local energy and partially by grid energy. Let li be a vector ∈
RT+ that represents energy consumption of consumer i during
T periods of length ∆. Let gi be a vector ∈ RT+ that represents
energy from the PV+S system assigned to i during each period.
Then, i’s costs are

Ci(li − gi) + p · 1ᵀgi. (1)

where the first term is grid costs and the second local energy
costs. The linear function Ci maps i’s energy deficit, li−gi, to
grid-related cost which includes energy, fees, and taxes. The
price of local energy is represented by p.

We express the total cost, C, of N consumers as a func-
tion of the aggregate consumption and generation, l − g =∑N
i=1 li − gi:

C(l − g) + p · 1ᵀg =

N∑
i=1

{Ci(li − gi) + p · 1ᵀgi} . (2)

B. Investor

The investor provides capital for the PV+S system, funds
maintenance, operational expenses, taxes, and absorbs the bulk
of the risk6. In return, the investor profits by selling PV+S to
the consumers.

We define the present value of the investor’s profit as We
define the present value of the investor’s profit as

Π =

A∑
a=1

p · 1ᵀg + λᵀgs + S

(1 + r)a︸ ︷︷ ︸
revenues

−CapEx−
A∑
a=1

OpEx

(1 + r)a︸ ︷︷ ︸
costs

. (3)

The investor’s revenue stream is composed of three elements:
sales to the consumers, p · 1ᵀg, energy sales to the grid7 at
a price λ, λᵀgs, and yearly subsidies, S. To calculate the
present value of the total revenue, we add the discounted
revenue stream over the planning horizon {1, 2, . . . , A}. Here,
r is the discount rate and relates future cash flows to present
value [31].

The investor’s costs are composed of CapEx and OpEx. The
former are incurred before and during system installation and
include hardware, equipment, installation, and grid connection
costs. The latter include system utilization costs and taxes and,
similar to the revenue stream, we add the discounted OpEx
stream to calculate the present value of the OpEx.

6The main sources of risk are solar generation uncertainty, future prices,
and regulatory uncertainty. Consumers are also exposed to risk since solar
supply is uncertain.

7Energy sales to the grid can be limited by technical or regulatory limits.

C. Legal entity

The third participant is a neutral legal entity who is in
charge of operating the PV+S system, allotting local energy
to consumers, billing, and representing the collective. It be-
haves neutrally and is guided by contracts and algorithms.
Concretely, the legal entity determines and implements the
PV+S system real-time operation strategy, calculates the ex-
post operation settlements, bills, and communicates with the
grid.

The EU Directive 2019/944 on common rules for the
internal market for electricity and the EU Directive 2018/2001
on the promotion of the use of energy from renewable sources
define “Citizen Energy Communities” and “Renewable Energy
Communities” as legal entities (e.g., civil associations, coop-
eratives, corporations, etc.). For example, France’s legislation
calls for self-consumption activities to be organized within
a personne morale (i.e., a legal entity or legal person) [3].
In Greece, natural persons and small and medium enterprises
are allowed to create for-profit or non-for-profit cooperatives
to legally house an energy community [32]. These are just
a few examples of legislation that mandates collectives to
operate within a legal entity. However, in our work, we adopt a
wider definition that may include, for example, aggregators or
contracts between individuals. Despite its name, more than a
legalistic definition, the key is that the legal entity undertakes
the responsibilities listed in the previous paragraph.

III. LONG-TERM PLANNING (SIZING PROBLEM)

In this work, we take a cooperative approach to long-
term planning. That is, we look for a Pareto-optimal PV+S
system that maximizes the total welfare of the investor and
the consumers, i.e., the investor’s profit minus the consumers’
costs.

We formulate the sizing problem as a two-stage stochastic
mixed-integer linear program (MILP) whose main source of
uncertainty is solar irradiation. Solar irradiation uncertainty is
modeled using scenarios of per-unit of installed PV capacity
PV generation. Each scenario is a possible PV generation
profile and is represented by a T -long time series of numbers
between 0 (e.g., at night) and 1 (i.e., generating at capacity).

The first stage (here-and-now) variables, i.e., decisions taken
before the uncertainty materializes, are sizing-related decisions
such as the capacities of the PV and ES systems. On the
other hand, the second stage (wait-and-see) variables are
decisions that can be modified later when refined forecasts are
available. Specifically, second stage variables are operation-
level decisions such as ES operation and PV production.

A. Objective

We cast the problem as a maximization problem whose
objective,

obj∗LT = max

{
E [Πω]−

A∑
a=1

E [C(l − gω) + p ·1ᵀgω]

(1 + r)a

}
,

(4)
is to maximize the expected welfare of the investor and the
consumers. In this work, the subscript ω denotes scenarios
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of solar generation and the function E calculates the expected
value of its argument. It is trivial to show that the term p·1ᵀgω
cancels out in (4) which renders the objective as linear.

