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Abstract: For the past decade, manufacturing Industrial Control Systems (ICSs) have suffered
from targeted attacks against their physical system and their control integrity, resulting in
financial and material losses. Among protective answers to this malicious threat, Anomaly
Detection Systems (ADS) based on behavioral models of the ICS are highly regarded for their
ability to detect zero-day attacks. However, the design of accurate and non-obsolescent detection
models is not as an easy task in a constantly changing ICS environment. Thus, this paper
provides an overview of the behavioral ADSs detection flaws issued from the ICS unpredictable
management and its heterogeneous environment. Behavioral models will be introduced in light
of four attributes: their design method, the modeled ICS behavior, the lifecycle of the design and
the model nature. Then, each of these attributes will be discussed in regard of their detection
robustness to the different environmental factors and uncertainties they are affected by.
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1. INTRODUCTION

An Industrial Control Systems (ICSs) is a structure of
hardware and software components interconnected to-
gether through an industrial network to achieve the follow-
ing objectives: controlling and monitoring a large physical
system. ICSs are deployed in different industrial sectors,
like manufacturing systems, power systems or nuclear fa-
cilities. Originally, ICSs were considered as secured from
malicious cyber attacks by the air-gap separating their
Information Technologies (ITs), implemented in business
networks, and their Operational Technologies (OTs), em-
ployed in ICSs and industrial networks. This air-gap was
assumed by the numerous proprietary protocols in OT
levels and the clear network segregation between IT and
OT levels. However, the recent convergence of IT tech-
nologies to the OT levels erased this gap and brought
new threats to the ICSs (Stouffer et al. (2015)). Modern
attacks against ICSs, like the Stuxnet attack, illustrate
this trend and provide a glimpse of the financial, material
and human losses a successful attack targeting an ICS and
in particular its physical system could cause.

Against these new attack threats, manufacturing sys-
tems are highly vulnerable. Protecting them against these
threats can be achieved using different methods aiming for
instance to prevent attacks, to detect them or to assess ICS
cyber vulnerabilities. Among theses solutions, Anomaly
Detection Systems (ADSs) based on models of normal
behaviors of manufacturing ICSs (behavioral ADSs) are
highly rated (Mitchell and Chen (2014)). However, in

many instances, implementing this kind of solution rests

upon strong, yet unfounded, hypotheses of stability and
determinism regarding the ICS normal runing. On the
whole, in real systems, behavioral ADSs have to cope with
the uncertain and heterogeneous environment of manu-
facturing ICSs (e.g. ICS rescheduling, human intervention
(Vieira et al., 2003; Escudero et al., 2018). This paper of-
fers a first answer to this problematic by giving an overview
of the flaws behavioral ADSs detection mechanisms could
encountered in manufacturing ICSs. The objective of this
work is to provide an analysis method to orientate the
choice of the behavioral model main features to make the
detection more robust against the different environmental
factors and uncertainties.

The paper is organized as follows. In section 2, manufac-
turing ICSs and the attack threats they have to face are
introduced. In section 3, behavioral ADSs are presented.
Main features of behavioral models are reviewed, sup-
ported by the related works. Concurrently, flaws affecting
detection mechanisms of behavioral ADSs are detailed. In
section 4, manufacturing ICS uncertainties and its hetero-
geneous environment are described via different factors.
For each of them, engendered effects on detection are
depicted according to the features of behavioral ADSs
models. In section 5, the ADSs detection flaws originated
from the manufacturing environment are summarized in a
table and illustrated with an example. Section 6 concludes
this paper and exposes our future research axes.

2. MANUFACTURING ICSs

A manufacturing ICS aims at controlling a physical system
operating on a product flow, defined as a process where



a product is manufactured through different operations
and production cells. In order to control the product
flow, manufacturing ICSs are organized following the CIM
architecture (Escudero et al. (2018)). In this model, the
ICS is split into horizontal layers as follow:

e Product flow: sequence of operations performed on
the product through different productions cells in
order to make it reach a desired state.

e 0 - Operative part: actuators and sensors trans-
forming the product and monitoring its flow through
the ICS.

e 1 - Control layer: controllers (e.g. Programmable
Logic Controller (PLC), PID controllers) operate on
a production cell by manipulating actuators. The
control is based on a predefined control law updated
in real time with sensors data.

e 2 - Supervision layer: Collection of data ac-
quired from all controllers via Remote Terminal Units
(RTUs), the whole product flow is supervised and
monitored in real-time by operators.

e 3 - Planning layer: the production scheduling is
planned according to client orders, ICS state and
available resources.

