
HAL Id: hal-03625471
https://hal.science/hal-03625471

Submitted on 30 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the polygonal Faber-Krahn inequality
Beniamin Bogosel, Dorin Bucur

To cite this version:
Beniamin Bogosel, Dorin Bucur. On the polygonal Faber-Krahn inequality. Journal de l’École poly-
technique - Mathématiques, 2023, 11, pp.19-105. �10.5802/jep.250�. �hal-03625471�

https://hal.science/hal-03625471
https://hal.archives-ouvertes.fr


ON THE POLYGONAL FABER-KRAHN INEQUALITY

BENIAMIN BOGOSEL, DORIN BUCUR

Abstract. It has been conjectured by Pólya and Szegö seventy years ago that the planar set
which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n
sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only
been proved for triangles and quadrilaterals. In this paper we prove that for each n ≥ 5 the
proof of the conjecture can be reduced to a finite number of certified numerical computations.
Moreover, the local minimality of the regular polygon can be reduced to a single numerical
computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical approx-
imation by finite elements, up to machine errors.
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1. Introduction

For every bounded, open set Ω ⊂ R2 we consider the eigenvalue problem for the Laplace
operator with Dirichlet boundary conditions

(1)

{
−∆u = λu in Ω,

u = 0 on ∂Ω.

The spectrum consists only on eigenvalues, which can be ordered (counting the multiplicity),

0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λk(Ω) . . .→ +∞.

Lord Rayleigh conjectured in 1877 that the first eigenvalue is minimal on the disc, among all
other planar domains of the same area. The proof was given in 1923 by Faber in two dimensions
and three years later extended by Krahn in any dimension of the Euclidean space (see [14] for
a description of the history of the problem and [25, 24] for a survey of the topic).
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In their book of 1951, Pólya and Szegö have conjectured a polygonal version of this inequality
(see [42, page 158]). Precisely, denote by Pn the family of simple polygons with n sides in R2

and for every n ≥ 3 consider the problem

(2) min
P∈Pn,|P |=π

λ1(P ).

Pólya-Szegö Conjecture (1951). The unique solution to problem (2) is the regular polygon
with n sides and area π.

This question, easy to state, has puzzeld many mathematicians in the last seventy years, but
no significant progress has been made. The conjecture holds true for n = 3 and n = 4. A proof
can be found, for instance, in [24] as a straightforward application of the Steiner symmetrization
principle (the original proof can be found in [42]). However, Steiner symmetrization techniques
do not allow the treatment of the case n ≥ 5 since, performing this procedure, the number of
vertices could possibly increase. We are not aware of further results regarding this conjecture.
Neverteless, we mention a new approach, which applies only to triangles, proposed by Fragalà
and Velichkov in [19], establishing that equilateral triangles are the only critical points for the
first eigenvalue.

A question of the same nature, involving the logarithmic capacity, has been completely solved
by Solynin and Zalgaler [46] in 2004. The proof takes full advantage from the specific struc-
ture of the problem, in particular from harmonicity of the capacitary functions; it can not be
extended to eigenvalues. Minimization of variational energies in the class of polygons has been
intensively investigated in the recent years (see the survey by Laugesen and Siudeja [35] or [10]
and references therein) but the very specific polygonal version of the Faber-Krahn inequality
remains unanswered.

It is quite straightforward to prove the existence of an optimal n-gon in the closure of the set
of simple n-gons with respect to the Hausdorff distance of the complements, as shown in [24,
Chapter 3]. It has precisely n edges, but it is possibly degenerate in the sense that a vertex
could belong to another edge. However, it is not even known that this polygon has to be convex!
Meanwhile, many numerical experiments have been performed for small values of n (see for
instance [2], [6, Chapter 1]) which all suggest the validity of the conjecture.

The purpose of this paper is twofold. A first objective is to prove that local minimality of the
regular polygon can be reduced to a single certified numerical computation. In fact, we prove that
the local minimality of the regular polygon is a consequence of the positivity of the eigenvalues
of a (2n−4)×(2n−4) matrix related to the shape Hessian of the scale invariant functional Pn 3
P → |P |λ1(P ). The dimension 2n−4 reflects the number of degrees of freedom for n−2 vertices,
onces two consecutive ones are fixed. There are two challenges in this question: a theoretical
one and a numerical one. First, one needs to prove that if the matrix is positive definite for the
regular polygon then, for a neigbourhood of the regular polygon, the matrix remains positive
definite. This question is itself not trivial and requires to take full advantage from the uniform
H2+s regularity of the eigenfunctions for polygons which are small perturbations of the regular
one. Secondly, in the absence of theoretical results concerning the positivity of the eigenvalues
of the Hessian matrix, one has to perform certified computations of the positive eigenvalues of
the matrix, i.e. numerical computations with explicit error bounds that are sufficiently small.
In our context the matrix coefficients depend on solutions of PDEs with singular right hand
sides (in H−1+γ) involving the traces of the gradient of the first eigenfunction on the diameter
of the polygon. We perform these computations for n = 5, 6, 7, 8 and certify the numerical
approximation by finite elements, up to machine errors. In order to support the conjecture, we
provide as well (uncertified) numerical computations for n = 9, . . . , 15.

A second objective of our paper is to prove that for each n ≥ 5 the complete proof of the
conjecture can formally be reduced to a finite number of numerical computations. Roughly
speaking, first, we analytically find a computable open neigbourhood of the regular polygon
where the local minimality occurs. This requires a precise estimate of the modulus of continuity
of the shape Hessian matrix obtained above, for small perturbations of the regular polygon.
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This is the most technical part of the paper. Second, we give a bound for the maximal possible
diameter of the optimal polygon as well as for the minimal length edge and inradius, when its
area is fixed. As a consequence, it remains to prove that all polygons with free vertices in a
(computable) compact set K ⊆ R2n−4 are not optimal. This can be done by performing a finite
number of certified computations of first eigenvalues, areas and perimeters. Indeed, if a polygon
has vertices in the compact set K and is not optimal, then either due to uniform estimates
of the modulus of continuity of the eigenvalue and measure or to monotonicty of both these
quantities to inclusions, non-optimality is certified in an open neigbourhood. A finite number
of such (open) neigbourdhoods will cover K.

Le us detail our strategy.

Step 1. (Formal computation of the shape Hessian matrix). We interpret the first
eigenvalue as a function depending on the coordinates of the vertices of the n-gon (obtaining
a function defined on a subset of R2n) and choose an appropriate, equivalent scale invariant
formulation for problem (2). Once the validity of the first order optimality condition on the
regular polygon is established, we compute the analytic expression of the shape Hessian. For
that purpose, we rely on the computations done by A. Laurain in [36] for the energy functional
(we recall the corresponding result in Remark 7.6) and perform similar computations for the
eigenvalue, following the same method. Taking perturbations of polygons with n sides in the
second shape derivative, we obtain the Hessian matrix (of size 2n×2n) for the eigenvalue having
the vertex coordinates as variables.

Step 2. (Numerical proof of the positivity of the shape Hessian matrix for the reg-
ular polygon, for a given n). The shape Hessian matrix of the scale invariant functional has
four eigenvalues equal to 0, corresponding to the rigid motions and homotheties of the polygon.
We use interval arithmetics and explicit error estimates for the finite element approximation to
certify the positivity of the other eigenvalues of the shape Hessian matrix for the regular polygon
with n sides. For n = 5, 6, 7, 8 and a suitable choice of an appropriate discretization, we certify,
up to machine errors appearing in the meshing, the assembly and the resolution of the linear
systems in the finite element method, that the remaining 2n−4 of the eigenvalues of the Hessian
are strictly positive.

A fully certified (including machine errors aspects) positivity of the eigenvalues of the shape
Hessian matrix is enough to prove the local minimality of the regular polygon, provided one
knows that the coefficients of the matrix are continuous for small geometric perturbations of
the regular polygon. This type of stability result is necessary to establish that the non zero
eigenvalues remain positive in small neighborhood of the regular polygon. This is discussed in
Step 3, below. By strict convexity, the regular polygon will be a minimizer in this neighborhood.

Step 3. (Quantitative stability of the shape Hessian matrix coefficients). Our objec-
tive is to identify a computable neighborhood of the regular polygon where the eigenvalues of a
(2n− 4)× (2n− 4) submatrix of the shape Hessian matrix remains positive. The most technical
part is to give analytic, computable, estimates of the variation of the coefficients of the Hessian
matrix, for perturbations of the regular polygon. The difficulty comes from the fact that the
expression of the coefficients involve the solutions of some (degenerate) elliptic PDEs with data
in H−1+γ , depending on traces of the gradient of the eigenfunctions on segments. The analysis
requires quantitative estimates of the perturbation of the eigenfunction in H2 which relies, via
Gagliardo-Nirenberg interpolation inequalities, on control of their norm in H2+s. These esti-
mates show that the unique, certified, computation of the Hessian matrix on the regular polygon
is enough to obtain local minimality on a computable neignbourhood!

Step 4. (Analytic estimates of the maximal and minimal edge lengths of an optimal
polygon). We give a computable estimate of the maximal diameter of the optimal polygon,
provided its area is fixed. The estimate is inductively obtained for n ≥ 5: if the diameter of
an n-gon exceeds some (computable) value, then its eigenvalue is close to the one associated
to a polygon with n − 1 sides, so it can not be optimal in the class Pn. Here we use surgery
techniques inspired from [11], but face the difficulty of keeping constant the number of sides
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within the surgery procedure. As well, we give an analytic estimate for the minimal length of
an edge and of the minimal inradius.

Step 5. (Formal proof of the conjecture). We show how to give an inductive formal
proof of the conjecture reducing it to a finite number of (certified) numerical computations
for each value of n. Up to this point we have computed, for the scale invariant functional, a
neighborhood of the regular polygon where its minimality occurs and we have computed the
maximal and minimal legnths of edges of an optimal polygon at prescribed area. Therefore, we
are able to reduce the study of the conjecture to a family of polygons with vertices belonging to
a compact set. Any certified evaluation of the eigenvalue/area of such a polygon showing non
optimality, would readily produce a small neigbourhood of non optimal polygons, the size of the
neigbourhood being uniform and analitically computed. Monotonicity with respect to inclusions
of both the eigenvalue and the area may be very useful from a practical point of view, but not
necessary for a theoretical argument. Finally we get a ball covering of a compact set which with
known diameter, by balls of uniform size. This means that one can prove the conjecture after a
finite number of numerical computations. We shall describe this procedure in Section 7.

This type of numerical procedure has successfully been used in [9] (to which we refer for a
detailed description), for a different problem involving the same variational quantities but with
only two degrees of freedom. The arguments transfer directly to our problem.

Although we prove that for a specific n the proof of the conjecture is reduced to a finite
number computations, it is not our purpose to perform these computations, for two reasons. On
the one hand, all constants that we prove to exist should be optimized and effectively computed.
On the other hand, even for n = 5, in our procedure the number of degrees of freedom for
the free vertices is 6 (see Section 7). This demands huge computational capacities. In other
words, before any computational tentative, some further, deep, analysis should be performed to
dramatically reduce the size of the computational tasks.

The structure of the paper is the following. Section 2 is devoted to the computation of the
shape Hessian of the area and first eigenvalue functionals by a distributed formula. In particular,
on polygons, we give the expression of the Hessian matrix of the eigenvalue as function of
vertices coordinates. This section is inspired by the recent work of Laurain [36] for the energy
functional. Section 3 contains a quantitative geometric stability result of the coefficients of the
Hessian matrix with respect to vertex perturbations. This part is the key for the proof of the
local minimality of the regular polygon and allows to estimate the size of the neighborhood of
the regular polygon where minimality occurs. Sections 4 and 5 are devoted to the analysis of
the shape Hessian matrix coefficients and to estimates regarding their numerical approximation.
Section 6 contains certified computation of the eigenvalues of the shape Hessian matrix on the
regular polygon, justifying, up to machine errors, its local minimality for n = 5, 6, 7, 8. In Section
7 we give an estimate of the maximal diameter of an optimal polygon and show how the proof of
the conjecture reduces, for every n ∈ N, to a finite number of numerical computations. As well,
we make short comment about the polygonal Saint-Venant inequality for the torsional rigidity,
which can be analyzed in a similar way.

2. First and Second order shape derivatives

In this section we analyze the first and the second order shape derivatives of the first Dirich-
let eigenvalue, for both general domains and for polygons. This section follows the strategy
developed by Laurain in [36] for energy functionals (see Remark 7.6 for a brief summary of the
corresponding results). Many proofs are very similar and we shall not reproduce them, referring
to [36], whenever necessary. Nevertheless, the formulae for the eigenvalues are different, so that
we shall detail them. The ultimate objective for polygons is to get an expression of the Hessian
in distributed form involving sums over the two dimensional domains and remove any boundary
integral expression. This is somehow contrary to what usually one does in shape optimization,
the main motivation being that the distributed expression of the second shape derivative re-
quires less regularity hypotheses than the boundary expressions. This is particularly useful for
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polygons. Finally, when restricted to the class of polygons with n sides, we shall describe the
shape Hessian of the eigenvalue by a square symmetric matrix of size 2n× 2n.

In the literature one can find detailed descriptions of the shape gradients and shape Hessians
of the eigenvalue on a smooth set (see for instance [26, 27, 34, 13]). The case of polygons is more
delicate, since the boundary expression of the shape Hessian fails to have sense, due to the lack
of regularity of the boundary.

In order to simplify the reading and the interpretation of potential connections between the
results of this section and [36], we use the same notations and, when the computations are
similar, we prefer not to reproduce them and refer precisely to various sections in [36].

2.1. General domains. For vectors a, b ∈ Rd and matrices S,T ∈ Rd×d define the following:
• Id denotes the identity matrix
• a⊗ b is the second order tensor of two vectors (a⊗ b)ij = aibj
• a� b = 1

2(a⊗ b+ b⊗ a) is the symmetric outer product.
• a · b is the usual scalar product
• S : T =

∑n
i,j=1 SijTij is the matrix dot product.

It is immediate to notice that (a⊗ b)c = (c · b)a and S : (a⊗ b) = a · Sb.
Given a shape functional Ω→ J(Ω) and a vector field θ ∈W 1,∞(R2,R2) the shape derivative

of J at Ω, denoted by J ′(Ω) ∈ L(W 1,∞(R2,R2),R) is the Fréchet derivative of the application
θ 7→ J((I + θ)(Ω)) and verifies

J((I + θ)(Ω)) = J(Ω) + J ′(Ω)(θ) + o(‖θ‖W 1,∞).

As discussed in [36, Section 9.1], when computing second order shape derivatives, several ap-
proaches are possible. The one detailed in [36] uses the Eulerian derivative in order to compute
the Fréchet derivative. However, the Eulerian derivative requires more regularity on one of
the perturbation fields than W 1,∞(R2,R2), while perturbations of polygons are precisely in
W 1,∞(R2,R2).

For a given vector field θ ∈ W 1,∞(Rd,Rd) consider the domain Ωθ = (I + θ)(Ω). It is
well known that for ‖θ‖W 1,∞ < 1 this transformation is an invertible diffeomorphism. In the
following, when dealing with boundary value problems, we use subscripts to denote functions
ϕθ ∈ H1

0 (Ωθ) and superscripts to denote the functions ϕθ = ϕθ ◦ (I + θ) ∈ H1
0 (Ω).

The objective in the following is to have distributed expressions which require less regularity
than the generally well known boundary expressions for the shape derivative of the eigenvalue
([27], [26]). Following the strategy of Laurain for the energy functional, we state below ana-
logue results for the first and second Fréchet shape derivatives for the simple eigenvalues of the
Dirichlet-Laplace problem (1). While some of these facts are standard (for instance the ex-
pression of the first derivative), the expression of the Fréchet second derivative and the matrix
representation in the case of polygons seem to be new.

In the following we suppose θ is small enough such that λ(Ωθ) is still a simple eigenvalue.
For simplicity, we do not write its index, which remains constant along the perturbation. Let
uθ ∈ H1

0 (Ωθ) be the solution of

(3)

∫
Ωθ

∇uθ · ∇vθ dx = λ(Ωθ)

∫
Ωθ

uθvθ dx, ∀vθ ∈ H1
0 (Ωθ)

with the normalization
∫

Ωθ
(uθ)

2 dx = 1. Let uθ = uθ◦(I+θ) ∈ H1
0 (Ω), so that uθ = uθ◦(I+θ)−1.

Then

(4) ∇uθ = [(I +DθT )−1∇uθ] ◦ (I + θ)−1

and a change of variables leads to∫
Ω
A(θ)∇uθ · ∇v dx = λ(Ωθ)

∫
Ω
uθv det(I +Dθ) dx, for all v ∈ H1

0 (Ω),(5)

with the notation A(θ) = det(I +Dθ)(I +Dθ)−1(I +DθT )−1.
Following [26, Theorem 5.7.4 ], the mapping

θ ∈W 1,∞ 7→ (uθ, λk(θ)) ∈ H1
0 (Ω)× R
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is of class C∞ on a neighborhood of 0, without any smoothness requirement for Ω. We differen-
tiate (5) at 0 and denoting u̇(θ) ∈ H1

0 (Ω) the material derivative, we obtain for all v ∈ H1
0 (Ω)∫

Ω
A′(0)(θ)∇u · ∇v dx+

∫
Ω
∇u̇(θ) · ∇v dx = λ′(Ω)(θ)

∫
Ω
uv dx+ λ(Ω)

∫
Ω

[u̇(θ)v + uv div θ] dx,

for all v ∈ H1
0 (Ω), where A′(0)(θ) = div θ Id−Dθ −DθT . Regrouping terms gives

(6)

∫
Ω

(∇u̇(θ) · ∇v − λ(Ω)u̇(θ)v) dx

=

∫
Ω

(
−A′(0)(θ)∇u · ∇v + λ′(Ω)(θ)uv + λ(Ω)uv div θ

)
dx,

for every v ∈ H1
0 (Ω). Note that problem (6) does not have a unique solution. Indeed, adding to

u̇(θ) any eigenfunction for problem (1) associated to the eigenvalue λ(Ω) gives another solution.
Uniqueness is a consequence of the normalization condition

∫
Ω(uθ)2 det(I + Dθ) dx = 1. The

corresponding derivative evaluated at zero is

(7)

∫
Ω

2uu̇(θ) + u2 div θ dx = 0.

When dealing with a simple eigenvalue, the additional condition (7) is sufficient to uniquely
identify u̇(θ). For multiple eigenvalues, all eigenfunctions in the associated eigenspace should be
used in (7).

With these notations we are ready to state the following result.

Theorem 2.1. Let Ω ⊂ Rd be a bounded Lipschitz domain and θ, ξ ∈W 1,∞(Rd,Rd). Let λ be a
simple eigenvalue of the Dirichlet Laplacian and u an associated L2-normalized eigenfunction.
Then

(i) The distributed shape derivative of λ is given by

λ′(Ω)(θ) =

∫
Ω

Sλ1 : Dθ dx

with Sλ1 = (|∇u|2−λ(Ω)u2) Id−2∇u⊗∇u. If, in addition, u ∈ H2(Ω), the corresponding
boundary expression is

λ′(Ω)(θ) = −
∫
∂Ω
|∇u|2θ · n ds.

(ii) The second order distributed Fréchet derivative is given by

λ′′(Ω)(θ, ξ) =

∫
Ω
Kλ(θ, ξ)

with

Kλ(θ, ξ) = −2∇u̇(θ) · ∇u̇(ξ) + 2λ(Ω)u̇(θ)u̇(ξ) + Sλ1 : (Dθ div ξ +Dξ div θ)

+
(
−|∇u|2 + λu2

)
(div ξ div θ +DθT : Dξ)

+ 2(DθDξ +DξDθ +DξDθT )∇u · ∇u
−
[
λ′(Ω)(θ) div ξ + λ′(Ω)(ξ) div θ

]
u2.

where u̇(θ) and u̇(ξ) are the material derivatives in directions θ, ξ, respectively.

The first point is standard and may be found in many classical references, for instance [26].
Some formulae for the second derivative are also available in the literature, see [26], [27].The
key point is that the distributed expression shown above is valid for Lipschitz domains and
Lipschitz perturbations. Moreover, being written in symmetric form its expression helps in the
computation of the Hessian matrix in the case of polygons.
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Proof of Theorem 2.1. The first application of formula (6) is the expression of the first shape
derivative. This computation is a classical result, but we present it here for the sake of com-
pleteness, since it illustrates well the techniques used when computing shape derivatives. Take
v = u in (6) and note that, since u is the eigenfunction associated to λ(Ω),∫

Ω
∇u · ∇u̇(θ) dx = λ(Ω)

∫
Ω
uu̇(θ) dx.

Using
∫

Ω u
2 dx = 1, we obtain∫

Ω

(
div θ|∇u|2 − 2∇u⊗∇u : Dθ

)
dx = λ′(Ω)(θ) +

∫
Ω
λ(Ω)u2 div θ dx.

A direct computation leads to

(8) λ′(Ω)(θ) =

∫
Ω

[(|∇u|2 − λ(Ω)u2) Id−2∇u⊗∇u] : Dθ dx =

∫
Ω

Sλ1 : Dθ dx.

Now we choose ξ ∈ W 1,∞ and we redo the same procedure to differentiate the first shape
derivative (8). Denote Ωξ = (I + ξ)(Ω) and suppose that ξ is small enough such that λ(Ωξ) is
still a simple eigenvalue. Denote with uξ ∈ H1

0 (Ωξ) the eigenfunction associated to the simple
eigenvalue λ(Ωξ). We have

(9) λ′(Ωξ)(θ) =

∫
Ωξ

[
(|∇uξ|2 − λ(Ωξ)u

2
ξ) Id−2∇uξ ⊗∇uξ

]
: D(θ ◦ (I + ξ)−1) dx.

We also have the following elementary computation: D(θ◦(I+ξ)−1) = Dθ◦(I+ξ)−1D(I+ξ)−1.
As before, via a change of variables we write λ′(Ωξ)(θ) as an integral on Ω defining uξ =
uξ ◦ (I + ξ) ∈ H1

0 (Ω). Using (4) and performing a change of variables, we obtain

λ′(Ωξ)(θ) =

∫
Ω

[ (
(I +Dξ)−1(I +Dξ)−T∇uξ · ∇uξ − λ(Ωξ)(u

ξ)2
)

Id

− 2(I +Dξ)−T∇uξ ⊗ (I +Dξ)−T∇uξ
]

: DθD(I + ξ)−1 det(I +Dξ)

Now we are ready to compute the second Fréchet derivative of λ(Ω) by differentiating the
previous expression w.r.t. ξ at 0 and denoting the derivative of uξ at 0 by u̇(ξ). We use the
product rule, differentiating the first term, the term D((I + ξ)−1) and finally det(I + Dξ). In
particular, we have

• D((I + ζ)−1)′ζ(0)(ξ) = −Dξ.
• det(I +Dζ)′ζ(0)(ξ) = div(ξ).

We obtain the following initial formula for the second shape derivative:

λ′′(Ω)(θ, ξ) =

∫
Ω

Sλ1 : Dθ div ξ −
∫

Ω
Sλ1 : DθDξ dx

+

∫
Ω

[(−Dξ −DξT )∇u · ∇u+ 2∇u̇(ξ) · ∇u] div θ dx

−
∫

Ω
[λ′(Ω)(ξ)u2 + λ(Ω)2uu̇(ξ)] div θ dx

+

∫
Ω

[4DξT∇u�∇u : Dθ − 4∇u̇(ξ)�∇u : Dθ] dx

Following [36, pag 25], we have

−4(∇u̇(ξ)�∇u) : Dθ + 2∇u̇(ξ) · ∇udiv θ = 2A′(0)(θ)∇u · ∇u̇(ξ)

and the material derivative (6) gives

2

∫
Ω
A′(0)(θ)∇u · ∇u̇(ξ) dx = −2

∫
Ω
∇u̇(θ) · ∇u̇(ξ) dx+ 2λ′(Ω)(θ)

∫
Ω
uu̇(ξ) dx

+ 2λ(Ω)

∫
Ω
u̇(θ)u̇(ξ) dx+ 2λ(Ω)

∫
Ω
uu̇(ξ) div θ dx.
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The derivative of the normalization condition gives∫
Ω

2uu̇(ξ) dx = −
∫

Ω
u2 div ξ dx.

