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Capacitance Computation of Multi-turn Windings
via Elementary Neighbor-Conductor Models
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Abstract—In this paper, we propose a homogenization tech-
nique for the terminal-capacitance computation of multi-turn
windings in electrostatic finite-element methods. The approach
is based on a characterization of the elementary zones where
the electrical energy is concentrated. It is valid for conductors
of arbitrary cross-section and packing with standard or fly-
back connections and orthogonal or orthocyclic dispositions. The
results of the homogenized approach present excellent agreement
with those obtained by accurate but expensive finite-element
models, wherein all turns and insulation layers are explicitly
discretized, and by experimental validation.

Index Terms—Capacitive effect, finite element method, high
frequency, homogenization, windings.

I. INTRODUCTION

RECENT developments in power electronics have led to
a high increase in the switching frequency used in e.g.,

power converters (transformers and inductors) [1]. Multi-turn
windings in these electromagnetic devices are subjected to
considerable capacitive effects. These effects result in reso-
nances that may enhance the performance of the device [2].
Conversely, undesired parasitic currents also appear within
the insulation layers, which result in e.g., electromagnetic
interference (EMI), low efficiency and thermal degradation
of the insulation [3]. Therefore, a correct prediction of these
capacitances is essential at the design stage.

Local and global approaches have been proposed in the liter-
ature for the prediction of the capacitive effect [4]. On the one
hand, local approaches treat the parasitic capacitances at the
conductor level. This often results in the resolution of the full-
wave Maxwell equations [5]–[7], or approximations to them
that account simultaneously for the inductive and capacitive
effects [8]–[10]. On the other hand, global approaches attempt
to calculate an equivalent terminal capacitance for the winding,
which is the objective of this work.

Different analytical techniques already exist for the com-
putation of the terminal capacitance; yet their application is
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restricted, in most cases, to round conductors with a certain
winding configuration [11]. For instance, approaches suitable
for single-layer windings are proposed in [12]–[14]. Multi-
layer windings have also been treated [15], [16], but these ap-
proaches usually disregard the capacitance between conductors
of the same layer. More complex models include nonetheless
both the capacitances between turns in the same and adjacent
layers [1], [17]–[20], where the main difference among them
concerns the definition of the electric field path, between the
conductors, for the respective analytical integrals. Numerical
methods have been used as well, particularly the finite-element
(FE) method. Classically, the terminal capacitance is obtained
through an electrostatic FE model in which the representation
of each separate turn of the winding is required [21], [22]. In
[23], a homogenization technique has already been proposed
for the thin dielectric layers in the winding.

In this paper, we propose a homogenization approach for
the computation of the terminal capacitance in electrostatic
FE models. It exploits the periodicity of windings by using
a 2-D elementary cell. Such cell aims at characterizing the
concentration zones of electrostatic energy. The terminal ca-
pacitance is obtained through the stored energy in the cell and
the winding terminal voltage. Conductors of arbitrary cross-
section and packing, orthogonal or orthocyclic disposition, and
standard or fly-back electrical connection can be treated with
the proposed approach. Windings with round and rectangular
conductors are considered in the application. A fine FE model
for all cases, with all turns explicitly discretized, provides
an accurate reference solution. Experimental results are also
considered in the validations. The proposed approach can be
applied to estimated the terminal capacitance of the windings
comprised in devices such as: inductors, transformers, motors
etc.

II. ELECTROSTATIC MODEL

A. Formulation

A bounded domain Ω of the Euclidean space is considered.
For electrostatics problems, the electric field e is expressed in
terms of an electric scalar potential v, i.e.

e = −grad v in Ω, (1)

so that the Faraday equation is satisfied. The electric flux
density d is obtained from the constitutive relation, for linear
isotropic materials, d = εe, where ε is the scalar electric
permittivity.
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For the electric scalar potential, a discrete FE function
space Fv(Ω) is defined on a mesh of Ω containing the
shape functions αi and test functions αj . The electrostatic
formulation is then obtained from the weak form of Gauss’
law for electric fields, i.e., find v such that∫

Ω

ε grad v · gradαj dΩ = 0, ∀ αj ∈ Fv(Ω), (2)

with no free charges. The stored electrical energy W in Ω is
obtained through the integral:

W =
1

2

∫
Ω

εe2 dΩ. (3)

B. Winding Considerations
A winding of Nc periodically spaced turns and fill factor λ

is considered. Each turn comprises a conductive part, or con-
ductor, and the insulation, or dielectric, around it. Conductors
are treated as perfect conductors (fixed uniform potentials) and
the dielectric is assumed linear. The Nc turns are spatially
distributed in Nl layers with Nt turns per layer, where Nt

may vary from layer to layer. A linear distribution of the
terminal voltage VT is assumed across the winding with Nc−1
independent voltages. In practice, such distribution is observed
in small devices up to a frequency of 1 MHz [4].