The different layers communicate together by sending
orders to the layer below them and receiving reports
(e.g. order executed, sensors data, alarms) from this layer.
These communications are called control messages. On the
networks between OT layers (0,1,2), industrial protocols
are employed to structure and offer specific services to
the communication between control devices. Industrial
protocols are myriad (e.g. Modbus TCP-IP, OPC-UA)
and each of them owns a dedicated frame format and
communication rules (Galloway and Hancke (2013)).

Because of new attack threats, manufacturing systems are
vulnerable. Apart from protecting the product flow and
the ICS availability, integrity and confidentiality (Escud-
ero et al. (2018)), manufacturing ICSs own other particu-
larities and constraints that need to be addressed. First, a
manufacturing system prioritizes profitability over other
objectives (e.g. safety, security, sustainability). Profitabil-
ity is a combination of productivity, product quality, cost
reduction and customers satisfaction, which lead modern
ICSs to be highly flexible and agile (Panetto et al. (2019)).
Then, manufacturing ICSs follow recipes to control the
product flow. An ICS Recipe defines the parameters
and sequences of physical operations the product will go
through to reach its final desired state. Recipes can be
either consistent over time or renewed every time a new
customer order is registered (Vieira et al. (2003)). Thirdly,
in manufacturing ICSs, the human operator is responsi-
ble for the productivity goals. It is allowed to intervene on
the ICS whenever it is required, from modifying the ICS
scheduling to removing a flawed product from the produc-
tion line (Escudero et al. (2018)). Finally, manufacturing
environment offers a high diversity of inter components
architectures and technologies employed among existing
systems (Stouffer et al. (2015)). All these particularities
make the manufacturing environment and ICSs normal
behaviors more likely uncertain and heterogeneous. There-
fore, these particularities need to be considered in the
design of behavioral ADSs.

3. BEHAVIOR-BASED ANOMALY DETECTION

Among security solutions, behavioral ADSs are highly
rated for protecting manufacturing ICSs against attack
threats. Indeed, as decision support methods (e.g. alarms,
detection metrics), ADSs do not interfere with production
flow, neither consume exuberant control resources (e.g.
PLC’s CPU, network bandwidth) except for reading or
retrieving ICS data. Moreover, behavioral ADSs are able
to detect unknown attacks since they rely on models of
the normal functioning of the ICS to perform detection. In
detail, if a deviation is monitored between the ADS models
and the real-time observations of the system, an anomaly
detection occurs, even if the anomaly nature (malicious or
natural) is unknown. However, one shortcoming remains.
As the ICS normal functioning might not be consistent
over time, the behavioral ADS can trigger false detection.

With this problematic in mind, we intend to analyse the
main features of ADS models with the aim to further evalu-
ate their robustness to the uncertainties and heterogeneity
of manufacturing ICSs. In this paper, only ADSs consid-
ering several PLCs and positioned on the communication
between levels 1-2 or on level 2 are reviewed.

8.1 Behavioral Model Features

In the literature, behavioral ADSs have been surveyed with
different perspectives. In this paper, ADSs are reviewed
regarding the ICS normal behaviors they are monitoring
and the hypotheses they take to model these behaviors.
Depending on these hypotheses, the resulting models will
be more or less robust to the ICS environment uncertain-
ties and heterogeneity. Hence, the selected model features
(Fig 1) showcase: What ICS behavior is modeled (Modeled
Behavior) and if this behavior is viewed as deterministic or
stochastic (Model Nature), How this behavior is modeled
and from which knowledge (Model Design Method) and
When, during the ICS lifecycle, is the behavior studied for
modeling (Model Design Lifecycle).

Modeled Behavior. An ADS positioned between the
level 1-2 or on level 2 can rely on either a network model
or a control model. The first category is designed from the
normal behavior of the ICS industrial network, divided
into the network traffic and the protocols specifications
(Rakas et al. (2020)). Network traffic models study the
communication patterns (e.g. frequencies, sequences, or
periodicity of messages) and quantitative metrics (e.g.
message length, bandwith, communication delays) of the
industrial network, whereas protocols models focus on the
protocol specifications behaviors (e.g. ports used, function
codes, request/response scheme). The second category
gathers all the ADS modeling the normal control behavior
of the ICS. These models represent either the controlled
physical system behavior (product flow and operative
part), the control flow behavior (control laws and control
messages), or both.

