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Anderson localization is the ubiquitous phenomenon of inhibition of transport of classical and
quantum waves in a disordered medium. In dimension one, it is well known that all states are
localized, implying that the distribution of an initially narrow wave-packet released in a disordered
potential will, at long time, decay exponentially on the scale of the localization length. However,
the exact shape of the stationary localized distribution differs from a purely exponential profile and
has been computed almost fifty years ago by Gogolin.

Using the atomic quantum kicked rotor, a paradigmatic quantum simulator of Anderson
localization physics, we study this asymptotic distribution by two complementary approaches. First,
we discuss the connection of the statistical properties of the system’s localized eigenfunctions and
their exponential decay with the localization length of the Gogolin distribution. Next, we make use
of our experimental platform, realizing an ideal Floquet disordered system, to measure the long-
time probability distribution and highlight the very good agreement with the analytical prediction
compared to the purely exponential one over 3 orders of magnitude.

I. INTRODUCTION

Anderson localization [1, 2], the complete absence of
transport due to disorder-induced destructive quantum
interference, has been predicted more than 60 years
ago and triggered enormous inspiration in the field
of both classical and quantum transport. The main
distinctive property of Anderson localization is the
specific exponentially localized form of its wave-packet
and has been observed in various physical systems
ranging from light waves [3, 4], microwaves [5, 6], sound
waves [7], electrons gases [8] and atomic matter waves
[9, 10], making it an ubiquitous feature in physics of
wave transport in disordered media.

It is well known that in one dimension, all eigenstates
of a disordered Hamiltonian decay exponentially [2].
This implies that an initially narrow wave-packet will
start to expand in the disordered medium until reaching
a localized steady-state. The characteristics of this
localized state are given by the probability to find a
particle at a distance x from its initial position which is
given by the so-called Gogolin distribution [11],

ΠG(x) =
π2

16ξ

∫
z sinh(πz)

(
1 + z2

1 + cosh(πz)

)2

e−
1+z2

4ξ |x|dz.

(1)
This distribution depends only on one parameter, the
localization length ξ. In this sense, the shape of
the distribution is ‘universal’, whereas the parameter
ξ, which describes the localization properties of the
system, depends on the microscopic details, such as the
disorder strength and energy of the initial state.

While this distribution has first been computed for
a strictly one-dimensional system using Berezinskii

diagrammatic method [12], it was soon realized that
it applies to a much wider class of systems. In
particular, it also describes the asymptotic behavior
of a broad class of systems, described by Efetov’s
supersymmetric non-linear sigma model [13], such as
quasi-one-dimensional disordered systems [14], random
band matrices [15], and the Quantum Kicked Rotor
(QKR) [16]. The latter is a paradigmatic model of
quantum chaos [17], where a quantum particle is kicked
periodically with a sinusoidal potential, and which
displays dynamical localization [18]: an initially narrow
wave-packet in momentum space will reach at long
time an exponentially localized momentum distribution.
The connection between dynamical localization and
Anderson localization has been explicitly realized by
mapping the Kicked Rotor problem on a disordered
tight-binding Hamiltonian, similar to the Anderson
model [19]. Thus, the Floquet eigenstates of the
evolution operator are exponentially localized, with a
similar localization length for all eigenstates.

This makes the experimental realization of the QKR
a remarkable quantum simulator of the physics of
disordered systems [20]. Indeed, the atomic QKR
has allowed the observation of dynamical localization
[21, 22], Anderson localization in two dimensions [23],
the Anderson transition in three dimensions [10, 24]
detailed studies of weak-localization effects [25–28]

The creation of narrow and monochromatic matter
wavepackets is generally very difficult experimentally,
which is expected to hinder a precise observation of the
Gogolin density profile. Indeed, the energy dependence
of the localization length in ‘usual’ disordered systems
makes the asymptotic localized state a superposition of
such profiles. The energy-independence of the QKR

ar
X

iv
:2

20
3.

08
49

5v
1 

 [
co

nd
-m

at
.d

is
-n

n]
  1

6 
M

ar
 2

02
2



2

Floquet states is thus a very important asset in this
respect, both numerically and experimentally.

