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Abstract. We prove a large deviation principle for a greedy exploration process
on an Erdös-Rényi (ER) graph when the number of nodes goes to infinity. To
prove our main result, we use the general strategy to study large deviations of pro-
cesses proposed by Feng and Kurtz (2006), based on the convergence of non-linear
semigroups. The rate function can be expressed in a closed-form formula, and asso-
ciated optimization problems can be solved explicitly, providing the large deviation
trajectory. Also, we derive an LDP for the size of the maximum independent set
discovered by such an algorithm and analyze the probability that it exceeds known
bounds for the maximal independent set. We also analyze the link between these
results and the landscape complexity of the independent set and the exploration
dynamic.

1. Introduction

Consider a finite, possibly random, graph G for which V is the set of N nodes or
vertices. A typical sequential exploration algorithm, usually referred to as “greedy

Key words and phrases. Large Deviation Principle, Greedy Exploration Algorithms, Erdös-
Rényi Graphs, Hamilton-Jacobi equations, Comparison Principle.
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algorithm” 1 works as follows. Initially, all the vertices are declared as unexplored.
At each step, it selects a vertex and changes its state into active. After this, it
takes all of its unexplored neighbors and changes their states into blocked. The
active and blocked vertices are considered as explored and removed from the set of
unexplored vertices. The algorithm keeps repeating this procedure until step T ∗N ,
at which all vertices are either active or blocked (or equivalently, the set of the
unexplored vertex is empty). Observe that at any step k, the active vertices form
an independent set (i.e. there are no edges between the nodes of this set) and that
T ∗N is the size of the independent set constructed by the algorithm. Let ZNk be the
number of explored nodes at time k, then ZNT∗N

= N .

Our motivation to study such an exploration process on random graphs is twofold.
On the one hand, exploration processes have received a great amount of attention in
spatial structures. It has been considered on discrete structures like Zd (see Ritchie
(2006); Ferrari et al. (2002)) and point processes (see Penrose (2001); Baccelli and
Tien Viet (2012)). In physics and biological sciences, where it is usually referred
to as random sequential absorption, it models phenomena of deposition of colloidal
particles or proteins on surfaces (see Evans (1993)). In communication sciences and
wireless networks in particular, it allows to represent the number of connections for
CSMA-like algorithms in a given time-slot, for a given spatial configuration of ter-
minals (see Kleinrock and Takagi (1985) for a classical reference on the protocol
definition).

On the other hand, these dynamics are the simplest procedure to construct
(maximal) independent sets and have been extensively studied for specific graphs.
Explicit results for the size of these sets have been obtained for regular graphs in
Wormald (1995), exploiting their particular structure; see also Gamarnik and Sudan
(2017) for graphs with large girths, and Bermolen et al. (2017b) for more general
configuration models. In this context, the greedy algorithm is the simplest instance
of a local algorithm, i.e., an algorithm using only local information available at
each vertex and using some randomness. Recently, it was proven in Gamarnik
and Sudan (2017) that contrary to previously stated conjectures (for instance, in
Hatami et al. (2014)), local algorithms can not discover asymptotically maximum
independent sets (independent set of the maximum size) and stay sub-optimal,
up to multiplicative constant, for regular graphs with large girth. Hence, it is
natural to look at related questions for Erdös-Rényi (ER) graphs: we focus on
giving estimates of reaching a given size of maximum independent sets by studying
the large deviations of the exploration process.

Thanks to the great amount of independence and symmetry of the edges’ col-
lection in a sparse ER graph G(N, c/N), the greedy exploration algorithm is char-
acterized by

{
ZNk
}
k
, a simple one-dimensional Markov process. Consequently, a

functional law of large numbers described by a differential equation can be employed
to get the macroscopic size of the constructed independent set when the number
of nodes goes to infinity (see Bermolen et al. (2017a) and references in McDiarmid
(1990)). Diffusion approximations for the process and central limit theorem de-
rived from it for the size T ∗N of the associated independent set are also known,
see Bermolen et al. (2017a). Moreover, in Pittel (1982), exponential bounds are
proved for the probability that the stopping times tf (G(N, p/N)) of the f -driven

1called greedy although there is no policy to choose the optimal vertex in each step, see for

instance the definition of an unweighted greedy algorithm in Jungnickel (2005).



3

algorithms (in particular, T ∗N ) belong to certain intervals. However, to the best of
our knowledge, there is no characterization of a large deviation principle (LDP) for
both the discrete-time Markov process

{
ZNk
}
k

and the random variable T ∗N , which
can give various types of useful information both on the greedy exploration and on
the independent set landscape. For example, it allows determining the most proba-
ble trajectory for which the independent set’s size is bigger/samaller than selected
bounds. The present paper’s topic is a refined analysis of this simple algorithm
by studying the large deviations (LD) for the sequence of processes

{
ZNk
}
k
. As a

corollary, we obtain an LDP for the size of the independent set constructed by the
algorithm.

Although
{
ZNk
}
k

is a simple Markov process, as far as we know, computing its
LDP does not directly follow from classical results. Indeed, the well-known work
of Freidlin and Wentzell (1984) is not directly applicable to our process since both
the drift and the jump measure involved in the underlying stochastic differential
equation depend on the scaling parameter. An LD upper bound for a general family
of processes, including processes whose (discontinuous) drift and jump measure
depends on the scaling, is presented in Dupuis et al. (1991). However, the authors
do not provide sufficient conditions to ensure that the general upper bound obtained
for simpler processes is still valid for this case.

In this article, we use techniques from the theory of viscosity solutions to Hamilton-
Jacobi equations and prove that its LD upper bound not only works for a continuous-
time version of

{
ZNk
}
k
, but is also effectively the LD rate function. To prove this

LDP, we use the general strategy to study of large deviations of processes pro-
posed by Feng and Kurtz (2006), which is based on the convergence of non-linear
semigroups.

In general, there are at least two approaches in the literature to prove an LDP.
The traditional approach to LDP is via the so-called change of measure method.
Indeed, beginning with the work of Cramér (1938) and including the fundamental
work on large deviations for stochastic processes by Freidlin and Wentzell (1984)
and Donsker and Varadhan (1975), much of the analysis has been based on a change
of measure techniques. In this approach, a tilted or reference measure is identified
under which the events of interest have a high probability. The probability of
the event under the original measure is bounded in terms of the Radon-Nikodym
density that relates both measures. In our case, finding a direct change of measure
turns out to be a highly non-trivial task due to the transitions rate dependence on
the state and the intricate overall dependence on the scaling parameter.