Model Nature. A behavioral model nature represents the
degree of determinism of the model. This feature is either
described as deterministic or stochastic. For instance, a
Deterministic Finite Automaton (DFA) modeling offline
PLCs control laws is considered as highly deterministic,
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whereas a Bayesian network predicting the product recipes
shifts is more probabilistic.

Model Design Method. Behavioral models can either be
designed based on learning methods, expert knowledge or
both (Mitchell and Chen (2014)). Learning methods need
a extended learning phase (up to several months) before
being effective, unlike expert ones that are immediately
effective after their implementation.

Model Design Lifecycle. Behavioral models are de-
signed either offline, online or both. This feature describes
the chronological positioning of the ICS normal behavior
modeled in the ADS. This positioning is either at a fixed
date (offline) or continuously updated based on the real-
time ICS functioning (online).

3.2 Related Works

Behavioral ADSs are well represented in the literature. A
glimpse of these ADSs is given in Table 1 regarding the
different features of the models employed by the authors.
The chosen ADSs represent a restricted part of the existing
literature and were selected based on our own knowledge
to illustrate all the ADSs models features.

Table 1. Behavioral ADSs References

. Design Design Model
Modeled Behavior Method | Lifecycle | Nature
Network | Control o
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ER 23 £y 2|4 |O]|0O 213
o =0 o 4 -
£ | 2d| Ok I
3] 1] 2] (3]
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[1] = (Caselli et al. (2015)), [2] = (Yusheng et al. (2017)), [3] = (Khalili and Sami (2015)),
[4] = (Adepu et al. (2020)), [5] = (Lin et al. (2018))

In Table 1, the quoted ADSs are usually evaluated based
on their detection results and their ability to avoid de-
tection errors. In the next section, the different detection
flaws a behavioral ADS can encounter are introduced.

3.8 Detection mechanisms flaws

A behavioral ADS is expected to detect all anomalies
resulting from attacks it was designed for without miss
interpreting any ICS normal behavior with a malicious
one. An ADS needs also to be functional and maintains
its detection efficiency as long as the ICS operates and for
a large scope of manufacturing ICSs. These requirements

translate themselves into the following detection flaws a
behavioral ADS aims to minimize.

e False Positive (FP). The ADS detects and interprets
a normal ICS behavior as an anomaly.

e Miss Detection. The ADS misses the detection of an
anomaly. This is also called a False Negative (FN).

e Outdated detection. The ADS detection model does
not match consistently over time with the ICS normal
behaviors. This results in a important rate of False
Positive and an inefficient detection.

e Detection Coverage. The ADS has a high detection
rate for a restrained set of manufacturing ICSs configu-
rations and, in contrast, does not cover efficiently 1CSs
out of its scope.

The different detection flaws are originated for the most
part from the model inability to cope with the manufac-
turing ICS heterogeneous environment and its uncertain
behaviors. This detection concern is addressed in the re-
mainder of this paper.

4. ICS ENVIRONMENTAL FACTORS

Manufacturing ICSs are characterized by a heterogeneous
and uncertain environment (Escudero et al., 2018) that
may affect the detection quality of behavioral ADSs.
In this section, the ICS environment heterogeneity and
uncertainty are broken down separately into different
factors. Each of them will be introduced and described in
regard of the detection flaws they can infer into behavioral
ADSs according to the different ADSs models features.

4.1 A Heterogeneous Environment

Manufacturing ICSs are viewed as heterogeneous as they
may differ from each other in physical, architectural and
technological aspects. This heterogeneity can be high-
lighted through the 3 environmental factors: Protocols di-
versity, Architectural diversity, and Outsourced resources.

Protocols diversity reflects the vast range of industrial
protocols that can be found in manufacturing ICSs. Each
protocol offers its own message frame, services and com-
munication specifications. This factor can infer coverage
issue to network ADSs modeling specifications or traffic
patterns for a specific protocol (Yusheng et al. (2017)).

Architectural diversity refers to the ICS network con-
figurations heterogeneity and to emerging decentralized ar-
chitectures. ICS network configuration defines how the
different ICS devices are interconnected between the levels
0 and 2. ICS network configurations involve different phys-
ical inter-devices architectures(e.g. serial, parallel, star),
network devices (e.g. switch, protocols gateway, modems),
and communication paths between devices (e.g. parallel
networks, intermediary devices) (Samad et al. (2007)).
This factor can result in information misses for determin-
istic ADSs focusing on network models, either when an
awaited message takes an alternative path (FP), or when
an anomaly routes through another network path (FN).
This configuration heterogeneity brings also coverage is-
sues to ADSs based on traffic models. Decentralized
architecture designates emerging inter-devices structures
where the traditional master-slave access-method is substi-



tuted by self operating and self communicating control de-
vices (Panetto et al. (2019)). This factor condemns offline
traffic-based ADSs to process FPs or become outdated as
communication patterns between devices are constantly
reconfigured. Control flow based ADSs may also be af-
fected when control devices are self-reconfigurable.