Our long-term plan simulates an entire year (rather than
typical days as it is often the case in planning formulations).
Since the OpEx (contained in Πω) and grid costs depend on
the short-term (e.g., hourly) operation of the PV+S system,
we co-optimize investment and operation decisions. Including
operation-scale decisions and scenarios of uncertainty makes
the resulting MILP relatively large. Thus, to ease the compu-
tational burden in our case study, we model one typical year
and assume that the rest of the planning horizon is comparable.
The rest of this section describes the sizing and operational
constraints of the problem.

B. Sizing constraints

The sizing-related constraints of the PV system are

(P pv
inv, C

pv
inv) ∈ {(apv

1 , bpv
1 ), (apv

2 , bpv
2 ) . . .} (5a)

P pv
cap ≤ P

pv
inv. (5b)

Eq. (5a) states that one must choose a PV inverter with
maximum power P pv

inv and cost Cpv
inv among a discrete set

of inverters with characteristics (apv
j , b

pv
j ) where apv

j is the
maximum power of inverter j and bpv

j is its cost. Eq. (5b) limits
PV capacity to the inverter’s maximum power. We implement
Eq. (5a) in an MILP setting using discrete variables and linear
constrains.

The constraints of ES sizing decisions are

(P es
inv, C

es
inv) ∈ {(aes

1 , b
es
1 ), (aes

2 , b
es
2 ) . . .} (6a)

P es
cap ≤ P es

inv (6b)

Ees
cap = κ · P es

cap. (6c)

Similar to the PV case, Eq. (6a) defines the capacities and
costs of the possible ES system inverters and Eq. (6b) limits
the ES maximum charge/discharge rate to the inverter capacity.
Eq. (6c) relates the ES system energy capacity to its maximum
power via a fixed energy-to-power ratio, κ.

C. Short-term operation constraints

Let the vector gpv
ω ∈ RT+ denote solar production in

uncertainty scenario ω during each period. For each scenario,
gpv
ω is the product of installed PV capacity, the length of each

period ∆, and a parameter αω ∈ RT+ that is related to solar
irradiation:

gpv
ω = ∆ · αω · P pv

cap ∀ ω ∈ Ω. (7)

Here, Ω is the set of solar generation scenarios. Each of the
elements of αω takes values in [0, 1]. When an element of αω
is 0, there is no solar production and when it is 1, the PV
system produces at full capacity.

The ES system has two main operational variables, energy
discharged and energy charged at each time period, denoted
by dω ∈ RT+ and by cω ∈ RT+, respectively. In our work,
we consider charge, discharge, and state-of-charge limits and
charge and discharge efficiency. For the sake of brevity, we
omit the details of the widely-used ES model (e.g., as in [26],

[28], [29], [30], [33]) and compactly denote these constrains
as

(dω, cω) ∈ B(P es
cap, E

es
cap) ∀ ω ∈ Ω (8)

where B(P es
cap, E

es
cap) is the feasible charge and discharge space

as a function of the battery size.
We define imports from the grid, gg

ω ∈ RT+, and surplus of
the collective, gs

ω ∈ RT+ as follows

gg
ω = [lω + cω − gpv

ω − dω]
+ ∀ ω ∈ Ω (9a)

gs
ω = [gpv

ω + dω − cω − lω]
+ ∀ ω ∈ Ω. (9b)

We define imports from the grid as the difference of con-
sumption (the sum of load and battery charge, lω + cω) and
production (the sum of PV generation and battery discharge,
gpv
ω +dω) when this amount is positive. The operator [ ]+ is an

element-wise function that gives the positive component of its
argument. Similarly, Eq. (9b) defines surplus as the difference
between production and consumption when this number is
positive.

Another relevant quantity is PV+S generation assigned to
the consumers, gω , during each period and scenario:

gω = l − gg
ω ∀ ω ∈ Ω. (10)

Note that this quantity is not necessarily the PV+S production
since a portion of it may be directed to the grid as surplus.

D. CapEx and OpEx

We define the investor’s CapEx as

CapEx = Cpv
inv +Ces

inv + βpv ·P pv
cap + βes ·P es

cap +Cgrid (11)

where Cpv
inv, Ces

inv, P pv
cap, and P es

cap are introduced in Sec-
tion III-B. The per-unit costs of PV and ES capacity are βpv

and βes, respectively. Cgrid denotes a fixed grid connection
cost.