The parasitic capacitance of a multi-turn and multi-layer
winding depends on the wire parameters, the winding dispo-
sition and the electrical connection. Wire parameters concern
the conductor shape and the dielectric properties of the insu-
lation layers around it. The winding disposition specifies the
spatial distribution of the winding layers. Two main winding
dispositions are distinguished and considered hereafter: or-
thogonal and orthocyclic. In an orthogonal winding, the turns
of adjacent layers lay on top of each other; whereas in an
orthocyclic winding, the turns of adjacent layers lay in the
gaps between two turns of the preceding layer. Fig. 1 shows the
two types of winding dispositions. Evidently, the orthocyclic
disposition (Fig. 1b) is inherent to round conductors. Windings
with rectangular or square conductors are always orthogonal
(Fig 1a).

The electrical connection specifies the starting point of the
consecutive winding layers. Two electrical connections are
considered: fly-back and standard. In a fly-back connection,
the starting point of the subsequent layer is fixed and corre-
sponds to the starting point of the preceding layer. Inversely,
in a standard connection, the starting point of the subsequent
layer coincides with the end of the preceding one. In Fig.1 fly-
back and standard connections are associated to the orthogonal
and orthocyclic windings, respectively.

Since the conductors have fixed imposed potentials, particu-
lar attention is paid to the resulting voltages between the turns.
The turn-to-turn voltage Vtt defines the potential difference
between two turns in the same layer and it is expressed, in
terms of the terminal voltage VT , as

Vtt =
VT
Nc

. (4)

Likewise, the layer-to-layer voltage defines the potential dif-
ference between two conductors of adjacent layers. Its defi-
nition depends on the winding disposition and the electrical

(a) (b)

Fig. 1. Winding disposition and electrical connection: (a) Orthogonal winding
with fly-back connection and (b) orthocyclic winding with standard connec-
tion.

connection. In that regard, only immediate neighboring turns
are considered. Thus, in an orthogonal winding, the definition
of the layer-to-layer voltage is straightforward and involves
the two adjacent conductors in consecutive layers e.g., turns 1
and 5, 2 and 6... in Fig. 1a. As for the orthocyclic winding, we
define it to represent an ascending pattern e.g., the voltages
between turns 4 and 7, 3 and 6... in Fig. 1b.

In a winding with fly-back connection, the layer-to-layer
voltage is always constant regardless of the turn position in
the layer. In terms of the terminal voltage VT , the fly-back
layer-to-layer voltage Vlf is given by

Vlf = Nt
VT
Nc

. (5)

As for the standard connection, the layer-to-layer voltage is not
constant and depends on the treated pair of turns p. Bottom-
to-top wise for p in Fig. 1b, the standard layer-to-layer voltage
Vls reads:

Vls = (2p− 1)
VT
Nc

, (6)

where p = 1, 2, 3... so that p = 1 accounts for turns 4 and
7, p = 2 for 3 and 6, etc. We consider hereafter orthocyclic
windings with even-odd turns per layer (one turn difference
between adjacent layers) as in Fig. 1b, where Nt corresponds
to the lowest value of turns per layer.

III. ELEMENTARY NEIGHBOR-CONDUCTOR MODEL

Windings are by nature periodic structures (bundles of
wires) and their capacitive effects may be accurately calculated
with an equivalent elementary 2-D FE representation. There-
fore, the complete electrostatic characterization of a winding
can be carried out by means of an elementary cell comprising
two or three conductors, as shown in Fig. 2, and the dielectric
layers around them. Such cell represents the periodic zones
where the electrical energy is concentrated throughout the
winding. This way, only immediate neighboring turns are
considered (both in a turn-to-turn and layer-to-layer basis) and
the contribution of distant turns is assumed negligible.
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Fig. 2. Elementary 2-D cell for the electrostatic homogenization (dimensions:
mm): (a) orthogonal disposition (b) orthocyclic disposition. Electric field lines:
(c) orthogonal cell (vA = 2V and vB = 1V, with Vtt = 1V) (d) orthocyclic
cell (vA = 3V, vB = 2V and vC = 1V, with Vtt = 1 and p = 1).