Another approach is analogous to the Prohorov compactness approach to weak
convergence of probability measures (by studying these measures’ tightness). It is
sometimes referred to as the exponential tightness method. This has been estab-
lished by Puhalskii (1994), O’Brien and Vervaat (1995), de Acosta (1997), Dupuis
and Ellis (1997), Fleming (1985), Evans and Ishii (1985), and others.

The remarkable work of Feng and Kurtz (2006) consists of combining the tools
of probability, analysis, and control theory used in the works of de Acosta (1997),
Dupuis and Ellis (1997), Evans and Ishii (1985), Fleming (1977/78), Fleming
(1985), Fleming (1999), Puhalskii (1994), and others to propose a general strat-
egy for the study of large deviations of processes. In the case of Markov processes,
this program is carried out in four steps: The first step consists of proving the
convergence of non-linear generators HN and derive the limit operator H. The



4 P. Bermolen, V. Goicoechea, M.Jonckheere and E.Mordecki

second step consists of verifying the exponential compact containment condition.
The third step consists of proving that H generates a semigroup V = {Vt}t. This
issue is nontrivial and follows, for example, by showing that the Hamilton-Jacobi
equation f(x)−βH (x,∇f(x))−h(x) = 0 has a unique solution f for all h ∈ C(E)
and β > 0 in a viscosity sense when H(f)(x) = H (x,∇f(x)). The rate function
is constructed in terms of that limit V. This limiting semigroup usually admits a
variational form known as the Nisio semigroup in control theory. Then, the fourth
step consists of constructing a variational representation for the rate function. In a
nutshell, as a consequence of the first two steps, the process verifies the exponential
tightness condition; the third step assures the existence of an LDP, and the fourth
step provides a useful variational version of the rate.

In our case, after working on the four steps that we mentioned before, we de-
duce not only a variational form of the rate function but also prove that it can be
expressed as an action integral of a cost function L. Moreover, by solving the asso-
ciated Hamilton’s equations, the optimization of the rate over a set of trajectories
can be transformed into a real parametric function optimization.

Additionally, the cost function L has a simple interpretation in terms of local
deviations for the average of Poisson random variables. As such, this is a first step
to understand how such local algorithms behave on complicated landscapes.

This result also allows us to derive quantitative results about the independent
set’s size constructed by this algorithm. For instance, we can compute the prob-
ability that this size is larger than the asymptotic Erdös bound for the maximum
independent set when c ≥ 3 and for the maximum independent set’s exact value
when c < e. In particular, it sheds light on the relation between the complexity
of the landscape and the exploration algorithm. It is known (and coined as the
e-phenomena in Spitzer (1975); Jonckheere and Saenz (2019)) that for G(N, c/N)
with c < e, an improved local algorithm (the degree-greedy algorithm, which is an
improvement of the modification of the greedy algorithm presented in the earlier
paper of Karp and Sipser (1981)) is asymptotically optimal. The computation of
LD estimates for the greedy exploration (using the asymptotic Erdös bound) al-
lows us to give evidence of a phase transition for the independent set landscape
around e (we lose some precision here because of using a bound instead of the true
asymptotic value of the independent set), but it hints at an interesting connection
between complexity phase transitions and explicit large deviations results.

The rest of the paper is organized as follows. In Section 2, we define our model
and present the main result of this article: a path-state LDP for the greedy explo-
ration process. As a corollary, we obtain an LDP for the size of the independent set
discovered by the algorithm and analyze its implications. In Section 3, we briefly
describe Feng and Kurtz’s theory in our context and prove our main theorem.

2. Main Results

In this section, we define our process and state the main results of the paper.
The key steps of the proof of Theorem 2.1 are presented in the next section.

2.1. Greedy exploration algorithm. Let G
(
N, cN

)
be a sparse Erdös-Rényi graph

for which V is the set of N vertices. At any step k = 0, 1, 2, . . ., we consider that
each vertex is either active, blocked, or unexplored. Accordingly, the set of vertices
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will be split into three components: the set of active vertices Ak, the set of blocked
vertices Bk, and the set of unexplored vertices Uk.

The greedy exploration algorithm in discrete time on a graph G can be described
as follows. Initially, it sets U0 = V , A0 = ∅ and B0 = ∅. To explore the graph,
at the (k + 1)-th step it selects uniformly a vertex ik+1 ∈ Uk and changes its state
into active. After this, it takes all of its unexplored neighbors, i.e. the set Nik+1

=
{w ∈ Uk|ik+1 shares and edge with w}, and changes their states into blocked. This
means that the resulting set of vertices will be given by Uk+1 = Uk\{ik+1 ∪Nik+1

},
Ak+1 = Ak ∪{ik+1} and Bk+1 = Bk ∪Nik+1

. The algorithm iterates this procedure
until the step T ∗N at which all vertices are either active or blocked (or equivalently
UT∗N = ∅). Observe that at any step k, the active vertices form an independent set
and that AT∗N is a maximal independent set (because each of the vertices in V \AT∗N
is a neighbour of at least one vertice of AT∗N ).

Let ZNk =
∣∣ANk ∪ BNk ∣∣ be the number of explored vertices at step k. By construc-

tion, ZNk+1 = ZNk + 1 + ζNk+1, where ζNk+1 is the number of unexplored neighbors of

the selected active vertex at step k + 1. The distribution of ζNk+1 depends only on

the number of already explored vertices ZNk , that is the distribution is Binomial
with updated parameter N −ZNk − 1 and the same edge probability c/N . The pro-
cess

{
ZNk
}
k

is then a discrete time Markov chain with state space {0, 1, 2, ..., N},
increasing, time-homogeneous and with an absorbing state N . We are interested in
T ∗N ∈ {0, 1, 2, ..., N}, the time at which

{
ZNk
}
k

reaches N , since T ∗N coincides with
the size of the maximal independent set constructed by this algorithm.

We use the notation in the work of Feng and Kurtz (2006) for the discrete time

Markov processes case. Let Ỹ N =
{
Ỹ Nk

}
k≥0

be a scaled version of the described

process: Ỹ Nk =
ZNk
N . The transition operator of the process Ỹ N for x ∈ EN ={

k
N : k = 0, 1, ..., N

}
is:

TN (f) (x) := TỸ N (f) (x) = E
[
f

(
x+

1

N
+

1

N
ζN,x

)]
, (2.1)

where ζN,x is the number of unexplored neighbors of the selected active vertex
given that there are already Nx explored vertices. Then ζN,x has a Binomial
distribution with parameters N−Nx−1 and c

N . We consider the embedding maps

ηN : EN → E, where E = [0, 1]. Define the following continuous process:

Y Nt = Ỹ N[Nt] =
Z[Nt]

N
if t ∈ [0, 1] . (2.2)

This process is a semimartingale; moreover, it can be decomposed as

Y Nt =

∫ t

0

[
1 + c

(
1− Y Ns −

1

N

)]
ds+

MN
tN

N
,

where
{
MN
t

}
t

is a FN =
{
FNt
}
t

martingale with FNt = σ
(
ZN[Ns] : 0 ≤ s ≤ t

)
.