We state the investor’s OpEx as

OpExω = βes u ·(cω+dω)+βmnt ·P pv
cap+τᵀgs

ω ∀ ω ∈ Ω (12)

where the first term represents the ES utilization (i.e., degra-
dation or ageing) cost as a function of charge and discharge;
the second term represents the maintenance costs of the PV
system; and the third term represents taxes for grid exports.
The symbols βes u and βmnt in Eq. (12) are the ES utilization
coefficients (e.g., as in [34]) and yearly maintenance cost per
unit of installed PV, respectively. The vector τ ∈ RT denotes
taxes paid by the investor for exporting gs

ω to the grid.

IV. BENEFIT ALLOCATION

The solution to the sizing problem is a Pareto-optimal PV+S
system but does not tell us what the expected profit of the
investor is nor what the expected savings of the consumers are.
The reason is that the cost of PV+S energy for the consumer is
part of the investor’s revenue and cancels out in the objective.
Nevertheless, the solution to the sizing problem is important
as it represents the maximum welfare PV+S system.

From the sizing problem’s solution, we define the net
benefit, the quantity to be shared among the investor and
consumers, as follows.
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Definition 1. The expected net benefit, Bnet, is the difference
between the present value of the consumers’ electricity cost
without PV+S, C(l), and the objective of the sizing problem
from Eq. (4), obj∗LT.

Bnet = C(l)− obj∗LT (13)

By definition, the expected net benefit is non-negative. This
follows from the fact that not installing a PV+S system is
a feasible solution (and therefore C(l) ≥ −obj∗LT). We can
then say that any PV+S system will deliver positive expected
benefits. The positivity of the expected net benefits is an
important fact since it is a necessary condition for financial
stability.

The mechanisms whereby the net benefit is shared is the
price of local energy p and the amount of energy allocated to
each consumer. A higher price p translates to higher investor
profit and lower savings for the consumers. Assuming that p
is lower than the average grid price, a consumer’s savings are
proportional to the amount of energy assigned to him/her.

A. The price of local energy

Let Π(p) denote expected investor profit as a function of
the price p. The relation

γ ·Bnet = Π(p) (14)

describes the share γ of the net benefit kept by the investor
as profit.

While it is relatively straight forward to calculate Bnet and
Π(p) (by solving the sizing problem), calculating γ or p is not
easy: there is no “optimal” point along the investor-consumer
Pareto frontier. Therefore, there is no optimal p nor a natural
γ.

A possible scenario is that the investor and consumers arrive
at a price through negotiation. Naturally, the negotiation does
not happen inside a vacuum: it takes place in a particular
economic, regulatory, technological, and cultural environment
which makes the outcome hard to characterize for a general
case. However, one can identify general dynamics. For ex-
ample, we can argue that an abundance of capital diminishes
the negotiating power of the investor. Conversely, access to
effective PV production models by the consumer could allow
them to better estimate project costs and benefits and claim
a larger stake. While a deep study of the issue of benefit
allocation is outside of this work, seminal work on bargaining,
or negotiation, theory can be found in [35], [36] and an
application to power systems in [33].

A basic characteristic of γ is that it should normally be in
[0, 1]. An investor is unlikely to accept a negative profit, i.e.,
γ < 0. Conversely, any γ > 1 means that the consumers pay
more than they would otherwise pay to the grid. In theory,
γ /∈ [0, 1] is possible if other (perhaps non-monetary) benefits
are omitted from the sizing problem. For example, consumers
could accept paying higher-than-grid prices for local and green
energy. Conversely, an investor could accept losses if the
project provides non-accounted benefits (e.g., a positive public
image).

B. Energy allocation and key of repartition

While p determines the benefit allocation between investor
and consumers as a whole, the PV+S energy allocated to each
consumer determines the benefit split among the consumers
themselves.

We allocate PV+S energy on three occasions throughout
our framework. The first is on the planning stage before
constituting the collective. There, we estimate the amount of
local energy that each consumer can expect throughout the
life of the project. With the estimate on hand, consumers can
evaluate whether to enter the collective or not. We also allocate
energy among consumers in the control and settlement stages.
We detail these last two occasions in Section V.

What is important for consumers from a financial point
of view is monthly or yearly energy allocation. However,
under the French collective self-consumption framework, local
energy production must be allocated among consumers in 30-
minute intervals via a key of repartition.

In our work, a key of repartition has two fundamental
characteristics. For every time interval:

1) If there is an energy deficit (i.e., aggregate load > PV+S
production), all of the production must be assigned to
the consumers and if there is a surplus, the aggregate
load must be met by PV+S energy.

2) The energy assigned to a consumer must be less than its
load.

Let the matrix G = [g1, g2, . . . , gN ] ∈ RT×N+ denote a key of
repartition8. The (t, i)th element of G represents the amount
of energy that consumer i receives during time interval t.