In this paper, we investigate the asymptotic
localization properties of an Anderson-localized
wavepacket in the atomic QKR. Using numerical
simulations, we show that the length ξ that appears
in the Gogolin distribution corresponds to the average
localization length of the Floquet eigenstates, the
distribution of which is shown to be in good agreement
with the supersymmetric predictions for the eigenstate
statistics. Then, using our experimental platform of the
atomic QKR, we show that the long-time momentum
distribution is in excellent agreement with the Gogolin
distribution (convolved with the initial momentum
distribution), while a purely exponential form does not
fit the data.

Our manuscript is organized as follows. In Sec. II,
we recall the basic properties of the QKR as well
as the relevant theoretical predictions, and present
some numerical simulations, in very good agreement
with the supersymmetric predictions. We present our
experimental observation of the Gogolin distribution in
Sec. IV, and present our conclusions in Sec. V.

II. STATISTICAL PROPERTIES OF THE QKR
EIGENSTATES

The QKR Hamiltonian is defined as

ĤQKR =
p̂2

2
+K

∞∑

n=0

cos x̂ δ (t− n) , (2)

where K cos x̂ represents a sinusoidal potential created
by a standing wave (formed by counterpropagating
lasers of wave number kL), with length in units of

(2kL)
−1

and time in units of the kick period T1.
Momenta are measured in units such that x̂ and p̂ obey
the canonical commutation relation [x̂, p̂] = ik̄ with an
effective Planck constant k̄ = 4~k2

LT1/M (for particles
of mass M). The kick strength K, as well as k̄, can
be tuned in the experiment (see below). For an initial
state with a well defined initial momentum, one observes
that the kinetic energy of the system initially grows
linearly in time, before saturating to a constant value,
the hallmark of dynamical localization.

Due to the spatial periodicity of the potential, the
kicks can only change the momentum by increments of
k̄, and writing momenta p = (q + `)k̄, with ` ∈ Z and
q ∈ (−1/2, 1/2], the quasi-momentum q is a conserved
quantity. The evolution operator over one period reads,

for a given quasi-momentum q1:

Û(1) = exp

(
−i (

ˆ̀+ q)2

2
k̄

)
exp

(
−iK

k̄
cos x̂

)
, (3)

with ˆ̀|`〉 = ` |`〉, and the operator splits into a kicking
part and a free propagation due to the instantaneous
character of the kicks2. Dynamical localization can
be understood by noting that the Floquet eigenstates
Û |φω〉 = exp(−iω) |φω〉 are, up to some technicalities,
eigenstates of a disordered tight-binding Hamiltonian
Ĥeff displaying Anderson localization [19, 29, 30]. For
the QKR, one finds

Ĥeff =
∑

`

ε` |`〉 〈`|+
∑

`,`′

t|`−`′| |`〉 〈`′| , (4)

with on-site energy ε` = tan
(
ω/2− k̄(`+ q)

2
/4
)

and hopping amplitude tr =

(2π)−1
∫ 2π

0
dxe−irx tan (K cosx/2k̄). The on-site

energies are deterministic, but for k̄ incommensurate
with π, they oscillate strongly enough to play the role
of a pseudo-disorder, while each q plays the role of a
different disorder realization. Finally, the hopping tr
has a range of order K/k̄, and the Hamiltonian is thus
similar to a random band matrix in the limit K/k̄ � 1.

It comes out of the mapping of Ref. [19] that

all Floquet eigenstates are eigenvectors of Ĥeff with
zero energy, and are thus expected to have the same
localization properties (e.g. same localization length).
This is in contrast with disordered systems and random
band matrices, where the localization properties depend
on the position of the states in the spectrum.

The QKR can be described by the same
supersymmetric field theory that is used to describe
random band matrices and quasi one-dimensional
systems, and as a consequence possesses the same
universal features. The characterization of these
features can be done by studying the statistical
properties of the system’s spectrum and eigenstates,
as was initially recognized by Wigner [31], starting the
field of Random Matrix Theory [32]. In the present
context, the supersymmetric method has allowed for
detailed calculation of the statistics of the eigenstates,
see [33] for a review. Following [33, 34], we recall here
only the relevant results necessary for the discussion.