In Bermolen et al. (2017a) it is proved that the sequence of processes
{
Y N
}
N

,

contained in the space of càdlàg functions DE [0, 1], converges in the Skorohod
topology to {z(t) ∧ 1}0≤t≤1, where z is the solution of the ODE:

ż = 1 + c (1− z) ; z(0) = 0. (2.3)
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This equation has an explicit solution given by z(t) = 1+c
c (1− e−ct). Moreover, a

law of large numbers can be deduced for the proportion of vertices that form the

independent set constructed by the algorithm. In particular, it is proved that
T∗N
N

converges in probability to T ∗ defined by z (T ∗) = 1, i.e. T ∗ = 1
c log (1 + c).

In the same paper (Bermolen et al., 2017a) and for a different scaling of the

process, a diffusion result is also proved from which a central limit theorem for
T∗N
N

is deduced:
√
N
(
T∗N
N − T

∗
)

converges in distribution to a centered normal random

variable with variance σ2 = c
2(c+1)2

. Now in the present document, we study an

LDP for both the sequence of processes
{
Y N
}
N

and for
{
T∗N
N

}
N

. It is known that

the results of the central limit theorems and large deviations types are independent
of each other, and neither is stronger than the other. However, we will see that an
LDP also automatically provides results of the law of large numbers type.

2.2. Large Deviation Principle. This paper aims to present a more refined analysis
of the simple exploration algorithm presented in the previous section. As a corollary,

in the next section, we deduce an LDP for the sequence of random variables
{
T∗N
N

}
N

.

Theorem 2.1 (LDP for
{
Y N
}
N

). The sequence
{
Y N
}
N

with Y N =
{
Y Nt
}

0≤t≤1
,

where Y Nt =
ZN[Nt]
N , verifies an LDP on DE [0, 1] with good rate function I : DE [0, 1]→

[0,+∞] such that:

I(ϕ) =

{∫ 1

0
L (ϕ, ϕ̇) dt if ϕ ∈ HL,

+∞ in other case,
(2.4)

where E = [0, 1], L : E × R→ R is the cost function given by

L(x, β) =


(β − 1)

[
log
(

β−1
c(1−x)

)
− 1
]

+ c(1− x), if x < 1 and β > 1,

c(1− x), if x < 1 and β = 1,

0, if x = 1 and β = 0,

+∞ in other cases ,

(2.5)

and HL is the set of all absolutely continuous2 function ϕ : [0, 1]→ [0, 1] with value

0 at 0 and such that the integral
∫ 1

0
L (ϕ(t), ϕ̇(t)) dt exists and it is finite.

The proof is deferred to Section 3.

Remark 2.2 (Law of large numbers). The cost function (2.5) is the Legendre trans-
form w.r.t the second variable of the function H : E × R→ R given by

H (x, α) =

{
α+ c (1− x) (eα − 1) , if 0 ≤ x < 1,

0, if x = 1,
(2.6)

that is L (x, β) = sup
α∈R
{αβ −H (x, α)}. Since H (x, α) is convex with respect to α,

the function L is also convex with respect to β and verifies H (x, α) = sup
β∈R
{αβ −

2A function ϕ : [a, b]→ R is absolutely continuous if it can be written as an integral function;
i.e. there exists a Lebesgue integrable function ψ on [a, b] such that ϕ(x) = ϕ(a) +

∫ x
a ψ(t)dt for

all x ∈ [a, b].
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L (x, β)}. We use the notation H ↔ L for short. As L (x, β) = 0 if and only if
β = Hα (x, 0), where Hα (x, α) is the partial derivative of H (x, α) w.r.t. α, the
trajectories with zero cost are the ones that verify ϕ̇ = Hα (ϕ, 0) = 1 + c(1−ϕ(t)).
For the initial condition ϕ(0) = 0, as expected, the unique trajectory that has zero
cost is the fluid limit z given by Equation (2.3) i.e. I(z) = 0 and I(ϕ) > 0 for all
ϕ 6= z.

The following proposition gives an intuitive interpretation of the cost function
L(x, β) in terms of the rate function for the average of independent Poisson random
variables.

Proposition 2.3. For x < 1 and β > 1, it is verified that L (x, β) = Λ∗c(1−x) (β − 1) ,

where Λ∗λ(u) is the LD rate function for the average of independent Poisson random
variables with parameter λ.

Proof : The rate function given by Crámer’s theorem for the average of independent
random variables Poisson with parameter λ is Λ∗λ(u) = u

(
log
(
u
λ

)
− 1
)

+ λ (see
Dembo and Zeitouni (1998) for example). To complete the proof it is enough to
observe that L(x, β) coincides with Λ∗λ(u) when λ = c(1− x) and u = β − 1. �

The previous result can be explained using the following heuristics (which, of
course, are far from a proof but give some intuition):

• The graph’s sparsity implies that the graph is locally tree-like and that
the exploration does not see neighbors of a given vertex being neighbors
between them.
• The asymptotic distribution of the number of unexplored neighbors of the

selected active vertex is Poisson with a time-varying mean. In other words,
the exploration does not change the Poisson nature of the degree distribu-
tion, which can be explained by the fact that the biased size distribution
of Poisson distribution is again Poisson.

More precisely, the cost of a given curve x(t) such that x ∈ HL with ẋ(t) > 1 for
all t ∈ [0, 1] is given by L (x(t), ẋ(t)) = Λ∗λ(t) (ẋ(t)− 1), with λ(t) = c (1− x(t)). For

a fixed t ∈ (0, 1), the curve x(t) represents the macroscopic proportion of explored

vertices at time t. Then, the infinitesimal increment ẋ(t) ≈ x(t+h)−x(t)
h corresponds

to the mean number of new explored nodes in one step (the new active node and
its unexplored blocked neighbors), that is:

Y Nt+h − Y Nt
h

=
1

Nh

[Nt+Nh]∑
k=[Nt]+1

(
1 + ζNk

)
≈ 1 +

1

Nh

[Nt+Nh]∑
k=[Nt]+1

ζNk ,

where ζNk has a Binomial distribution with parameters N − Zk − 1 and c
N . For

large values of N and k ∈ [[Nt] + 1, [Nt + Nh]], if Zk
N is close to x(t), then ζNk

can be approximated by a Poisson random variable with parameter (N − Zk −
1) cN ≈ c(1−x(t)). Observe that, in particular, the mean macroscopic behavior z(t)
should verify ż(t) = 1 + c(1 − z(t)), which is the fluid limit we have already seen.
Moreover, the global cost of a deviation from a trajectory x(t) can be interpreted
as a consequence of the accumulated cost of microscopic deviations of the average
of Poisson random variables of parameter c(1− x(t)).
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2.2.1. Rare event probability estimation. We now use the previous theorem to esti-
mate probabilities of rare events related to

{
Y N
}
N

. In the next section, we apply
these results to derive an LDP for the size of the independent set constructed by
the algorithm.