We also have

Sλ1 : DθDξ = (|∇u|2 − λu2)DθT : Dξ − 2DθDξ∇u · ∇u,
since tr(DθDξ) = DθT : Dξ. Combining all these expressions we obtain

λ′′(Ω)(θ, ξ) = −2

∫
Ω

(∇u̇(θ) · ∇u̇(ξ)− λ(Ω)u̇(θ)u̇(ξ)) dx+

∫
Ω

Sλ1 : Dθ div ξdx

−
∫

Ω
2Dξ∇u · ∇udiv θ dx

+

∫
Ω

4DξT∇u�∇u : Dθ dx

−
∫

Ω
[λ′(Ω)(θ) div ξ + λ′(Ω)(ξ) div θ]u2 dx

+

∫
Ω

(−|∇u|2 + λu2)DθT : Dξ + 2DθDξ∇u · ∇u dx.

We have

2DξT∇u�∇u : Dθ = (DξDθ +DξDθT )∇u · ∇u.
Which gives

λ′′(Ω)(θ, ξ) = −2

∫
Ω

(∇u̇(θ) · ∇u̇(ξ)− λ(Ω)u̇(θ)u̇(ξ)) dx+

∫
Ω

Sλ1 : (Dθ div ξ +Dξ div θ) dx

+

∫
Ω

(−|∇u|2 + λu2)(div θ div ξ +DθT : Dξ) dx

+ 2

∫
Ω

(DθDξ +DξDθ +DξDθT )∇u · ∇u dx

−
∫

Ω
[λ′(Ω)(θ) div ξ + λ′(Ω)(ξ) div θ]u2 dx.

This finishes the proof of the theorem. �

2.2. Polygons. In order to exploit the expression of Theorem 2.1 in the case when Ω is a
polygon, we follow again the strategy of Laurain [36] to extend a geometric perturbation of
vertices to a global perturbation of the polygon.

Vertex perturbation versus global perturbation. Suppose Ω is a n-gon. Starting from
a perturbation of the vertices, the perturbation field θ ∈ W 1,∞(R2) will be built as follows.
Denote the vertices of the polygon by ai ∈ R2, i = 0, ..., n− 1 and for each vertex consider the
vector perturbation θi ∈ R2, i = 0, ..., n − 1. Whenever necessary, we suppose that the indices
are considered modulo n. Consider a triangulation T of Ω such that the edges of the polygon are
complete edges of some triangles in this triangulation. Moreover, consider the following globally
Lipschitz functions ϕi for 0 ≤ i ≤ n−1 that are piecewise affine on each triangle of T and satisfy

(10) ϕi(aj) = δij =

{
1 if i = j

0 if i 6= j

Several choices are possible, as the two examples of Figure 1 show, their extension outside the
polygon being irrelevant. Then, we build a global perturbation of R2 given by

(11) θ =
n−1∑
i=0

θiϕi ∈W 1,∞(R2).
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a0

a1

a2

a3

a4

a0

a1

a2

a3

a4

1

0

Figure 1. Examples of admissible triangulations used for defining perturbations
on a polygon and graphical view of the function ϕ2.

Gradient and Hessian of the area functional. The shape derivatives for the area functional
are classical and are widely studied in the literature (see [26],[36], etc.). The expression of the
shape derivative of the area is

(12) |Ω|′(θ) =

∫
∂Ω
θ · n.

However, in the particular case of n-gons the situation is much simpler, since explicit formulae
exist in terms of the coordinates of the vertices of the polygon. For a non degenerate polygon
whose coordinates of the vertices are denoted by (xi, yi) and whose edges are oriented in the
counter-clockwise order the area is given by

A(x) =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi).

The coordinates are regrouped in the vector by concatenating the coordinates of the vertices ai

(13) x = (a0,a1, ...,an−1) = (x0, y0, ..., xn−1, yn−1) ∈ R2n,

which will always be the case in the following, when parametrizing polygons. The gradient of
the area in terms of the coordinates verifies:

∂A
∂xi

(x) =
1

2
(yi+1 − yi−1),

∂A
∂yi

(x) =
1

2
(−xi+1 + xi−1).

We denote by Rc,α the rotation around c ∈ R2 with angle α (in the trigonometric sense), hence
the gradient of the area has the geometric expression

(14) ∇A(x) =
1

2

(
Rai,−π/2(−−−−−→ai−1ai+1)

)
i=0,...,n−1

.

This is natural, since the area of the polygon when moving a vertex ai only varies when moving
the vertex ai in the normal direction to the closest diagonal.

Another expression of the gradient of the area, using the functions ϕi defined earlier, can be
found following the results of [36] and is given by

(15) ∇A(x) =

(∫
Ω
∇ϕi

)
i=0,...,n−1

.

Since the expression of the gradient of the area is linear in terms of the coordinates, the
Hessian matrix of the area of the polygon is the constant 2n× 2n block matrix

(16) D2A(x) =
(
Bij

)
0≤i,j≤n−1

where the non-zero 2× 2 blocks are given by Bij =

(
0 1

2
−1

2 0

)
if j = i+ 1 and Bij =

(
0 −1

2
1
2 0

)
if i = j + 1.
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ai

ai−1 ai+1

ai + θi

Figure 2. Boundary perturbation induced when perturbing a vertex

Following the results in [36] we find that the formula for the Hessian of the area in terms of
the functions ϕi can also be expressed using the following block structure

(17) Bij =

∫
Ω

[∇ϕi ⊗∇ϕj −∇ϕj ⊗∇ϕi].

In particular the Hessian of the area can be written as a tensorial product (Kronecker product)
between the matrices 

0 1 0 ... 0 −1
−1 0 1 ... 0 0
...

...
...

. . .
...

...
1 0 0 ... −1 0

 and

(
0 0.5
−0.5 0

)

Therefore, the corresponding eigenvalues and eigenvectors can be found explicitly.

Gradient of the eigenvalue. Below we compute the gradient of the eigenvalue (1) as function
of the vertices, i.e. the partial derivatives of these functionals with respect to the coordinates
of the vertices of the polygons. The expression of these gradients can be used to prove that
the regular polygon is a critical point under an area constraint and are useful for numerical
computations.

The expression of the gradient of the eigenvalue with respect to the coordinates is a conse-
quence of the shape derivative formulae recalled in the previous section. It is enough to use
the distributed expression of the shape derivative, valid in general, with the perturbation field
θ introduced in (11). An example is given in Figure 2 for θ = θiϕi. The proof is similar to the
case of the torsion energy [36]. We choose to detail here only the boundary expression, with a
slightly different argument than the one used in [36].

Theorem 2.2. The gradient of a simple Dirichlet-Laplace eigenvalue (1) when Ω is a polygon
with coordinates x as in (13) is given by

∇λ(x) =
(∫

Ω
Sλ1∇ϕi dx

)
i=0,...,n−1

= −
(∫

∂Ω
|∇u|2ϕin ds

)
i=0,...,n−1

,

where n is the outer unit normal vector.

Notice that the boundary expression is always valid, even though the eigenfunction itself
does not belong to H2(Ω). This is a consequence of the fact that in an arbitrarry polygon
(typically non convex), the eigenfunction enjoys a local H2+δ regularity far from the corners,
while at corners the singular part has a very specific structure, albeit good enough to make the
boundary expression of the gradient valid. We recall from [7] that

u = ureg + using,

where ureg ∈ H2+δ(Ω) for some δ > 0 and

using =

n−1∑
i=0

Ciψir
π
ωi sin(

π

ωi
θ),
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where Ci are constants, ωi are the angles, ψi is cutoff function equal to 1 in a neighborhood of
the vertex ai and (r, θ) are the polar coordinates around the angle i.

Proof. The expression ∇λ(x) =
( ∫

Ω Sλ1∇ϕi dx
)
i=0,...,n−1

is valid. It remains to prove the equal-

ity (∫
Ω

Sλ1∇ϕi
)
i=0,...,n−1

= −
(∫

∂Ω
|∇u|2ϕin

)
i=0,...,n−1

.

First, note that the gradient of u is point-wise defined on ∂Ω, except at the vertices, in a classical
way. We fix a vertex i and define

Ωε = Ω \ (B(ai−1, ε) ∪B(ai, ε) ∪B(ai+1, ε)),

Γε = Ω ∩ (∂B(ai−1, ε) ∪ ∂B(ai, ε) ∪ ∂B(ai+1, ε)).

Since u|Ωε ∈ H2(Ωε), a direct computation shows that div Sλ1 = 0 on Ωε, the divergence being
applied on lines. Moreover, since u = 0 on ∂Ω, the gradient∇u is colinear with the normal vector
n on ∂Ω. In particular, (∇u⊗∇u)n = (n ·∇u)∇u = |∇u|2n. As a consequence Sλ1n = −|∇u|2n.
Therefore we obtain∫

Ωε

Sλ1∇ϕidx = −
∫

Ωε

div(Sλ1)ϕidx+

∫
∂Ωε

Sλ1nϕi = −
∫
∂Ωε\Γε

|∇u|2ϕin +

∫
Γε

Sλ1nϕi.

We conclude by noticing that ∫
Γε

Sλ1nϕi → 0, for ε→ 0,

which is a consequence of the decomposition u = ureg + using. We know that ureg ∈ H2+δ(Ω)

and H2+δ(Ω) is embedded in W 1,∞(Ω), so that the gradient of ureg is bounded.

At the same time, |∇using| ≤ Cr
π
ωi
−1

for some constant C independent on ε. Both these
observations lead to ∫

Γε

|∇ureg|2 + |∇using|2 → 0, for ε→ 0.

To conclude notice that(∫
Ω

Sλ1∇ϕi
)
i=0,...,n−1

= lim
ε→0

(∫
Ωε

Sλ1∇ϕi
)
i=0,...,n−1

= − lim
ε→0

∫
∂Ωε\Γε

|∇u|2ϕin = −
∫
∂Ω
|∇u|2ϕin.

�

Remark 2.3. It is possible to note that the integrals which come into play in the boundary
expression of the gradient only need to be computed on two adjacent sides to vertex ai, which
gives

∇λ(x) =

(
−
∫
aiai−1

|∇u|2ϕinx −
∫
aiai+1

|∇u|2ϕinx
−
∫
aiai−1

|∇u|2ϕiny −
∫
aiai+1

|∇u|2ϕiny

)
i=0,...,n−1

.

In the following we make the convention that the Jacobian matrix of a vector function contains
gradients of the components on every line.
Hessian matrix of the eigenvalue. Following the notation of [36], we introduce the functions

Ui ∈ H1
0 (Ω,R2), i = 0, ..., n− 1 such that u̇(θ) =

∑n−1
i=0 θi ·Ui. Using (6) we get the set of two

PDEs: Ui ∈ H1
0 (Ω,R2),∫

Ω
(DUi∇v − λ(Ω)Uiv) dx =

∫
Ω

[−(∇ϕi ⊗∇u)∇v + 2(∇u�∇v)∇ϕi] dx

+

∫
Ω

Sλ1∇ϕi
∫

Ω
uv dx+ λ(Ω)

∫
Ω
uv∇ϕi dx,(18)
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for every v ∈ H1
0 (Ω). The normalization condition (7) gives

(19)

∫
Ω

(2uUi + u2∇ϕi) dx = 0,

so that the system of equations (18) - (19) has a unique solution Ui.

Theorem 2.4. The Hessian matrix Nλ ∈ R2n×2n of a simple Dirichlet-Laplace eigenvalue (1)
with respect to the coordinates of the n-gon is given by the following n× n block matrix

Nλ = (Nλ
ij)0≤i,j≤n−1

where the 2× 2 blocks are given by

Nλ
ij =

∫
Ω

(−2DUiDUT
j + 2λ(Ω)UiU

T
j +∇ϕi ⊗ Sλ1∇ϕj + Sλ1∇ϕi ⊗∇ϕj) dx

+

∫
Ω

(
−|∇u|2 + λ(Ω)u2

)
(2∇ϕi �∇ϕj) dx

+ 2

∫
Ω

[(∇ϕi · ∇u)(∇ϕj ⊗∇u) + (∇ϕj · ∇u)(∇u⊗∇ϕi) + (∇ϕi · ∇ϕj)(∇u⊗∇u)] dx

−
∫

Ω
u2

[
∇ϕi ⊗

(∫
Ω

Sλ1∇ϕj dx
)

+

(∫
Ω

Sλ1∇ϕi dx
)
⊗∇ϕj

]
dx(20)

where Ui ∈ H1(Ω,R2), i = 0, ..., n− 1 are solutions of (18)-(19).

Proof of Theorem 2.4: The proof of this result, is computational in nature and is inspired by
[36, Proposition 14]. To obtain the Hessian matrix we use the formula for Kλ given in Theorem
2.1 for the Fréchet second shape derivative. There are several terms, already computed in [36,
Appendix A], which also appear in the formula for the eigenvalue. We only present in detail the
terms which are different. We point out that in order to obtain directly the Hessian matrix, the
2× 2 blocks should be multiplied by the variables ξj below, which gives transposed 2× 2 blocks
compared to [36].

The first term is straightforward

−2

∫
Ω

(∇u̇(θ) · ∇u̇(ξ)− λ(Ω)u̇(θ)u̇(ξ)) dx =

n−1∑
i,j=0

θi ·
(∫

Ω
−2DUiDUT

j + λ(Ω)UiU
T
j dx

)
ξj .

The second term is treated in [36] (term L3, pag. 38):∫
Ω

Sλ1 : (Dθ div ξ +Dξ div θ) dx =
n−1∑
i,j=0

θi ·
(∫

Ω

(
∇ϕi ⊗ Sλ1∇ϕj + Sλ1∇ϕi ⊗∇ϕj

)
dx

)
ξj .

The third term is similar to the term L4 treated in [36] (pag. 39):

∫
Ω

(−|∇u|2 + λu2)(div θ div ξ +DθT : Dξ) dx =

n−1∑
i,j=0

θi ·
(∫

Ω

(
−|∇u|2 + λ(Ω)u2

)
(2∇ϕi �∇ϕj) dx

)
ξj

The fourth term treated in [36] (L5 pag. 39):

2

∫
Ω

(DθDξ +DξDθ +DξDθT )∇u · ∇u dx =

n−1∑
i,j=0

θi ·

(
2

∫
Ω

[
(∇ϕj · ∇u)(∇u⊗∇ϕi)

+ (∇ϕi · ∇u)(∇ϕj ⊗∇u) + (∇ϕi · ∇ϕj)(∇u⊗∇u)
]
dx

)
ξj

The fifth term is new and will be computed below. Note that under the conventions θ =∑n−1
i=0 θiϕi and ξ =

∑n−1
i=0 ξiϕi (see (10)-(11) for the definition of ϕi) we have:
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• div θ =
∑n−1

i=0 θi · ∇ϕi
• for a 2× 2 matrix A, A : Dθ =

∑n−1
i=0 θi ·A∇ϕi.

Using these relations we have∫
Ω

[λ′(Ω)(θ) div ξ + λ′(Ω)(ξ) div θ]u2 dx

=

n−1∑
i,j=0

∫
Ω
u2

[(∫
Ω
θi · Sλ1∇ϕi dx

)
(ξj · ∇ϕj) +

(∫
Ω
ξj · Sλ1∇ϕj dx

)
(θi · ∇ϕi)

]
dx

=
n−1∑
i,j=0

θi ·
(∫

Ω
u2

[
∇ϕi ⊗

(∫
Ω

Sλ1∇ϕj dx
)

+

(∫
Ω

Sλ1∇ϕi dx
)
⊗∇ϕj

]
dx

)
ξj

Regrouping all the above results finishes the proof of the theorem. �

Remark 2.5. It is worth to notice that the matrix Nλ obtained in Theorem 2.4 and the
corresponding matrix obtained by Laurain in [36, Proposition 14] have similar structures (see
Remark 7.6). Moreover, the results resemble the structure of the tensor Sλ1 corresponding to
the first shape derivative in distributed form. The matrix Nλ has an additional term coming
from the fact that the eigenvalue λ(Ω) is already present in Sλ1 , and its derivative appears when
computing the second shape derivative.

Remark 2.6. It can be noted that the Hessian matrix found in (20) does not depend on the
normalization condition (19). It is more convenient in the following to suppose that the functions
Ui are normalized with the following condition

(21)

∫
Ω
uUi dx = 0

where u is the eigenfunction associated to the simple eigenvalue λ(Ω) of the Dirichlet-Laplacian.

General properties of the Hessian matrix. The formulas for the gradient and the
Hessian matrix obtained previously do not depend on the choice of the perturbation given in
(11). As illustrated in Figure 1 multiple choices for the triangulations defining the functions ϕi
are possible. In particular:

• when the triangulation contains no inner vertices then
∑n

i=1 ϕi = 1, which implies that∑n
i=1∇ϕi = 0.

• for the regular polygon, considering a triangulation with an additional vertex at the
center of the polygon provides additional symmetry properties.

In the following we will switch between the two choices above in order to obtain further
properties of the gradient and the Hessian matrix. In the following, define the two vectors
tx = (1, 0, 1, 0, ..., 1, 0) and ty = (0, 1, 0, 1, ..., 0, 1) ∈ R2n.

Proposition 2.7. 1. The sum of the components on of the gradient ∇λ(x) on odd and even
positions, respectively is zero. Equivalently we have ∇λ(x) · tx = ∇λ(x) · ty = 0.

2. The vectors tx, ty are eigenvectors of the matrix Nλ defined in (20).

Proof. Let us note that by choosing ϕi on a triangulation with no interior vertices we have∑n
i=1∇ϕi = 0. This already gives an answer to the first point above since

n−1∑
i=0

∫
Ω

Sλ1∇ϕi dx = 0.

For the second point, let us note that with the same choice of the functions ϕi the solutions
Ui of (18) with the normalization condition (21) verify

∑n
i=1 Ui = 0 since the sum of the right

hand sides in (18) is equal to zero. It is now straightforward to see that Nλtx = Nλty = 0 which

implies that the vectors tx, ty are eigenvectors of Nλ corresponding to the zero eigenvalue. �
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Formula (20) respects the structure of the second shape derivative. It is possible to simplify
the formula using the definition of Sλ1 and the property (a⊗b)(c⊗d) = (b ·c)(a⊗d). Regrouping
terms we obtain

Nλ
ij =

∫
Ω

(−2DUiDUT
j + 2λ(Ω)UiU

T
j ) dx

+

∫
Ω

(
|∇u|2 − λ(Ω)u2

)
(∇ϕi ⊗∇ϕj −∇ϕj ⊗∇ϕi) dx

− 2

∫
Ω

(∇u⊗∇u) (∇ϕi ⊗∇ϕj −∇ϕj ⊗∇ϕi) dx

− 2

∫
Ω

(∇ϕi ⊗∇ϕj −∇ϕj ⊗∇ϕi) (∇u⊗∇u) dx

+ 2

∫
Ω

(∇ϕi · ∇ϕj)(∇u⊗∇u) dx

−
∫

Ω
u2

[
∇ϕi ⊗

(∫
Ω

Sλ1∇ϕj dx
)

+

(∫
Ω

Sλ1∇ϕi dx
)
⊗∇ϕj

]
dx

It is immediate to see that

(∇u⊗∇u) (∇ϕi ⊗∇ϕj −∇ϕj ⊗∇ϕi) + (∇ϕi ⊗∇ϕj −∇ϕj ⊗∇ϕi) (∇u⊗∇u) =

|∇u|2(∇ϕi ⊗∇ϕj −∇ϕj ⊗∇ϕi).

Therefore, the expression of the Hessian matrix simplifies to

Nλ
ij =

∫
Ω

(−2DUiDUT
j + 2λ(Ω)UiU

T
j ) dx

+

∫
Ω

(
−|∇u|2 − λ(Ω)u2

)
(∇ϕi ⊗∇ϕj −∇ϕj ⊗∇ϕi) dx+ 2

∫
Ω

(∇ϕi · ∇ϕj)(∇u⊗∇u) dx

−
∫

Ω
u2

[
∇ϕi ⊗

(∫
Ω

Sλ1∇ϕj dx
)

+

(∫
Ω

Sλ1∇ϕi dx
)
⊗∇ϕj

]
dx.(22)

From this point on, in the rest of the paper, we concentrate on the case of the first eigenvalue
of the regular polygon and we further simplify the expression of the Hessian. By uniqueness
arguments the first eigenfunction u of the Dirichlet Laplace operator on the regular polygon has
the same symmetries as the regular polygon.

In the following suppose that ϕi, 0 ≤ i ≤ n− 1 are associated to the particular triangulation
T = (Tk)

n−1
k=0 of the regular polygon made of congruent triangles with one vertex at the center

(see Figure 1). Thus, the triangulation T also respects the symmetry of the regular polygon.
The symmetry of the first eigenfunction implies that

∫
Tk

(|∇u1|2 − λ1(Ω)u2
1) dx = 0. Using this

relation the gradient of λ1(Ω) on the regular polygon becomes∫
Ω

Sλ1∇ϕi =

∫
Ω

(|∇u1|2 − λ1(Ω)u2
1)∇ϕi − 2(∇u1 ⊗∇u1)∇ϕi = −2

∫
Ω

(∇u1 ⊗∇u1)∇ϕi.

Using the fact that ∇ϕi ⊗∇ϕj −∇ϕj ⊗∇ϕi is piece-wise constant on every triangle Tk, k =
0, ..., n− 1, we find that∫

Ω

(
−|∇u1|2 − λ(Ω)u2

1

)
(∇ϕi ⊗∇ϕj −∇ϕj ⊗∇ϕi) dx =

λ1(Ω)

|Ω|
Bij ,

where Bij are the blocks of the Hessian of the area given in (17).
Recall that ∇ϕi is piecewise constant on the triangles Tk and by symmetry

∫
Tk
u2

1 dx = 1/n

for k = 0, ..., n − 1. Therefore
∫
Tk
u2

1∇ϕi dx = 1
|Ω|
∫
Tk
∇ϕi dx = 1

|Ω|∇A(x), where A(x) is the

area of the polygon having vertices at coordinates given by x, as recalled earlier. Therefore, the
last term in Nλ

ij has the form∫
Ω
u2

1

[
∇ϕi ⊗

(∫
Ω

Sλ1∇ϕj dx
)

+

(∫
Ω

Sλ1∇ϕi dx
)
⊗∇ϕj

]
dx =

2

|Ω|
(∇A(x)�∇λ1(x))
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Consider now the Hessian of the product λ1(x)A(x) and note that we have

Hess(λ1(x)A(x)) = |Ω|Hessλ1(x) +∇λ1(x)⊗∇A(x) +∇A(x)⊗∇λ1(x) + λ1(x) HessA(x).

In this formula the last term of the Hessian of λ1(x) simplifies the tensorial products between
the gradient of the area and the gradient of the eigenvalue.

Following the previous computations we arrive at the following significant simplification for
the Hessian of the product of the area and the eigenvalue.

Proposition 2.8. In the case where Ω is a regular n-gon and the triangulation T defining ϕi
is symmetric the Hessian matrix of λ1(Ω)|Ω| = A(x)λ1(x) in terms of the coordinates of the
polygon has the 2× 2 blocks Mλ

ij, 0 ≤ i, j ≤ n− 1 given by

Mλ
ij = |Ω|

∫
Ω

(−2DUiDUT
j + 2λ1(Ω)UiU

T
j )

− λ1(Ω)

∫
Ω

[∇ϕi ⊗∇ϕj −∇ϕj ⊗∇ϕi]

+ 2|Ω|
∫

Ω
(∇ϕi · ∇ϕj)(∇u1 ⊗∇u1).(23)

The simplified formula (23) for the Hessian of the product of the area and the first eigenvalue
has three terms:

• The first one is related to the decomposition Ui of the material derivatives given in (18).
Furthermore, the terms are related to the bilinear form from the variational formulations
of Ui, which will be essential in improving the estimates in the numerical simulations.
This part of the Hessian is negative definite.
• The second term is related to the Hessian of the area given in (17). The associated

blocks are non-zero only when |i − j| = 1 (modulo n). This part has both positive and
negative eigenvalues.
• The third term involves only the first eigenfunction u1 and the functions ϕi defined in

(10). The associated blocks are non-zero only when |i− j| ≤ 1. This part of the Hessian
is positive definite.