The choice of the elementary cell depends on the winding
disposition. Fig. 2 shows the cell for one of the conductors
used hereafter in both orthogonal and orthocyclic disposi-
tions. The conductor and insulation layers have radii: rc =
0.124 mm, r1 = 0.147 mm and r2 = 0.157 mm, respectively,
with fill-factor λ = 0.48. The relative electric permittivities
of the insulation layers are: εr1 = 3.2 and εr2 = 2.55. In the
orthogonal case (Fig. 2a), the cell comprises two winding turns
embedded in an air-filled square packing. In the orthocyclic
case (Fig. 2b), the cell contains additionally a third turn
and features instead an air-filled hexagonal packing. At the
resolution stage, the potentials vA, vB and vC (corresponding
to the conductive surfaces A, B and C in Fig. 2) are imposed,
depending on the winding disposition and the electrical con-
nection, together with floating potentials on the cell boundary.

If a winding is constructed by the spatial reproduction of
the elementary cell, periodic conditions are guaranteed. In that
case, the stored electrical energy in the winding Ww can be
obtained from the stored electrical energy in the elementary
cell by means of an energy balance. Such energy balance
is based on the repetitions of the elementary cell across
the winding. Thereon, the winding terminal capacitance Cw

is obtained based on the global redefinition of the stored
electrical energy (3), i.e.

Cw = 2
Ww

(VT )2
. (7)

A. Orthogonal Winding Capacitance
In an orthogonal winding, the cell type in Fig. 2a can be

used to account for both the turn-to-turn and layer-to-layer
capacitive effects. Indeed, with round or square conductors,
the geometry of the elementary cell in the turn-to-turn case is
indistinct from the layer-to-layer case. In case of rectangular
conductors, two different elementary cells are required for the
turn-to-turn and layer-to-layer simulations given the asymme-
try in the shape (see Fig. 4). Either way, with one or two
elementary cells, we consider for all cases that

vA − vB = Vtt, (8)

which leads the electric field distribution shown in Fig. 2c.
Such condition results in the stored energies Wtt and Wll for
the turn-to-turn and layer-to-layer cases, respectively. Note that
in the case of round and square conductors Wtt = Wll.

1) Fly-Back Connection: The electrical connection deter-
mines the amount of energy stored within the layers of the
winding. The electrostatic energy is proportional to the square
value of the applied voltage, which allows the approximation
of the stored energy in a fly-black winding as

Ww = Nl(Nt − 1)Wtt +Nt(Nl − 1)

(
Vlf
Vtt

)2

Wll. (9)

2) Standard Connection: The standard connection implies a
changing behavior of the layer-to-layer stored energy, given the
voltages between the turns of adjacent layers. Based on (6) and
acknowledging again that electrostatic energy is proportional
to the square value of the applied voltage, we define the stored
energy in a standard winding as

Ww = Nl(Nt − 1)Wtt + (Nl − 1)

Nt∑
p=1

(
Vls
Vtt

)2

Wll. (10)

In (9) and (10), the first term in the right-hand side accounts
for the of turn-to-turn repetitions and the second term for the
layer-to-layer repetitions in the complete winding.

B. Orthocyclic Winding Capacitance
The elementary cell for the orthocyclic case is presented in

Fig. 2b. In this cell, the turn-to-turn and layer-to-layer effects
are estimated together. The potentials vA and vB preserve the
condition in (8) and the stored electrical energy of the cell is
denoted Wtl.

1) Fly-Back Connection: In a fly-back connection, the third
potential vC is defined as

vC = vB − Vlf . (11)

In that way, both the turn-to-turn and layer-to-layer effects
are included in the elementary cell. Since Vlf is constant, the
stored energy in the winding is obtained through the number
of cell repetitions over the domain, i.e.

Ww = Nt(Nl − 1)Wtl. (12)
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Fig. 3. Layer-to-layer voltage behavior vs pair p or trio q in an orthocyclic
winding.