As a consequence of Theorem 2.1, if A ⊂ DE [0, 1] is a good set for I (or an
I-continuous set, see (Dembo and Zeitouni, 1998)), then lim

N

1
N logP

(
Y N ∈ A

)
=

− inf
ϕ∈A

I(ϕ) . The next proposition will facilitate the computation of this infimum

for the sets A of interest.

Proposition 2.4 (Rate function optimization). (1) The optimization problem
for the rate over a set of trajectories A ⊂ DE [0, 1] can be reduced to a one-
dimensional optimization problem: inf

ϕ∈A
I(ϕ) = inf

{α0∈R: x̂α0∈Ā}
F (α0) , where

the closure of A is considered with respect to the Skorohod topology,

F (α0) =

∫ Tα0

0

L (xα0(t), ẋα0(t)) dt, (2.7)

xα0
is the solution of the ODE:{

ẋ = 1 + c(1− x)eα, x(0) = 0,

α̇ = c(eα − 1), α(0) = α0,
(2.8)

Tα0
= inf{t ∈ [0, 1] : xα0

(t) ≥ 1} and x̂α0
(t) = xα0

(t) ∧ 1.

(2) The explicit solution of Equation (2.8) is the fluid limit (2.3) when α0 = 0.
For α 6= 0 it is given by:

xα0
(t) =

[
1

ck0
log

(
1− k0

1− k0ect

)
+

1

e−ct − k0
− 1

1− k0

] (
e−ct − k0

)
, (2.9)

where k0 = 1 − e−α0 . In this case, F (α0) can be written as F (α0) =∫ Tα0

0
c (1− xα0

(t))
[
eα(t) (α(t)− 1) + 1

]
dt, where α(t) = − log (1− k0e

ct).

Then, in other words, Theorem 2.1 and the previous proposition ensure that,
given that the process Y N ∈ A, one might expect that sup

t∈[0,1]

∣∣Y Nt − x̂α∗0 (t)
∣∣ ≈ 0 for

some α∗0 such that x̂α∗0 ∈ Ā.

Proof : To prove the first statement, note that if ϕ ∈ HL is such that ϕ(t) = 1

for all t ≥ t0, then I(ϕ) =
∫ 1

0
L(ϕ, ϕ̇)dt =

∫ t0
0
L(ϕ, ϕ̇)dt, so just consider the

Euler-Lagrange (EL) equation (2.10) for x < 1 and β > 1. Equation (2.10) gives
conditions for a function ϕ to be a stationary curve of the functional I:

Lx(ϕ, ϕ̇)− d

dt
Lβ(ϕ, ϕ̇) = 0 (Euler-Lagrange), (2.10)

where Lx and Lβ are the partial derivatives of L w.r.t. x and β respectively. In this
case, the path {x(t)}t is a stationary curve of I if it satisfies the following ODE:

(x− 1)ẍ+ (cx− (1 + c)) ẋ− cx+ (1 + c) = 0,

x(0) = 0,

ẋ(0) = v0.

(2.11)
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Figure 2.1. Graph of x̂α0
for same value of α0 < 0 (left graph)

and α0 > 0 (right graph) compared with the fluid limit z ∧ 1.

To solve (2.11), we consider Hamilton’s equations, which are equivalent to EL (see
Arnold (1987), for example):{

ẋ = Hα(x, α),

α̇ = −Hx(x, α),
(Hamilton), (2.12)

where α is an auxiliary function. Hx and Hα are the partial derivatives of H w.r.t.
x and α. In our case these equations give (2.8). We are interested in solutions xα0

of (2.8) up to the time they reach the value 1, then we take x̂α0
as in the proposition

and get inf
ϕ∈A

I (ϕ) = inf
{α0: x̂α0∈Ā}

I (x̂α0
) .

The uniqueness of the solution of the ODE in (2.11), ensures that a monotony
property with respect to the initial condition α0 holds. This implies that xα0

(t) > t
for all t if α0 > −∞, then Tα0

= inf {t ∈ [0, 1] : xα0
(t) ≥ 1} ≤ 1 and I (x̂α0

) =
F (α0) with F (α0) defined in (2.7). Figure 2.1 contains the graph of x̂α0

for same
value of α0 < 0 and α0 > 0 compared with the fluid limit z ∧ 1.

To prove the second part of the proposition, observe that the fluid limit (2.3)
(until it reaches x = 1) is a solution of ż = 1 + c(1− z), so it is a solution of (2.8)
with α = 0. If α0 6= 0, the solution xα0

can be found explicitly and it is given by
(2.9). We use that xα0

is solution of (2.8) for the simplification of the cost function
L (xα0 , ẋα0). Figure 2.2 contains the graph of F (α0) = I (x̂α0) as a function of
α0. �

Remark 2.5. Let us introduce some comments on the previous result:

(1) The ODE continuity theorem is verified with respect to the initial condition
for the system (2.8). Then, the solution x̂α0

with initial conditions x(0) = 0
and α(0) = α0 ≈ 0, is close to the fluid limit z ∧ 1.

(2) The system (2.12) is conservative: if u(t) = (x(t), α(t)) is the solution of
(2.12) with initial conditions u0 = (0, α0), it verifies u̇ = J∇H(u) with J =(

0 1
−1 0

)
. Since J is an antisymmetric matrix, it results that d

dtH(u) =

(∇H(u))
t
J∇H(u) = 0 for all t. Then, the solutions of the general equation

(2.12) are contained in the level sets of the Hamiltonian H.
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Figure 2.2. Graph of the function F (α0) = I (x̂α0
), that is, a

parametric version of the rate function.

2.3. LDP for the size of the independent set constructed by the algorithm. In the
previous section, we presented a path-space LDP for the exploration process de-
fined in Section 1. In this section, we derive from this theorem and the previous
proposition about the rate optimization over a specific set, an LDP for the se-

quence of random variables
{
T∗N
N

}
N

. This theorem provides quantitative results

for the probability of the independent set’s size being bigger/smaller than selected
bounds.