The exponential decay of an eigenstate |φω〉,
|φω(`)|2 ∝ e−|`|/ξω can be characterized by introducing

1 The dependence on quasi-momentum of all quantities is left
implicit from now on.

2 In practice, it suffices that the kick duration is short enough
that pT1/M � λL, λL = 2π/kL.
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the quantity rω(`, L) = |φω(`)|2|φω(`+ L)|2, since

ξ−1
ω = − lim

L→∞
L−1 ln rω(`, L). (5)

The statistical properties of rω have been studied in
detail [33], as it also describes the Inverse Participation
Ratio (IPR) of each eigenstate Pω =

∑
` rω(`, 0), as well

as the asymptotic long-time probability Π(`, L) to find
a particle in `+ L knowing that it has started at `, for
a given disorder realization,

Π(`, L) =
∑

ω

rω(`, L). (6)

Denoting with a bracket the average over disorder
realisations, for a narrow energy part of the spectrum,
the probability distribution of v = − ln rω has been
shown to be Gaussian in the limit L � ξ̃ [34], with

ξ̃−1 = 〈v〉/L the average inverse localization length of
the eigenstates,

P(v) =
exp

(
− (v−〈v〉)2

4〈v〉

)

√
4π〈v〉

. (7)

Noting that the variance of v is twice its mean, this
implies that the distribution of 1/ξω is sharply peaked

as L→∞, and therefore 〈ξω〉 = ξ̃.
Using similar supersymmetric methods, one shows

that the momentum distribution at long time is given
by the Gogolin distribution3

〈Π(`, L)〉 = ΠG(L), (8)

with the same localization length as the Floquet
eigenstates, i.e. ξ = ξ̃ [14, 34].

Lastly, we point out that, as in the QRK the all
the Floquet eigenstates have the same eigenenergy, the
energy selection introduced in [34] is no longer required,
and can be replaced (and used in the following section)
by a broader averaging4, over both disorder and the
whole ensemble of eigenstates.

III. NUMERICAL INVESTIGATIONS

We shall now investigate numerically the relation
between the typical localization length of the
Kicked Rotor’s Floquet eigenstates and the Gogolin
distribution (see also [35–37] for early numerical studies
of the spectral properties of the QKR). In order to
realize an accurate investigation, we will make use of

3 The result is independent from the starting position ` thanks
to the translation invariance after averaging over disorder.

4 Also denoted with brackets from now on, for consistency.

�

a)

-6000 -4000 -2000 0 2000 4000 6000

10-20

10-10

100

|φ
ω
(�
)|2

�

b)

-3000 -2000 -1000 0 1000 2000 3000

10-20

10-10

100

|φ
ω
(�
)|2

˜˜
1

2ξ
exp

(
−|� |

ξ

)

FIG. 1. a) Examples of Floquet eigenstates (square
modulus, semilog scale), for K/k̄ = 16. b) Same
distributions as in a), recentered around ` = 0. The dashed

line is an exponential distribution with ξ̃ = 35.2.

an idealized version of the model, the so-called Random

Kicked Rotor (RKR) where the kinetic term (ˆ̀+q)2

2 k̄
is replaced by a purely random, uniformly distributed
phase θ` ∈ [0, 2π[. This allows us to suppress the
undesired correlation effects that usually complicate
the analysis of the QKR [38–40]. Recently, it has been
shown that a modified and experimentally feasible
version of the QKR reproduces the features of this
idealized Kicked Rotor [41].

The Floquet eigenstates φω(`) of the RKR can be
computed by realizing exact diagonalization of the
evolution operator Û(1)5. Fig. 1.a) shows an example of
few such eigenstates, obtained for K/k̄ = 16. In order
to compare all the Floquet states, we translate them
in momentum by a value `0 that corresponds to their
centroid. Doing so we obtain the distribution presented
in Fig. 1.b) illustrating the fact that they all decay
exponentially with similar rates.

Without loss of generality, we shall study the
statistical properties of these ‘shifted’ Floquet states,

5 The numerical implementation of the Floquet operator
implies periodic boundary conditions in momentum space.
Additionally, we choose a cut-off in momentum which is much
larger than the localization length of the eigenstates.
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which possess all the same center implying that rω(`, L)
now only depends on L : rω(`, L) 7→ rω(L). We
calculate the histograms of − ln rω(L)/L for various L
using 105 Floquet states with K/k̄ = 16 and present
the results in Fig. 2.a). We see that the distribution
gets narrower as L increases. The mean value of each
distribution, represented by the circles, slowly converges
to ξ̃−1, as ∝ 1/L, and in practice we can infer the

asymptotic value ξ̃ = (35.2 ± 2.1) by extrapolating
(via a fit) its L-dependence, see the inset of Fig. 2.a).
For completeness we plot (dashed line) the distribution

corresponding to the obtained average rate ξ̃−1 in
Fig. 1.b).