2) Standard Connection: The standard connection implies
that the changing behavior of the layer-to-layer voltage has
to be included in the cell. This can be easily achieved by
imposing

vC = vB − Vls, (13)

which leads to the electric field distribution shown in Fig.
2d. For the sake of simplicity with a unique simulation, an
expression in the form of (9) is required. Since the elementary
cell comprises three turns, Vls is not suitable. Nevertheless,
the changing voltage in the elementary cell follows a linear
behavior. Hence, a voltage V ′

ls is defined to be a function of the
involved trio of turns q (in the same way as Vls is a function
of p). By means of numerical simulations (see Appendix
A), a general expression accounting for the linearity and the
geometrical constraints of the orthocyclic cell is obtained.
Bottom-to-top wise in fig. 1b, it reads:

V ′
ls ' (1.1545q − 0.2708)

VT
Nc

, (14)

where q = 1, 2, 3... Thanks to the chosen even-odd repartion
of the turns, V ′

ls is valid for any set of three turns throughout
the winding; provided that the shape of the elementary cell
is maintained. Fig. 3 compares the layer-to-layer voltage
behavior, treated by pairs or trios, in an orthocyclic winding
as a function of the pair p or trio q. The energy stored in the
winding is thus given by

Ww = (Nl − 1)

(
Wtl +

Nt∑
q=2

(
V ′
ls

Vtt

)2

Wtl

)
. (15)

Note that (9), (10), (12) and (15) are defined for complete
windings with Nt turns per layer. However, incomplete wind-
ings can be treated as well provided that the contribution of
the turns in the incomplete layers are added. Furthermore,
axisymmetric windings may be treated with (9), (10), (12)
and (15), provided that these energies are multiplied by the
coordinate transformation factor:

κ = π(rs + re), (16)

where rs and re are the winding starting and ending points
over the r-direction. Note that the depth of the elementary cell
in Cartesian coordinates is set to 1 m by default.

(a)
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Fig. 4. Application cases (dimensions in mm): (a) 32-turn orthogonal fly-back
winding with round conductors (b) 20-turn standard winding with rectangular
conductors (c) 18-turn orthocyclic standard winding with round conductors (d)
20-turn orthocyclic fly-back winding with round conductors and an incomplete
layer.

IV. APPLICATION

A. Numerical Validation

The four windings shown in Fig 4 are considered to validate
the Elementary Neighbor-Conductor Model. The considered
windings are: a 32-turn orthogonal fly-back winding with
round conductors, a 20-turn standard winding with rectangular
conductors, a 18-turn orthocyclic standard winding with round
conductors and a 20-turn orthocyclic fly-back winding with
round conductors where the last two turns belong to an incom-
plete layer. In Figs. 4a, 4c and 4d, the conductor characterized
in Section III is used.

For simplicity, the windings are fed by sources of 32 V,
20 V, 18 V and 20 V, respectively, so as to satisfy Vtt = 1 V in
all cases. The results of the proposed approach are compared
to those obtained by a reference FE model with all turns
explicitly discretized (full domains in Fig. 4). A default depth
of 1 m is considered for the elementary cells in Fig. 2 and
the reference computations of Fig. 4. In all cases, floating
potentials i.e., normal electric field with varying potential
values, are considered on the domain boundaries. Hereafter,
Wwr, and Cwr are used to express the stored electrical energies
and terminal capacitances of the reference cases. Moreover,
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the relative error is defined as ε = |Cwr − Cw|/Cwr. The
computational times for the FE resolution are denoted ts and
tsr for the proposed approach and the references, respectively,
with the speed-up factor given by sp = tsr/ts. All FE
computations are carried out with the software Altair Flux™
[24].

First, we consider the 32-turn orthogonal winding shown in
Fig 4a, for which the elementary cell proposed in Fig. 2a is
used. The reference case leads to a total of 140441 unknowns
in the FE problem with a total energy of Wwr = 40.238 nJ.
By applying (7), the resulting terminal capacitance is Cwr =
78.591 pF. In the homogenized case, the number of unknowns
is reduced to 9329, which is approximately 1/16th of the
reference unknowns. In general, the number of unknowns is
reduced proportionally to the number of non-treated turns, if
the same meshing conditions are kept. Via the elementary cell
the stored energy in the winding and the terminal capacitance
are Ww = 40.286 nJ and Cw = 78.683 pF, respectively, where
Cw has an excellent agreement compared to Cwr with relative
error ε = 0.11%.

With the objective of treating non-round conductors as well,
we consider the 20-turn standard winding with rectangular
conductors shown in Fig. 4b. Each turn (rectangle of 1.2 mm
by 2.2 mm) comprises the conductor and one layer of insula-
tion around it. The relative permittivity of the insulation is
εr = 1 with λ = 0.76. In the reference case, the stored
energy is Wwr = 23.929 nJ, which through (7) results in a
winding capacitance of Cwr = 119.645 pF. As for the ho-
mogenized case, two different elementary cells are considered
to account for the turn-to-turn and layer-to-layer effects. By
means of (10), the stored energy in the homogenized approach
is Ww = 23.959 nJ. The homogenized terminal capacitance
is then Cw = 119.796 pF, which leads to a relative error of
ε = 0.13%.