Although the expression of the Hessian given in (23) is explicit, its positive definiteness is not
obvious. The analysis of the eigenvalues of this matrix is continued in Section 4.

3. Geometric stability of the shape Hessian matrix

In this section we shall perform both a qualitative and quantitative analysis of the behavior
of the coefficients of the Hessian matrix for local perturbations of the vertices of the regular
polygon Pn inscribed in the unit circle with one vertex at (1, 0). Some of the results would
extend naturally either to perturbations of general convex polygons or even to more general
sets. Nevertheless, we focus on the perturbation of the regular n-gon and we shall not search
generality. The two main technical aspects of this section are described below.

• Continuity of the Hessian matrix coefficients for the geometric perturbation.
We prove the continuity of the shape Hessian matrix for a perturbation of the regular
polygon. This question is itself non trivial because of the weak regularity of the right
hand sides in the equations satisfied by the solutions Ui of (18). Stability results for
the eigenfunctions in H2 are required, whereas the classically known stability based on
γ-convergence holds in H1. The continuity of the coefficients will readily give the local
minimality of the regular polygon provided the positive definiteness of the Hessian matrix
is known on the regular polygon only.
• Estimate of the modulus of continuity of the coefficients for the geometric

perturbation. This information is crucial to formally reduce the proof of the conjecture
to a finite number of numerical computations. We compute the modulus of continuity
of the coefficients, i.e. we find estimates of the variation of all coefficients of the Hessian
matrix in terms of some power of Hausdorff distance between the perturbed polygon
and the regular polygon. In other words, for every δ > 0 we identify a value ε > 0 such
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that all the coefficients of the Hessian matrix computed on polygons with n sides in an
ε-neigbourhood of Pn stay in a δ-neighborhood of the coefficients of the Hessian matrix
associated to Pn.

We split this section in three subsections, going from basic estimates for the variations of the
eigenvalues and eigenfunctions to the estimates of the variation of the matrix coefficients. This
last point is more delicate as it involves solutions of (18)-(21) with variable, singular, right hand
sides that are not in L2.

Throughout this section, we denote by C, θ two positive constants which may change from
line to line. The tracking of those constants is possible but, since we will not perform here
numerical computations of an effective neighborhood of minimality, this is not immediately
useful. Consequently, in order to avoid heavy calculations we choose to prove only the existence
of those constants. In particular, we are not aimed here to optimize the constants, which in case
of certified numerical computations of the neighborhood would be a priority.

3.1. Basic quantitative estimates along the perturbation. Let Ω ⊆ R2 be a bounded,
simply connected, open Lipschitz set and f ∈ H−1(R2). We consider the problem

(24)

{
−∆v = f in Ω,

v = 0 on ∂Ω.

In the particular case in which f = 1, we denote wΩ the the solution of (24), and call it torsion
function. The torsion function is the unique minimizer of the torsion energy,

E(Ω) := min
u∈H1

0 (Ω)

1

2

∫
Ω
|∇u(x)|2dx−

∫
Ω
u(x)dx.

Let now Ωα, α ∈ {a, b} be two such domains and denote by vα the solution of (24) on Ωα

for the right hand side fα and by u1,α the L2-normalized, non-negative eigenfunctions on Ωα

corresponding to the first eigenvalues λ1,α, respectively. We denote by dH the Hausdorff distance.
In a first step, we seek estimates of the form

(25) ‖va − vb‖H1(R2) ≤ CdϑH(∂Ωa, ∂Ωb)(‖fa‖L2(R2) + ‖fb‖L2(R2)) + C‖fa − fb‖L2(R2),

(26) |λ1,a − λ1,b| ≤ CdϑH(∂Ωa, ∂Ωb),

(27) ‖u1,a − u1,b‖H1(R2) ≤ CdϑH(∂Ωa, ∂Ωb),

for some computable C, ϑ > 0.
Above, all functions u1,α, vα are assumed to be extended by 0 on the complement of their

definition domain, this extension being suitable for H1-estimates. By abuse of notation, the
extensions by 0 are still denoted with the same symbols. The literature is quite rich for such
type of H1-estimates, like (25) and (27). For instance, Savaré and Schimperna [45] give estimates
for solutions of (24) in the class of sets satisfying a uniform cone condition while Burenkov and
Lamberti [5], Feleqi [18] discuss the eigenfunctions. Concerning (26), we refer to [41] (see as well
Section 7) for sharp estimates with power ϑ = 1

2 and controlled constant.
Let us point out a relevant fact, which becomes important as soon as we search to identify all

the constants in (25)- (27). The results referred above occur in the class of domains satisfying a
uniform cone condition, while our setting is much more regular: we locally perturb the regular
n-gon, always obtaining a convex n-gon. This regular behavior will be exploited in the next
subsection to get estimates in higher order norm even in the case of singular right hand sides
and it dramatically simplifies the proofs of the H1-estimates.

Below we shall only recall some results without proofs. The interested reader could easily
recover the estimates in our regular setting in a more direct way. Assume that Ωa,Ωb ⊆ R2

satisfy a uniform (ρ, ε)-cone condition (see [45, Definition 2.6]).

Proposition 3.1 (Savaré-Schimperna [45]). If fa = fb := f , there exists a constant depending
only on the diameters such that

(28) ‖∇va −∇vb‖L2 ≤ C‖f‖
1
2

L2‖f‖
1
2

H−1

(dH(Ωa,Ωb)

ρ sin ε

) 1
2
.
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(29) ‖va − vb‖L2 ≤ C‖f‖
1
2

L2‖f‖
1
2

H−1

dH(Ωa,Ωb)

ρ sin ε
.

(30) ‖va − vb‖L2 ≤ C‖f‖H−1

(dH(Ωa,Ωb)

ρ sin ε

) 1
2
.

Note that the first two inequalites require f ∈ L2(R2). The result recalled in Proposition
3.1 together with the Poincaré inequality readily gives inequality (25). Note as well that the
Poincaré constants on the two domains equal the first Dirichlet eigenvalues.

For a small perturbation of the regular n-gon, the values of ρ and ϑ can be computed explicitly.
However, in this last case a more direct proof of the inequalities can be obtained as a consequence
of the uniform bound of the H2 norms of the solutions with an explicit value (maybe not optimal)
of the constant C.

Concerning the estimates (26) and (27), we refer to the papers of Feleqi [18] and Burenkov
and Lamberti [12]. Those esimates being less explicit, we give below a slef contained argument
which takes advantage of the convexity of the sets.

For now, assume that Ωa and Ωb are convex, in which case the level sets of the torsion function
and of the first eigenfunctions are convex. Moreover, vα and the eigenfunction u1,α belong to
H2(Ωα) as we shall recall in the next subsection. We recall a first regularity result in the class
of convex sets, due to Grisvard [22, Theorem 3.1.2.1].

Proposition 3.2 (Grisvard). Assume Ωα is a bounded convex open set and fα ∈ L2(Ωα). Let
vα solve (24). Then

‖D2vα‖L2(Ωα) ≤ ‖fα‖L2(Ωα).

For a n-gon which is a small perturbation of the regular n-gon Pn, this inequality gives uniform
bounds for the H2-norms of the normalized eigenfunctions and of some H2 extensions in R2.
The bounds in L∞ are standard and the convexity of the polygon together with the barrier
method provides L∞ estimates for the gradients.

Lemma 3.3. Assume that fa = fb = f ∈ L∞(R2), f ≥ 0. Then

(31)

∫
R2

|∇va −∇vb|2dx ≤ dH(∂Ωa, ∂Ωb)‖f‖2∞
(
|Ωa| diam(Ωa) + |Ωb| diam(Ωb)

)
.

Proof. Let Ω̃ = Ωa ∩ Ωb. Then we have as well dH(∂Ω̃, ∂Ωα) ≤ dH(∂Ωa, ∂Ωb) and Ω̃ ⊆ Ωα for

α ∈ {a, b}. Denoting ṽ the solution of (24) in Ω̃, we have∫
Ωα

|∇ṽ −∇vα|2dx =

∫
Ωα

f(ṽ − vα)dx ≤ ‖f‖∞|Ωα|max
x∈Ωα

(
vα(x)− ṽ(x)

)
.

We notice that the function vα − ṽ is harmonic on Ω̃, so its maximum on Ω̃ is attained on ∂Ω̃,
where ṽ vanishes. Since ∂Ω̃ lies in a neighborhood of ∂Ωα, denoting ε = dH(∂Ωa, ∂Ωb) we have

max
x∈Ωα

(
vα(x)− ṽ(x)

)
≤ max

x∈∂Ωα⊕Bε
vα(x).

However, for every x ∈ ∂Ωα ⊕ Bε we have vα(x) ≤ ‖f‖∞wα(x) ≤ ε‖f‖2∞‖∇wα‖∞, where wα is
the torsion function.

In order to bound ‖∇wα‖∞ we take advantage that the level sets of wα are convex and so we
have a barrier given by the width. Indeed, in every point x of the the level set, we can find an
infinite strip containing the level set and having one boundary line passing through x. Using
the classical barrier method gives |∇wα(x)| ≤Wx/2, where Wx is the width. This implies∫

Ωα

|∇ṽ −∇vα|2dx ≤ ε‖f‖2∞|Ωα|
diam(Ωα)

2
.

Adding the estimates for va and vb leads to the conclusion. �

Perturbations of the regular polygon. For n ≥ 5 we denote Pn = a∗0a
∗
1 . . .a

∗
n−1 the regular

polygon with n sides inscribed in the unit circle with a∗0 = (1, 0). We denote Rn, rn the radii of
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the circumscribed, inscribed circles for Pn and ln the length of an edge. Denote the area of Pn
by An. The angles are equal to n−2

n π. An easy computation leads to

Rn = 1, rn = cos
π

n
, ln = 2 sin

π

n
,An = n sin(2π/n)/2.

Let P denote generically a perturbation of Pn, i.e. polygon a0a1 . . .an−1 with n sides such that
for every i = 0, . . . , n − 1 we have |aia∗i | ≤ ε. The critical value of ε where convexity is lost is
ε = sin2 π

n . For instance, if

|aia∗i | ≤
1

4
sin2 π

n
:= ε0,

the angles of the perturbed polygon do not exceed

ω0 =
(n− 2)π

n
+ 2 arcsin

(
1

4
sin

π

n

)
< π.

We can represent both the boundaries of Pn and P using the same n charts given by the
graphs of the boundaries ∂Pn, ∂P over the segments

[xiyi] where xi =
3

4
a∗i +

1

4
a∗i+1,yi =

3

4
a∗i+2 +

1

4
a∗i+1.

In each chart, the function representing the boundary of the polygons is piecewise affine with
two slopes not exceeding tan(πn + arctan(1

4 sin π
n)). For n ≥ 5 an upper bound for this quantity

is 0.73.
We denote λk, λ

∗
k the k-th eigenvalues and uk and u∗k the corresponding normalized eigenfunc-

tions on P , Pn, respectively.

Proposition 3.4. Under the previous hypotheses

(32) |λ1 − λ∗1| ≤
∫
R2

|∇u1 −∇u∗1|2dx ≤ 2(E1 + E3),

where

E1 = ε(λ∗1)2‖u∗1‖2∞
(
2π + 2π(1 + ε)3

)
,

E2 =
λ1

λ2 − λ1

(rn + ε)4 − r4
n

r4
n

+
2λ2

λ2 − λ1

(
E1

λ1(Pn ⊕Bε)

) 1
2

,

E3 =
2λ1E2

1 + α1
+ λ∗1

(
1−

(
rn

rn + ε

)2
)

+ λ∗1

(
E1

λ1(Pn ⊕Bε)

) 1
2

Proof. The inclusions rn
rn+εP ⊆ Pn ⊆ rn

rn−εP , imply that
(
rN+ε
rN

)2
λ1 ≥ λ∗1 ≥

(
rN−ε
rN

)2
λ1.

We introduce the problem

ψ ∈ H1
0 (P ),−∆ψ = λ∗1u

∗
1 in D′(P ).

Using Lemma 3.3 and the Poincaré inequality we have∫
R2

|∇ψ −∇u∗1|2dx ≤ E1 and

∫
R2

|ψ − u∗1|2dx ≤
E1

λ1(Pn ⊕Bε)
.

Using the orthonormal Hilbert basis of eigenfunctions in H1
0 (P ) we consider the decomposition

ψ =
∑+∞

i=1 αiui which gives∫
R2

|∇ψ|2dx ≤
∫
R2

|∇u∗1|2dx+ 2

∫
R2

∇ψ(∇ψ −∇u∗1)dx ≤ λ∗1 + 2‖∇ψ‖2‖∇ψ −∇u∗1‖2.

We have ∫
R2

|∇ψ|2dx = λ∗1

∫
R2

ψu∗ ≤ λ∗1‖ψ‖2 ≤
λ∗1

(λ1)
1
2

‖∇ψ‖2,

which leads to ∑
i

α2
iλi =

∫
R2

|∇ψ|2dx ≤ (λ∗1)2

λ1
.
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Consequently, α2
1λ1 + λ2

∑+∞
i=2 α

2
i ≤

(λ∗1)2

λ1
≤
(
rn+ε
rn

)4
λ1 so

α2
1λ1 + λ2

(∫
R2

ψ2dx− α2
1

)
≤
(
rn + ε

rn

)4

λ1.

On the other hand,∫
R2

ψ2dx ≥
∫
R2

(u∗1)2dx− 2

∫
R2

u∗1(u∗1 − ψ)dx ≥ 1− 2‖u∗1 − ψ‖2 ≥ 1− 2

(
E1

λ1(Pn ⊕Bε)

) 1
2

,

which, after elementary computations leads to

1− α2
1 ≤

λ1

λ2 − λ1

(rn + ε)4 − r4
n

r4
n

+
2λ2

λ2 − λ1

(
E1

λ1(Pn ⊕Bε)

) 1
2

:= E2.

Finally, ∫
R2

|∇ψ −∇u1|2dx = λ∗1

∫
R2

u∗1ψdx− 2λ1

∫
R2

u1ψdx+ λ1

= λ∗1 + λ∗1

∫
R2

u∗1(ψ − u∗1)dx− 2λ1α1 + λ1

= 2λ1(1− α1) + λ∗1 − λ1 + λ∗1‖ψ − u∗1‖2

≤ 2λ1E2

1 + α1
+ λ∗1

(
1−

(
rn

rn + ε

)2
)

+ λ∗1

(
E1

λ1(Pn ⊕Bε)

) 1
2

:= E3.

By summation, the inequality follows. �

Remark 3.5. In order to complete the estimates we recall that in simply connected domains

‖u1‖∞ ≤ λ
1
2
1 (see Grebenkov [21, Formula (6.22)]). We also recall from [3] that λ2

λ1
≤ j2

1,1/j
2
0,1,

where j0,1, j1,1 denote the first positive zero of the Bessel functions J0, J1 and that λ2 − λ1 ≥
3π2

diam2(P )
from [1]. As well, by inclusion and homogeneity, λ1(Pn ⊕Bε) ≥

(
1

1+ε

)2
λ∗1.

We can also give a direct estimate for ‖ψ − u1‖2. Indeed,∫
R2

(ψ − u1)2dx = (1− α1)2 +
+∞∑
i=2

α2
i = (1− α1)2 +

∫
R2

ψ2dx− α2
1 ≤

≤ (1− α1)2 + (1 + ‖ψ − u∗1‖2)2 − α2
1

≤ 2(1− α1) + 2‖ψ − u∗1‖2 + ‖ψ − u∗1‖22

≤ 2

1 + α1
E2 + 2

(
E1

λ1(Pn ⊕Bε)

) 1
2

+
E1

λ1(Pn ⊕Bε)
:= E4.

Proposition 3.6. There exists a constant C > 0 such that for all 0 < ε < ε0

‖∇u1‖∞ ≤ C and ‖u1 − u∗1‖∞ ≤ C‖u1 − u∗1‖
1
3

H1 .

Proof. The first inequality is a consequence of the barrier method. The diameter and the inner
ball control the size of the eigenvalue and of the L∞ norm of the the eigenfunctions, themself
being controlled by ε0.

The second inequality is a consequence the Gagliardo-Nirenberg inequality (see for instance
[43])

‖u1 − u∗1‖∞ ≤ C‖∇u1 −∇u∗1‖
2
3

L3‖ u1 − u∗1‖
1
3

L3 .

Then we use first inequality and the continuous embedding H1(B2) ⊆ L3(B2). �
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3.2. Uniform H2+s regularity of the eigenfunctions. In this section we recall some finer
estimates of the regularity of the solutions vα of (24) in polygons which are small perturbations
of the regular polygon. However, we need more regularity than H2 in order to quantify the
variation of the shape Hessian coefficients. These finer regularity results take full advantage
from the very specific convex, polygonal geometry of the domains, size of angles and number of
local charts of the boundary. We refer the reader to [15] for detailed analysis of the regularity
in polygonal domains.

We recall the following regularity result from [7, Theorem 9.8] (see also [15]).

Lemma 3.7. Let P be a perturbation of the regular polygon Pn as above. Let 0 < γ ≤ π
ω0

. Then,

for every f ∈ H−1+γ(P ) the solution of (24) in P satisfies

‖v‖H1+γ(P ) ≤ C‖f‖H−1+γ(P ).

The constant C depends on γ but it is independent on f and P .

Above, the independence on P comes precisely from the very specific perturbation we consider,
which keeps constant the charts and controls the angles. Let us denote s0 = π

ω0
− 1 > 0 and let

0 ≤ s ≤ s0.

Corollary 3.8. Under the previous hypotheses and notations we have

u1 ∈ H2+s(P ), ‖u1‖H2+s(P ) ≤ C,

with C depends on s but is independent on the perturbation.

Proof. This is a consequence of Lemma 3.7 and of the fact that the right hand sides λ1u1 of the
equations solved by the eigenfunctions have an H1-norm equal to λ1(1 + λ1) which is uniformly
bounded in the class of perturbations we consider. �

One has to pay particular attention to the extension of u1 on the complement of P . As far
as we are concerned with Lp, H1 properties of the extension, performing an extension by 0 on
R2 \ P is enough. Neverhtless, such an extension does not belong to H2, H2+s, so we can not
compare the extensions of u1 and u∗1 in those norms.

Two choices can be done in order to compare solutions on different polygons in H2. Either
we extend them in H2 and compare their extensions, or we locally compare on compact sets
included in both domains. Below, we choose to compare their extensions. The extensions we
seek rely on the Stein universal extension operator (see [47] and [33, 29]). We recall the following
from from [47].

Proposition 3.9. Assuming P is a perturbation of the regular polygon as above, there exists an
extension operator

EP : L1(P )→ L1(R2)

such that

∀q ≥ 0, ‖EP (u)‖Hq(R2) ≤ C‖u‖Hq(P ),

where the constant C above depends on q but not on P .

Remark 3.10. We point out that the extension of Stein relies mainly on the construction
of a smoothed distance function. The choice of this function is not unique. Stein proposed
a construction based on partition of the complement of P on squares belonging to the union
of latices (2−kZ2)k∈Z. In the sequel we shall use this argument and the freedom to build the
smoothed distance function in order to be able to compare the extension operators on P and
Pn. Using a cut off function, we will assume that all extensions EP (u) vanish outside the ball
B2.

We recall now the Gagliardo-Nirenberg inequality from [8].

Proposition 3.11. There exists C > 0, ϑ ∈ (0, 1) such that for every u ∈ H2+s(R2)

‖u‖H2(R2) ≤ C‖u‖ϑL2(R2)‖u‖
1−ϑ
H2+s(R2)

.
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The key use of this result is related to the possible extensions of an eigenfunction outisde P .
Indeed, from Proposition 3.4 we control the norm ‖u1− u∗1‖H1(R2). However, this is true for the
extensions by 0 of the eigenfunctions not for the extensions given by the Stein operator. Propo-
sition 3.11 together with Proposition 3.9 imply that we can control the norm of the difference
in H2 for the Stein extensions provided we control the norm in L2. This is a consequence of the
following Lemma.

Lemma 3.12. By EPn we denote a (suitably chosen) Stein extension operator associated to
Pn. There exists a constant C such that for every perturbation P as above there exists a Stein
extension operator EP satisfying

(33) ‖EP (u1)− EPn(u∗1)‖L∞(R2) ≤ C(‖u1 − u∗1‖L∞(R2) + d(∂P, ∂Pn)).

Proof. We rely on the construction of the operator by Stein using the averaging method (see [47,
Theorem 5, page 181]). The difficulty is that we deal with extension operators corresponding
to different domains and applied to different functions. We want to prove that the extended
functions are close in L∞ provided that the non extended functions are close in L∞. Since each
one is extended with its own operator, we have to detail the construction of the operators in
order to be able to perform the comparison.

Step 1. Localization. Since the boundary of P is described in the same charts as the boundary
of the regular polygon, we use the explicit formula of the extension operator. We refer the reader
to [47, Theorem 5, page 181] (see also [33, 29]), where the explicit construction is given.

There exists a smooth partition of unity consisting on n + 2 functions (ψj)j=0,...,n+1 such
that for every vertex aj of Pn there exists one function ψj supported in B(aj ,

3
4 ln), one of the

functions is supported in Int(Pn) and one is supported in Int(R2 \ Pn). In view of the smallness
of the perturbation P of the regular polygon, we can keep the same n charts to describe the
boundary of ∂P and use the same partition of unity as above, for the regular polygon. The
maps of the charts are built in a uniform way as piecewise affine functions having two controlled
slopes.

Moreover, instead of extending u1, u
∗
1 we shall extend each function u1ψj , u

∗
1ψj relying on the

special construction given by Stein in [47, Theorem 5, page 181], which takes advantage from
the specific graph structure of the boundary. Finally, we use the generic comparison

n−1∑
j=0

‖v1ψj − v2ψj‖∞ ≤ n‖v1 − v2‖∞ ≤ n
n−1∑
j=0

‖v1ψj − v2ψj‖∞.

Step 2. Construction of the smoothed distance functions. The expression of the Stein
extension operator is explicit and relies on regularization of the distance functions to P,Pn
respectively, say ∆P ,∆Pn . The construction of these functions is quite delicate and we refer the
reader to [47, Theorem 2, page 171] for all the details. We have ∆P ∈ C∞(R2 \ P ), satisfying

(34) c1d(x, P ) ≤ ∆P (x) ≤ c2d(x, P ) for every x ∈ P c

(35)
∣∣∣ ∂α
∂xα

∆P (x)
∣∣∣ ≤ Bα(d(x, P ))1−|α|,

and similar inequalities for ∆Pn . The constants c1, c2, Bα are independent on P .
In its construction, Stein gives a precise formula for ∆P , namely

∆P (x) =
∑
k

diam(Qk)φk(x),

where Qk consists in a suitable partition of R2 \P in squares and φk are C∞ functions equal to 1
on Qk and vanishing outside a 9

8 -dilation of Qk by the center of Qk. The partition (Qk)k is not
arbitrary, the size of the squares being controlled by the distance of the square to the boundary
of P .

Assume now that P is a perturbation of Pn as above such that dH(∂P, ∂Pn) = ε. Then,

(36) ∀x ∈ R2, |d(x, P )− d(x,Pn)| ≤ ε.
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Our aim is to slightly modify the construction of the partition (Qk) for P such that at distance
larger than 16ε from the boundary of P , the partition coincides with the one associated to Pn.
This will entail that if d(x, P ) > 128ε then ∆P (x) = ∆Pn(x). This is done as follows.

• We first set the family grids (2−kZ2)k∈Z in R2 and choose a suitable partition for R2\Pn.
• We select out from this partition all the squares which intersect the set

Dε
P = {x ∈ R2 : d(x, P ) ≥ 16ε}.

• We use the Stein’s method to fill the rest of the partition associated to P , namely to
cover the open subset of R2 \ P not yet covered by the selected partition.

Finally, the construction of the functions φk follows the same procedure as Stein. The only
difference from the original Stein construction is only the alteration of the partition at distance
larger than 16ε. In view of (36), properties (34)-(35) of ∆P are preserved.

The main consequence of this construction is that if d(x, P ) > 128ε then ∆P (x) = ∆Pn(x).