Theorem 2.6. Consider T ∗N defined before as the stopping time of the greedy ex-
ploration process over G(N, cN ).

(1) If ε > 0 is such that T ∗ + ε < 1, then

lim
N

1

N
logP

(
T ∗N
N
≥ T ∗ + ε

)
= −F (α0(T ∗ + ε)) ,

where α0(T ∗+ ε) is the unique real number α0 < 0 such that Tα0 = T ∗+ ε.
(2) If ε > 0 is such that T ∗ − ε > 0, then

lim
N

1

N
logP

(
T ∗N
N
≤ T ∗ − ε

)
= −F (α0(T ∗ − ε)) ,

where α0(T ∗− ε) is the unique real number α0 > 0 such that Tα0
= T ∗− ε.

In both cases F (α0) and Tα0 are as in Proposition 2.4.

Proof : We only prove the first statement because the proof of the second one is
analogous. Define the set Aε such that Aε = {ϕ ∈ DE [0, 1] : ϕ(0) = 0, ϕ is
increasing, 0 ≤ ϕ(t) ≤ 1 for all t and inf {t : ϕ(t) = 1} ≥ T ∗+ ε}. By construction,
Aε is a good set for I, then

lim
N

1

N
logP

(
T ∗N
N
≥ T ∗ + ε

)
= lim

N

1

N
logP

(
Y N ∈ Aε

)
= − inf
{α0: x̂α0

∈Aε}
F (α0) .

Let xα0 be the solution of the homogenous ODE (2.11) with initial velocity
v0 = ẋα0

(0) = 1 + ceα0 . The uniqueness of the solution ensures that the following
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monotony property with respect to the initial condition is verified:

if α0 < α1 ⇒ xα0
(t) < xα1

(t) for all t⇒ Tα0
> Tα1

.

In addition, it can be seen that for all T ∈ (T ∗, 1), there exists a unique value
α0 = α0(T ) < 0 such that xα0(T ) = 1 (i.e. T = Tα0). Then, there is only one
α∗0 < 0 such that xα∗0 (T ∗ + ε) = 1 and

• if α0 ≤ α∗0 ⇒ Tα0
≥ T ∗ + ε⇒ x̂α0

∈ Aε,
• if α0 > α∗0 ⇒ Tα0

< T ∗ + ε⇒ x̂α0
/∈ Aε,

which implies that inf
{α0:x̂α0

∈Aε}
F (α0) = inf

{α0≤α∗0}
F (α0). To complete the proof it

suffices to prove that inf
{α0≤α∗0}

F (α0) = F (α∗0). Let h(α0, t) = L(xα0
, ẋα0

) and

α1 < α2 < 0. Using the monotony that we mentioned before, it can be seen that
∂
∂α0

h(α0, t) < 0 for all α0 < 0 and t ∈ [0, 1], that is h(α1, t) > h(α2, t) for all t.
Finally, since Tα1

> Tα2
we obtain:

F (α2) =

∫ Tα2

0

L(xα2 , ẋα2)dt ≤
∫ Tα2

0

L(xα1 , ẋα1)dt <

∫ Tα1

0

L(xα1 , ẋα1)dt = F (α1),

which completes the proof. �

2.4. On the size of the maximum independent set. The problem of finding the max-
imum independent sets in deterministic graphs is known to be NP-hard. An inter-
esting research question is to find classes on random graphs where finding maximum
independent sets can be (at least at the first order in N) obtained with polynomial
complexity. This question is, of course, an instance of a more general viewpoint
which aims at identifying phase transitions in the analysis of combinatorial opti-
mization problems, allowing to describe drastically different scenarios depending
on a few macroscopic parameters, sometimes called order-parameters.

This type of results has been proven to hold for Erdös-Rényi graphs and configura-
tion models in Spitzer (1975) and Jonckheere and Saenz (2019). The order-parameter
being c the mean number of neighbors of a given node. Interestingly the phase tran-
sition does not correspond for the graph to be subcritical (c < 1) but to a much
finer property of the landscape of maximal independent sets. The phase transition
corresponds to c < e and differentiates between regimes where a simple degree-
greedy algorithm reaches (asymptotically) the maximum independent set or not.
This same phase transition is reflected in the properties of the spectrum of the
graph, see Coste and Salez (2018).

We conjecture that the large deviations characteristics of the greedy algorithm for
discovering maximum independent set also have an interesting transition for values
of c around e. Since the exact optimal order-one asymptotic value of the maximal
independent set’s size is known only for values of c < e, we cannot yet display
a full characterization of this phenomena. We can, however, obtain interesting
numerical results by using the Erdös bound, instead of the true value. Let σN
the maximum size of the independent set of an ER graph G(N, c/N), then a.s.

σN ≤ 2 log(c)
c N(1 + o(N)) if c ≥ 3. In Figure 2.3 we compute the large deviation

rate corresponding to the event {T
∗
N

N ≥ σ∗i (c)} for i = 1, 2. Here σ∗1 is the exact
proportion of the maximum independent set of an ER graph G(N, c/N) when c < e

(Jonckheere and Saenz (2019)) and it is given by σ∗1(c) = w(c) + c
2 (w(c))

2
with
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Figure 2.3. Evolution of F (α0(σ∗1(c))) for 0 < c < e and
F (α0(σ∗2(c))) for c ≥ 3.

w(c) = e−W (c) and W (x) the Lambert function. The value σ∗2(c) = 2
c log(c) is the

Erdös upper bound for the proportion of the maximum independent set for c ≥ 3.
Though the numerical computations for c > e could give largely overestimated

values, we believe it nevertheless illustrates the clear change of regime around the
value e. It shows that the independent sets geometry changes, leading to signif-
icantly greater large deviations constants for the greedy exploration when c gets
larger than e. This characterization of the “energy” landscape is a usual situa-
tion in statistical physics where interesting phase transitions can be well described
through large deviations, see Touchette (2009).

3. Proof of Theorem 2.1

In this section, we first briefly describe the theory and main results of Feng and
Kurtz (2006) in our context, and then we prove that the previously defined sequence
of processes {YN}N verifies their assumptions. We organize the main assumptions
in four steps described below.