The windings in Figs. 4c and 4d have an orthocyclic
disposition with standard and fly-back connections, respec-
tively. In both cases, the elementary cell of Fig. 2b is used
for the homogenized estimation. The reference FE computa-
tions for the 18-turn winding yield a stored electrical energy
Wwr = 8.061 nJ with a corresponding terminal capacitance
Cwr = 49.759 pF. In the homogenized model, the stored
electrical energy in the cell is Wtl = 79.920 pJ. Applying
(14) together with (15), the stored electrical energy in the
winding is Ww = 8.211 nJ. Thus, the homogenized winding
capacitance results in Cw = 50.684 pF; value that agrees
very well with the reference and results in a relative error of
ε = 1.86%. Note that in this case the relative error is slightly
higher since the model uses the voltage approximation given
by (14).

As for the 20-turn winding in Fig. 4d, the reference FE
computations lead to a stored energy and a winding capaci-
tance of Wwr = 7.250 nJ and Cwr = 36.250 pF. The stored
energy in the homogenized cell is Wtl = 559.441 pJ. This
time, the stored energy in the winding is obtained with (12)
plus the contribution of the additional cell in the incomplete
layer (i.e. Nt(Nl − 1)Wc + Wc). Hence, the homogenized
terminal capacitance is Cw = 36.361 pF with relative error
error of ε = 0.31%, which is again in excellent agreement

TABLE I
RESULTS OF THE ELEMENTARY NEIGHBOR-CONDUCTOR MODEL:

PLANAR CASE

Case Cwr (pF) Cw (pF) ε (%)
a 78.591 78.683 0.11
b 119.645 119.796 0.13
c 49.759 50.684 1.86
d 36.250 36.361 0.31

TABLE II
COMPARISON OF THE COMPUTATIONAL TIMES: PLANAR CASE

Case tsr (s) ts (s) sp
a 3.301 0.423 7.8
b 0.556 0.322 1.73
c 1.073 0.378 2.84
d 1.217 0.378 3.93

TABLE III
RESULTS OF THE ELEMENTARY NEIGHBOR-CONDUCTOR MODEL:

AXISYMMETRIC CASE

Case rs (mm) re (mm) Cwr (pF) Cw (pF) ε (%)
a 1.525 2.793 1.066 1.067 0.09
b 0 4.8 1.803 1.804 0.11
c 1.302 2.580 0.607 0.618 1.81
d 1.302 2.727 0.456 0.459 0.66

compared to the reference. If an incomplete winding with
standard connection is considered, special attention must be
given to the position in terms of the trio q for the incomplete
layer. Table I summarizes the obtained terminal capacitances
for the windings in Fig. 4.

Table II compares the computational times obtained with the
Elementary Neighbor-Conductor Model ts and the references
tsr, including the respective speed-up factors sp. In case b,
ts includes both the resolution the of the turn-to-turn and
layer-to-layer elementary cells. Note that the speed-up factor
is dependent on the number of turns in the winding and
thus it reaches its highest value in Case a for the 32-turn
winding. Commonly, windings in real-life devices comprise
significantly more turns that the ones considered in Fig. 4
and therefore increased speed-up factors should be expected
in such cases.

The axisymmetric case of the windings in Fig. 4 is consid-
ered as well. Thus, the reference simulations are recalculated.
As for the proposed model, there is no need to run a new FE
resolution on the elementary cell, since the aforementioned
energies Ww can be transformed into their axisymmetric
counterpart through the multiplication by κ. The results are
presented in Table III with the corresponding values of rs
and re. In the case of the incomplete winding (Fig. 4d), re
is measured until the middle of the last layer to compensate
the lack of turns. Excellent results are found in all cases
compared to the corresponding references.The computational
times and speed-up factors obtained with the axisymmetric
case are similar to those of the planar case showed in Table
II.



6 IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, VOL. XX, NO. X, XXXX 2021

Fig. 5. Potential distribution in the elementary cell of the experimental test
case.