We formalize the two conditions above by defining the set

G(g, L) = {G | G1 = min (g, L1) , 0 ≤ G ≤ L} , (15)

where g ∈ RT+ was introduced in Eq. (2) and is the total local
energy assigned to consumers in each period. The matrix L ∈
RT×N+ is constructed by L = [l1, l2, . . . , lN ]. Similar to G, the
(t, i)th element of L is the load of consumer i during interval
t. The term G1 and L1 are T -long vectors composed of the
sum of the columns of G and L, respectively. The constraint9

G1 = min (g, L1) states Condition 1. The constraint 0 ≤ G ≤
L states Condition 2.

Remark 1. For any g ∈ RT+ and L ∈ RT×N+ there is always a
feasible key of repartition G ∈ RT×N+ . We analyze two cases:
time periods with surplus PV generation (g > L1 and thus
L1 = min(g, L1)) and time periods with deficit PV generation
(g ≤ L1 which implies g = min(g, L1)). For the first, the key
of reparation G = L satisfies both constraints of Eq. (15):
G1 = L1 = min(g, L1) and 0 ≤ G = L ≤ G. For the second
case, let g = a ·L1 where 0 ≤ a < 1. Then, we can build the
key of repartition G = a ·L which satisfies both constraints of
Eq. (15): G = a·L = g = min(g, L1) and 0 ≤ G = a·L ≤ L.
Since there are feasible keys of repartition for this two cases,
we conclude that there is always a feasible key of repartition.

8Recall that gi was introduced in Eq. (1) and is a vector energy directed
to consumer i during each time interval.

9The operator min(·, ·) is a element-wise function that takes the smallest
number of each corresponding elements of the arguments.
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For non-trivial cases, infinitely many keys of repartition
satisfy G. In our work, we evaluate the set of keys on a basis
of equity and select the best. That is, we select the key from
G that allocates yearly energy as equally as possible.

Let the symbol e ∈ RN+

e = Gᵀ1 (16)

denote yearly energy allocated to each consumer. The ith
element of e is the energy allocated to consumer i. Since equity
in yearly allocation is our goal, the best key is one that assigns
the same amount to each consumer, i.e., an e whose elements
have a zero variance.

However, since the key is restricted by G, it may not be
possible to achieve a zero variance. Also, recall that g is
uncertain. Thus, we formulate a linearly-constrained quadratic
optimization problem whose objective is to minimize the
expected variance of e.

Let Var(eω) denote the variance of the annual energy
allotted to each consumer in scenario ω. Based on work
by Singh in [37] and Abada et al. in [5], we find the key
that minimizes the expected variance of energy allocation by
solving the convex10 optimization problem

min
eω∈E(gω,Lω)∀ω∈Ω

E[Var(eω)]. (17)

Here, Lω = [l1,ω, . . . , lN,ω]ᵀ and E(gω, Lω) = {e | e =
Gᵀ1, G ∈ G(gω, Lω)}. The set E(gω, Lω) constraints the
annual energy allocation in each scenario, eω , to be delivered
by a feasible key of repartition.

The solution of Problem (17), e∗ω , serves to estimate the
yearly amount of PV+S energy each consumer can expect
during the life-time of the project: e = E[e∗ω]. It also serves
as a liaison between long-term planning stage and system
operation: it is the reference value of how to allocate energy
among consumers during operation.

V. SYSTEM OPERATION

The operation of the PV+S system has two objectives: to
determine the control strategy and to formulate the actual
key of repartition. Whereas the key from Problem (17) serves
to estimate energy allocation, the actual key reflects system
operation and the materialization of uncertainty.

We divide system operation into the control stage and the
settlement stages. We formulate the control strategy on a
rolling horizon fashion via an MPC algorithm. The goals of the
control strategy are two-fold: to minimize the short-term costs
of the collective and to formulate a key that tracks e. In the
settlement stage, we reconcile the MPC key with actual system
operation and materialization of uncertainty by formulating
yet another key, this time the definitive one. We formulate
the definitive key via an optimization program that minimizes
the mismatch between e and the sum of energy served and
expected energy.

10Let µe denote the mean value of the elements of e and Var(e) = 1
N
eᵀe−

µ2e their variance. Since Var(e) is a quadratic function and E is defined by
linear constraints, Problem (17) is convex.

1 t0 t0 + Tc t0 + Tp T

epast ê ẽω efuture

control horizon

prediction horizon

Fig. 2. Illustration of the control and prediction horizon.

A. Control

Our MPC algorithm starts by determining a control strategy
for a prediction horizon (e.g., one or two days) by solving
an optimization problem. Then, we implement the strategy
during a shorter control horizon (e.g., 30 minutes) and collect
system operation data. Finally, we update predictions and the
optimization problem and repeat the process.