Step 3. Comparison of the extensions. We recall that u1 and u∗1 are uniformly Lipschitz in
R2, as a consequence of Proposition 3.6. This plays a crucial role in estimate (33). Let us now
recall from [47] how the Stein extension works. We shall simultaneously write the extension of
u1 with EP and the extension of u∗1 with EPn .

Suppose P,Pn are above the graphs representing their boundaries on a segment [mj ,Mj ],
which we suppose, without loss of generality, is contained in the horizontal coordinate axis.

Let τ : [1,+∞[ be defined by

τ(s) =
e

πs
Im
[

exp
(
− (s− 1)

1
4 exp(−iπ

4
)
)]
.

Then ∫ +∞

1
τ(s)ds = 1, ∀k = 1, 2, . . . ,

∫ +∞

1
skτ(s)ds = 0, τ(s)

s→+∞
= O(s−k).

Let c > 0 be a constant such that

∀(x, y) ∈ R2 \ P, c∆P (x, y) ≥ φj(x)− y,

∀(x, y) ∈ R2 \ Pn, c∆Pn(x, y) ≥ φ∗j (x)− y,
The extension operators are defined for x ∈ [mj ,Mj ] and y < φj(x) and y < φ∗j (x), respectively,
by

EP (ψju1)(x, y) =

∫ +∞

1
ψj(x, y + 2cs∆P (x, y))u1(x, y + 2cs∆P (x, y))τ(s)ds,

EPn(ψju
∗
1)(x, y) =

∫ +∞

1
ψj(x, y + 2cs∆Pn(x, y))u∗1(x, b+ ycs∆Pn(x, y))τ(s)ds,

respectively.
Take a point (x, y) such that x ∈ [mj ,Mj ] and d((x, y), ∂P ) ≥ 128ε). Since ∆P (x, y) =

∆Pn(x, y) and ‖ψj‖∞ ≤ 1, we get by direct computation

|EP (ψju1)(x, y)− EPn(ψju
∗
1)(x, y)| ≤ ‖u1 − u∗1‖L∞(R2)

∫ +∞

1
|τ(s)|ds = C‖u1 − u∗1‖L∞(R2).

To complete the estimate, we evaluate both EP (u1)(x, y) and EPn(u∗1)(x, y)| for (x, y) lying at
distance not larger than 130ε from the boundary of Pn. Here we take advantage from the fact
that there exists C, independent on P (see [47, Theorem 5, page 181]) such that

‖EP (u1)‖W 1,∞(R2) ≤ C‖u1‖W 1,∞(P ), ‖EPn(u∗1)‖W 1,∞(R2) ≤ C‖u∗1‖W 1,∞(Pn).

Since u1, u
∗
1 vanish on ∂P, ∂Pn, respectively, we get that for (x, y) as above we have

EP (u1)(a, b) ≤ 130εC‖u1‖W 1,∞(P ), EPn(u∗1)(x, y) ≤ 130εC‖u∗1‖W 1,∞(Pn).

This last inequality concludes the proof. �

As a consequence of the Proposition 3.11 and Lemma 3.12, together with the uniform bound-
edness of the support of the extended functions, we get the following.
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Corollary 3.13. There exist constants C and ϑ ∈ (0, 1) independent on the perturbation, such
that

‖EP (u1)− EPn(u∗1)‖H2(R2) ≤ C(‖u1 − u∗1‖L∞(R2) + d(∂P, ∂Pn))ϑ.

3.3. Estimates of the Hessian coefficients along the perturbation. In the sequel we
collect some L∞-estimates, necessary for estimates of the coefficients of the Hessian matrix. Let
ϕ∗ : T ∗ → R, ϕ : T → R be the functions defined in (10) (the second kind, in Figure 1). We
assume that ∀i = 0, . . . , n− 1 |aia∗i | ≤ ε (which implies dH(∂P, ∂Pn) ≤ ε). Then

‖ϕ∗‖∞ ≤ 1, ‖ϕ‖∞ ≤ 1, ‖∇ϕ∗‖∞ ≤
1

2 sin 2π
n

, ‖∇ϕ‖∞ ≤
1

2 sin 2π
n − 2ε

,

∀x ∈ T ∗ ∪ T, |ϕ∗(x)− ϕ(x)| ≤ 1T ∗∆T +
ε

2 sin 2π
n

1T ∗∩T ,

∀x ∈ T ∗ ∪ T, |∇ϕ(x)−∇ϕε(x)| ≤ 2

2 sin 2π
n − 2ε

1T ∗∆T +
2ε

(2 sin 2π
n − 2ε)2

1T ∗∩T ,

‖u∗1‖∞ ≤ (λ∗1)
1
2 , ‖u1‖∞ ≤ (λ1)

1
2 ,

‖∇u∗1‖∞ ≤ (λ∗1)
3
2 , ‖∇u1‖∞ ≤ (λ1)

3
2 (1 + ε).

The last inequality takes advantage from the previous one and from the fact that the level sets
are convex, via the barrier method.

Lemma 3.14. Let g ∈ H1
0 (B2) and S ⊆ B1 a segment. We denote Φ ∈ H−1(R2) defined by

H1(R2) 3 ϕ→ Φ(ϕ) =

∫
S
gϕds.

Then, for every s ∈ (0, 1
2 ] there exists a constant Cs depending only on s, such that

‖Φ‖
H−

1
2−s(R2)

≤ Cs‖g‖H1
0 (B2).

Proof. Indeed, we have

|Φ(ϕ)| =
∣∣∣∣∫
S
gϕds

∣∣∣∣ ≤ ‖g‖L2(S)‖ϕ‖L2(S)

≤ Cs‖g‖H1
0 (B2)‖ϕ‖H 1

2+s(R2)
.

In the last inequality, we used the classical trace inequality in H1(R2) and the fractional trace

inequality in H
1
2

+s(R2) (see [48, Lemma 16.1]) together with the continuous embedding of
Hs(−1, 1) ⊆ L2(−1, 1). �

Lemma 3.15. Let S1 = [0, 1] × {0} and S2 = [A1A2] be two segments of R2 such that
dH(S1, S2) ≤ ε. Let s0 ≥ s > 0 and g ∈ H1+s(R2) with bounded support. There exists a
constant C > 0 such that

∀ϕ ∈ H1(R2),

∣∣∣∣∫
S1

gϕds−
∫
S2

gϕds

∣∣∣∣ ≤ ε s2C‖ϕ‖H1(R2).

Proof. We shall make an explicit computation. Let S̃2 = [B1B2] be the segment on the same
line as S2 such that its vertical projection on the horizontal axis is precisely S1. The ‖A1B1‖ ≤ ε
and ‖A2B2‖ ≤ ε. We have the following estimates.∣∣∣∣∫

S2

gϕds−
∫
S̃2

gϕds

∣∣∣∣ ≤ ∫
[A1B1]

|gϕ|dσ +

∫
[A2B2]

|gϕ|dσ ≤

≤ ‖g‖∞ε
1
2 (‖ϕ‖L2([A1B1]) + ‖ϕ‖L2([A2B2])) ≤ Cε

1
2 ‖ϕ‖H1(R2).

Let us introduce the projector Π1 : S̃2 3 (x, y)→ (x, 0) ∈ S1. Then,∣∣∣∣∫
S̃2

gϕds−
∫
S̃2

g ◦Π1ϕds

∣∣∣∣ ≤ ‖g‖W s
2 ,∞(R2)

(2ε)
s
2

∫
S̃2

|ϕ|ds.
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Moreover,∣∣∣∣∫
S̃2

g ◦Π1ϕds−
∫
S1

gϕds

∣∣∣∣
≤ |(|S̃2| − 1)|

∫ 1

0
|g(x, 0)ϕ(Π−1(x, 0))|dx+

∫ 1

0
|g(x, 0)|

∣∣ϕ(Π−1(x, 0))− ϕ(x, 0)
∣∣dx

≤ 2ε‖g‖∞‖ϕ‖L1(S̃2) +

∫ 1

0
|g(x, 0)|

∫ Π−1(x,0)

0
|∂ϕ
∂y

(x, y)|dxdy

≤ 2ε‖g‖∞‖ϕ‖L1(S̃2) + ‖g‖L2(S1)

[ ∫ 1

0

(∫ Π−1(x,0)

0
|∂ϕ
∂y

(x, y)|dy
)2
dx
] 1

2

≤ 2ε‖g‖∞‖ϕ‖L1(S̃2) + ‖g‖L2(S1)

[
2ε

∫ 1

0

∫ 1

0

(∂ϕ
∂y

(x, y)
)2
dxdy

] 1
2

= 2ε‖g‖∞‖ϕ‖L1(S̃2) + ‖g‖L2(S1)(2ε)
1
2 ‖ϕ‖H1 .

Adding all the previous estimates, we conclude the lemma. �

We turn our attention to Ui, the solution of (18) - (21) in P . Recall that the expression of
the coefficients of Nij in (20) does not change when a multiple of the eigenfunction u1 is added
to Ui. In the following, whenever working with vectorial quantities, estimates are understood
component by component.

We drop the index i and we formally write

(37)

 −∆U− λU = f in P
U = 0 on ∂P∫

P u1Udx = 0

Here f ∈ H−1(P,R2) is defined in (18) and involves the following type of terms (possibly
multiplied by geometric quantities)

λ1u11T∇ϕ,ϕD2u,∇ϕD2u,
∂ϕ

∂n
∇uH1bS, (∇ϕ∇u)nH1bS

where S is an edge of T and n is the normal. Note that u1 ∈ H2+s(P ) and all these quantities
are controlled for our perturbation, in a norm which is at least H−1+s.

Lemma 3.16. For every s ∈ [0, 1
2 ∧ ( πω0

− 1)), there exists a constant Cs > 0 not depending on
P , such that

‖U‖H1+s(P ) ≤ Cs.

Proof. One readily gets (
1− λ1

λ2

)∫
P
|∇U|2dx ≤ ‖f‖H−1(P )‖U‖H1

0 (P ),

which gives, using the Poincaré inequality in the orthogonal of u1,

‖U‖H1
0 (P ) ≤

λ2 + 1

λ2 − λ1
‖f‖H−1(P ).

Taking into account the Andrews-Clutterbuck result [1] and the structure of f , Lemma 3.7 gives
the conclusion. �

In order to estimate ∫
R2

|∇U∗ −∇U|2dx

we rely on the stability estimates for simultaneous domain and right hand side perturbations.
Moreover, in view of the definitions of U∗,U, we have to work in the orthogonal on u, u∗, and
use a correction term built by projection.

We have the following.
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Lemma 3.17. There exist positive constants C, ϑ > 0, such that for every admissible perturba-
tion

‖U−U∗‖H1
0 (B2,R2) ≤ Cεϑ.

Proof. Without restricting the generality we can assume that P ⊆ Pn. Indeed, if this is not the
case, we compare both U and U∗ with the solution U on the regular polygon (1 + ε)Pn, which
contains both P and Pn.

We introduce the following auxiliary problem

(38)

{
−∆V = λ∗U∗ + f∗ in P

V = 0 on ∂P

which has a classical weak solution. In view of the result of Savaré-Schimperna [45, Theorem
8.5]

(39) ‖V −U∗‖L2 ≤ C‖λ∗U∗ + f∗‖H−1(B2)ε
1
2 .

In the same time, both V and U∗ belong to H1+s with controlled norm, so in particular they
belong to W

s
2
,∞ with controlled norm. Using again the Gagliardo-Nirenberg inequality for the

Stein extension of V, we get
‖EP (V)−U∗‖H1(Pn) ≤ Cεϑ.

Note that U∗ ∈ H1+s(Pn) and that H1+s(Pn) continuosly embedes in W 1+ s
2
,2+s(Pn). Conse-

quently, from Hölder inequality∫
Pn\P

|∇U∗|2dx ≤

(∫
Pn\P

|∇U∗|2+sdx

) 2
2+s

|Pn \ P |
s

2+s ≤ Cε
s

2+s .

Finally,
‖V −U∗‖H1(Pn) ≤ Cεϑ.

Let us now introduce the function Ṽ = V − (
∫
P Vu1dx)u1 ∈ H1

0 (P ). Then

‖V − Ṽ‖H1
0 (P ) = ‖u1‖H1

0 (P )

∫
P

Vu1dx

= ‖u1‖H1
0 (P )

[∫
Pn

(V −U∗)u∗1dx+

∫
Pn

V(u1 − u∗1)dx

]
≤ Cεϑ.

At the same time,
−∆Ṽ − λṼ = λ∗1U

∗ + f∗ − λV := f in D′(P )

and by straightforward computation∫
P
|∇U−∇Ṽ|2 − λ1(U− Ṽ)2dx = (f − f,U− Ṽ)H−1×H1

0
.

Since both U, Ṽ are L2-orthogonal on u1, we get

‖U− Ṽ‖H1
0 (P ) ≤

λ2

λ2 − λ1
‖f − f‖H−1 .

It remains to estimate ‖f − f‖H−1 . Since

f − f = f − f∗ + λV − λ∗U∗,
we can use the stability result (39) to conclude that ‖f − f‖H−1 ≤ Cεϑ.

�

We can now conclude with the following.

Theorem 3.18. There exists C, ϑ > 0 such that for every polygon P ∈ Pn satsifying ∀i =
1, . . . , n, |aia∗i | ≤ ε ≤ ε0 we have

‖Nλ
ij − (Nλ

ij)
∗‖∞ ≤ Cεϑ,

∀k = 1, . . . , 2n, |λk(Nλ)− λk((Nλ)∗)| ≤ Cεϑ.
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Proof. The first inequality is a direct consquence of Lemma 3.17. The second one is a fur-
ther consequence of the Weyl inequality on the stability of eigenvalues for perturbations of a
symmetric matrix and on the equivalence of all norms over a finite dimensional space. �

Remark 3.19. The Hessian matrix of the area of the polygon is constant. As a direct conse-
quence, a similar estimate holds for the Hessian matrix Mλ of the scale invariant functional
P 7→ |P |λ1(P ).

4. Eigenvalues of the Hessian matrix for the regular polygon

We denote again Pn = [a0a2...an−1] the regular polygon with n-sides, centered at the origin,
with the vertex a0 at the point (1, 0). As well, λ1 := λ1(Pn) denotes its first eigenvalue and
u1 := u1(Pn) a positive, L2-normalized eigenfunction. We also use the notation θ = 2π/n.

As a consequence of the homogeneity of the eigenvalue to rescalings

λ1(tP ) =
1

t2
λ1(P ),

the proposition below establishes the equivalence between the original problem (2) and some
unconstrained versions. Its proof is standard and will not be recalled.

Proposition 4.1. Let c > 0. The three problems below

(40) (L1) : min
|P |=|Pn|, P∈Pn

λ1(P ), (L2) : min
P∈Pn

|P |λ1(P ), (L3) : min
P∈Pn

(
λ1(P ) + c|P |

)
have the same solutions, up to rescalings.

For the convenience of the reader, we also collect below some well known facts.

Proposition 4.2. Let n ≥ 3. Then

(1) The first eigenfunction on Pn has the symmetry of the n-gon.
(2) • Pn is a critical point for problem (L1) above;

• any regular n-gon is a critical point for problem (L2) above (see Theorem 4.14);

• the regular n-gon
(
λ1(Pn)
|Pn|c

) 1
4Pn is critical for problem (L3) above.

(3) If moreover any of the regular n-gons above is a local minima for its own problem, then
all the others are local minima for their own problems.

Remark 4.3 (Symmetry of the first eigenfunction). On Pn, the first eigenfunction enjoys the
symmetry of the polygon. In particular on all triangles ∆Oaiai+1 the eigenfunction has the

same geometry, symmetric with respect to the bisector of the angle ̂aiOai+1. As well, the
normal derivative of the eigenfunction vanishes on the segments [Oai], [Oai+1].

Remark 4.4 (Optimality conditions). The existence of other critical polygons than the regular
polygon is an open question for n ≥ 4. In the case of triangles, results in [19] show that the
equilateral one is the only possible critical point for the two functionals (first eigenvalue and
torsional rigidity) studied here.

Proposition 4.5. Let Pn be the regular polygon defined above. If the Hessian matrix Mλ of
P 7→ |P |λ1(P ) evaluated at Pn, given in (23), has 2n − 4 eigenvalues that are strictly positive
then Pn is a local minimum.

Proof. In the previous section in Theorem 3.18 it is shown that the coefficients of Hessian
matrix are continuous for a local perturbation of the free vertices. Therefore, it would be
enough to prove that the Hessian matrix associated to the free variables is positive definite.

Fix the two consecutive vertices an−2,an−1 and consider the associated matrix M̃ which is the
(2n − 4) × (2n − 4) principal submatrix of Mλ obtained by removing the last four lines and

columns. Then M̃ is the Hessian matrix of the same functional, with the last four variables
removed.
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First of all, we observe that Mλ has 4 zero eigenvalues which correspond to translations,
scalings and rotations which leave the objective function invariant. In Propositions 4.6, 4.12
direct proofs are given showing that

(41) tx =


1
0
1
0
. . .
0

 , ty =


0
1
0
1
. . .
1

 , s =



1
0

cos 2π
n

sin 2π
n

. . .

sin 2(n−1)π
n

 , r =



0
−1

sin 2π
n

− cos 2π
n

. . .

− cos 2(n−1)π
n

 .

are indeed eigenvectors of Mλ associated to the zero eigenvalue.
Suppose that Mλ has 2n− 4 strictly positive eigenvalues (in addition to the four zero eigen-

values described above). The result stated in [30, Theorem 4.3.28] shows that the eigenvalues of

M̃ have lower bounds given by those of Mλ, therefore they are non-negative. Suppose that M̃
has a zero eigenvalues with an eigenvector ξ ∈ R2n−4. Completing ξ with zeros would give an
eigenvector of Mλ associated to the zero eigenvalue. This is impossible since taking the last four

components of the eigenvectors in (41) gives four independent vectors in R4. Therefore M̃ is pos-
itive definite implying that Pn is indeed a local minimum for the functional P 7→ λ1(P )|P |. �

The remaining part of this section is dedicated to the computation of the eigenvalues of
Mλ. In particular, we show that the eigenvalues of Mλ can be computed in terms of the first
eigenfunction u1 and the solutions (U1

0 , U
2
0 ) of (18) with the normalization condition

∫
Pn U

i
0u1 =

0, i = 1, 2. A numerical approach for proving that the matrix Mλ has 2n− 4 eigenvalues that
are strictly positive is provided in the next section.

Proposition 4.6. 1. The vectors tx = (1, 0, ..., 1, 0) ∈ R2n, ty = (0, 1, ..., 0, 1) ∈ R2n are

eigenvectors of Mλ associated to the zero eigenvalue.

Proof. The proof is immediate, following the expression of Mλ given in (23). Proposition 2.7
shows that tx and ty are in the kernel of the Hessian of the eigenvalue and are orthogonal to
both the gradients of the eigenvalue and of the area. Moreover, they are also in the kernel of
the area Hessian (16). Combining all these aspects finishes the proof. �

The following result recalls the symmetry properties of u and U1
0 , U

2
0 . For simplicity, we use

the notation a(u, v) =
∫
Pn ∇u · ∇v − λ

∫
Pn uv.

Proposition 4.7. The following holds.

1. The functions ∂xu1, ∂xϕ0, ∂xU
1
0 , ∂yU

2
0 are even with respect to y and the functions ∂yu1,

∂yϕ0, ∂yU
1
0 , ∂xU

2
0 are odd with respect to y.

2. The quantities

j 7→ a(U1
0 , U

1
j ), j 7→ a(U2

0 , U
2
j )

are even with respect to j (modulo n) and the quantities

j 7→ a(U1
0 , U

2
j ), j 7→ a(U2

0 , U
1
j )

are odd with respect to j (modulo n).

The proof is straightforward from the definitions.
Change of basis. In order to deduce more information about the structure of the Hessian

matrix it is useful to perform a change of basis so that for each vertex the basis directions
correspond to the radial and tangential directions (see Figure 3). The Hessian matrix in the
new basis is given by the formula Hλ = PTMλP where P = (Pij)1≤i,j≤n is a 2× 2 block matrix

with Pjj =

(
cos(j − 1)θ − sin(j − 1)θ
sin(j − 1)θ cos(j − 1)θ

)
. Of course, Mλ and Hλ have the same eigenvalues.

Moreover, the Hessian matrix Hλ in this particular basis has an additional property. Indeed,
it can be seen that in this basis the matrix does not change when a circular perturbation is
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Euclidean basis

Radial-tangential basis
a0

a1

a2

a3

a4

T0 = T+

T1

T2

T3

T4 = T−

Figure 3. Change of basis to radial and tangential components (left). An ex-
ample of symmetric triangulation defining ϕj for the regular polygon (right).

.

applied to the vertices. Therefore the resulting Hessian matrix Hλ is circulant with respect to
its 2× 2 blocks:

(42) Hλ =


H0 H1 ... Hn−1

Hn−1 H0 ... Hn−2
...

...
. . .

...
H1 H2 ... H0


The spectrum of this block circulant matrix is made of the union of the spectra of the following

n matrices of size 2× 2

(43) Bρk = H0 + ρkH1 + ρ2
kH2 + ...+ ρn−1

k Hn−1,

where ρk = exp(ikθ), k = 0, ..., n − 1. Fore more details the reader can refer to [49] and the
references therein. One may note that the symmetry of Hλ implies that Hn−k = HT

k . Moreover,
the 2× 2 matrices described in (43) are all Hermitian (and therefore have real eigenvalues).

In the following we assume that the triangulation defining the functions ϕj in (10) is symmetric
and is made of the triangles Tj having vertices (0, 0), (cos jθ, sin jθ), (cos(j + 1)θ, sin(j + 1)θ),
0 ≤ j ≤ n − 1. For convenience we may use the notation T+ = T0, T− = Tn−1 (see Figure 3).
With these notations it can be seen that for 0 ≤ j ≤ n− 1 we have

(44) ∇ϕj =
1

sin θ

[(
sin(j + 1)θ
− cos(j + 1)θ

)
1Tj +

(
− sin(j − 1)θ
cos(j − 1)θ

)
1Tj−1

]
.

Furthermore, in view of the symmetry of the eigenfunction, a simple integration by parts shows
that

(45)

∫
Tj

∇u1 · ∇v = λ1

∫
Tj

u1v, ∀v ∈ H1
0 (Pn)

Denote with M0,M1, ...,Mn−1 the blocks of the first line in Mλ. Then for ρk = exp(ikθ) a
root of unity of order n we have

Bρk = M0 + M1(ρkRθ) + ...+ Mn−1(ρkRθ)
n−1,

where Rτ =

(
cos τ − sin τ
sin τ cos τ

)
denotes the rotation matrix around the origin with the angle τ

in the trigonometric sense. By abuse of notation we will use the same notation for the rotation
of angle τ around the origin. Recalling the formula (23) we decompose each one of the blocks
Mj = M1

j + M2
j + M3

j with

M1
j = −2|Pn|

(
a(U1

0 , U
1
j ) a(U1

0 , U
2
j )

a(U2
0 , U

1
j ) a(U2

0 , U
2
j )

)
,M2

j = −λ1

∫
Pn

[∇ϕ0 ⊗∇ϕj −∇ϕj ⊗∇ϕ0],
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M3
j = 2|Pn|

∫
Pn

(∇ϕ0 · ∇ϕj)(∇u1 ⊗∇u1)

In the following, we compute separately the matrices Bl
ρk

=
∑n−1

j=0 ρ
j
kM

l
jRjθ, for l = 1, 2, 3. We

denote by Id the identity matrix and J =

(
0 −1
1 0

)
. The area of Pn is |Pn| = 0.5n sin θ.

Note that the matrices M2
j come from the Hessian of the area. Therefore, by straightforward

computations we have M2
1 = −λ1

(
0 0.5
−0.5 0

)
= 0.5λ1Rπ/2, M2

n−1 = −M2
1 and M2

j = 0 for

j /∈ {1, n− 1}. Therefore

n−1∑
j=0

ρjkM
2
jRjθ =

λ1

2
(ρkRπ/2+θ + ρ̄kR−π/2−θ) = λ1(− cos(kθ) sin θId + i sin(kθ) cos θJ).