3.1. Theory of Feng and Kurtz in our context. As mentioned in Section 1, Feng and
Kurtz based their study of large deviations on the exponential tightness method.
The main result according to this approach is Bryc’s theorem. This theorem states
that if (X , d) is a Polish space; {PN}N is an exponentially tight 3 sequence of

3The sequence {PN}N is exponentially tight if for all α > 0 exists a compact Kα ⊂ X such

that lim sup
N

1

N
log PN (Kc

α) ≤ −α.
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probability measures defined on X , and the following limit exists:

Λ(f) = lim
N

1

N
log

∫
X
eNf(x)dPN (x) ∀f ∈ Cb(X ),

then {PN}N satisfies an LDP with rate function I : X → R such that I(x) =
sup {f(x)− Λ(f) : f ∈ Cb(X )} , where Cb(X ) is the space of bounded and contin-
uous functions f : X → R.

Consider now the case in which {PN}N comes from a sequence of continu-

ous or discrete-time Markov processes
{
Y N
}
N

with space of states EN . Sup-

pose that EN ⊂ E for all N . Then X = DE [0, T ] (T ≤ +∞), the space of
càdlàg functions equipped with the Skorohod topology (in the discrete case, the
time is transformed to be continuous, as we did for the process

{
ZNk
}
k

in (2.2)).
There are results in the literature that ensure equivalent conditions to the ex-
ponential tightness, but the calculation of Λ(f) is very difficult or even impos-
sible. The theory of Feng and Kurtz solves both, this problem and the expo-
nential tightness. As the transitions characterize the Markov dynamics, instead

of calculating lim
N

1
N logE

[
eNf(Y

N)
]
, the convergence of the Fleming semigroups

(see Fleming (1985)) is studied: V Nt : Dom
(
V Nt
)
⊂ B(E) → B(E) such that

V Nt (f)(x) = 1
N logE

[
eNf(Y Nt )|Y N0 = x

]
, where B(E) is the space of bounded,

Borel measurable functions (i.e. t is fixed and the domain of the functions f is E
instead of the much more complex space DE [0, T ]). In Feng and Kurtz (2006) it is
proved that, under certain assumptions, the convergence of the Fleming semigroups
ensures an LDP. Actually, instead of studying the convergence of

{
V Nt
}
t∈[0,T ]

, the

convergence of their (nonlinear) generators HN is studied. The general idea is that
if there is a functional H such that HN → H (the type of convergence will depend
on each case), H generates a semigroup V = {Vt}t and the exponential compact con-

tainment condition is verified, then the sequence
{
Y N
}
N

verifies an LDP with rate

function I that depends on V. Moreover, if H is such that H (f) (x) = H (x, f ′(x))
for all f ∈ C1 (E) and Conditions 8.9, 8.10 and 8.11 of Feng and Kurtz (2006)
are also verified, we obtain a variational version of I. In our particular case, the
rate will be written as an action integral of L (x, β)↔ H (x, α).

The main steps of the proof of Theorem 2.1 are now briefly outlined. As a conse-
quence of the first two steps, the process {Y N}N verifies the exponential tightness
condition. Step 3 assures an LDP via the comparison principle, and finally, Step 4
provides a useful variational version of the rate. Let TN the transition operators
defined in Equation 2.1 and HN (f) = log

(
e−NfTN

(
eNf

))
.

Step 1. Verify the convergence of the sequence of operators HN and derive the
limit operator H. See Proposition 3.2 and note that H (f) (x) = H (x, f ′(x)) for
f ∈ C1(E).

Step 2. Verify the exponential compact containment condition. The sequence
{
Y N
}
N

verifies the exponential compact containment condition if for all α > 0, there exists
Kα ⊂ E compact such that lim sup

N

1
N logP

({
∃ t ∈ [0, T ] : Y Nt /∈ Kα

})
≤ −α. In

our case E is compact, so this condition is trivially verified by taking Kα = E.
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Step 3. Prove that H generates a semigroup V = {Vt}t (comparison principle).

This is the most technical step. By definition, V Nt verifies d
dtV

N
t (f) = HN

(
V Nt (f)

)
.

Then H generates a semigroup if there is V = {Vt}t such that for all f ∈ Dom(V),

d

dt
Vt(f) = H (Vt(f)) ; V0(f) = f.

The theorem of Crandall and Liggett (1971) implies that µN (t) =
(
Id− t

NH
)−N

converges to the solution of the previous equation if H is m-dissipative. Then we
need to prove that for all h ∈ C(E) and β > 0, there exists f ∈ C1(E) such that

f − βH(f)− h = 0. (3.1)

However the verification of this property can be a formidable obstacle. One way
out is to work with viscosity solutions and prove that the comparison principle
(see Definition 3.3) for Equation (3.1) is verified. If the comparison principle is

verified, then the operator H can be extended to Ĥ such that Ĥ is m-dissipative
and generates a semigroup V (see Theorem 8.27 of Feng and Kurtz (2006)). As
mentioned by Feng and Kurtz (2006), the verification of the comparison principle
is an analytic issue and often gives the impression of being rather involved and dis-
connected from the probabilistic large deviations problems. An in-depth study of
the comparison principle for Hamilton-Jacobi equations in this context is presented
in Kraaij (2016), using results from Crandall et al. (1992) and Chapter 9 of Feng
and Kurtz (2006). We follow these ideas to prove the comparison principle in our
case. See Proposition 3.4.

Once we have verified these three steps, Theorem 6.14 from Feng and Kurtz
(2006) assures that

{
Y N
}
N

is exponentially tight and satisfies an LDP with rate
function I defined implicitly in terms of Vt. This is a theoretical result but does not
provide a useful characterization of the rate. The next step provides a simplified
version of the rate that can be used in practice.

Step 4. Construct a variational representation for the rate function I. Let L (x, β)↔
H (x, α). We state the following result:

Theorem 3.1. If Conditions 8.9, 8.10 and 8.11 of Feng and Kurtz (2006) are
also verified, then:

(a) Vt (f) = Vt (f) for all f ∈ Dom (V), where

Vt(f)(x0) = sup
{(x,λ)∈Y:x(0)=x0}

{
f(x(t))−

∫∫
U×[0,t]

L (x(s), u)λ(du× ds)

}
,

is the Nisio semigroup (see Nisio (1976, 1978); Fleming (1999); El Karoui
et al. (1982)) associated to the cost function −L. Y is a control subset that
we define in subsection 3.4.

(b) I(x) = inf
{λ: (x,λ)∈Y}

{∫∫
U×[0,1]

L(x(s), u)λ(du× ds)
}

.

(c) Moreover, the rate function can be written as an action integral:

I(x) =

∫ 1

0

L(x(s), ẋ(s))ds,

if x ∈ HL and I((x)) = +∞ in another case.
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Proof : The first two sentences, (a) and (b), are proved by Theorems 8.14, 8.23,
8.27 and 8.29 of Feng and Kurtz (2006) taking E = [0, 1], U = R, the linear
operator A : C1(E) → M (E × U) such that A(f)(x, u) = f ′(x)u, L(x, β) ↔
H(x, α) and Γ = E × U . For (c) we use that L is convex w.r.t. the second
variable and Jensen’s inequality. �

Then, it remains for us to verify Conditions 8.9, 8.10 and 8.11. We do this in
Section 3.4.