Outsourced resources gather all the services and soft-
ware implemented on the business network (IT levels) for
productivity enhancing and remote use, yet authorized to
access the ICS network and devices (Samad et al. (2007)).
Outsourced resources are for example maintenance remote
operations, devices update by manufacturers or statistical
tools for diagnostic. These resources originate spontaneous
messages on the industrial networks resulting in FPs for
network, offline or learning based ADS. In some extent, the
implementation of a new outsourced resource can make a
network ADS detection become outdated.

4.2 An Uncertain Environment

Manufacturing ICSs are operating in an uncertain envi-
ronment as they are influenced by miscellaneous, unpre-
dictable and spontaneous events. In manufacturing sys-
tems, the uncertainty origins can be broken down into 3
main environmental factors : Uncertain scheduling, Hu-
man intervention and Physical system alteration.

Uncertain Scheduling depicts the constantly evolving
production scheduling and the regular renewal of product
recipes a manufacturing system faces. In manufacturing
ICS, Real-time Scheduling is commonly calculated and
validated by operators on a daily basis based on the ICS
tasks list, the available resources and the scheduling pri-
orities. However, the planned scheduling is rarely followed
and left unchanged due to unexpected events and decisions
(Vieira et al. (2003)). For instance, an actuator failure hap-
pens, shuts down an entire production cell for several hours
and prevents from manufacturing the scheduled product.
In response, the real-time scheduling is modified to start
the manufacturing of another product whose flow does not
route through the failed cell. Then, depending on the class
of the ICS, either low-mix/high-volume or high-mix/low-
volume (Abu Samah et al. (2015)), the Recipes might be
modified regularly. For instance, in the semi-conductor in-
dustry, wafer recipes are renewed often when new customer
orders are scheduled. These two factors bring uncertainties
to the ICS and may cause outdated detection for offline
ADS and learning based ADS as they design their model
on past data and knowledge that become irrelevant when
scheduling and recipes change. Deterministic ADS will
also be subject to FP and outdated detection when un-
able to tackle stochastic scheduling and recipes evolution.
Between control and network based ADSs, the second
category suffers more from these factors as non modeled
communication can appear on the ICS network (FP) while
their control meaning is still predictable. At last, expert
based model ADSs are vulnerable to scheduling variability
(FP, Outdated detection) since even with deep knowledge,
an expert may be unable to model the uncertain scheduling
changes (Sicard et al. (2019)).

Human Intervention designates the actions and deci-
sions an operator can perform on the ICS (Escudero et al.
(2018); Panetto et al. (2019)). A human intervention can

be defined by its localization (e.g. operative part, product
flaw, supervision), its nature (e.g. repair, replace, reconfig-
ure) and its justification (e.g. component failure, product
low-quality, productivity drop). For instance, when a prod-
uct obstructs a production line, an operator intervenes on
the physical system to remove it. Another example is the
operator decision to stop via the supervision a chemical
ICS process when a boiler pressure is abnormally low and
could mean a tank leak. Both example reveal potential
detection flaws for behavioral ADSs. First, the intervention
localization can interfere on ADS models awareness when,
for instance an operator modifies manually the physical
system without the ADS being noticed. This factor en-
genders FP for deterministic or offline ADSs as they miss
expected events and detect non modeled one. More gener-
ally, depending on the intervention localization and nature,
network based and control based ADSs produce FPs. The
first category does when the intervention engenders unex-
pected messages on the network. For example, traffic based
ADSs may detect FPs every time a spontaneous message
is emitted on network 1-2 from a supervisory operator.
The second category produces FPs when the intervention
modifies the physical system or the ICS control behaviors.
Finally, FPs and outdated detection are also a real concern
for learning based ADS as learning data are polluted by
frequent human interventions (e.g. missed data during an
intervention or a shut down, spontaneous messages).