The core of MPC is the control problem solved at each
iteration. It is very similar in structure to the sizing problem
but differs in three main ways. First, while the sizing problem
has a years-long horizon, the control problem’s horizon is in
the order of hours or days. Second, the control problem does
not make sizing decisions since the PV+S system is already
in place. Finally, the control problem has aims to track the
allocation of energy e.

As illustrated in Fig. 2, let [t0, t0 + Tc] and [t0, t0 + Tp]
denote the prediction and control horizons, respectively. We
model decisions in the control horizon as first stage variables
and identify them with a hat. Decisions in the rest of the
prediction horizon, i.e., in [t0 + Tc, t0 + Tp], are second
stage variables and are identified by a tilde. For example, PV
production during the control horizon, [t0, t0 + Tc] is denoted
by ĝpv ∈ RTp

+ and during [t0 + Tc, t0 + Tp] as g̃pv
ω ∈ RTp

+ .
We represent uncertainty in the control horizon with a central
forecast and via scenarios in the rest of the prediction horizon.

We write the control problem as

minE

[
C

([
l̂

l̃ω

]
−
[
ĝ
g̃ω

])
+OpExω−

[
λ̂

λ̃ω

]ᵀ[
ĝs

g̃s
ω

]]
+θ ·‖m‖22

s.t. Eqs. (7), (8), (9), (10), (12), (16) (18a)

ê+ ẽω ∈ E
([

ĝ
g̃ω

]
,

[
L̂

L̃ω

])
∀ ω ∈ Ω (18b)

m = E
[
epast + ê+ ẽω + efuture − e

]
. (18c)

The objective has two components. The first is the operation
costs during the control horizon (denoted by symbols with a
hat) and during the rest of the prediction horizon (denoted by
symbols with a tilde). OpExω denotes PV+S OpEx during the
entire prediction horizon. The second is a term proportional
to the `2 norm of the expected mismatch, m, between e
from long-term planning and actual PV+S energy delivered to
consumers. The mismatch is weighted by a parameter θ ∈ R+

that has units of EUR
kWh2 . The paragraph that follow describes m

in greater detail.
The solution space is subject to operation constraints, energy

flow definitions, and OpEx definition defined by Eqs. (7)-
(16). Constraints (18b) constraints energy allocated during the
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Fig. 3. The upper plot shows PV generation scenarios (in per unit of PV
capacity) for a winter day. The lower plot shows scenarios for a summer day.

prediction horizon to be in E . Finally, Eq. (18c) defines the
expected mismatch as the difference between the promised
energy to consumers e and
• epast, the energy allocated to each consumer prior to t0;
• ê, allocated energy during the control horizon;
• ẽω , allocated energy during [t0 + Tc, t0 + Tp];
• efuture

ω , the expected11 energy for each consumer after Tp.

B. Settlement

Uncertainty during the control horizon is relatively small
since we solve the control problem shortly before t0 when
good predictions are available. Nevertheless, uncertain param-
eters are still present and materialize sometime before the
end of the control horizon. Thus, we formulate an ex-post
operation settlement problem to reconcile the key of repartition
from the control strategy and actual operation of the PV+S
system.

Let ĝ∗ denote energy to be assigned to consumers by
Problem (18) and ε̂ denote the deviation between actual and
expected generation. Then, the energy assigned to consumers
is [ĝ∗ + ε̂]+. We take the positive part of ĝ∗ + ε̂ because
no “negative” energy can be assigned to consumers. Negative
elements of ĝ∗ + ε̂ is energy bought from the grid.

We formulate the settlement problem as

min
ê∈E([ĝ∗+ε̂]+,L̂)

‖E[epast + ê+ ẽω + efuture − e]‖22.

Similar to the control problem, its objective is to minimize
the `2 norm of expected mismatch between promised energy
to consumers, e, and the energy assigned to each one of them
during the four divisions of time illustrated in Fig. 2. In this
case, ê is the only optimization variable and that the objective
is to allocate [ĝ∗ + ε̂]+.

VI. CASE STUDY

A. Background and data

We demonstrate our proposed framework with a case study
of a collective of 15 residential consumers sharing a PV+S

11In our work, this expectation is obtained from G∗
ω from Problem (17)
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Fig. 4. Expected monthly cost per consumer (in present value) as a function
of PV capacity. The optimum for the pessimistic case is 50 kW and 249 kW
for the baseline case (not shown in the plot).

system. We use 10 scenarios of solar irradiation for the south
of France from [38]. Data for two sample days (one winter one
summer) is shown in Fig. 3. French electric system fees and
taxes (TURPE) are from [4] and energy prices from Électrcité
de France’s (EDF) Tarif Bleu12. We use load data of residences
in San Diego, California from [39].