To go one step further, we investigate the statistical
properties of the dimensionless quantity r̃ω(y) ≡
4ξ̃2rω(y), with y ≡ L/ξ̃. First, we compute the ratio
between the variance and the mean value of − ln r̃ω:

R(y) = −〈δ
2(ln r̃ω)〉
〈ln r̃ω〉

, (9)

as a function of y. The results are shown in Fig. 2.b).

At large y (L� ξ̃), we obtain that the ratio R(y) tends
to a constant value, close to the theoretical prediction
R → 2 of Eq. (7). As shown in the inset, we find
that, for y � 1, the probability density of − ln r̃ω
is well fitted by a Gaussian satisfying: 〈δ2(ln r̃ω)〉 =
−2〈ln r̃ω〉, in excellent agreement with Ref. [34]. Similar
conclusions have been obtained numerically in [43] for
the conductance fluctuations in quasi-one-dimensional
weakly disordered system. We have also analyzed
the IPR probability distribution, and found a very
good agreement with the corresponding supersymmetric
predictions, see App. A for details.

These results can be used to analyze the stationary
probability distribution of the QKR at long times,
deep in the localized regime. This quantity is
accessible numerically, as well as in experiments, and
is obtained by studying the evolution of a narrow initial
momentum distribution after a time much longer than
the localization time tloc. We first focus on numerical
aspects.

Numerical simulations of the dynamics of the
(random) Kicked Rotor are straightforward [44]. The
free evolution between two consecutive kicks is diagonal
in momentum representation, while the kick operator
is diagonal in position representation. Switching
between momentum and position representation is
easily done through a Fast Fourier Transform. Such
a procedure is equivalent to applying the evolution
operator Û(1) once, and one can of course repeat the
procedure a sufficient number of times until dynamical
localization is reached6. Using this procedure, we

6 We truncate the momentum basis insuring that the final state
has a support much smaller than the momentum cut-off.
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FIG. 2. a) Histograms of the probability distribution of
− ln(rω)/L for various L and K/k̄ = 16. The circles show
the position of the mean, while the vertical dashed line shows
the extrapolated mean for L → ∞. The inset shows these
means as a function of 1/L (symbols), while the line is a fit
f(L) = f0 + a0/L, used to extrapolate the data and infer

ξ̃ = f−1
0 (ξ̃ = 35.2 ± 2.1 in this case). b) Evolution of the

ratio R between the variance and mean value of − ln r̃ω,
as a function of y = L/ξ̃, for K/k̄ = 16. The shaded
area represents numerical uncertainty. At large values of
y, the ratio tends towards a value close to R = 2 within
the numerical uncertainty, compatible with the prediction
of ref. [42]. The inset shows a histogram of the probability
distribution of − ln r̃ω, calculated at y ' 35, which is well
fitted by a Gaussian with R ' 2 (dashed red line).

compute the evolution of a large number of random
phase realizations, and average the resulting momentum
distributions.

We present results for K/k̄ = 16. At short times
the momentum variance 〈`2(t)〉 grows linearly, then its
increase rate slows down on a time scale given by the
localization time tloc. For t � tloc, 〈`2(t)〉 saturates
to a value 〈`2loc〉, see Fig. 3, whereas the momentum
distribution becomes stationary. This can be seen in
Fig. 4, which shows the momentum distribution at
two different times much larger than tloc. We find an
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FIG. 3. Time evolution of 〈`2(t)〉 for K/k̄ = 16. The steady-
state value corresponds to 〈`2loc〉 = 12.4 × 103. The inset

shows 〈`2loc〉 vs 8ζ(3)ξ̃2, which are expected to be equal, for
various values of K/k̄. The horizontal error bars correspond
to statistical fitting error, the vertical error bars are smaller
than the symbol size. The dashed line is a fit with slope
1.05.
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FIG. 4. Steady state momentum distributions at two
different times t� tloc, for K/k̄ = 16, showing an excellent
agreement with the Gogolin distribution (dashed line) with

parameter ξ = 35.2 = ξ̃. The dotted line is the exponential
approximation, valid close to ` ' 0, whereas the dash-dotted
line is the asymptotic limit for `� ξ̃.

excellent agreement with the Gogolin distribution given
by Eq. (1), if we choose ξ = ξ̃, with ξ̃ obtained as
described above for the same value of K/k̄, see Fig. 4.