Physical System Alteration gathers both natural al-
terations (e.g. component failures, aging) and maintenance
operations (e.g. component replacement, corrective main-
tenance). Natural alterations (Nguyen et al. (2016))
are either sudden, like a component failure, or progres-
sive, such as components aging. The first category is a
source of FPs for behavioral ADSs as it makes deviate
suddenly the ICS physical system behavior. Deterministic
and control based ADSs are the most affected by this
flaw. For instance, a sensor failure would make an ADS
modeling the normal sequences of control messages raise a
FP. Progressive natural alterations will, in contrast, make
the ICS normal behavior deviate gradually and reach a
new normal behavior after a certain time. This uncertainty
is a cause for outdated detection from offline ADSs and
from learning based ADSs. Control based ADSs are also
subject to this flaw as they rely on models of the physical
system behavior. Maintenance operations (Abu Samah
et al. (2015)) are either reactive, when a failure occurs,
or preventive, when the operation is planned and aims
to predict forthcoming failures. In both cases, the ICS
post-maintenance behavior may deviate from the anterior
one. For instance, a sensor fails and is substituted by an
available one, yet slower and from another manufacturer.
This may result in a change of the physical system timing
behavior. In another context, a predictive maintenance
is planned to replace half the hydraulic cylinders of an
ICS. This maintenance can turn the ICS behavior into
a more reactive and responsive one. In both examples,
the ICS behavior is modified and may occasion FP or
even outdated detection to behavioral ADSs. In particular,
offline, deterministic and control based ADSs will suffer
from uncertain changes of the physical system they are
unaware of. Finally, due to poorly documented mainte-
nance operations, expert based ADSs can produce FPs or
outdated detection flaws.



Table 2. Behavioral ADSs Detection Flaws

Modeled Behavior Model Design Method | Model Design Lifecycle Model Nature
Network Control . . . . .
Traffic Protocol | Physical System | Control Flow Learning | Expert Offline Online Determin. | Stochastic
Protocol Diversity | Cov. Cov. - - - - - - -
Network FP/Cov. | FP R B R B . B
Configuration Miss. Miss.
Decentralized FP B FP B FP B . B
Architecture Out. Out. Out.
Outsourced FP FP
Resources Out. Out. - FP. i FP. B ) B
Real-time FP FP FP FP
Scheduling FP. FP. - Out. Out. Out. - Out. -
Recipes FP FP FP
Renewal FP. FP. - Out. ) Out. ) Out. -
Human FP
Intervention FP. FP. FP. FP. Out. - FP. - FP. -
Natural FP FP
Alterations - Out. Out. Out. - Out. : B -
Maintenance FP FP FP FP
Operations - Out. Out. - Out. - Out. -

Legend : (-) Blank cells illustrate factors that do not theoretically impact detection results of ADSs with the corresponding feature.

5. CONSEQUENCES ON ANOMALY DETECTION
5.1 Table Analysis

In this section, all the detection flaws previously exposed
are gathered and highlighted in Table 2. This table was
fulfilled by answering the following question for every
cell (every combination of environmental factor & model
feature): "How does the chosen factor affect the normal
behavior of the ICS, and how does it degrade the detection
results of ADSs modeling this behavior and designed with
the selected model feature 7 ” For example, the factor
Maintenance Operations affects the behavior of the ICS
Physical System when a physical component is modified
for maintenance reasons. If this modification is slight (e.g.
tool renewal), FPs will be produced by the ADS until the
ICS behavior returns to its former state, whereas if the
change is significant (e.g. addition of sensors/actuators),
the ICS physical system behavior will be definitively
reshaped and the ADS will perform Outdated Detection.

In this paper, the main objective is to give a method to
analyze and orientate the choice of the behavioral ADS
model features by studying the effects of environment het-
erogeneity and uncertainty on ADSs detection efficiency.

Environment heterogeneity leads to coverage flaws to
network ADSs as a significant diversity exists among pro-
tocols and network configurations. Yet, this flaw is not as a
priority for ADSs as the detection quality (FPs, Outdated
and Miss detection). The heterogeneity factors mainly
impact the detection quality of network-based ADS and
offline-based ADSs. Indeed, service-oriented architectures
are prioritized for modern ICSs, and industrial networks
(level 1-2) are becoming more uncertain as they tend to
offer more connectivity, accessibility and freedom to new
services, devices and technologies connected to them.