We consider solar PV and lithium-ion ES investments and
analyze two cases: a baseline case and a pessimistic case.
In the former, we consider low per-kW of PV prices13 (1.1
EUR/W for systems under 100 kW and 0.95 EUR/W for PV
systems over 100 kW [40]) and a price of 0.06 EUR/kWh for
surplus sold energy to the grid [41]. In the later, we assume
high per-kW PV prices (1.68 EUR/W for systems <100 KW
and 1.58 EUR/W for PV systems ≥100 kW [42]) and no
compensation for grid injections.

We consider 4 available inverters with capacities of 50,
99, 157, and 249 kW and costs of 72 EUR/kW [42]. We
assume a per-kWh cost of ES of 158EUR [43] and a round-trip
efficiency of 90%. We consider PV subsidies of 100 EUR/kW
for systems under 100 kW [41]. The planning horizon is 20
years and is divided into 1-hour periods in the sizing problem
and into 30-minute periods in the control problem. We assume
a discount rate of 3%.

We ran the simulations on a Windows 10 laptop computer
running on an Intel c© CoreTM i5-8250U CPU @1.60GHz
1.80GHz with 8GB of RAM. The models are coded in Julia
and the optimization problems solved using Gurobi 8.0.1.

B. Sizing

In both the baseline and pessimistic cases, the sizing prob-
lem contains 526,152 variables (10 of which are binary) and
701,337 constraints. The binary variables describe discrete
choices (e.g., inverter) and non-convexities14. Despite its size
and non-convexities, the problem is relatively easy to solve:
the baseline case solves in approximately 2 minutes and the
pessimistic in 12 minutes.

Fig. 4 shows the expected consumer monthly cost (in
present value) as function of PV capacity. In the baseline
case, the optimal PV capacity is 249 kW and the optimal
ES capacity is 150 kWh. In this case, we expect the PV+S
system to lower costs from 116 EUR/consumer/month to 77

12The tarif bleu includes the taxes and fees so we isolate the energy price
by subtracting them.

13We use an exchange rate of $1=1.11 EUR.
14The PV cost and subsidy functions are non-convex.
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Table I
EXPECTED COSTS, BENEFIT, AND NET BENEFIT IN BOTH CASES.

costs (kS) benefit (kS)
CapEx OpEx grid savings subsidy surplus

net benefit
(kS)

baseline case
258 86 224 0 262 142

pessimistic case
110 10 148 5 0 32

EUR/consumer/month. This represents net benefits of 142
thousand EUR during the lifetime of the project. The pes-
simistic case (50kW PV/127 kWh ES), on the other hand,
represents lifetime net benefits of 32 thousand EUR. Table I
breaks down costs and benefits for both cases. Hereafter we
analyze the pessimistic case.

C. Benefit allocation

Table II
INVESTOR PROFIT AND CONSUMER SAVINGS UNDER DIFFERENT PRICES

FOR BOTH THE BASELINE AND THE OPTIMISTIC CASES.

Pessimistic case

p (S/kWh) γ investor profit (kS) consumer savings (kS)
0.10 0 0 32
0.115 0.5 16 16
0.13 1 32 0

Baseline case

p (S/kWh) γ investor profit (kS) consumer savings (kS)
0.05 0 0 142
0.09 0.5 71 71
0.13 1 142 0

As discussed in Section IV, the price of PV+S energy p
is the main mechanism used to allocate benefits between the
investor and the consumers. As shown in Table II, the “break-
even” price for the investor is 0.10 EUR/kWh in the baseline
case and 0.05 EUR/kWh in the optimistic case. On the other
hand, the price at which consumers can expect to pay the
same whether or not they join the collective is 0.13 EUR/kWh
for both cases. Thus, any price between the investor break-
even and the consumer break-even prices allocates positive
benefits to both the investor and the consumers (i.e., a win-win
situation). We call this price range the win-win price range.

Note that while the consumer break-even price is the same
in both cases, for the investor it is higher in the baseline case.
The reason the consumers’ break-even price is constants is
that their grid costs (the alternative to energy from the PV+S
system) are the same in both cases. For the investor, however,
the higher CapEx and OpEx in the baseline case (see Table I)
increase the break-even price. In general, higher capital and
operational costs lower the expected net benefit and shrink
the win-win price range. On the other hand, more favorable
conditions for PV+S investment (e.g., higher grid prices, lower
CapEx and OpEx) expand the win-win price range.