This proves that the length scale ξ̃, which characterizes
the decay of the Floquet eigenfunctions corresponds
exactly to the single-parameter ξ which characterizes the
functional form of the asymptotic probability density.
Close to the center of the distribution (` ≈ 0), the

decay is exponential with a rate ξ̃−1, whereas the large-
momentum wings also decrease exponentially (up to an

algebraic factor), with a rate four times lower: 1/(4ξ̃).
This difference is attributed to the strong fluctuations

of the |φω(l)|2 [30], as it is exemplified in Fig. 1.
In addition, we checked for different values of the K/k̄

the very good agreement between: 1) the asymptotic
momentum distributions obtained numerically; and 2)

the Gogolin distribution with ξ = ξ̃. To be more
quantitative, using that

∫
d``2ΠG(`) = 8ζ(3)ξ2 [11], we

assess this agreement by comparing 〈`2loc〉 from our RKR

simulations, for a given K/k̄, to 8ζ(3)ξ̃2 for the same
parameters, see the inset of Fig. 3. This shows that the
two length scales are equal to within 3%.

Finally, we checked the validity of these results
for the ‘standard’ QKR (see App.B). It is known
that, at low values of K/k̄, the QKR is affected by
classical correlation effects, which lead to significant
discrepancies with respect to a system with uncorrelated
disorder [41]. At low K/k̄, we found that the classical
kick-correlation effects lead to deviations from the
predicted Gaussian statistics of Eq. 7. However, the
correlation effects disappear at large K/k̄ values, where
we find an excellent agreement between the QKR and
the ideal RKR model.

IV. EXPERIMENTAL OBSERVATION OF THE
ASYMPTOTIC DISTRIBUTION

The previous section established numerically
the relationship between the ‘intrinsic’ localization
length ξ̃, characteristic of the exponential decay
of the system’s eigenfunctions, and the long-time
probability distribution, obtained when starting from
a peaked initial condition. We shall now focus on
the experimental investigation of this characteristic
asymptotic shape, and on its distinction from the
commonly-thought exponential shape associated with
Anderson localization.

In order to access experimentally the question of the
exact form of the momentum distribution at long times,
it is necessary to realize experimentally an ideal version
of the QKR where the late time dynamics is not plagued
by correlation effects for experimentally accessible low
values of the kick strength. This is rendered possible by
using a periodically phase shifted version of the QKR
[25, 45], described by the Hamiltonian:

Ĥ =
p̂2

2
+K

∑

n

cos(x̂+ an) δ(t− n). (10)

For an = 0, ∀n, Ĥ(t) reduces to the Hamiltonian of
the usual QKR. In this work we will restrict ourselves
to a period N = 3 phase shift (an+N = an). We only
consider phase shifts such that the Hamiltonian is time-
reversal invariant, e.g. a1 = −a3 and a2 = 0, see [26, 41]
for details. This insures that our phase-shifted QKR
belongs to the same (orthogonal) universality class as
the ‘standard’ QKR.
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The following experiments are performed by kicking
a laser-cooled Cs atomic cloud (temperature T ' 2µK)
using a far-detuned, pulsed optical standing wave (SW),
with a period T1. The SW is created by two independent
lasers beams, which allows us to control the amplitude
and phase of the potential, using the RF signals driving
two different acousto-optic modulators. We can thus
shape the phase shift sequence an at will, and generate
the Hamiltonian of Eq. (10). The laser parameters
are: the detuning ∆ = −13 GHz (at the Cs D2 line,
wavelength λ = 2π/kL = 852.2 nm), 1/e radius w0 =
800 µm, and the maximum intensity I = 30 W/cm2 for
each beam. The pulse duration is τ = 200 ns, while
T1 = 9.6 µs. From these parameters we get k̄ = 1
as well as kick amplitudes K = k2

LτT1~IΓ2/(8MI2
sat∆)

up to 6 (where Isat ' 2.71 mW/cm2 is the saturation
intensity and Γ = 5.22 MHz the natural linewidth of the
transition). After the desired number of kicks, the cloud
expands and the momentum probability density Π(p) =
|Ψ(p)|2 is measured using a time-of-flight technique.