Furthermore, let Axx =
∫
T+

(∂xu1)2, Ayy =
∫
T+

(∂yu1)2, Axy =
∫
T+
∂xu1∂yu1. Then we have by

the symmetry of the eigenfunction that Axx +Ayy = λ1/n. The fact that the gradients undergo
a rotation when transferred from T− to T+ implies the matrix equality

(46) Rθ

(
Axx −Axy
−Axy Byy

)
RT
θ =

(
Axx Axy
Axy Ayy

)
.

We find that −Axx sin θ +Ayy sin θ + 2Axy cos θ = 0. With the notations above we have

M3
0 = 4|Pn||∇ϕ0|2

(
Axx 0

0 Ayy

)
,M3

1 = 2|Pn|(∇ϕ0 · ∇ϕ1)T+

(
Axx Axy
Axy Ayy

)
,

M3
n−1 = 2|Pn|(∇ϕ0 · ∇ϕn−1)T−

(
Axx −Axy
−Axy Ayy

)
It is immediate to see that (∇ϕ0 ·∇ϕ1)T+ = (∇ϕ0 ·∇ϕn−1)T− = − cos θ|∇ϕ0|2. Keeping in mind
that |Pn| = 0.5n sin θ and |∇ϕ0|T± = 1/ sin θ we get

M3
0 =

2n

sin θ

(
Axx 0

0 Axy

)
,M3

1 = −n cos θ

sin θ

(
Axx Axy
Axy Ayy

)
,M3

n−1 = −n cos θ

sin θ

(
Axx −Axy
−Axy Ayy

)
Of course, the other blocks on the first line are all equal to zero. Therefore we obtain

n−1∑
j=0

ρjkM
3
jRjθ = M3

0 + ρkM
3
1Rθ + ρ̄kM

3
n−1R

T
θ =

2n

sin θ

(
Axx 0

0 Ayy

)

+
2n

sin θ

(
− cos(kθ)(Axx cos2 θ +Axy cos θ sin θ) 0

0 − cos(kθ)(Ayy cos2 θ −Axy cos θ sin θ)

)
+i

2n

sin θ

(
0 − sin(kθ)(−Axx cos θ sin θ +Axy cos2 θ)

− sin(kθ)(Ayy cos θ sin θ +Axy cos2 θ) 0

)
It can be noted that since Axx + Ayy = λ1/n and −Axx sin θ + Ayy sin θ + 2Axy cos θ = 0 we

can deduce that

(47) λ1 = 2n

(
Axy −

cos θ

sin θ
Axy

)
Using these relations and the computations above we find that

n−1∑
j=0

ρjk(M
2
j + M3

j )Rjθ =
2n(1− cos(kθ))

sin(θ)

(
Axx 0

0 Ayy

)
It remains to compute the contribution of the terms M1

j . Let us recall that due to the

symmetry of the triangulation defining ϕi we have, denoting Uj = (U1
j , U

2
j ) the solutions of

(18) with the normalization (21), that

Uj(x) = RjθU0(RT
jθx).
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Note that this implies that RT
jθUj = U0 ◦RT

jθ. For 0 ≤ j ≤ n− 1 we have

M1
jRjθ =

(
a(U1

0 , U
1
j ) a(U1

0 , U
2
j )

a(U2
0 , U

1
j ) a(U2

0 , U
2
j )

)(
cos(jθ) − sin(jθ)
sin(jθ) cos(jθ)

)
=

(
a(U1

0 , cos(jθ)U1
j + sin(jθ)U2

j ) a(U1
0 ,− sin(jθ)U1

j + cos(jθ)U2
j )

a(U2
0 , cos(jθ)U1

j + sin(jθ)U2
j ) a(U2

0 ,− sin(jθ)U1
j + cos(jθ)U2

j )

)
=

(
a(U1

0 , U
1
0 ◦RT

jθ) a(U1
0 , U

2
0 ◦RT

jθ)

a(U2
0 , U

1
0 ◦RT

jθ) a(U2
0 , U

2
0 ◦RT

jθ)

)
.

Remark 4.8. For 0 ≤ j ≤ n − 1 the sum of the elements which are not on the diagonal of
M1

jRjθ is zero. This is a consequence of the fact that a(U1
0 , U

2
0 ◦RT

kθ) = −a(U2
0 , U

1
0 ◦RT

kθ) which

simply comes from the change of variables y = RT
kθx and the fact that U2

0 is odd with respect
to y and U1

0 is even with respect to y (see Proposition 4.7).

The next result shows that the eigenvalues of Bρk , and as a consequence those of Mλ, can be
expressed in terms of u1, U

1
0 , U

2
0 .

Theorem 4.9. For 0 ≤ k ≤ n− 1 we have Bρk =

(
αk iγk
−iγk βk

)
with

αk =
2n(1− cos(kθ))

sin θ

∫
T0

(∂xu1)2 − 2|Pn|a(U1
0 ,
n−1∑
j=0

cos(jkθ)(cos(jθ)U1
j + sin(jθ)U2

j ))

βk =
2n(1− cos(kθ))

sin θ

∫
T0

(∂yu1)2 − 2|Pn|a(U2
0 ,

n−1∑
j=0

cos(jkθ)(− sin(jθ)U1
j + cos(jθ)U2

j ))

γk = −2|Pn|a(U1
0 ,
n−1∑
j=0

sin(jkθ)(− sin(jθ)U1
j + cos(jθ)U2

j ))

= 2|Pn|a(U2
0 ,
n−1∑
j=0

sin(jkθ)(cos(jθ)U1
j + sin(jθ)U2

j ))

Moreover, the eigenvalues of Bρk are given by

µ2k = 0.5(αk + βk −
√

(αk − βk)2 + 4γ2
k), µ2k+1 = 0.5(αk + βk +

√
(αk − βk)2 + 4γ2

k).

As a consequence, the eigenvalues of the Hessian matrix Mλ given in (23) are exactly µj,
j = 0, ..., 2n− 1.

Proof. In view of the previous computations we have

Bρk =
2n(1− cos(kθ))

sin θ

(
Axx 0

0 Ayy

)
−2|Pn|

n−1∑
j=0

(
a(U1

0 , cos(jkθ)(cos(jθ)U1
j + sin(jθ)U2

j )) a(U1
0 , cos(jkθ)(− sin(jθ)U1

j + cos(jθ)U2
j ))

a(U2
0 , cos(jkθ)(cos(jθ)U1

j + sin(jθ)U2
j )) a(U2

0 , cos(jkθ)(− sin(jθ)U1
j + cos(jθ)U2

j ))

)

−2i|Pn|
n−1∑
j=0

(
a(U1

0 , sin(jkθ)(cos(jθ)U1
j + sin(jθ)U2

j )) a(U1
0 , sin(jkθ)(− sin(jθ)U1

j + cos(jθ)U2
j ))

a(U2
0 , sin(jkθ)(cos(jθ)U1

j + sin(jθ)U2
j )) a(U2

0 , sin(jkθ)(− sin(jθ)U1
j + cos(jθ)U2

j ))

)
The formulas follow directly from Proposition 4.7 and Remark 4.8. �

In the following, we continue the computation further by using the variational formulations
for (U1

j , U
2
j ), j = 0, ..., n − 1. Recall that RT

jθUj = U0 ◦RT
jθ. We only develop the expressions

that are non-zero from the above matrices.



ON THE POLYGONAL FABER-KRAHN INEQUALITY 31

Proposition 4.10. We have the following equalities:

a(U1
0 ,

n−1∑
j=0

cos(jkθ)U1
0 ◦RTjθ) =

n−1∑
j=0

(cos(j + 1)kθ + cos jkθ)

∫
Tj

∇u1 · ∇U1
0

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇U1

0

a(U2
0 ,

n−1∑
j=0

cos(jkθ)U2
0 ◦RTjθ) =

cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)

∫
Tj

∇u1 · ∇U2
0

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ − sin(2j + 1)θ
− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇U2

0

a(U1
0 ,

n−1∑
j=0

sin(jkθ)U2
0 ◦RTjθ) =

cos θ

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ)

∫
Tj

∇u1 · ∇U1
0

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ − sin(2j + 1)θ
− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇U1

0

a(U2
0 ,

n−1∑
j=0

sin(jkθ)U1
0 ◦RTjθ) =

n−1∑
j=0

(sin(j + 1)kθ + sin jkθ)

∫
Tj

∇u1 · ∇U2
0

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇U2

0

The proof is computational in nature and is detailed in Appendix A.

Remark 4.11. A direct consequence of Theorem 4.9 and Proposition 4.10 is the fact that the
eigenvalues of the Hessian matrix Mλ of λ1(x)A(x) can be expressed explicitly in terms of the
first eigenfunction u1 and the couple (U1

0 , U
2
0 ).

The previous results allow us to give more details in the particular cases k ∈ {0, 1, n− 1}

Proposition 4.12. If k = 0 then Bρ0 = 0 with associated eigenvalues µ0 = µ1 = 0. This

implies that the vectors s, r ∈ R2n defined in (41) are eigenvectors of Mλ.

For k = 1 we have α1 = β1 = γ1 and Bρ1 = α1

(
1 i
−i 1

)
. In particular µ2 = 0, µ3 = α1.

For k = n − 1 we have αn−1 = βn−1 = −γn−1 and Bρ1 = αn−1

(
1 −i
i 1

)
. In particular

µ2n−2 = 0, µ2n−1 = αn−1 = α1.

Proof: When k = 0 the computations in Proposition 4.10 and the fact that
∫

Ω∇U
1,2
0 · ∇u1 =

λ
∫

Ω U
1,2
0 u1 = 0 imply that Bρ0 = 0.

As a consequence if v ∈ R2 then (v,Rθv, ...,R(n−1)θv) ∈ R2n is an eigenvector of Mλ associ-
ated to the zero eigenvalue. Taking v = (1, 0) gives s and taking v = (0,−1) gives r.

When k = 1 let us evaluate

a(U1
0 ,

n−1∑
j=0

(
cos(jθ)(cos(jθ)U1

j + sin(jθ)U2
j )− sin(jθ)(− sin(jθ)U1

j + cos(jθ)U2
j )
)

=
n−1∑
j=0

a(U1
0 , U

1
j )

On the other hand, Proposition 4.6 shows that tx = (1, 0, ..., 1, 0) is an eigenvector of Mλ

given in 23 for a zero eigenvalue. Therefore, the scalar product of the first line of Mλ with tx is
zero and we obtain

−2|Ω|
n−1∑
j=0

a(U1
0 , U

1
j ) +

2n(1− cos θ)

sin θ
Axx = 0.
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Using the relations computed above we find that αk − γk = 0.
Using the second formula for γk in Theorem 4.9 and the fact that ty = (0, 1, ..., 0, 1) is an

eigenvector of Mλ from Proposition 4.6 we find that βk = γk. The case k = n− 1 follows from
Bρn−1 = Bρ1 . �

Corollary 4.13. We have Bρk = Bρn−k (with indices modulo n). Therefore:
1. Bρk and Bρn−k have the same eigenvalues.

2. If n is odd then the spectrum of Mλ consists of 4 zero eigenvalues and n − 2 double
eigenvalues.

3. If n is even then Bρn/2 is diagonal and the spectrum of Mλ consists of 4 zero eigenvalues,
n−4 double eigenvalues and another two eigenvalues that can be found on the diagonal of Bρn/2.

For the sake of completeness, in the following we give a short proof that the regular polygon is
a critical point for P 7→ |P |λ1(P ). This result is known and can be recovered, for instance, using
ideas from [19] or [6, Chapter 1]. The proof given below relies on the representation formulas
for the gradient given in Theorem 2.2.

Theorem 4.14. The regular polygon is a critical point for x 7→ A(x)λ1(x).

Proof. Fix the regular polygon Pn inscribed in the unit circle with a0 = (1, 0) and denote by λ1

its first eigenvalue. Consider the functions ϕi, i = 0, n− 1 defined in (10) and suppose they are
symmetric like in the right picture in Figure 1. For i ∈ {0, ..., n− 1}, the components 2i, 2i+ 1
of the gradient of the objective function are given by

λ1

∫
Pn
∇ϕi + |Pn|

∫
Pn

Sλ1∇ϕi.

In view of the symmetry of the polygon and of the first eigenfunction, it is enough to perform
the computations for i = 0.

We have ϕ0 = (1,−1/ tan θ)1T+ + (1, 1/ tan θ)1T− . This already shows that

(48) λ1

∫
Pn
∇ϕ0 =

2λ1

n
|Pn|

(
1
0

)
.

Using the expression of ∇λ1(x) and (45) we find that

|Pn|
∫
Pn

Sλ1∇ϕ0 = |Pn|
∫
Pn
−2(∇u1 ⊗∇u1)∇ϕ0 = −4|Pn|

(∫
T+

[(∂xu1)2 − 1
tan θ∂xu1∂yu1]

0

)
.

Using (47) we simplify the above expression to

(49) |Pn|
∫
Pn

Sλ1∇ϕ0 = −2λ1

n
|Pn|

(
1
0

)
.

Adding (48) and (49) we find that the first two components of the gradient of x 7→ A(x)λ1(x)
are zero. By symmetry, all the other components are zero and Pn is indeed a critical point. �

5. A priori error estimates for the coefficients of the Hessian matrix

The eigenvalues of Mλ are described analytically in the previous section, but the formulae do
not allow us to prove that these eigenvalues are non-negative. In view of Proposition 4.5 proving
that Mλ has 2n− 4 eigenvalues that are strictly positive is enough to infer the local minimality
of the regular polygon. In this section we describe how we can certify numerically this fact. In
order to achieve this we provide a priori error estimates concerning numerical approximations
based on finite elements for αk, βk, γk given in Theorem 4.9.

First we refer to classical certified estimates for the approximation of the first eigenpair and
of the second eigenvalue on the regular polygon Pn using P1 finite elements. In a second step,
we get certified estimates for the finite element approximation of the function Ui. In the last
step we get certified approximation results for the coefficients of the Hessian matrix.
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5.1. Step 1. Certified approximation of the first eigenpair and of the second eigen-
value. In the literature one can find certified approximation for the first eigenvalue in regular
polygons (see for instance [31]). We shortly recall of the results of [37, Theorem 4.3].

Let us consider a triangulation T h of Pn. In each triangle Ti ∈ T h, the ratio between the
smallest edge and the middle one Li is denoted αi and the angle between these two edges is τi.
Then, we denote

C(Ti) := 0.493Li
1 + α2

i +
√

1 + 2α2
i cos(2τi) + α4

i√
2
(
1 + α2

i −
√

1 + 2α2
i cos(2τi) + α4

i

) .
Following [37, Section 2], we introduce the constant

C1 = sup
h

C(Ti)

h
,

where the parameter h dictating the size of the mesh is the size of the median edge. Let us
denote Vh the finite element space associated to T h with P1 finite elements. Denote by λk,h, uk,h
the k-th eigenvalue of Pn and its associated eigenfunction approximated in Vh, solving

(50) uk,h ∈ Vh,
∫
Pn
∇uk,h · ∇vh = λk,h

∫
Pn
uk,hvh, ∀vh ∈ Vh.

Results of [38] show that

∀k ≥ 1, λk,h > λk >
λk,h

1 + C2
1h

2λ2
k,h

.

As a direct consequence we have

(51) |λk − λk,h| ≤ λ3
k,hC

2
1/(1 + C2

1h
2λ2

k,h) h2.

Denoting Π1,h the Lagrange interpolation operator on the vertices of triangles of T h, for
functions u ∈ H2(Pn) we have

‖∇u−∇Π1,h(u))‖L2 ≤ C1h‖D2u‖L2 .

For each u ∈ H1
0 (Pn) let us denote Ph(u) the projection of u onto the finite element space Vh,

namely the solution of

(52) Ph(u) ∈ Vh,
∫
Pn

(∇u−∇Ph(u),∇vh)dx = 0, ∀vh ∈ Vh.

Then

(53) ‖∇u−∇Ph(u)‖L2 ≤ C1h‖D2u‖L2 and ‖u− Ph(u)‖L2 ≤ C1h‖∇u−∇Phu‖L2 .

In particular, for u = u1 ∈ H2, using ‖D2u‖L2 = ‖∆u‖L2 ([22, Theorem 4.3.1.4]), we get

(54) ‖∇u1 −∇Ph(u1))‖L2 ≤ C1h‖D2u1‖L2 = C1hλ1 and ‖u1 − Ph(u1)‖L2 ≤ C2
1h

2λ1.

In order to estimate the error for the eigenfunction, let u1,h be an L2-normalized, finite element
approximation of the first eigenfunction given by (50).

Let us denote by p = Ph(u1) and decompose p = αu1,h + p, where
∫
Pn pu1,hdx = 0, α ∈ R.

Note that changing the sign of u1,h still gives an L2-normalized solution, therefore we may
assume α > 0 in the previous decomposition.

As we know that∫
Pn
∇p · ∇vh =

∫
Pn
∇u · ∇vh = λ1

∫
Pn
u1vh, ∀vh ∈ Vh,

we get ∫
Pn
∇p · ∇vh − λ1,h

∫
Pn
pvh =

∫
Pn

(λ1u1 − λ1,hp)vh, ∀Vh.
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Using the Poincaré inequality on the orthogonal of u1,h in Vh, we get

λ2,h − λ1,h

λ2,h

∫
Pn
|∇p|2dx ≤ ‖λ1u1 − λ1,hp‖L2

1√
λ2,h

‖∇p‖L2dx,

or

(55) λ
1/2
2,h ‖p‖L2 ≤ ‖∇p‖L2 ≤

λ
1
2
2,h

(λ2,h − λ1,h)

(
|λ1 − λ1,h|+ λ1,h‖u1 − p‖L2

)
.

We obtain the error estimate

(56) ‖∇u1 −∇u1,h‖L2 ≤ ‖∇u1 −∇p‖L2 +
|1− α|
|α|

‖∇p‖L2 +
1

α
‖∇p‖L2 .

We compute the following bounds for ‖p‖L2 , ‖∇p‖L2 , which are immediate from the definition
of p and the projection operator Ph:

‖∇p‖2L2
=

∫
Pn
∇u1 · ∇p = λ1

∫
Pn
u1p ≤ λ1‖p‖L2 ≤ λ1(‖u1‖L2 + ‖p− u1‖L2)

In order to conclude we need bounds for α. We have
∫
Pn p

2 = α2 +
∫
Pn p

2, which shows that

|1− α| ≤ |1− α2| ≤
∫
Pn
p2 +

∫
Pn

(u2 − p2) ≤
∫
Pn
p2 + ‖u1 − p‖L2(2 + ‖u1 − p‖L2).

This estimate can be written in a quantitative form using (55) and (54). Since α > 0, for h
small enough, an explicit lower bound for α can also be found.

In the same way we obtain the L2 error estimate for the first eigenfunction

(57) ‖u1 − u1,h‖L2 ≤ ‖u1 − p‖L2 +
|1− α|
|α|

‖p‖L2 +
1

α
‖p‖L2 .

It can be noted that the optimal rates of convergence are obtained in (56) and (57). Moreover,
the term of order O(h) in (56), which dominates the estimates comes from the interpolation error
bound for ‖∇u1 −∇p‖L2 while the remaining terms are of higher order O(h2).

5.2. Step 2. Certified approximation of Uj. We begin with some generic approximation
results for solutions of the Laplace equation with Dirichlet boundary conditions with singular
right hand sides.

Lemma 5.1. Let γ ∈ (0, 1
2) and v the solution of (24) on Pn with f ∈ H−

1
2
−γ(R2). Then

(58) ‖∇v −∇Ph(v)‖L2 ≤ ‖f‖
H−

1
2−γ(R2)

(C1h)
1
2
−γ(1 +

1

λ1
)
1
2

+γ .

and

(59) ‖v − Ph(v)‖L2 ≤ ‖f‖
H−

1
2−γ(R2)

(C1h)
3
2
−γ(1 +

1

λ1
)
1
2

+γ .

Proof. By the Aubin-Nitsche argument we get

‖v − Ph(v)‖L2 ≤ C1h‖∇v −∇Ph(v)‖L2 .

To prove that, it is enough to introduce

ξ ∈ H1
0 (Pn),−∆ξ = v − Ph(v) in H1

0 (Pn).

Then ξ ∈ H2(Pn) and using [22, Theorem 4.3.1.4] we get

‖D2ξ‖L2 = ‖∆ξ‖L2 = ‖v − Ph(v)‖L2 ,

so that

‖v − Ph(v)‖2L2 =

∫
Pn
∇ξ · ∇(v − Ph(v))dx =

∫
Pn
∇(ξ −Π1,hξ) · ∇(v − Ph(v))dx

≤ C1h‖D2ξ‖L2‖∇v −∇Ph(v)‖L2 ≤ C1h‖v − Ph(v)‖L2‖∇v −∇Ph(v)‖L2 .
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Since f ∈ H−
1
2
−γ(R2) then

‖∇v −∇Ph(v)‖2L2 = (f, v − Ph(v))H−1×H1
0
≤ ‖f‖

H−
1
2−γ(R2)

‖v − Ph(v)‖
H

1
2+γ(R2)

.

From the Gagliardo-Nirenberg interpolation inequality (all norms in R2 are taken to be the
Fourier transform ones), we get

‖∇v −∇Ph(v)‖2L2 ≤ ‖f‖
H−

1
2−γ(R2)

‖v − Ph(v)‖
1
2
−γ

L2 ‖v − Ph(v)‖
1
2

+γ

H1(R2)

≤ ‖f‖
H−

1
2−γ(R2)

(C1h)
1
2
−γ(1 +

1

λ1
)
1
2

+γ‖∇v −∇Ph(v)‖L2 .

Finally, we get the conclusion. �

Theorem 5.2. Let U ∈ H1
0 (Pn) be the solution of

(60)


−∆U − λ1U = f in Pn

U = 0 on ∂Pn∫
Pn u1Udx = 0

where (f, u1)H−1,H1
0

= 0, f = f reg + f sing with f reg ∈ L2(Pn) and f sing ∈ H−
1
2
−γ(Pn). Assume

fh is a numerical approximation in H−1 of f which verifies (fh, u1,h)H−1,H1
0

= 0 and (u1,h, λ1,h)

a numerical approximation of (u1, λ1) in H1
0 (Pn)×R. Denote Uh the finite element solution in

Vh for

∀v ∈ Vh,
∫
Pn

(∇Uh · ∇v − λ1,hUhv) dx = (fh, v)H−1×H1
0

(61)

together with the normalization

(62)

∫
Pn
u1,hUh dx = 0,

Then

‖∇U −∇Uh‖L2 ≤ C1h‖λ1U + f reg‖L2 + ‖f sing‖
H−

1
2−γ

(C1h)
1
2
−γ(1 +

1

λ1
)
1
2

+γ

+ λ
1
2
1,h

(
(C1h)2‖λ1U + f reg‖L2 + ‖f sing‖

H−
1
2−γ(R2)

(C1h)
3
2
−γ(1 +

1

λ1
)
1
2

+γ

+ ‖V ‖L2‖u1,h − u‖L2

)
+

λ
1
2
2,h

λ2,h − λ1,h

(
|λ1,h − λ1|‖U‖L2 + λ1,h‖U − Ph(U)‖L2

+ (1 + λ2,h)
1
2 ‖f − fh‖H−1

)
.

Proof. We denote Ureg, Using the solutions of

Ureg ∈ H1
0 (Pn), −∆Ureg = λ1U + f reg, Using ∈ H1

0 (Pn), −∆Using = f sing,

so that U = Ureg + Using.

We introduce the auxiliary functions Vreg, Vsing ∈ Vh, Vreg = Ph(Ureg), Vsing = Ph(Using) the
finite element solutions of

Vreg ∈ Vh, −∆Vreg = λ1U + f reg Vsing ∈ Vh, −∆Vsing = f sing.

For Vsing, the estimate (58) from Lemma 5.1 holds, and gives

‖∇Using −∇Vsing‖L2 ≤ ‖f sing‖
H−

1
2−γ

(C1h)
1
2
−γ(1 +

1

λ1
)
1
2

+γ ,

while for Vreg the estimate from (54) gives

‖∇Ureg −∇Vreg‖L2 ≤ C1h‖λ1U + f reg‖L2 .
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Let us denote V = Vreg + Vsing and define Ṽ = V − (
∫
Pn V u1,hdx)u1,h. Then we have

(63) ‖∇Ṽ −∇V ‖L2 = λ
1
2
1,h

∣∣∣∣∫
Pn

(V u1,h − Uu1)

∣∣∣∣ ≤ λ 1
2
1,h(‖U − V ‖L2 + ‖V ‖L2‖u1,h − u‖L2).