While predicting p is outside the scope of this work, identi-
fying the win-win price range is important because it defines
the financially sustainable range of p. Hereafter we analyze the
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Fig. 5. Plot (a) shows annual load (blue) and expected PV+S energy (red)
for each of the 15 residents. Plot (b) shows the expected percentage cost
reduction from entering the collective with p = 0.115.
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Fig. 6. Expected annual load and PV+S supply. Each data-point represents
a consumer and the line is the least-square error linear approximation (R-
squared = 0.97).

pessimistic case where benefits are allocated equally among
the investor and consumers, i.e., p = 0.115.

Each consumer’s savings is a function of the amount of
PV+S energy each receives at a price p. As discussed in
Section IV, infinitely many energy allocations are possible
but we use Problem (17) to find a key of repartition (i.e.,
the PV+S supply allotment to each consumer on a 30-minute
basis) that allocates energy equitably. The red bars in Fig. 5(a)
show the annual PV+S supply assigned to each consumer by
the solution of Problem (17).

Even though the objective of Problem (17) is to equally dis-
tribute PV+S supply, one can notice that the supply distribution
is not quite equal. The reason is that the restrictions imposed
by the set G, which defines a key of repartition, prevents
the allotment from being perfectly equitable. For example,
a load that systematically “under-consumes” during high PV
production hours tends to “miss out” on the opportunity to
receive PV+S energy. In fact, by examining the blue and red
bars of 5(a) one can see that the expected PV+S supply is
closely linked to the annual load. Furthermore, as shown by
Fig. 6 most of the variance in annual PV+S supply can be
explained by the consumer’s annual load (with an R-squared
= 0.97). What this means is that, as shown in Fig. 5(b) cost
reductions in terms of percentage are relatively uniform among
consumers and most consumers can expect a 3 to 5% cost
reduction by joining the collective.

D. Operation and settlement

The objective of the operation phase is to find the con-
trol strategy that minimizes short-term costs and mismatch



10

01-03 01-06 01-09 01-12

0

20

40

day-month

m
is

m
at

ch
(%

)
(a) proposed algorithm

PV generation mismatch

01-03 01-06 01-09 01-12

0
20
40
60

day-month

m
is

m
at

ch
(%

)

(b) MPC, myopic (short-sighted) settlement

01-03 01-06 01-09 01-12

0
20
40
60
80

day-month

m
is

m
at

ch
(%

)

(c) rule-based control, myopic settlement

Fig. 7. Cumulative mismatch as a function of time for each consumer under
three algorithms: (a) the proposed framework, (b) the proposed MPC and a
myopic (short-sighted) settlement, and (c) a rule-based control algorithm and
the myopic settlement. The proposed framework delivers smaller end-of year
mismatches.
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Fig. 8. End-of-year cumulative deficit under three algorithms. Under the
proposed framework, every consumer receives at least the amount of promised
energy. The proposed MPC + myopic settlement deliver a 0.42 MWh deficit.
The deficit with rule-based control + myopic settlement is 1.2 MWh.

between promised energy (the red bars of Fig. 5(a)) and actual
delivered energy to each consumer.

Fig. 7 shows the consumer mismatch in terms of percentage
energy promised as a function of time for three different
algorithms. Plot (a) shows results using the proposed MPC
and settlement algorithm, plot (b) shows results using the
proposed MPC algorithm and a myopic (short-sighted) settle-
ment algorithm, and plot (c) shows results using a rule-based
control algorithm similar to the one in [44] and the myopic
settlement algorithm. The myopic settlement allocates energy
to the consumers as fairly as possible but does not take into
consideration past nor expected future allocations. Under the
rule-based control, the ES system operates under the following
regime: when there is a PV energy surplus, it charges as much
as possible (while observing power and energy limits) and
when there is a PV energy deficit the ES discharges as much
as possible, also while observing limits. Note that the most
important flaw of the rule-based algorithm is that it does not
seek to minimize costs as it fails to account for retail energy
prices.
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Fig. 9. End-of-year mismatch as a function of PV capacity factor for
each consumer. The capacity factor corresponds to a realized PV generation
scenario. Each mark represents each of the 15 consumers. The dashed line is
the expected PV capacity factors.

Fig. 7(a) shows that the end-of-year mismatch for each
consumer with our proposed MPC and settlement algorithms
is between +3% and +11%. In absolute terms, all consumers
finish the year with a surplus of 276 ±2 kWh (just over 2%
of total load). As shown in Fig. 8, under the proposed method
every consumer receives at least as much energy as promised.
Note that the main reason all consumers were allocated more
energy than promised during the benefit allocation phase, is
that PV production during the simulated year was 6% higher
than the expected. As shown in Figs. 7(b) and 7(c), the
alternatives deliver a less equitable energy distribution. In the
MPC + myopic settlement case, the energy mismatch per
consumer ranges from -4% to +12% (the cumulative deficit
in this case is 0.42 MWh as shown in Fig. 8). In the rule-
based control + myopic settlement case, the mismatches range
from -15% to +20% (the cumulative deficit in this case is
1.2 MWh as shown in Fig. 8). Under the alternatives to our
proposed algorithm, some consumers receive less energy than
promised (despite having a better-than-average year in terms
of PV generation) while others receive over 20% more than
promised.