To realize an accurate analysis of the shape of the
final (dynamically-localized) momentum distribution, a
careful characterization of the initial state, obtained
after the laser cooling stages, is required. Indeed, to
perform a meaningful comparison with the theoretical
prediction, the initial distribution has to be measured
and taken into account through a convolution with
the Gogolin distribution. The initial momentum
distribution obtained in our experiment is shown in
Fig. 5, and is well-approximated with by a Lorentzian
shape [46] D(p) ' 2

πσ (1 + p2/σ2)−2, with σ ' 2.31 ×
2~kL (see App. C for details).

Starting from this initial state, we utilize the
Hamiltonian in Eq. (10), with parameters K = 2.5 and
k̄ = 1, and average over 100 realizations of the periodic
phase sequences an. The momentum distribution is
measured after a time t = 210 kicks, and the result
is shown in Fig. 5. We have experimentally verified
that the distribution reached a steady-state (see App. C,
Fig. 8 b)), which proves that dynamical localization has
been attained. In panel a), we fit the experimental
distribution with a Gogolin distribution convolved with
the initial distribution, and find a very good agreement
both near the center and in the wings, with ξ = 3.2 ×
2~kL.7 In contrast, panel b) shows a fit of the same
final experimental distribution, using an exponential
function convolved with the initial state, with an inverse
decay rate of 5.5 × 2~kL. The exponential shape does
not describe well neither the center nor the wings of
the experimental data. The ratio of the χ2 values

7 The width of the final distribution, given by that of the Gogolin
distribution

√
8ζ(3)ξ, is about four times larger than that of

the initial distribution σ. Therefore, the final distribution is
dominated by the localization effects and not the initial state.

p/2h̄kL

|ψ
(p
)|2

b)
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)|2
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FIG. 5. Experimental momentum distribution after 210
kicks (K = 2.5, k̄ = 1) averaged over 100 samplings of
triplets {a0, a1, a2}, and a) Gogolin fit with ξ = 3.2× 2~kL;
b) exponential fit with inverse decay rate 5.5 × 2~kL. Both
fits are performed using the theoretical forms convolved with
the initial state. The grey curve is the initial momentum
distribution of the system.

corresponding to the two fits presented in Fig. 5 is
' 0.03, which clearly proves that the experimental long-
time momentum distribution is better described by a
Gogolin distribution than by an exponential form.

V. CONCLUSION

In this work, we have investigated the asymptotic
properties of a wave-packet localized by disorder
and their connection to the statistics of the Floquet
eigenstates. Our numerical simulations were found
to be in excellent agreement with the supersymmetric
predictions. Using the versatility of the atomic
quantum kicked rotor as a quantum simulator of
disordered systems, we precisely measured the localized
distribution and shown the excellent agreement with the
Gogolin prediction.

One important prediction of the supersymmetric
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formalism is that the Gogolin shape of the localized
distribution is preserved in the unitary symmetry class,
when time reversal symmetry is broken, though with
a doubling of the localization length. In perspective,
this universal feature could in principle be investigated
experimentally by using kick sequences breaking time
reversal symmetry [26]. Finally, the detailed description
of the dynamics, from weak to strong localization, could
also be studied experimentally, though no analytical
predictions have been devised yet. We leave these
challenging problems for future works.
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Appendix A: Probability distribution of the Inverse
Participation Ratio (IPR)

To complement the discussion of Sec. III, we analyze
here the probability distribution of the IPR. It has been
thoroughly studied using supersymmetry, see [42]. The
IPR of a given Floquet eigenstate |φω〉 (at a given q) is
given by

Pω =
∑

`

|φω(`)|4. (A1)

Defining z = Pω/3〈Pω〉, its probability distribution is
given by

P(z) = 2π2
∞∑

k=1

(2π2zk4 − 3k2)e−πzk
2

. (A2)

The numerical analysis of the distribution of the IPR for
the RKR, similar that described in the main text, gives
a very good agreement with the theoretical prediction,
as shown in Fig. 6. Furthermore, the mean IPR 〈Pω〉
is expected to be a function of ξ̃ only. This is verified
numerically as shown in the inset.