We have that Ṽ is the finite element solution of

Ṽ ∈ Vh, −∆Ṽ − λ1,hṼ = λ1U + f − λ1,hV,

which gives∫
Pn
|∇Ṽ −∇Uh|2dx− λ1,h

∫
Pn
|Ṽ − Uh|2dx = (λ1U + f − λ1,hV − fh, Ṽ − Uh)H−1×H1

0
.

By the Poincaré inequality in the orthogonal of u1,h we get(
1−

λ1,h

λ2,h

)∫
Pn
|∇Ṽ −∇Uh|2dx ≤ ‖λ1U − λ1,hV ‖L2‖Ṽ − Uh‖L2 + ‖f − fh‖H−1‖Ṽ − Uh‖H1

≤ ‖λ1U − λ1,hV ‖L2λ
− 1

2
2,h ‖∇Ṽ −∇Uh‖L2 + ‖f − fh‖H−1

(
1 +

1

λ2,h

) 1
2

‖∇Ṽ −∇Uh‖L2 .

Finally,

(64) ‖∇Ṽ −∇Uh‖L2(Pn)

≤
λ

1
2
2,h

λ2,h − λ1,h

(
|λ1,h − λ1|‖U‖L2 + λ1,h‖U − V ‖L2 + (1 + λ2,h)

1
2 ‖f − fh‖H−1

)
.

�

Theorem 5.3. With the notations of Theorem 5.2, the following estimate holds

‖U − Uh‖L2 ≤ 2C1h‖∇U −∇V ‖L2 + ‖V ‖L2‖u1 − u1,h‖L2 + λ
− 1

2
2,h ‖∇Ṽ −∇Uh‖L2 .

Proof. First, by the Aubin-Nitsche trick, we have ‖U − V ‖L2 ≤ C1h‖∇U −∇V ‖L2 . Using the

definition of Ṽ we have

‖Ṽ − V ‖L2(Pn) =

∣∣∣∣∫
Pn
V u1,hdx

∣∣∣∣ =

∣∣∣∣∫
Pn
V u1,h − Uu1dx

∣∣∣∣ ≤ ‖U − V ‖L2 + ‖V ‖L2‖u1 − u1,h‖L2

Finally, we have

‖Ṽ −Uh‖L2(Pn) ≤ λ
− 1

2
2,h ‖∇Ṽ −∇Uh‖L2(Pn)

≤ 1

λ2,h − λ1,h

(
|λ1,h − λ1|‖U‖L2(Pn) + λ1,h‖U − V ‖L2(Pn) + (1 + λ2,h)

1
2 ‖f − fh‖H−1(Pn)

)
.

�

Remark 5.4. It can be seen that the estimates from Theorems 5.2, 5.3 become explicit as soon
as ‖f‖H−1 , ‖freg‖L2 , ‖fsing‖

H−
1
2−γ

, ‖f − fh‖H−1 are known. We present below some inequalities

that help obtain upper bounds for all other quantities presented here.
Using the fact that U is orthogonal on the first eigenfunction u1 we find√

λ2‖U‖L2 ≤ ‖∇U‖L2 ≤
√
λ2(λ2 + 1)

λ2 − λ1
‖f‖H−1 .

Since V is the projection of U on Vh we have ‖∇V ‖L2 ≤ ‖∇U‖L2 . Secondly we have ‖V ‖L2 ≤
1√
λ1
‖∇V ‖H1 . Since Ṽ is the projection of V on the orthogonal of u1,h in Vh we immediately

have ‖Ṽ ‖L2 ≤ ‖V ‖L2 and ‖∇Ṽ ‖L2 ≤ ‖∇V ‖L2 .
We obtain the following estimates for Uh:

‖∇Uh‖2L2 − λ1,h‖Uh‖2L2 ≤ ‖fh‖H−1‖Uh‖H1 .
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Since Uh is orthogonal on u1,h the first eigenfunction associated to λ1,h we have ‖∇Uh‖2L2 ≥
λ2,h‖Uh‖2L2 which implies that(

1−
λ1,h

λ2,h

)
‖∇Uh‖2L2 ≤ ‖fh‖H−1

√
1 +

1

λ2,h
‖∇Uh‖L2 .

This implies √
λ2,h‖Uh‖L2 ≤ ‖∇Uh‖L2 ≤

√
λ2,h(1 + λ2,h)

λ2,h − λ1,h
‖fh‖H−1 .

Remark 5.5. In practice, the singular right hand side that we consider is of the following type.
Let S = [0, 1]× {0} and g = ∂u1

∂x . We define fsing ∈ H−1(R2) by

∀ϕ ∈ H1(R2), (fsing, ϕ)H−1×H1 =

∫
S
gϕds.

Then for every γ ∈ (0, 1
2) we have

fsing ∈ H−
1
2
−γ(R2), ‖fsing‖

H−
1
2−γ(R2)

≤

(
Γ(γ)

2π
1
2 Γ(1/2 + γ)

) 1
2

‖g‖L2(S).

Indeed, for every ϕ ∈ H
1
2

+γ(R2)

(fsing, ϕ)
H−

1
2−γ×H

1
2+γ ≤ ‖g‖L2(S)‖ϕ‖L2(S),

and use the trace theorem for ϕ from H
1
2

+γ(R2) onto L2(R × {0}) with constant Cγ :=(
Γ(γ)

2π
1
2 Γ(1/2+γ)

) 1
2

(see Pak and Park [40]).

Practical estimate. In order to estimate ‖g‖L2(S) above, we notice that∫
S
g2dx = −

∫
S
u1
∂2u1

∂x2
dx ≤ −

∫
S
u1∆u1dx = λ1

∫
S
u2

1dx.

Here, we have used that ∂u1
∂x ∈ H

1
0 (S) for symmetry reasons and angular behavior, together with

∂2u1
∂y2
≤ 0, from symmetry and convexity of the level lines of u1. In order to estimate

∫
S u

2
1dx,

we can use the following

‖u1‖L2(S) ≤ ‖u1,h‖L2(S) + ‖u1 − u1,h‖L2(S) ≤ ‖u1,h‖L2(S) +
[ ∫ 1

0

∫ 1

0

(
∂u1

∂y
−
∂u1,h

∂y

)2

dxdy
] 1

2
.

If the approximation by finite elements has the symmetry of the n-gon, then∫ 1

0

∫ 1

0

(∂u1

∂y
−
∂u1,h

∂y

)2
dxdy ≤ b(n+ 1)/2c 1

2n

∫
Pn
|∇u1 −∇u1,h|2.

Analysis of the function U0 = (U1
0 , U

2
0 ). As we have seen in Section 4, it is enough to

concentrate on the function U0 defined in (18) with the normalization condition (21). Recall
the definition of ϕi is given in in (10) (see also Figure 1).

Denote by f0 ∈ H−1(Pn,R2) the right hand side from (18) for j = 0. Since the index 0 is fixed,
we shall drop it from U0, its right hand side f0 and ϕ0. We denote by T+ = T0 and T− = Tn−1

the upper and lower triangles of the support of ϕ. Then

∇ϕ = 1T+

(
1,− 1

tan θ

)
+ 1T−

(
1,

1

tan θ

)
and ∀x ∈ Pn, ‖∇ϕ(x)‖ =

1

sin θ
1T+∪T−(x).
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The right hand side f ∈ H−1(Pn,R2) is the distribution given by

∀v ∈ C∞c (Pn), (f , v)H−1×H1 =

∫
Pn
−(∇ϕ⊗∇u1)∇v + 2(∇u1 �∇v)∇ϕdx

+

∫
Pn

Sλ1∇ϕ
∫
Pn
u1v dx+ λ1

∫
Pn
u1v∇ϕdx.

Recall that Sλ1 = (|∇u1|2 − λ1u
2
1) Id−2∇u1 ⊗∇u1. Using integration by parts, we notice that∫

Pn
−(∇ϕ⊗∇u1)∇vdx+ λ1

∫
Pn
u1v∇ϕdx = 0.

We observe that in the expression of
∫
Pn Sλ1∇ϕ the first term cancels for symmetry reasons. We

may also use the fact that the regular polygon is critical for λ1(Pn)|Pn| so that∫
Pn

Sλ1∇ϕ =

∫
Pn
−2(∇u1 ⊗∇u1)∇ϕ = − λ1

|Pn|

∫
Pn
∇ϕ =

(
−2λ1

n
0

)
Moreover∫

Pn
−2(∇u1 ⊗∇u1)∇ϕdx = −4

∫
T+

(∂xu1)2 − 1

tan θ
(∂xu1)(∂yu1)dx

0

 :=

(
sλ1
0

)
.

Therefore sλ1 = −2λ1/n.

On the other hand, if Q(v) = v −
(∫

Pn u1v
)
u1 is the L2-projection of v on the orthogonal of

u1, we may note that

(f , v)H−1×H1 =

∫
Pn

2(∇u1 �∇v)∇ϕdx− 2

∫
Pn

(∇u1 ⊗∇u1)∇ϕdx(65)

= 2

∫
Pn

(∇u1 �∇Q(v))∇ϕdx

Working with a symmetric triangulation for ϕj (Figure 3) and a mesh that is exact on
Tj and respects the symmetries of the regular polygon (Figure 4) the uniqueness of the first
discrete eigenfunction u1,h implies that (46) holds also for the discrete quantities. In par-
ticular

∫
T+

(∂xu1,h)2 +
∫
T+

(∂yu1,h)2 = λ1,h/n and − sin θ
∫
T+

(∂xu1,h)2 + sin θ
∫
T+

(∂yu1,h)2 +

2 cos θ
∫
T+
∂xu1,h∂yu1,h = 0. We denote by(

sλ1,h
0

)
= −4

∫
T+

(∂u1,h

∂x

)2
− 1

tan θ

∂u1,h

∂x

∂u1,h

∂y
dx

0


and using the previous relations we find that sλ1,h = −2λ1,h/n. Therefore |sλ1−sλ1,h| =

2
n |λ1−λ1,h|.

Let fh be the distribution given by: ∀v ∈ C∞c (R2)

(fh, v)H−1×H1 =

∫
Pn

(∇v ⊗∇u1,h)∇ϕdx+

∫
Pn

(∇u1,h ⊗∇v)∇ϕdx+ sλ1,h

∫
Pn
u1,hv dx.

Proposition 5.6. The following inequality occurs

‖f − fh‖H−1 ≤
2
√

2√
n sin θ

‖∇u1,h −∇u1‖L2 +
1√

1 + λ1

(
|sλ1 − sλ1,h|+ |sλ1 |‖u1 − u1,h‖L2

)
.

Proof: The proof is straight forward by direct computation, taking into account the vector
norm inequality ‖(a⊗ b)c‖ ≤ ‖a‖‖b‖‖c‖ and the Poincaré inequality

‖v‖L2 ≤
1√

1 + λ1
‖v‖H1

0
.

We also used the symmetry of the mesh, which gives

‖∇u1,h −∇u1‖L2(T+∪T−) =

√
2

n
‖∇u1,h −∇u1‖L2(Pn).
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�

Practical estimate. We estimate below the quantities needed for the estimates in Theorem
5.2. In order to estimate ‖f i‖H−1 , ‖f ireg‖L2 and ‖f ising‖H− 1

2−γ
we use the following notations:

(f , v)H−1,H1
0

=

(
(f1, v)H−1×H1

0

(f2, v)H−1×H1
0

)
=

∫
Pn

2(∇u1 �∇v)∇ϕdx+

∫
Pn
u1v dx

(
sλ1
0

)

=

∫
Pn

(∇ϕ · ∇Q(v))∇u1 +

∫
Pn

(∇ϕ · ∇u1)∇Q(v)

=

∫
Pn

(∇ϕ · ∇v)∇u1 dx+

∫
Pn

(∇ϕ · ∇u1)∇v dx+

∫
Pn
u1v dx

(
sλ1
0

)
:=

(
A1

A2

)
+

(
B1

B2

)
+

(
C1

C2

)
.

Recall that Q(v) is the projection of v on the orthogonal of u1. Therefore ‖∇Q(v)‖L2 ≤ ‖∇v‖L2

and ‖Q(v)‖L2 ≤ ‖v‖L2 .
For the H−1 estimate we work with the formula involving Q(v) and we have

(f1, v)H−1,H1 =

∫
T+∪T−

(2∂xu1∂xQ(v) + ∂yϕ(∂xu1∂yQ(v) + ∂yu1∂xQ(v)))

Which implies that

‖f1‖H−1 ≤ 2
√

2

(∫
T+

(∂xu1)2

)1/2

+
1

tan θ

√
2λ1

n

A similar computation for f2 leads to

‖f2‖H−1 ≤
2
√

2

tan θ

(∫
T+

(∂yu1)2

)1/2

+

√
2λ1

n
.

Let us denote S+, S0, S− the segments [0, exp(iθ)], [0, 1], [0, exp(−iθ)] in the complex plane,
and n = (nx, ny) the outside normal of a domain. We have(

(A1, v)
(A2, v)

)
=

(
−
∫
T+∪T− v∇ϕ · ∇

∂u1
∂x +

∫
∂T+

v∇ϕ · n∂u1
∂x +

∫
∂T−

v∇ϕ · n∂u1
∂x

−
∫
T+∪T− v∇ϕ · ∇

∂u1
∂y +

∫
∂T+

v∇ϕ · n∂u1
∂y +

∫
∂T−

v∇ϕ · n∂u1
∂y

)
.

We decompose each term in Ai = Aireg + Aising, the regular part given by the first integral over
T+ ∪ T− and the singular part given by the sum of the last two integrals over the boundaries of
∂T+ and ∂T−. Following [22, Lemmas 3.4.1.2-3] we find that ‖∇(∂xu1)‖L2(Tj) =

√
λ1‖∂xu1‖L2(Tj)

and ‖∇(∂yu1)‖L2(Tj) =
√
λ1‖∂yu1‖L2(Tj). Therefore, for the regular parts we have

‖A1
reg‖L2 ≤

√
2λ1

sin θ
‖∂xu1‖L2(T+) ‖A2

reg‖L2 ≤
√

2λ1

sin θ
‖∂yu1‖L2(T+)

We explicit ∇ϕ · n on S0, S+, S− and we obtain(
(A1

sing, v)

(A2
sing, v)

)
=

(
−
∫
S+

1
sin θv

∂u1
∂x + 2

∫
S0

1
tan θv

∂u1
∂x −

∫
S−

1
sin θv

∂u1
∂x

−
∫
S+

1
sin θv

∂u1
∂y −

∫
S−

1
sin θv

∂u1
∂y

)
We have ‖∂xu1‖L2(S±) = cos θ‖∂xu1‖L2(S0) and ‖∂yu1‖L2(S±) = sin θ‖∂xu1‖L2(S0) since the nor-
mal component of the gradient of u1 is zero on these segments. Therefore, using Remark 5.5 we
obtain

‖A1
sing‖H− 1

2−γ
≤ 2

1 + cos θ

sin θ

√
λ1‖u1‖L2(S0)Cγ , ‖A2

sing‖H− 1
2−γ
≤ 2
√
λ1‖u1‖L2(S0)Cγ .

A similar computation leads to(
(B1, v)
(B2, v)

)
=

(
−
∫
T+∪T− v∇ϕ · ∇

∂u1
∂x +

∫
∂T+

v∇ϕ · ∇u1nx +
∫
∂T−

v∇ϕ · ∇u1nx

−
∫
T+∪T− v∇ϕ · ∇

∂u1
∂y +

∫
∂T+

v∇ϕ · ∇u1ny +
∫
∂T−

v∇ϕ · ∇u1ny

)
,
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and we observe that the boundary integrals vanish. For the regular parts we have the same
estimates as before

‖B1
reg‖L2 ≤

√
2λ1

sin θ
‖∂xu1‖L2(T+) ‖B2

reg‖L2 ≤
√

2λ1

sin θ
‖∂yu1‖L2(T+).

It is straightforward to see that C1, C2 are L2 distributions, C2 = 0 and ‖C1‖L2 = |sλ1 | = 2λ1/n.
Finally, we get

‖f1
reg‖L2 ≤ 2

√
2λ1

sin θ
‖∂xu1‖L2(T+) +

2λ1

n
‖f2

reg‖L2 ≤ 2

√
2λ1

sin θ
‖∂yu1‖L2(T+).

‖f1
sing‖H− 1

2−γ
≤ 2

1 + cos θ

sin θ

√
λ1‖u1‖L2(S0)Cγ , ‖f2

sing‖H− 1
2−γ
≤ 2
√
λ1‖u1‖L2(S0)Cγ .

Using the fact that ‖∂xu1‖2T+ + ‖∂yu1‖2T+ = λ1/n we may also use the slightly weaker, but

simpler bounds below:

‖f i‖H−1 ≤
2

sin θ

√
2λ1

n
, ‖f1

reg‖L2 ≤
2λ1

sin θ

√
2

n
+

2λ1

n
‖f2

reg‖L2 ≤
2λ1

sin θ

√
2

n
.

5.3. Step 3. Estimates for the eigenvalues of Mλ. As shown in Theorem 4.9 and Propo-
sition 4.10 the eigenvalues of Mλ can be expressed in terms of u1 and (U1

0 , U
2
0 ). As we saw in

the previous sections, the terms containing derivatives of u1 can be well approximated using P1

finite elements using an estimate of order O(h) with explicit constants.
Results of the previous section show that the estimate of the computation error for U behaves

like h
1
2
−γ . Trying to bound directly the error for the eigenvalues of Mλ will give estimates of

the same order, which in practice are not fine enough to provide bounds that allow to certify
that the non-zero eigenvalues of Mλ are positive.

However, it turns out that the estimate of the coefficients of the shape Hessian matrix of
the eigenvalue is better, namely in h1−2γ , as a consequence of the particular structure of the
coefficients. As shown in [20, Section 5] defining and solving an auxiliary problem using the
same bilinear form can double the speed of the convergence.

We use the notations of Theorem 5.2 for two generic problems with solutions Ua, U b corre-
sponding to the right hand sides fa, f b (not necessarily those explicited in the previous section).

As well, we use the associated notations V a, V b, Ṽ a, Ṽ b, Uah , U
b
h, fah , f

b
h. We denote the bilinear

forms

a : H1
0 (Pn)×H1

0 (Pn)→ R, a(u, v) =

∫
∇u · ∇v − λ1

∫
uv,

ah : Vh × Vh → R, ah(u, v) =

∫
∇u · ∇v − λ1,h

∫
uv.

Our objective is to estimate error terms of the type

|a(Ua, U b)− ah(Uah , U
b
h)|,

in order to get an estimate of order h1−2γ for αk, βk, γk in Theorem 4.9. We have

|a(Ua, U b)− ah(Uah , U
b
h)| ≤(66)

|a(Ua, U b)− a(V a, V b)|+|a(V a, V b)− ah(Ṽ a, Ṽ b)|+ |ah(Ṽ a, Ṽ b)− ah(Uah , U
b
h)|.

We estimate each term of the right hand side, separately, the most delicate being the first one.
First term.

a(Ua, U b)−a(V a, V b) =

∫
Pn
∇(Ua−V a) ·∇(U b−V b)−λ1

∫
Pn

(Ua−V a)V b−λ1

∫
Pn

(U b−V b)Ua,

so that

|a(Ua, U b)− a(V a, V b)| ≤

‖∇(Ua − V a)‖L2‖∇(U b − V b)‖L2 + λ1‖V b‖L2‖V a − Ua‖L2 + λ1‖Ua‖L2‖V b − U b‖L2 .

As a consequence of Lemma 5.1 applied for the L2-norms of both the functions and their gradients
we get a control in h1−2γ .
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Second term.

|a(V a, V b)− ah(Ṽ a, Ṽ b)| ≤ ‖∇V a‖L2‖∇V b −∇Ṽ b‖L2 + ‖∇Ṽ b‖L2‖∇V a −∇Ṽ a‖L2+

|λ1,h − λ1|‖Ṽ a‖L2‖Ṽ b‖L2 + λ1‖Ṽ b‖L2‖V a − Ṽ a‖L2 + λ1‖V a‖L2‖V b − Ṽ b‖L2 ,

which, in view of inequality (63), leads to an approximation of order h.
Third term.

|ah(Ṽ a, Ṽ b)− ah(Uah , U
b
h)| ≤ |ah(Ṽ a, Ṽ b − U bh)|+ |ah(Ṽ a − Uah , U bh)| ≤

‖∇Ṽ a‖L2‖∇Ṽ b −∇U bh‖L2 + ‖∇U bh‖L2‖∇Ṽ a −∇Uah‖L2 .

The last inequality is a consequence of the fact that ah(·, ·) is a scalar product on {u1,h}⊥ in

Vh and of the Cauchy-Schwarz inequality together with the observation that ah(v, v) ≤
∫
|∇v|2.

Using inequality (64) we get an approximation of order h.

Remark 5.7. The problematic term in the previous estimates can be simplified when the two
distributions and associated solutions have opposite parity properties. Indeed, suppose that

f1 = fareg + fasing with fareg ∈ L2, fasing ∈ H−
1
2
−γ such that (fasing, U

b − V b)
H−

1
2−γ ,H

1
2+γ = 0. Then

we have ∫
Pn
∇(Ua − V a) · ∇(U b − V b) =

∫
Pn
∇Ua · ∇(U b − V b)

=(λ1U
a + fareg + fasing, U

b − V b)H−1,H1 = ((λ1U
a + fareg, U

b − V b)L2,L2 ,

leading to an estimate of order h3/2−γ , for γ ∈ (0, 0.5).

Below we show how to choose the functions in the above estimates in order to obtain the
desired bounds for the quantities described in Theorem 4.9. Since in the case k = 0 we have
α0 = β0 = γ0 = 0 we focus only on the cases 1 ≤ k ≤ n− 1.

Remark 5.8. It can be noted that the error estimates above can already be applied for terms of
the type a(U1,2

j , U1,2
l ) that appear in the expressions of Mλ and αk, βk, γk. However, if multiple

such terms are present in some expression, a direct error estimate will accumulate the errors
and the final results will be unusable for reasonably large h. It is best to choose properly the
functions Ua, U b beforehand and apply the error estimate only once.

The term αk. Denote by

Wαk =
n−1∑
j=0

cos(jkθ)U1
0 ◦RT

jθ

so that a(U1
0 ,W

αk) allows us to express αk (see Proposition 4.10). The orthogonality of U1
0 on

u1 implies that
∫
PnW

αku1 = 0. Denote fαk ∈ H−1 the distribution

(fαk , v)H−1,H1
0

=
n−1∑
j=0

(cos(j + 1)kθ + cos jkθ)λ1

∫
Tj

u1v

+
n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇v.

Multiplying a vector with the matrix

(
− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
preserves its length and

reflects it about the line through the origin making an angle (j + 1/2)θ + π/4. The symmetry
of the first eigenfunction u1 implies that (fαk , u1) = 0. These observations imply that Wαk is
the unique solution of the problem

a(W, v) = (fαk , v)H−1,H1
0
, ∀v ∈ H1

0 (Pn),

∫
Pn
Wu1 = 0.
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Elementary computations show that
n−1∑
j=0

(cos jkθ + cos(j + 1)kθ))2 = n+ n cos(kθ),

n−1∑
j=0

(cos jkθ − cos(j + 1)kθ))2 = n− n cos(kθ).(67)

n−1∑
j=0

(sin jkθ + sin(j + 1)kθ))2 = n+ n cos(kθ),

n−1∑
j=0

(sin jkθ − sin(j + 1)kθ))2 = n− n cos(kθ).

Therefore, a straightforward estimate using (67), the symmetry of the eigenfunction u1 and
‖v‖L2 ≤ 1√

1+λ1
‖v‖H1 shows that

‖fαk‖H−1 ≤ λ1

√
1 + cos(kθ)

1 + λ1
+

√
λ1(1− cos(kθ))

sin θ
.