The two optimization problems used in this stage are
the control problem from the MPC algorithm and the ex-
post operation settlement problem. Both are solved at each
iteration of MPC. Both problems are convex and easy to
solve with commercial solvers. In our case, the computational
effort needed to solve these problems is minimal: the control
problem solves on an average of ≈0.006 seconds, and the
settlement problem in ≈0.005.

Naturally, the energy allocation mismatch is a function
of PV generation. As shown in Fig. 7, our algorithm over-
delivers PV+S in the simulated year mostly due to a 6% better-
than-average year in terms of PV generation. Fig. 9 shows
the relationship between PV capacity factor (i.e., average
generation over installed capacity) and end-of-year mismatch
for each consumer for five simulated years. As expected, the
allocation surplus (i.e., positive mismatch) tends to increase
with capacity factor (i.e., more PV generation). Note that by
linear interpolation, at expected capacity factor (denoted by
the dashed line in Fig. 9) the expected mismatch is close to
zero.

Fig. 10 illustrates the allocation of energy in the collective
for one sample day. Each of the colored areas under the load
represents the energy allocated to a consumer on a 30-minute
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Fig. 10. Total load, the key of repartition, and surplus for a sample day. The
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with each color representing a different resident.

basis, i.e., the key of repartition. The orange area over the load
represents the surplus energy sold by the investor to the grid.
Since we present results for the pessimistic case, the surplus
goes uncompensated.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a framework that integrates long-
term planning and operation of a collective that shares a
photovoltaic plus storage (PV+S) system. In our framework,
the collective is constituted by an investor who provides capital
for the PV+S system and a set of consumers who buy PV+S
energy at an agreed price from the investor and comple-
ment their consumption from the grid. While the presented
framework is fairly generic, we focus on the collective self-
consumption scheme laid out by French regulation.

In the long-term planning stage, we first size the PV+S
system by solving a mixed-integer linear program whose
objective is to maximize the long-term (e.g., 20 years) welfare
of all participants of the collective (i.e., the investor and the
consumers) and then allocate the expected benefits among the
participants. For the benefit allocation stage, we first find the
set of PV+S energy prices that would lead to a financially
stable collective, i.e., the set of prices that are high enough for
the investor to profit but low enough to be attractive for the
consumers. Finally, we allocate PV+S among the consumers
based on the principle of equity. We accomplish this, by
solving an optimization problem whose objective is to allocate
PV+S energy evenly among consumers.

The long-term planning and the operation stages are coupled
by the sizing decisions, as usual, but also by the expected
PV+S energy allotment to each consumer. Thus, the objective
of the operation is both to minimize system operation and to
minimize the mismatch between the expected and actual PV+S
allotment. The operation stage is divided into two steps. First,
we determine the operation strategy on a rolling horizon via a
model-predictive control algorithm. Then, after the strategy is
implemented and the uncertainty materializes, we adjust the
energy repartition to reflect the actual operation of the system.

We demonstrate our framework with a case study of a
potential 15 consumer collective in the south of France. We
examine two cases: a baseline case that features PV investment
costs on the low-end and reasonable prices for surplus sales
to the grid and a pessimistic case that features high-end PV
investment costs and no remuneration for injections to the grid.
We show that in both cases, installing PV+S is Pareto-optimal.

Then we show the range of PV+S prices that fosters financially
sustainable (prices between 0.10 and 0.13EUR/kWh in the
pessimistic case). Then, we show that, even in the pessimistic
case and when the investor extracts half of the benefits, the
consumer can still expect to save about 3 to 5%. Naturally,
the savings would be higher with more favorable consumer
conditions (e.g., lower PV installation costs or higher share of
benefits assigned to consumers). Finally, our proposed control
and settlement algorithms outperform two alternatives in terms
of the end-of-year mismatch between energy promised and
energy delivered.

Future work can take diverse directions. For example, we
did not consider consumers equipped with demand response
(DR). It would be interesting to investigate the effects of
DR in different indices such as system cost and rate of self-
consumption and problems such as DR control and com-
pensation. Furthermore, our model mainly deals with the
energy management problem. One could enhance the model
by including the local distribution grid and considering other
voltage stability or power quality problems.
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