0 0.5 1 1.5
0

1

2

3

P
(z

)

z

60

40

20

0
50403020100

ξ̃

〈P
ω
〉−

1

FIG. 6. Histogram of the IPR statistics, computed for the
RKR with (K/k̄ = 16). Red curve: theoretical probability
distribution P(z), given by Eq. (A2). The inset shows the

inverse mean IPR 〈Pω〉−1 as a function of ξ̃ for the RKR

(triangles). The line is a fit g(ξ̃) = aξ̃ + b, with a slope a =
1.253 and b = 5.14. The diamond corresponds to the same
quantity, computed for the QKR (K = 44 and k̄ = 2.85),
see App. B.

Appendix B: Statistics of eigenstates of the QKR

In this section, we show that the numerical results
obtained in the main text for the RKR are also valid for
the standard QKR for large K/k̄, i.e. in a regime where
the correlations of the disorder are weak enough.

Fig. 7.a) shows the statistical properties of the
Floquet eigenstates computed for K = 44 and k̄ =
2.85. We observe that the distribution of − ln r̃ω is
well described by a Gaussian. The corresponding ratio
between the variance and the mean, obtained with a
Gaussian fit (dashed red line), is R ' 1.94±0.1, close to
the expected value of 2 predicted by Eq. (7). Following
the same procedure as in the RKR case (see Eq. (5)),

we obtain an average localization length ξ̃ = 39.6 ± 3.
Furthermore, the long-time momentum distribution is
given by the Gogolin distribution with ξ = ξ̃, see
Fig 7.b).

Finally, the IPR probability distribution of the QKR,
shown in Fig 7.c), is in very good agreement with
Eq. (A2). The relation between the IPR mean value

and ξ̃ also agrees with the RKR results (see App. A,
and the diamond data point in the inset of Fig. 6).

Appendix C: Experimental initial and final
momentum distributions

In the experiment, we produce a relatively cold Cs
cloud (optical molasses, T ' 2 µK). As shown in
Ref. [46], this implies that the shape of the momentum
distribution differs slightly from a usual Gaussian form.
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c)

b)

|ψ
(�
)|2
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(z

)

z

Numerical
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FIG. 7. a) Histogram of the probability distribution of
− ln r̃ω, computed for the QKR with K = 44 and k̄ = 2.85,
and L/ξ̃ ' 35. The distribution is well fitted by a Gaussian
function (dashed red line). The extrapolation given by

Eq. (5) yields ξ̃ = 39.6 ± 3. b) Corresponding momentum
distributions of the QKR, at long times, compared to the
Gogolin distribution with ξ = 39.6. c) Histogram of the IPR
statistics, computed for K = 44 and k̄ = 2.85, compared to
the analytical prediction of Eq. (A2) (red line).

Indeed, when operated near the lower end of the
temperature range, the optical molasses momentum

distribution displays more weight into its tails, and can
be accurately described by a Lorentzian distribution
D(p) = p0(1 + (p − p1)2/p2

2)−p3 [46]. We use this
functional form, with p0, p1, p2 and p3 as free
parameters, to fit the measured momentum distribution
of the molasses. As shown in Fig. 8.a), the data are well
described by the red dashed-curve corresponding to such
distribution. On the other hand, a Gaussian fit (blue
dashed curve) clearly shows a significant discrepancy,
as it especially underestimates the wings of the initial
state distribution.

Figure 8.b) presents two experimental distributions
measured at long times for the parameters mentioned
in Sec. IV. The two distributions have barely evolved,
showing that the system is indeed deep in the localized
regime.

p/2h̄kL

|ψ
(p
)|2

-50 0 50
10-4

10-3

10-2

10-1

-25 25

t = 150

t = 210

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

p/2h̄kL

|ψ
(p
)|2

a)

b)

FIG. 8. a) Comparison between the initial experimental
momentum distribution (full line) with two different fit
forms. The fit parameters obtained for the form D(p) =
p0(1 + (p − p1)2/p22)−p3 are p0 = 0.256/2~kL, p1 = 0.098 ×
2~kL, p2 = 2.311 × 2~kL and p3 = 1.946 (dashed red line).
The Gaussian fit gives a standard deviation of 1.433× 2~kL
(dotted-dashed blue line). b) Experimental momentum
distributions, measured at t = 150 (green) and t = 210 kicks
(red), showing that the asymptotic stationary state has been
reached at these time scales.
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