We organize the proof of Theorem 2.1 using the steps mentioned above, that are
presented as propositions. As mentioned before, Step 2 is trivially verified in our
case.

3.2. Step 1: Convergence of the nonlinear operators. LetHN : Dom(HN ) ⊂ B(E)→
B(E) such that HN = log

[
e−Nf(x)TN

(
eNf

)
(x)
]

with TN the transition operator

for the process
{
ZNk
N

}
k
.

Proposition 3.2. There exists a functional H such that HN converges to H when
N → ∞ in the following sense: lim

N→∞
sup
x∈EN

|HN (f)(x)−H(f)(x)| = 0 for all f ∈

C1(E). The functional H : C1(E) → B(E) is such that H(f)(x) = H(x, f ′(x)),
where H : E × R→ R is defined by

H(x, α) =

{
α+ c(1− x) (eα − 1) , if x < 1,

0, if x = 1.
(3.2)

Proof : Let us first consider the case where f ∈ C2(E). Let x ∈ EN , x 6= 1, and
ζN,x be the number of unexplored neighbors of the selected vertex, given that there
are already Nx explored vertices, then

HN (f)(x) =

logE

[
exp

{
f
(
x+ 1

N +
ζN,x
N

)
−f(x)

1
N

}]
, if 0 ≤ x < 1,

0, if x = 1.

It is enough to prove that

lim
N→∞

sup
x∈EN\{1}

E

exp

f
(
x+ 1

N +
ζN,x
N

)
− f(x)

1
N


− E

[
ef
′(x)(1+ζN,x)

]
= 0,

and this is verified since both E
[
ef
′(x)(ζN,x+1)

(
e±

Mf
2

(ζN,x+1)2

N − 1

)]
converge to

zero, beingMf = sup
θ∈[0,1]

|f ′′(θ)| <∞. If x = 1, thenHN (f)(1) = H(f)(1) = 0 for all

N . The result can be extended for f ∈ C1(E) by taking a sequence {fm}m ⊂ C2(E)
such that lim

m→∞
sup
x∈E
|fm(x)− f(x)| = 0 and the triangular inequality. �

3.3. Step 3: Comparison principle. As mentioned before, the verification that for
all β > 0 and h ∈ C(E) there exists a solution f ∈ C1(E) for the equation
f(x)− βH (x, f ′(x))− h(x) = 0 is difficult or imposible. An alternative is to prove
the existence (and uniqueness) of viscosity solutions. Moreover, due to Theorem
6.14 of Feng and Kurtz (2006), it is enough to prove that the comparison principle
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is verified for this Hamilton-Jacobi equation. The ideas to prove it were taken from
Kraaij (2016), Chapter 9 of Feng and Kurtz (2006) and Crandall et al. (1992).

Let β > 0, h ∈ C(E) and Fβ,h : E × R2 → R such that Fβ,h(x, ε, p) = ε −
βH(x, p)− h(x). Consider the following Hamilton-Jacobi equation:

Fβ,h(x, f(x), f ′(x)) = 0 ∀x ∈ E. (3.3)

Definition 3.3. The function µ→ R is a (viscosity) subsolution [supersolution] of
Equation (3.3) if it is bounded, upper [lower ] semi-continuous (u.s.c.) [l.s.c] and
for all φ ∈ C1(E) and x0 ∈ E such that µ − φ has a maximum [minimum] at x0,
we have Fβ,h (x0, µ(x0), φ′(x0)) ≤ 0 [≥ 0]. Equation (3.3) verifies the comparison
principle if for any subsolution µ and supersolution v, it is verified that µ ≤ v.

If the comparison principle is verified, then if there is a viscosity solution (both
sub and supersolution), it is unique. In Chapter 9 of Feng and Kurtz (2006) algo-
rithms are suggested for constructing sequences xα, yα (with α → +∞) such that
(xα, yα)→ (z, z) and z verifies µ(z)− v(z) = sup

x∈E
{µ(x)− v(x)}.

Proposition 3.4. For each β > 0 and h ∈ C(E) the comparison principle is
satisfied for Equation 3.3 with f ∈ C1(E) = Dom(H).

Proof : Let µ be a subsolution and v a supersolution of Equation (3.3).

Let ψ : [0, 1]
2 → R+ such that ψ(x, y) = 1

2 (x− y)
2

and let xα, yα ∈ E such that

µ(xα)− v(yα)− αψ(xα, yα) = sup
x,y∈E

{µ(x)− v(y)− αψ(x, y)} .

As consequence of Proposition 4.2 in Kraaij (2016) it is enough to prove that the
following inequality holds:

lim inf
α→∞

H (xα, αψx (xα, yα))−H (yα, αψx (xα, yα)) ≤ 0,

where ψx is the derivative of ψ w.r.t. x. If z ∈ [0, 1), then

H (xα, αψx (xα, yα))−H (yα, αψx (xα, yα)) = −c
(
eα(xα−yα) − 1

)
(xα − yα) .

By Proposition 3.7 in Crandall et al. (1992), we know that xα − yα → 0 and due
to Lemma 4.5 in Kraaij (2016) we have:

sup
α
H (yα, α (xα − yα)) = sup

α
α (xα − yα) + c (1− yα)

(
eα(xα−yα) − 1

)
<∞,

and this implies that sup
α
α (xα − yα) <∞. Then {α (xα − yα)}α has a convergent

subsequence. Let A be its limit. Then,

lim inf
α→∞

H (xα, αψx (xα, yα))−H (yα, αψx (xα, yα)) ≤ H (z,A)−H (z,A) = 0.

For z = 1, we repeat the previous analysis, being careful with cases in which xα = 1
or yα = 1 after a certain α0. �
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3.4. Step 4: Variational representation of the rate function. In this section, we
formally define the Nisio semigroup Vt that was mentioned in Theorem 3.1. By
Theorem 3.1, it is enough to prove that Conditions 8.9, 8.10, and 8.11 from Feng
and Kurtz (2006) are verified in our case. We present them as propositions. Als,
the role of absolutely continuous functions in the definition of the rate function I
is explained.