Environment uncertainty causes FPs and outdated
detection to control- and network-based ADSs depending
on the localization of the hazardous events (e.g. network
for planning uncertainties, control for physical alterations
and both for human interventions). The main singularities
about uncertainty factors concern the ADS design Method,
Lifecycle and Nature. Indeed, this table highlights the high
rate of FPs and outdated detection flaws, for learning
based, offline based and deterministic ADSs. The first two
features develop these flaws since their design relies on past

data and knowledge to model the ICS behavior while not
considering present and future modifications. The third
feature experiences detection flaws due to its inability to
deal with stochastic and spontaneous events occurring in
uncertain environments.

Among all ADS features, stochastic, expert, online, and
control-based ADSs seem to provide ideal answers to man-
ufacturing uncertainties. Yet, this statement relies on some
limitations. First, if they are designed with substantial
margins and flexibility, stochastic and online-based ADSs
can perform miss detection when they interpret attacks
as ICS uncertainties. Besides, expert control-based ADSs
suffer from model complexity explosion and coverage flaws.

5.2 Ezample

This example illustrates how an ADS based on a behav-
ioral model N1 is affected by detection flaws when the
manufacturing ICS behavior is altered by environmental
uncertainties (recipe change, human intervention). The
new behaviors are modeled through N2 and N3.

Let N1(P,T,F,W,m0) be a Petri Net representing a
manufacturing process with 3 operations, where P =
(p1,p2,p3) are the operations, T' = (t1,¢2) the transitions,
F = ((pl,tl), (t1,p2), (p2,t2), (t2,p3)) the arcs, whose
weights w € W are equal to 1 and mO0(pl) = 1 is the
initial marking of the process. N1 is illustrated in Fig 2.

OO0

N>
Fig. 2. Petri Net N1

p2

This Petri Net is implemented in a behavioral ADS (Ex-
pert, deterministic, offline, control based) to represent the
normal sequential behavior of the product flow. If the
product flow deviates from this model, the ADS detects an
anomaly and raises an alarm. However, this ADS detects
FPs when the product flow is modified by environmental
events and then deviates from the expected flow described
in N1. Let N2 and N3 be two Petri Nets based on N1,
yet updated to showcase the effect of two uncertainties, a
change of recipe and a human intervention.

In N2 (Fig. 3), two places pOa and pOb are added to
represent the initial choice of recipe between a and b, and a
parallel path to the original one describes the realization of




the recipe b with a new place p2b and two new transitions
t1b and 2b. In N2, the recipe b was chosen (m0(p0b) = 1),
which means the token will now transit through p2b to
reach p3 from pl. Considering the ADS model N1, this new
path means the non realization of the operation p2 between
pl and p3. This results in a false anomaly detection (FP).

Fig. 3. Petri Net N2

In N3 (Fig. 4), a place pF is added to symbolize that
the place p2 is free or not. In normal situation, p2 is
initially free (mO(pF) = 1) and the process follows N1.
However, in some situation, a product can get blocked on
the production line between pl and p3, resulting in p2
being not free (m0(pF') = 0). In this case, t1 can not be
enabled and pl keeps getting fed with products (tokens)
from previous places (p0). To face this problematic, an
operator (pOP) is requested (tOP) when pl is overloaded
(w(pl,tOP) = 2). The operator unloads manually pl to
feed p3 (t1b) and thus, keeps the process operational.
Considering the ADS model N1, the human intervention
means the non realization of operation p2 and, such as N2,
results in a FP for the ADS.

Fig. 4. Petri Net N3

6. CONCLUSION AND FUTURE WORKS

In this paper, behavioral ADSs were presented in regards
with the main features of their models. Concurrently, the
manufacturing ICSs environment was introduced in high-
lights of its heterogeneity and its uncertainty. An overview
of the effects of this environment on behavioral ADSs
detection results was submitted and illustrated through
a table and an example. The main objective of this paper
is to provide a method to orientate the choice of the ADS
model features considering the ICS environmental charac-
teristics. Nonetheless, this paper has to cope with some
limitations and investigations that need to be addressed.
First, an experimentation should be conducted on a test
bed to demonstrate the validity of the ICS environmental
effects on ADS detection results. Stochastic and online
ADS should as well be further studied and modeled in
order to prove their feasibility and their good detection
results on manufacturing ICSs. Secondly, within the ar-
chitectural heterogeneity factor, we have not considered
independently all the existing architectural frameworks
and their security practices. Indeed, depending on the
framework, detection results could vary from one ICS to
another. This limitation needs to be further addressed.

Finally, based on a deep knowledge of the environmental
uncertainties, a future work could be conducted around
the ability for an ADS to distinct between attacks and
other anomalies.
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