For simplicity denote Kαk
j = cos(j+1)kθ−cos jkθ

sin θ

(
− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
Then we have

n−1∑
j=0

∫
Tj

Kαk
j ∇u1 · ∇v =

n−1∑
j=0

∫
Tj

−div(Kαk
j ∇u1)v +

n−1∑
j=1

∫
∂Tj

(Kαk
j ∇u1 · n)v

Since u1 ∈ H2(Pn) the first term is regular. Let us investigate the second term. Denote with
Sj , Sj+1 the two rays associated to the triangle Tj , j = 0, ..., n − 1 (with notation modulo n).

Denote with Nj =

(
− sin jθ
cos jθ

)
the normal to Sj in the trigonometric sense. The symmetry of

the eigenfunction (see Remark 4.3) implies that (∇u1)Sj = ∂ru1

(
cos jθ
sin jθ

)
, which implies(

− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
∇u ·Nj = ∂ru1 cos θ.

We obtain for v ∈ H1
0 (Pn)

n−1∑
j=0

∫
∂Tj

(Kαk
j ∇u1 · n)v =

n−1∑
j=0

(
−
∫
Sj

(Kαk
j ∇u1 ·Nj)v +

∫
Sj+1

(Kαk
j ∇u1 ·Nj+1)v

)

=
n−1∑
j=0

∫
Sj

((Kαk
j−1 −K

αk
j )∇u1 ·Nj)v

= −
n−1∑
j=0

∫
Sj

cos θ

sin θ
(cos(j + 1)kθ + cos(j − 1)kθ − 2 cos jkθ)∂ru1v.

= −
n−1∑
j=0

∫
Sj

cos θ

sin θ
2 cos jkθ(1− cos kθ)∂ru1v

Finally

(fαksing, v)H−1×H1
0

= −
n−1∑
j=0

∫
Sj

cos θ

sin θ
2 cos jkθ(1− cos kθ)∂ru1v.

which, using Remark 5.5, gives

‖fαksing‖H− 1
2−γ
≤ 2

n−1∑
j=0

cos θ

sin θ
| cos jkθ(1− cos kθ)|

√
λ1‖u1‖L2(S0)Cγ .

For the regular part, we have

(fαkreg, v)H−1×H1
0

=
n−1∑
j=0

(cos(j + 1)kθ + cos jkθ)λ1

∫
Tj

u1v
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−
n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
−sin(2j+1)θ∂2

xxu1 +2 cos(2j+1)θ∂2
xyu1 +sin(2j+1)θ∂2

yyu1

)
v

and using the fact that ‖D2u1‖L2 = λ1 we obtain

‖fαkreg‖L2 ≤
√

1 + cos(kθ)λ1 +

√
2

sin θ

√
1− cos(kθ)λ1.

Remark 5.9. Let us introduce the vectors

vj = (cos((j + 1/2)θ), sin((j + 1/2)θ)), vj = (− sin((j + 1/2)θ), cos((j + 1/2)θ)).

Expressing the derivatives of u1 in the (vj , vj) basis, by direct computation one gets

(fαkreg, v)H−1×H1
0

=

n−1∑
j=0

(cos(j+1)kθ+cos jkθ)λ1

∫
Tj

u1v−2
cos(j + 1)kθ − cos jkθ

sin θ

n−1∑
j=0

∫
Tj

∂2
vjvju1v.

Consider now the discrete version of fαk , replacing u1 and λ1 by their discrete approximations

(fαkh , v)H−1,H1
0

=
n−1∑
j=0

(cos(j + 1)kθ + cos jkθ)λ1,h

∫
Tj

u1,hv

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
∇u1,h · ∇v

Working under the hypothesis that the mesh T h has the symmetries of the regular polygon and
that the triangles Tj are meshed exactly, we have (fαkh , u1,h)H−1,H1

0
= 0. By direct computation

we obtain

(fαk − fαk

h , v) =

n−1∑
j=0

(cos(j + 1)kθ + cos jkθ)

∫
Tj

(λ1u1 − λ1,hu1,h)v +

n−1∑
j=0

∫
Tj

Kαk
j (∇u−∇uh) · ∇v

which implies

‖fαk − fαkh ‖H−1 ≤
√

1 + cos kθ

1 + λ1
(|λ1 − λ1,h|+ λ1,h‖u1 − u1,h‖L2)

+

√
1− cos kθ

sin θ
‖∇u−∇uh‖L2

The term βk. Denote by

W βk =

n−1∑
j=0

cos(jkθ)U2
0 ◦RT

jθ

so that a(U2
0 ,W

βk) allows us to express βk (see Proposition 4.10). The orthogonality of U2
0 on

u1 implies that
∫
PnW

βku1 = 0. Denote fβk ∈ H−1 the distribution

(fβk , v)H−1,H1
0

=
cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)λ1

∫
Tj

u1v

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ − sin(2j + 1)θ
− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇v.

Same as before, the symmetry of the first eigenfunction u1 implies that (fβk , u1) = 0. These
observations imply that W βk is the unique solution of the problem

a(W, v) = (fβk , v)H−1,H1
0
, ∀v ∈ H1

0 (Pn),

∫
Pn
Wu1 = 0.
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A straightforward estimate shows that

‖fβk‖H−1 ≤ λ1
cos θ

sin θ

√
1− cos(kθ)

1 + λ1
+

√
λ1(1− cos(kθ))

sin θ
.

Similar computations as before give

(fβksing, v)H−1×H1
0

=

n−1∑
j=0

∫
Sj

2 cos jkθ(1− cos kθ)∂ru1v.

which, using Remark 5.5, gives

‖fβksing‖H− 1
2−γ
≤ 2

n−1∑
j=0

| cos jkθ(1− cos kθ)|
√
λ1‖u1‖L2(S0)Cγ .

For the regular part, we have

(fβkreg, v)H−1×H1
0

=
cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)λ1

∫
Tj

u1v

−
n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
−cos(2j+1)θ∂2

xxu1−2 sin(2j+1)θ∂2
xyu1 +cos(2j+1)θ∂2

yyu1

)
v

and using the fact that ‖D2u1‖L2 = λ1 we obtain

‖fβkreg‖L2 ≤
cos θ

sin θ

√
1− cos(kθ)λ1 +

√
2

sin θ

√
1− cos(kθ)λ1.

Consider now the discrete version of fβk , replacing u1 and λ1 by their discrete approximations

(fβkh , v)H−1,H1
0

=
cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)λ1,h

∫
Tj

u1,hv

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ − sin(2j + 1)θ
− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1,h · ∇v

Working under the hypothesis that the mesh T h has the symmetries of the regular polygon

and that the triangles Tj are meshed exactly, we have (fβkh , u1,h)H−1,H1
0

= 0. Below we use the

notation Kβk
j = cos(j+1)kθ−cos jkθ

sin θ

(
− cos(2j + 1)θ − sin(2j + 1)θ
− sin(2j + 1)θ cos(2j + 1)θ

)
By direct computation we

obtain

(fβk − fβk

h , v) =
cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)

∫
Tj

(λ1u1 − λ1,hu1,h)v +

n−1∑
j=0

∫
Tj

Kβk

j (∇u−∇uh) · ∇v

which implies

‖fβk − fβkh ‖H−1 ≤
cos θ

sin θ

√
1− cos kθ

1 + λ1
(|λ1 − λ1,h|+ λ1,h‖u1 − u1,h‖L2)

+

√
1− cos kθ

sin θ
‖∇u−∇uh‖L2

The term γk. In this case we have two possible formulae. We provide the details for both
of them. Denote by

W γk,1 =
n−1∑
j=0

sin(jkθ)U2
0 ◦RT

jθ
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so that a(U1
0 ,W

γk,1) allows us to express γk (see Proposition 4.10). The orthogonality of U2
0 on

u1 implies that
∫
PnW

γk,1u1 = 0. Denote fγk,1 ∈ H−1 the distribution

(fγk,1, v)H−1,H1
0

=
cos θ

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ)λ1

∫
Tj

u1v

+
n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ − sin(2j + 1)θ
− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇v.

Same as before, the symmetry of the first eigenfunction u1 implies that (fγk,1, u1) = 0. These
observations imply that W γk,1 is the unique solution of the problem

a(W, v) = (fγk,1, v)H−1,H1
0
, ∀v ∈ H1

0 (Pn),

∫
Pn
Wu1 = 0.

A straightforward estimate shows that

‖fγk,1‖H−1 ≤ λ1
cos θ

sin θ

√
1− cos(kθ)

1 + λ1
+

√
λ1(1− cos(kθ))

sin θ
.

Similar computations as before give

(fγk,1sing , v)H−1×H1
0

= −
n−1∑
j=0

∫
Sj

2 sin jkθ(1− cos kθ)∂ru1v.

which, using Remark 5.5, gives

‖fγk,1sing ‖H− 1
2−γ
≤ 2

n−1∑
j=0

| sin jkθ(1− cos kθ)|
√
λ1‖u1‖L2(S0)Cγ .

For the regular part, we have

(fγk,1reg , v)H−1×H1
0

=
cos θ

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ)λ1

∫
Tj

u1v

−
n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
−cos(2j+1)θ∂2

xxu1−2 sin(2j+1)θ∂2
xyu1 +cos(2j+1)θ∂2

yyu1

)
v

and using the fact that ‖D2u1‖L2 = λ1 we obtain

‖fγk,1reg ‖L2 ≤
cos θ

sin θ

√
1− cos(kθ)λ1 +

√
2

sin θ

√
1− cos(kθ)λ1.

Consider now the discrete version of fγk,1, replacing u1 and λ1 by their discrete approximations

(fγk,1h , v)H−1,H1
0

=
cos θ

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ)λ1,h

∫
Tj

u1,hv

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ − sin(2j + 1)θ
− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1,h · ∇v

Working under the hypothesis that the mesh T h has the symmetries of the regular polygon and
that the triangles Tj are meshed exactly, we have (fγk,1h , u1,h)H−1,H1

0
= 0. Below we use the

notation Kγk,1
j = sin(j+1)kθ−sin jkθ

sin θ

(
− cos(2j + 1)θ − sin(2j + 1)θ
− sin(2j + 1)θ cos(2j + 1)θ

)
By direct computation we

obtain

(fγk,1−fγk,1h , v) =
cos θ

sin θ

n−1∑
j=0

(sin(j+1)kθ− sin jkθ)

∫
Tj

(λ1u1−λ1,hu1,h)v+

n−1∑
j=0

∫
Tj

Kγk,1
j (∇u−∇uh) ·∇v
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which implies

‖fγk,1 − fγk,1h ‖H−1 ≤
cos θ

sin θ

√
1− cos kθ

1 + λ1
(|λ1 − λ1,h|+ λ1,h‖u1 − u1,h‖L2)

+

√
1− cos kθ

sin θ
‖∇u−∇uh‖L2 .

For the second formula for γk, denote by

W γk,2 =
n−1∑
j=0

sin(jkθ)U1
0 ◦RT

jθ

so that a(U2
0 ,W

γk,2) allows us to express γk (see Proposition 4.10). The orthogonality of U1
0 on

u1 implies that
∫
PnW

γk,2u1 = 0. Denote fγk,2 ∈ H−1 the distribution

(fγk,2, v)H−1,H1
0

=
n−1∑
j=0

(sin(j + 1)kθ + sin jkθ)λ1

∫
Tj

u1v

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇v.

Same as before, the symmetry of the first eigenfunction u1 implies that (fγk,2, u1) = 0. These
observations imply that W γk,2 is the unique solution of the problem

a(W, v) = (fγk,2, v)H−1,H1
0
, ∀v ∈ H1

0 (Pn),

∫
Pn
Wu1 = 0.

A straightforward estimate shows that

‖fγk,2‖H−1 ≤ λ1

√
1 + cos(kθ)

1 + λ1
+

√
λ1(1− cos(kθ))

sin θ
.

Similar computations as before give

(fγk,2sing , v)H−1×H1
0

= −cos θ

sin θ

n−1∑
j=0

∫
Sj

2 sin jkθ(1− cos kθ)∂ru1v.

which, using Remark 5.5, gives

‖fγk,2sing ‖H− 1
2−γ
≤ 2

cos θ

sin θ

n−1∑
j=0

| sin jkθ(1− cos kθ)|
√
λ1‖u1‖L2(S0)Cγ .

For the regular part, we have

(fγk,2reg , v)H−1×H1
0

=

n−1∑
j=0

(sin(j + 1)kθ + sin jkθ)λ1

∫
Tj

u1v

−
n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− sin(2j+1)θ∂2

xxu1 +2 cos(2j+1)θ∂2
xyu1 +sin(2j+1)θ∂2

yyu1

)
v

and using the fact that ‖D2u1‖L2 = λ1 we obtain

‖fγk,2reg ‖L2 ≤
√

1 + cos(kθ)λ1 +

√
2

sin θ

√
1− cos(kθ)λ1.
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Consider now the discrete version of fγk,2, replacing u1 and λ1 by their discrete approximations

(fγk,2h , v)H−1,H1
0

=
n−1∑
j=0

(sin(j + 1)kθ + sin jkθ)λ1,h

∫
Tj

u1,hv

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
∇u1,h · ∇v

Working under the hypothesis that the mesh T h has the symmetries of the regular polygon
and that the triangles Tj are meshed exactly, we have (fγk,2h , u1,h)H−1,H1

0
= 0. Below we use

the notation Kγk,2
j = sin(j+1)kθ−sin jkθ

sin θ

(
− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
By direct computation we

obtain

(fγk,2 − fγk,2h , v) =

n−1∑
j=0

(sin(j + 1)kθ + sin jkθ)

∫
Tj

(λ1u1 − λ1,hu1,h)v +

n−1∑
j=0

∫
Tj

Kγk,2
j (∇u−∇uh) · ∇v

which implies

‖fγk,2 − fγk,2h ‖H−1 ≤
√

1 + cos kθ

1 + λ1
(|λ1 − λ1,h|+ λ1,h‖u1 − u1,h‖L2)

+

√
1− cos kθ

sin θ
‖∇u−∇uh‖L2 .

We conclude this section with the following result summarizing the error estimates obtained.

Theorem 5.10. The terms αk, βk, γk in Theorem 4.9 admit an error estimate of order O(h1−2γ)
for every γ ∈ (0, 1/2) when the first eigenfunction u1 and the function U0 = (U1

0 , U
2
0 ) are

approximated using P1 finite elements.

Proof: Recall that the estimates given in Section 5.1 allow us to obtain explicit bounds for∫
T0

(∂xu1)2 and
∫
T0

(∂yu1)2 of order O(h). Denoting qk = 2n(1 − cos(kθ))/ sin θ we have the
following.

• For αk = qk
∫
T0

(∂x)2 − 2|Pn|a(U1
0 ,W

αk) we apply (66) with Ua = U1
0 , U

b = Wαk .

• For βk = qk
∫
T0

(∂y)
2 − 2|Pn|a(U2

0 ,W
βk) we apply (66) with Ua = U2

0 , U
b = W βk . We

note that (fβksing, v)H−1,H1
0

= 0 for every function v that is odd with respect to y. Since

U1
0 and its numerical approximation verify this hypothesis as soon as Th is symmetric

with respect to the x axis we may apply Remark 5.7 and obtain a better error estimate.
• For γk = −2|Pn|a(U1

0 ,W
γk,1) we apply (66) with Ua = U1

0 , U
b = W γk,1. We note that

(fγk,1sing , v)H−1,H1
0

= 0 for every function v that is even with respect to y. Since U1
0 and its

numerical approximation verify this hypothesis as soon as Th is symmetric with respect
to the x axis we may apply Remark 5.7 and obtain a better error estimate.
• For γk = 2|Pn|a(U2

0 ,W
γk,2) we apply (66) with Ua = U2

0 , U
b = W γk,2.

In conclusion, the terms αk, βk, γk admit quantified approximations of order O(h1−2γ) for every
γ ∈ (0, 1/2). �

6. Numerical simulations

6.1. Local minimality. Given the regular polygon Pn with n sides inscribed in the unit circle
with a vertex at (1, 0), we divide it into n equal slices used in the definition of ϕi, like in Figure
3. Then we give an integer m ≥ 1 and for each one of the triangles Tj , j = 0, ..., n − 1 we

construct a mesh T h consisting of congruent triangles similar to 1
mTj . In this way we obtain

a mesh with median length h = 1/m. Examples are given in Figure 4. With this definition of
mesh T h all triangles in the mesh are similar and the constant C1 defined in the beginning of
Section 5.1 can be explicitly identified in terms of n. Given the mesh T h we compute using P1

finite elements:
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Figure 4. Examples of symmetric meshes for regular polygons used in the computations.

• the first two eigenvalues λ1,h, λ2,h and the first eigenfunction u1,h of the discrete Dirichlet-
Laplace eigenproblem (50).

• the solutions Uj
h = (U1

j,h, U
2
j,h) of∫

Pn
DUh∇v − λ1,h

∫
Pn

Uhv = (fh, v)H−1,H1
0

for the discrete distributions f jh, j = 0, ..., n− 1 given by

(f jh, v)H−1,H1 =

∫
Pn

(∇ϕj · ∇u1,h)∇v +

∫
Pn

(∇ϕj · ∇v)∇u1,h + sλ1,h

∫
Pn
u1,hv.

using the normalization
∫
Pn Uj

hu1,h = 0.

• for 1 ≤ k ≤ n − 1 approximations of Wαk ,W βk ,W γk,1,W γk,2 are constructed from
(U1

j,h, U
2
j,h). Therefore we obtain the approximations of αk, βk, γk from Theorem 4.9 that

are of order O(h1−2γ) for γ ∈ (0, 1), with explicit error bounds given in the previous
section.

The procedure described above provides for each k = 1, ..., n− 1 intervals Iαk , Iβk , Iγk for which
we have the guarantee that αk ∈ Iαk , βk ∈ Iβk , γk ∈ Iγk . Using the interval arithmetic toolbox

Intlab [44] we find intervals Ij(h, γ) containing the eigenvalues µj , 0 ≤ j ≤ 2n − 1 of Mλ

described in Theorem 4.9. Given a value of h and the associated numerical approximations we
obtain a whole range of intervals Ij(h, γ) for γ ∈ (0, 0.5). Note that changing γ at fixed h is not
a difficulty since this parameter appears only in the choice of constants and exponents. When γ
is close to zero we obtain a weak estimate in Theorem 5.2 while for γ close to 0.5 the constants
in the estimates from Remark 5.5 become very large. An appropriate choice for γ is made using
a simple grid search. If among the intervals Ij(h, γ) we obtain only two that contain zero then
we conclude, based on Proposition 4.5, that the regular polygon Pn is a local minimum for
P 7→ |P |λ1(P ). If this is not the case we decrease h and we repeat the procedure.

Remark 6.1. Numerical algorithms employed in scientific computing use floating point arith-
metic. As a consequence there is a difference between the exact discrete solution of the finite
element problem and the one given by the numerical algorithm. The sources of error are as
follows:

• the numerical mesh is a slight perturbation of the exact mesh, leading to perturbations
in the mass and rigidity matrices.
• the linear systems are solved using iterative methods with a stopping criterion related to

the residual vector.

In general, it is admitted that errors coming from the above considerations are smaller than the
theoretical error estimates shown in Theorem 5.10. The condition number of the linear systems
involved is of order O(h−2), therefore, we expect that for h ≥ 10−4 the machine errors do not
dominate in the estimation of λ1. Moreover, for the gradient terms and for U0, which have an
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h d.o.f.
Pentagon 10−4 250 025 001
Hexagon 10−4 300 030 001
Heptagon 10−4 350 035 001
Octagon 10−4 400 040 001

Table 1. Size of the computational problems for the finite element computations.

even weaker convergence rate, the discretization error is expected to dominate machine errors.
We also make this assumption in the following.

Formulas given in Theorem 4.9 and Proposition 4.10 allow us to compute the eigenvalues of
the Hessian matrix in knowing the first eigenfunction u1 on Pn and the pair (U1

0 , U
2
0 ) solution of

(18). Using P1 finite elements it is straightforward to approximate the first eigenpair. Given a

mesh Th with Nv vertices, and denoting by (φi)
Nv
i=1 the P1 basis functions, the rigidity and mass

matrices are defined by

A =

(∫
Pn
∇φi · ∇φj

)
1≤i,j≤n

,B =

(∫
Pn
φiφj

)
1≤i,j≤n

.

The first eigenpair and the second eigenvalue are approximated by solving the generalized eigen-
value problem Ax = λBx. Denote by x1 the eigenvector associated to the first eigenvalue. Then
(61) is solved by considering embedding the orthogonality on u1,h in the linear system:(

A− λ1,hB c
cT 0

)(
x
l

)
=

(
f
0

)
.

The constraint vector c is given by c = xT1 M and the right hand side f is computed by evaluating

(f1,2
0 , φi)H−1,H1 for every φi in the finite element basis.
In order to have an error estimate small enough such that the interval around the eigen-

value does not contain zero rather small values of h need to be considered, leading to large
computational problems. The value of h and the number of degrees of freedom (d.o.f) for the
computational problems are listed in Table 1. Therefore, in order to be able to solve these prob-
lems the software FreeFEM [23] is used in its parallel version together with the libraries PETSc
[4], SLEPc [28], Hypre [17]. The computations use 200 processors and are run on the cluster
Cholesky from the IDCS Mesocenter at Ecole Polytechnique. The error estimates allow us to
obtain sufficiently small intervals for h = 10−4 for n ∈ {5, 6, 7, 8}. The resulting eigenvalues and
quantities needed are given to the interval arithmetic library Intlab [44]. The library is then
used to compute the interval enclosures for the eigenvalues. The non-zero eigenvalues and the
corresponding enclosures are given in Table 2. The results shown in Table 2 indicate that the
regular polygon is a local minimizer for problem (2) for n ∈ {5, 6, 7, 8}. In Table 3 we estimate
the largest mesh size h for which the certified numerical computations validate the local mini-
mality of the corresponding regular polygon. Exploiting the symmetry of the eigenfunction and
of the functions U1

0 , U
2
0 the size of the problems can be further reduced in half.

Remark 6.2. The results shown in this section prove the local minimality of the regular polygon
when neglecting errors coming from floating point computations. Most algorithms are designed
such that these errors are minimized and therefore it is generally agreed that these errors are
smaller than the errors between the continuous solution and the exact discrete one. However,
guaranteeing that the floating point errors are small enough it is a non-trivial matter that needs
to be addressed in future works. Ideally, the whole computation of the finite element problems
should be handled using an interval arithmetic library like Intlab [44], which is a non-trivial task
in view of the minimal size of the problems listed in Table 3.

It is possible to compute the eigenvalues of the Hessian matrix for higher n, without guarantee
that the numerical eigenvalues are precise enough. Nevertheless, it is well established that a
priori estimates are rather pessimistic and the following results might precise enough. In Table
4 we present the non-zero eigenvalues of the Hessian matrix for h = 10−3 for 9 ≤ n ≤ 15. These



50 BENIAMIN BOGOSEL, DORIN BUCUR

Pentagon
Eig. l.b. u.b. mult.

2.568803 2.359297 2.784816 2
8.015038 7.558395 8.460722 2
13.458443 13.012758 13.915086 2

Hexagon
Eig. l.b. u.b. mult.

1.323826 1.040291 1.629895 2
3.916803 3.112218 4.719205 2
12.990672 12.188270 13.795257 2
7.566593 6.326083 8.803012 1
11.540733 10.304314 12.781243 1

Heptagon
Eig. l.b. u.b. mult.

0.747352 0.446026 1.096876 2
2.056766 0.963449 3.148214 2
4.655979 3.078862 6.228621 2
12.292485 10.719843 13.869602 2
12.582047 11.490599 13.675364 2

Octagon
Eig. l.b. u.b. mult.

0.452095 0.182855 0.774247 2
1.171933 0.309482 2.034382 2
2.772135 1.273803 4.268064 2
12.049631 11.187182 12.912082 2
13.037208 11.541279 14.535540 2
3.999568 1.460555 6.536411 1
11.740713 9.203870 14.279726 1

Table 2. Numerical approximations of the 2n − 4 non-zero eigenvalues of the
Hessian matrix for n ∈ {5, 6, 7, 8} together with intervals given by the error
estimate in Theorem 5.10

Mesh size deg. freedom
Pentagon 9.8e-4 ≈ 2.6 million
Hexagon 4.2e-4 ≈ 17 million
Heptagon 1.9e-4 ≈ 97 million
Octagon 1.35e-4 ≈ 220 million

Table 3. Approximately optimal mesh sizes and number of degrees of freedom
for which currently known a priori estimates allow to certify the local minimality.

eigenvalues are positive, suggesting that the regular polygon is still a local minimzier in these
cases.