B. Experimental Validation

To validate the accuracy of the Elementary Neighbor-
Conductor Model, the experimental results measured for a
single-layer air-core inductor in [12] are considered. The
winding comprises 33 turns of AWG-17 wire with inner
diameter 1.15 mm and outer diameter 1.22 mm. The former
describes the conductive surface, whereas the latter adds one
dielectric layer of εr = 3.3. The conductor is wound around a
PVC bobbin of diameter 24 mm and length 65 mm. The pitch
length is set to 2.013 mm. For such prototype, the impedance
is measured with a HP4194A impedance/gain analyzer at a
frequency of 200 Hz. The measured terminal capacitance is
Cwr = 37.55 fF [12].

The elementary cell is thus defined with an orthogonal
disposition, rc = 0.575 mm, r1 = 0.61 mm and λ = 0.256,
following the notation of Section III. The terminal voltage
is fixed to VT = 33 V, so that Vtt = 1 V. The poten-
tial distribution in the elementary cell is shown in Figure
5. The winding starting and ending points to define the
coordinate transformation factor are rs = 11.603 mm and
re = 13.617 mm. Since the winding comprises a single layer,
only the first part of the right-hand side of (9) or (10) is
required, evidently with Nl = 1. By applying (9) or (10)
multiplied by κ, the electrostatic enegry stored in the inductor
is Ww = κ(Nt − 1)Wtt = 1.979 nJ. Thus, the homogenized
terminal capacitance is Cw = 36.349 fF. Such value agrees
very well with the measured one with a relative error of 3.2%.
Note that the Elementary Neighbor-Conductor Model provides
better accuracy than the analytic method proposed in [12],
which leads to a relative error of 4.8%.

For the sake of completion, the full electrostatic axisym-
metric FE model is solved as well with the same imposed
potentials, i.e., VT = 33 V, so that Vtt = 1 V. With such
model, the stored electrostatic energy stored in the winding is
Ww = 19.902 pJ and the corresponding terminal capacitance
is Cw = 36.55 pJ, leading to a relative error of 2.66%.

V. CONCLUSIONS

A homogenization approach has been proposed for the
terminal-capacitance computation of multi-turn windings in

electrostatics FE problems. It estimates the winding capac-
itance based on an elementary cell that characterizes the
regions where the electrostatic energy is concentrated, without
describing the full winding in the FE problem. Windings
with orthogonal or orthocyclic diposition, fly-back or standard
connection, and arbitrary cross-section can be treated with the
proposed approaches. In all considered cases, excellent accu-
racy, compared to both numerical and experimental references,
and reduced computational cost is achieved.

The proposed method can be extended to 3-D cells. In such
case, the potential distribution along the third axis must be
know before the electrostatic resolution. Those values can
be obtained by an electrokinetic FE precomputation on the
cell. With regard to the frequency, it is important to notice
that the proposed model assumes, as every other electro-
static approach, a linear distribution of the voltage across
the winding turns. This assumption holds up to a frequency
threshold that requires to be estimated on a case-to-case basis.
Beyond such limit, other modeling techniques (e.g., higher
order approximations) have to considered.

APPENDIX A

Equation (14) estimates a generalized voltage between the
three turns comprised in the orthocyclic elementary cell.
Analogous to (6), it represents a linear variation of the voltage
depending on the considered trio q, i.e.,

V ′
ls = (Aq −B)

VT
Nc

, (17)

with A and B the constants to be found. In detail, what such
generalized voltage represents is the increase in the stored
energy in the cell as vC changes depending on the considered
trio. Therefore, in the performed numerical simulations, vC
changed according to the trio q = 1, 2, 3. . . and then the stored
energy was computed for each case. Those energy values were
normalized with respect to the case with q = 1, since the
objective of the approach is to run the simulations on the cells
only once. As a result of the normalization, the rate of change
of the squared equivalent-voltage as a function of q is obtained.
A simple linear fitting gives the constant values A and B in
(17). As long as the shape of the elementary cell is preserved,
the proposed equation is valid for any conductor radius, fill
factor and number of insulation layers.

REFERENCES

[1] N. B. Chagas and T. B. Marchesan, “Analytical Calculation of Static
Capacitance for High-Frequency Inductors and Transformers,” IEEE
Trans. Power Electron., vol. 34, no. 2, pp. 1672-1682, Feb. 2019.

[2] M. Ishigaki, J. Shin and E. M. Dede, “A Novel Soft Switching Bidirec-
tional DC–DC Converter Using Magnetic and Capacitive Hybrid Power
Transfer,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6961-6970,
Sept. 2017.

[3] M. A. Saket, N. Shafiei and M. Ordonez, “LLC Converters With Planar
Transformers: Issues and Mitigation,” IEEE Trans. Power Electron., vol.
32, no. 6, pp. 4524-4542, June 2017.
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