Definition 3.5 (Control set of a linear operator and Nisio semigroup). Let U and E
be complete and separable metric spaces. Let A : Dom(A) ⊂ B(E) → M (E × U)
be a single valued linear operator. Let Mm(U) be the space of Borel measures λ
on U × [0, 1] satisfying λ (U × [0, t]) = t for all t ∈ [0, 1]. The measure λ is known
as a relaxed control. We say that the pair (x, λ) ∈ DE [0, 1]×Mm(U) satisfies the
relaxed control equation for A if and only if:

(1)
∫∫
U×[0,t]

|A(f)(x(s), u)|λ (du× ds) <∞ ∀f ∈ Dom(A), ∀t ∈ [0, 1];

(2) f (x(t))−f (x(0)) =
∫∫
U×[0,t]

A(f)(x(s), u)λ (du× ds) ∀f ∈ Dom(A), ∀t ∈
[0, 1].

We denote the collection of pairs satisfying the above properties by Y. The Nisio
semigroup corresponding to the control problem determined by the linear operator
A and the cost function −L is:

Vt(f)(x0) = sup
{(x,λ)∈Y: x(0)=x0}

{
f(x(t))−

∫∫
U×[0,t]

L(x(s), u)λ (du× ds)

}
(3.4)

for each x0 ∈ E (the supremum of an empty set is defined to be −∞). Note that
operator A appears in the definition of the control set.

In our case, as H(f)(x) = H (x, f ′(x)) for each x ∈ E = [0, 1] and H ↔ L, we
have that H can be written as H(f)(x) = sup

u∈U
{A(f)(x, u)− L(x, u)} , where U = R

and A : C1(E) → M (E × U) is the linear operator A(f)(x, u) = f ′(x)u. As L is
convex w.r.t. β, it follows that a deterministic control λ (du× ds) = δu(s)(du)ds is
allways the control with smallest cost by Jensen’s inequality. Moreover, if x : E → R
is an absolutely continuous function (we note x ∈ AC for short), then

f (x(t))− f (x(0)) =

t∫
0

f ′ (x(s)) ẋ(s)ds =

∫∫
R×[0,t]

f ′ (x(s)) uλ(du× ds),

if we define λ = λ(x) such that λ(du× ds) = δẋ(s)(du)ds. Then, the supremum in
Equation 3.4 is reached on {(x, λ) : x ∈ AC, x(0) = x0} ⊂ Y.

Proposition 3.6. Conditions 8.9 of Feng and Kurtz (2006) are verified.

Proof : Conditions (1) to (4) are trivially verified. For (5) we construct Ψf as in
Lemma 10.21 of Feng and Kurtz (2006). �

Proposition 3.7. Condition 8.10 from Feng and Kurtz (2006) is verified, i.e. for
all x0 ∈ E there exists (x, λ) ∈ Y such that x(0) = x0 and∫∫

U×[0,1]

L (x(s), u)λ (du× ds) = 0.
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Proof : Since L(x, u) = 0 ⇔ u = Hα(x, 0), the function q(x) = Hα(x, 0) = 1 +
c(1− x) solves the equation L(x, q(x)) = 0 for all x ∈ E. Note that the fluid limit
verifies ż = q(z) with the initial condition z(0) = 0. Given x0 ∈ E, there exists
t0 ∈ [0, 1] such that z(t0) = x0, then z (t+ t0) is the solution of ẋ = q(x) with
x(0) = x0. Define x(t) = z(t+ t0)∧1 for all t ∈ [0, 1] and λ such that λ (du× ds) =
δ{q(x(s))}(du)× ds, then (x, λ) ∈ Y and verifies the required condition. �

Proposition 3.8. Condition 8.11 from Feng and Kurtz (2006) is verified, i.e. for
all x0 ∈ E and f ∈ C1(E) there exists (x, λ) = (xf , λf ) ∈ Y such that x(0) = x0

and

t2∫
t1

H(f) (x(s)) ds ≤
∫∫

U×[t1,t2]

[A(f) (x(s), u)− L (x(s), u)]λ (ds× du) ,

for all 0 ≤ t1 ≤ t2 ≤ 1.

Proof : Let x0 ∈ E and f ∈ C1(E) be fixed. Since H(f)(x) ≥ A(f)(x, u)− L(x, u)
for all (x, u) ∈ E × U , we need to find (x, λ) ∈ Y such that x(0) = x0 and

t∫
0

H (x(s), f ′ (x(s))) ds =

∫∫
U×[0,t]

[f ′ (x(s))u− L (x(s), u)]λ (ds× du) , (3.5)

for all t ∈ [0, 1]. If we define qf (x) = Hα(x, f ′(x)), then H(x, f ′(x)) = f ′(x)qf (x)−
L (x, qf (x)) and Equation 3.5 is verified if we take λ (du× ds) = δ{qf (x(s))}(du) ds.
Now we have to add conditions so that in addition (x, λ) ∈ Y. In particular, (x, λ)
has to verify:

t∫
0

g′ (x(s)) qf (x(s)) ds = g (x(t))− g (x(0)) ∀t ∈ [0, 1], ∀g ∈ C1(E).

Then we look for a path that solves the following problem:
x is differentiable almost everywhere and ẋ(t) = qf (x(t)) ,

x(0) = x0,

x(t) ∈ [0, 1] for all t ≥ 0.

(3.6)

Let x0 ∈ [0, 1). Note that qf (x) = 1 + c(1 − x)ef
′(x) > 1 is continuous, then from

Peano’s theorem (see Crandall (1972)) we know that the ODE

{
ẋ(t) = qf (x(t))

x(t0) = x0

has a local solution x : J → R, being J an open neighborhood of t0, it is also
increasing and verifies x(t) ≥ t for all t ∈ [0, 1]. Since we need x ∈ DE [0, 1], we can
paste these local solutions until the time Tx0

it reaches 1 and define x(t) = 1 for
Tx0
≤ t ≤ 1. If x0 = 1, we take x ≡ 1. �
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B. I. Arnold. Métodos Matemáticos da Mecanica Clásica. Editora Mir Moscovo

(1987).
F. Baccelli and N. Tien Viet. Generating Functionals of Random Packing Point

Processes: From Hard-Core to Carrier Sensing. Computing Research Repository
(CoRR). (2012). abs/1202.0225.

P. Bermolen, M. Jonckheere and Sanders J. Scaling Limits and Generic Bounds for
Exploration Processes. Journal of Statistical Physics. 5, 989–1018 (2017a).

P. Bermolen, M. Jonckheere and Pascal. Moyal. The jamming constant of uni-
form random graphs. Stochastic Processes and their Applications. 7, 2138–2178
(2017b).

Simon Coste and Justin Salez. Emergence of extended states at zero in the spectrum
of sparse random graphs (2018). 1809.07587.
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