6.2. General gradient descent simulations. The gradient of the first eigenvalue with respect
to the coordinates of the vertices is given in Theorem 2.2. Using these formulas is straightforward
to implement a gradient descent algorithm starting from random initial polygons.

Simulations were preformed for the minimization of the first eigenvalue for n ∈ [5, 15] and in
every case the result of the optimization was a polygon very close to being regular. In order to
see how close to being regular is the polygon ωn given by the simulation the following information
is given in Table 5: the optimal numerical first eigenvalue, the difference between the maximal
and minimal edge lengths, the difference between the maximal and minimal angles (in radians),
the difference between the optimal numerical eigenvalue and the precise first eigenvalue of the
regular polygons ω∗n given on the following web page: http://hbelabs.com/regularpolygon/
index.html (based on the article [32]). Repeating the simulation starting from random initial
polygon always gives similar results. The results shown in Table 5 indicate that the optimal
numerical polygons ωn found by the numerical algorithm are close to being regular. Furthermore,
the value of the objective function is as close to the precise value given for the actual regular
polygon ω∗n, as the precision of the numerical computations allows. These computations further
suggest that the regular polygon is indeed the global minimizer for (2).

http://hbelabs.com/regularpolygon/index.html
http://hbelabs.com/regularpolygon/index.html
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n = 9 mult.
0.2888 2
0.7145 2
1.7104 2
2.8667 2
11.4506 2
12.1695 2
13.4392 2

n = 10 mult.
0.1927 2
0.4601 2
1.1017 2
1.9625 2
2.4640 1
10.8361 2
11.9253 1
12.7814 2
13.5487 2

n = 11 mult.
0.1334 2
0.3096 2
0.7386 2
1.3501 2
1.9129 2
10.2373 2
12.1968 2
13.2741 2
13.4475 2

n = 12 mult.
0.0952 2
0.2160 2
0.5128 2
0.9473 2
1.4287 2
1.6659 1
9.6701 2
12.0620 1
12.6398 2
13.2059 2
13.5861 2

n = 13 mult.
0.0697 2
0.1554 2
0.3669 2
0.6801 2
1.0598 2
1.3586 2
9.1413 2
12.2461 2
12.8768 2
13.0664 2
13.7288 2

n = 14 mult.
0.0521 2
0.1146 2
0.2694 2
0.4994 2
0.7918 2
1.0742 2
1.1995 1
8.6527 2
12.1611 1
12.4975 2
12.5693 2
13.4024 2
13.7331 2

n = 15 mult.
0.0397 2
0.0864 2
0.2022 2
0.3744 2
0.5989 2
0.8406 2
1.0115 2
8.2033 2
12.0933 2
12.2933 2
12.9147 2
13.6292 2
13.6320 2

Table 4. Numerically computed non-zero eigenvalues of the Hessian matrix for
larger 9 ≤ n ≤ 15 on meshes of size h = 10−3.

n J(ωn) diff. sides diff. angles J(ωn)− J(ω∗n)
5 18.919104 1.3e-5 2.3e-5 3.4e-9

6 18.590116 5.1e-5 7.7e-5 3.2e-8

7 18.429994 8.4e-5 1.8.1e-4 1.1e-7

8 18.342161 9.2e-5 2.1e-4 1.6e-7

9 18.289808 3.8e-4 3.7e-4 2.6e-7

10 18.256613 3.1e-4 6.1e-4 5e-7

11 18.234528 3.3e-4 4.1e-4 3.3e-7

12 18.219257 3.3e-4 5e-4 2.9e-7

13 18.208358 6.5e-4 1.3e-3 4.8e-7

14 18.200368 7.5e-4 2.1e-3 6.6e-7

15 18.194378 1.5e-3 3.1e-3 1.7e-6

Table 5. Results of the gradient descent optimization algorithm with random
initial polygons.

7. Reduction of the proof of the conjecture to a finite number of numerical
computations

In this section we provide a strategy for proving the conjecture using a finite number of
computations for a given number of sides. This strategy works under the implicit assumption
that the conjecture is true!

In order to justify that for every n the conjecture can be reduced to a finite number of
numerical computations, we begin with some theoretical analysis. Assuming the area of a
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polygon with n sides is fixed (say π), we shall find a value Dmax such that if the diameter of
the polygon exceeds Dmax then the polygon cannot be optimal for (2). As well, we shall find a
minimal value for the length of the edges emin and for the inradius rmin of an optimal polygon.
All these results (which depend on n), produce a compact set of polygons (seen as subset of
R2n−4) outside which any polygon cannot be optimal for |P |λ1(P ).

We denote by Pn the closure of the class of simple polygons with at most n edges for the
Hausdorff distance of the complements. A polygon belonging to this class may be degenerate
in the sense that one vertex can belong to a different edge. Depending on how this occurs, this
may lead to a disconnection, i.e. a union of two polygons. However, as soon as a polygon is
optimal, disconnection can not occur.

Let us denote for every n ≥ 3 the minimal value for the scale invariant formulation by

l∗n = min{|P |λ1(P ) : P ∈ Pn}.

It is known that l∗n < l∗n−1 (see [24, Section 3.3]).

Theorem 7.1. Let n ≥ 3. There exists a value Dmax > 0 such that if P ∈ Pn, |P | = π and
diam(P ) > Dmax then

πλ1(P ) > l∗n.

In other words, when searching the minimizer in the class of n-gons of area π, it is enough
to restrict to polygons with diameter less than or equal to Dmax. This information is crucial in
order to limit the number of numerical computation and leads to a formal, inductive, proof of
the conjecture. The value of Dmax can be computed and depends on l∗n−1 and λ1(Pn).

Proof: The proof is inspired by the surgery argument of [11], where the authors propose a
precise way to estimate the diameter of an optimal set in relationship with the first eigenvalue.
The key idea is that if the diameter of an optimal set is too large, one can cut the set with a
strip of positive width in order to produce a better one. The main difficulty in our case is that
cutting a polygon having n edges with a strip may produce a union of polygons, some of which
may potentially have more than n edges, making them non-admissible. In order to handle this
situation, further analysis is necessary.

Setting the constants. Denoting Λ = l∗n/π
2, we consider the unconstrained problem

(68) min{λ1(P ) + Λ|P | : P ∈ Pn}.

Then, the solution of this problem is the same as the solution of the constrained problem with
area π set in (2). Let us denote by Qn an optimal polygon, having area π. Let K ≥ l∗n/π be
fixed. For instance, K may be obtained using a numerical approximation from above of λ1(Pn).

Surgery. In order to get the bound on the diameter, we shall use the surgery results of [11].
Let us set the following constant

c =
1

2π(8 + 12 log 2)e
1
4πK2

,

which plays the crucial role in [11, Lemma 3.1]. We can use [11, Lemma 4.2] with the constant
c from above, which (in the notations of [11, Lemma 4.2]) leads to suitable values (r0, C0). For
instance, we can choose C0(C0 + 1) ≤ c and r0 = C0.

Step 1. (Use of [11, Lemma 3.1]) In view of the choice of c, the polygon Qn is a subsolution
for the torsion energy

P → E(P ) + c|P |,
in the class Pn. We recall that the torsion energy of P is defined by

E(P ) = min
u∈H1

0 (P )

1

2

∫
P
|∇u|2dx−

∫
P
udx.

Indeed, if for some P ∈ Pn, P ⊆ Qn we have

E(P ) + c|P | < E(Qn) + c|Qn|,
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then from [11, Lemma 3.1]) we would get

|P |λ1(P ) < |Qn|λ1(Qn),

in contradiction to the optimality of Qn.

Step 2. (Use of [11, Corollary 4.3]) Let w be the torsion function of Qn. Assume a ∈ R and
denote by

Sr(a) = {(x, y) : r − a < x < r + a}
an open strip in R2. Assume that the interior of the strip intersects Qn and does not contain
any vertex. In this case, the intersection of the strip with Qn is a union of trapezes {Tj}j∈J .
When removing any of these trapezes, one splits the polygon Qn in two (or more, if a vertex is
on the boundary of the strip) polygons.

Following [11, Corollary 4.3], using the constants (r0, C0) defined above, we know that if
maxS2r(a)w < C2

0 then

(69) E(Qn \ Sr(a)) + c|Qn \ Sr(a)| < E(Qn) + c|Qn|.
In fact, taking a closer look to the argument of [11, Corollary 4.3], leads as well to

(70) E(Qn \ T j) + c|Qn \ T j | < E(Qn) + c|Qn|.
As a consequence of [11, Lemma 3.1] this implies

|Qn \ T j |λ1(Qn \ T j) < |Qn|λ1(Qn) for every j ∈ J.

This last inequality leads to a contradiction of the optimality of Qn only if the open set Qn \T j
consists in a union of polygons, each one with at most n edges. In this case, it is enough to
pick the one with minimal first eigenvalue and contradict the optimality of Qn. Of course, it
may happen that one of the connected components of Qn \ T j is a polygon with more than n
edges, as new edges could be produced by the surgery procedure. We shall prove that if the
diameter is larger than some computable constant, then there exists some suitable strip Sr(a)
and a suitable trapeze Tj such that each connected component of Qn \ T j is a polygon with at
most n edges. This contradicts the optimality of Qn.

Step 3. (Preparatory facts) We know from the Saint-Venant inequality that∫
Qn

wdx ≤ π

8
.

The following results is, for instance, contained in [11, Lemma 2.2]:

if w(x0) ≥ η > 0, then

∫
Bδ(x0)

wdx ≥ ηπ

2
δ2,

where δ = 2
√
η.

Consequently, if we consider a strip S2r0(a) such that

max
S2r0 (a)

w > C2
0 ,

then, recalling that C0 = r0, ∫
B2C0

(x0)
wdx ≥ 2πC4

0 ,

where x0 is a maximum point of w in S2r0(a). In particular∫
S4r0 (a)

wdx ≥ 2πC4
0 .

Let us introduce the natural number (b·c denotes the integer part)

k =

⌊ π
8

2πC4
0

⌋
+ 1 =

⌊
1

16C4
0

⌋
+ 1.

Clearly, if the diameter of Qn is larger than 8C0k, then taking the x-axis along the diameter,
there will be at least one strip of width 4C0 where the mass of w is less than C2

0 .
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We recall now the following inequality, for which we refer to [50]. Let Ω be a bounded,
open simply connected set in R2. Let wΩ be the torsion function in Ω. We have wΩ(x) =∫

ΩGΩ(x, y)dy, where GΩ(x, y) is the Green function for the Dirichlet-Laplace operator on Ω.
From the Cauchy-Schwarz inequality we have

|wΩ(x)| ≤ |Ω|1/2
(∫

Ω
GΩ(x, y)2dy

)1/2

.

In [50, Proof of Theorem 1.5, inequality (5.16)] it is shown that if πR2
0 = |Ω| then∫

Ω
G2

Ω(x, y)dy ≤ 8d(x)R0

π
,

where d(x) is the distance from x to ∂Ω. This leads to the estimate

(71) |wΩ(x)| ≤ |Ω|3/4 81/2d(x)1/2

π3/4
.

We use this inequality for Ω = Qn, so that |Qn| = π, getting the bound wQn(x) ≤ 2
√

2d(x)1/2.
We introduce now e∗, d∗ such that

(72) 2
√

2(e∗)
1
2 < C2

0 and d∗ =
π

e∗
.

Lemma 7.2. The diameter of Qn can not be larger than 2d∗ + (k + n− 2)8C0.

Proof. Assume for contradiction that there are two vertices a0, am such that the diameter of
Qn is the segment [a0,am] and that its length is larger than 2d∗ + (k + n− 2)8C0. Around the
midpoint of [a0am] we build k+n− 2 adjacent strips of width 8C0. Outside the strips there are
two sub-segments of [a0am], each having length at least d∗ (see Figure 5). We remove at most
n− 2 strips having a vertex in their interior and among the remaining k strips there is one, say
S4C0(a) such that

max
S2C0

(a)
w < C2

0 .

From the choice of the strip, the set SC0(a) does not contain any vertex of the polygon Qn, so
that an edge either crosses the strip from one side to the other, or it stays on the same side. In
particular, this implies that Qn ∩ SC0(a) is a union of open trapezes {Tj}j . Moreover, we get
for each such trapeze

|Qn \ T j |λ1(Qn \ T j) < |Qn|λ1(Qn).

Assume we remove one trapeze, say Tj , from Qn ∩ SC0(a) and get two polygons P lTj and P rTj ,

which together have n+ 4 edges. There are two possibilities.

(1) Both polygons P lTj and P rTj have no more than n edges. This situation contradicts the

optimality of Qn.
(2) One of P lTj and P rTj has n+ 1 edges and the other one has 3 edges.

In the following, we suppose that the second situation above occurs for each trapeze Tj , otherwise
we contradict optimality. We claim that on one side of the strip there are only triangles.

If there is only one trapeze, there is nothing to prove. Assume for contradiction that there are
two trapezes, which when removed generate triangles on both sides of the strip. From simple
connectedness, there is a continuous curve contained inside the polygon, joining the interiors
of the two triangles. See Figure 5 (a). This curve crosses the strip at least one more time,
implying the presence of at least another trapeze, which cannot leave a triangle on either side
when removed without disconnecting the polygon. Therefore, removing this trapeze, we split
the polygon in two polygons with less than n edges contradicting optimality.

In conclusion, removing any one of the trapezes Tj generates triangles, all situated on one side
of the strip. Assume this occurs on the left. Now, we choose the triangle containing the vertex
a0 on the left, which is at distance at least d∗ from the strip and the trapeze which isolates it in
a triangle. We continuously move the strip SC0(a) to the right (and the trapeze with it) up to
the moment when the strip touches a first vertex. This vertex can be a neighbor of a0 (Figure
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SC0(a) SC0(a)

k + n− 2 strips

a0 am

a1

an−1

d∗
e

SC0(a)

k + n− 2 strips

a0 am

a1

an−1

d∗
e

ak

(a) (b) (c)

Figure 5. (a) Continuous curve linking two triangles on opposite sides of the
strip. Moving the trapezes in the proof of Lemma 7.2: the trapeze meets a
neighbor of a0 (b) or another vertex ak (c).

5 (a)) or a different vertex ak (Figure 5 (c)). In any case, the trapeze will split the polygon in
either two or three polygons and the number of edges for each polygon is at most n.

Moreover, one polygon is the triangle with a vertex in a0. The area of this triangle together
with the trapeze is at least d∗e/2, where e is the length of the longest vertical edge of the trapeze,
on the right side of the strip. This set is fully contained in the polygon, so has area at most
π, meaning that e

2 ≤ e∗. Using inequalities (71)-(72) we get that the maximum of wQn on the

trapeze is below C2
0 . This contradicts the optimality of the polygon. �

Theorem 7.3. Assume P = [a0...an−1] ∈ Pn is such that |P | = π, diam(P ) ≤ Dmax. There
exists δ0 > 0 such that if |a0a1| ≤ δ ≤ δ0 then

(73) πλ1(P ) ≥ l∗n−1 − Cδ
1
2 ,

where C depends only on n.

In other words, an optimal polygon of area π in Pn can not have an edge smaller than a
certain threshold. To observe this fact, it is enough to choose δ0 such that

(74) l∗n−1 − Cδ
1
2
0 > l∗n.

The following type of result has been proved by Davies in [16] and refined by Pang in [41]. We
give a short proof below, based on the comparison with the torsion function.

Lemma 7.4. Assume P = [a0...an−1] ∈ Pn is such that |P | = π, diam(P ) ≤ Dmax. Let Q ∈ Pn,
Q = [b0...bn−1] such that for every i = 0, . . . , n− 1, |aibi| ≤ δ. Then

|λ1(Q)− λ1(P )| ≤ 4
√

2πe
1
4π (max{λ1(P ), λ1(Q)})2λ1(P ∩Q)δ

1
2 .

Proof. Assume in a first step that Q ⊆ P and denote wQ, wP the associated torsion functions.
The inequality is a consequence of [11, Inequality (2.6)] which gives

0 ≤ λ1(Q)− λ1(P ) ≤ 2e
1
4πλ1(P )2λ1(Q)

∫
P

(wP − wQ)dx

and of the estimate ∫
P

(wP − wQ)dx ≤ 2
√

2πδ
1
2

which is a consequence of (71) applied to wP and of the harmonicity of wP − wQ on Q.
In general, if Q 6⊆ P , we use the previous argument and compare both λ1(P ), λ1(Q) with

λ1(P ∩Q). �

Proof. (of Theorem 7.3) Assume P = [a0...an−1] ∈ Pn is such that |P | = π, diam(P ) ≤ Dmax

and |a0a1| ≤ δ. If πλ1(P ) ≥ l∗n−1, inequality (73) is proved. Assume that πλ1(P ) < l∗n−1. We
shall build a polygon Q ∈ Pn−1 having almost the same eigenvalue and area.

Assume at least one of the angles â0, â1 is convex, for example â0. Then we move the point a0

towards a1 continuously, denoting it at0 = (1− t)a0 + ta1. If the segment [an−1a
t
0] does not meet
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a0 a1

an−1

ak

at0

a0 a1

an−1

ak

ak−1

ak+1

at0

an−2

ask

a2

Figure 6. Modification of the polygon for removing a small edge: the case of a
convex angle â0 (left), the case of two concave angles â0, â1 (right)

any other vertex of the polygon for any t ∈ (0, 1), then we denote Q the new polygon obtained
for t = 1. Clearly, Q ∈ Pn−1 and Lemma 7.4 can be applied to get

λ1(Q)− λ1(P ) ≤ 4
√

2πe
1
4πλ1(Q)3δ

1
2 .

From Makai’s inequality [39] we know that λ1(P ) ≥ 1
4ρ2P

, where ρP is the inradius. Since

πλ1(P ) < l∗n−1, we get
π

4l∗n−1

< ρ2
P .

On the other hand, ρQ ≥ ρP − δ, hence

λ1(Q) ≤ 1

ρ2
Q

λ1(B1) ≤ 1(
π/(4l∗n−1)

) 1
2 − 2δ

λ1(B1).

Finally we get

l∗n−1

π −Dmaxδ
− λ1(P ) ≤

l∗n−1

|Q|
− λ1(P ) ≤ λ1(Q)− λ1(P )

≤ 4
√

2πe
1
4π

 1(
π/(4l∗n−1)

) 1
2 − 2δ

λ1(B1)

3

δ
1
2 ,

and we conclude this case.
If for some t ∈ (0, 1) the edge [an−1a

t
0] meets a vertex. Then the inequality above is still true,

and the polygon P t is split in two polygons, each one with at most n − 1 edges. See Figure 6
(left). We choose the one which has the lowest eigenvalue and repeat the previous argument.

If both angles â0, â1 are concave, we consider the same type of movement at0 = (1− t)a0 + ta1.
If the segment [an−1a

t
0] does not meet any other vertex of the polygon for any t ∈ (0, 1), then we

denote Q the new polygon obtained for t = 1 and follow the previous argument. The difference
occurs if [an−1a

t
0] meets a vertex, say ak. In this case the angle âk is convex. However, there

is no splitting in this case. We continue the movement, moving at the same time ak parallel
to [an−1a0], denoted ask See Figure 6 (right). If the movement finishes at t = 1, we apply
previous argument. If the movement blocks because the segments [ak−1a

s
k], [ask,ak+1] touch

another vertex then the polygon splits, since we move a convex angle towards the interior of the
polygon, and we stop following the same argument as in the previous case. If it blocks because
[an−1a

t
0] meets another vertex, we treat it the same way as ak and continue the movement. The

blocking can occur at most n− 3 times. �
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Below we show that a strategy to prove the conjecture by a finite number of numerical
computations can be followed, provided of course that the conjecture is true. However, from a
practical point of view, this strategy is far from being optimal.

Theorem 7.5. Provided the conjecture is true, for every n ≥ 5 its proof can be reduced to a
finite number of numerical computations.

Proof. We know the inequality is true for n = 4. Assume now that the inequality is true for
polygons with up to n − 1 edges. Then recalling the notation Pn = [a∗0...a

∗
n−1] for the regular

polygon inscribed in the unit circle with one vertex at a∗0 = (1, 0) we have l∗n−1 = λ1(Pn−1)|Pn−1|.
We have a certified estimate from above and from below for this value. In order to prove the
conjecture for n edges, we shall analyze problem (68) in the following steps.

Step 1. Compute a certified approximation of the first eigenpair (λ1, u1) on Pn. The certified
approximation of the eigenfunction u1 holds in H1

0 (Pn).
Step 2. For the regular polygon Pn inscribed in the unit circle, having the vertex a0 = (1, 0)
we compute the spectrum of the shape Hessian of λ1(Pn)|Pn|, and we certify the positivity for
2n − 4 of its eigenvalues using results from Sections 4, 5.3. This concludes that the regular
polygon is a local minimum.

From now on, we identify polygons P = [a0a1 . . .an−1], with ai = (xi, yi), by a point in R2n−4

having coordinates (x2, y2, . . . , xn−1, yn−1). We consider the first two points fixed: a0 = a∗0,a1 =
a∗1. Without restricting generality, we can assume that the edge [a0a1] is the longest edge in the
polygon P . Let us denote P the family of such polygons of Pn, identified as a compact subset
in R2n−4.
Step 3. Compute, using Theorem 3.18, a neigbourhood of Pn in R2n−4, where

|P |λ1(P ) ≥ |Pn|λ1(Pn).

Precisely, for a value ε0 > 0 we have |P |λ1(P ) ≥ |Pn|λ1(Pn) for every P = [a0 . . .an−1], with
a0 = a∗0, a1 = a∗1, such that ∀i = 2, n − 1, |aia∗i | ≤ ε0. Of course, in order to obtain ε0,
the availability of the constants C and ϑ in Theorem 3.18 is assumed. Let us denote Ln this
neighbourhood, which is a closed set.
Step 4. Using Theorem 7.1 find an estimate for the minimal measure of an optimal polygon in
the class P. Here we use the fact that the maximal length of an edge is precisely [a0a1]. Then,
we get √

|Pn|
|P |
|a∗0a∗1| ≤ Dmax.

Using Makai’s inequality we get a lower bound for the inradius of an optimal n-gon (called ρmin

in the sequel), since
1

ρ2
P

|P | ≤ |P |λ1(P ).

In particular, if ρ2
P ≥ |P |/l∗n then P is cannot be optimal. Using Theorem 7.3, we obtain a lower

bound on the shortest edge, emin.
All these three geometric constraints: measure, inradius and shortest edge generate a smaller

compact set P ′, defined by purely geometric constraints, such that P ′ ⊆ P in R2n−4. In partic-
ular, the lower bound on the inradii of such polygons, makes that the inequality in Lemma 7.4
becomes uniform. Below we work with δ ≤ ρmin

4 < 1. Indeed, for every P,Q in the class P ′ the
value λ1(Bρmin−δ) is an upper bound for λ1(P ), λ1(Q), λ1(P ∩ Q): for P,Q ∈ P ′, there exists
a universal constant K (with explicit value, issued from Lemma 7.4) such that if the distance

between the respective vertices is at most δ then |λ1(P )− λ1(Q)| ≤ Kδ
1
2 .

The variation of the area ||P | − |Q|| is also controlled by a term of the form K ′δ, with
K ′ = nDmax + nπ. There exist universal upper bounds for the first eigenvalue and for the area
in P ′. Therefore, there exists an explicit constant K ′′ such that if the distance between the
respective vertices of P,Q ∈ P ′ is at most δ then

(75) |λ1(P )|P | − λ1(Q)|Q|| ≤ |P |(λ1(P )− λ1(Q)) + λ1(Q)||P | − |Q|| ≤ K ′′δ
1
2 .
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Step 5. Suppose the conjecture is true and Pn is the only minimizer for P 7→ |P |λ1(P ) in
P ′. Then, in view of Step 2. above, where a local minimality neighborhood was identified
around Pn, there exists ε1 > 0 such that outside the neigbourhood Ln of Pn in R2n−4 we have
|P |λ1(P ) > l∗n + ε1. If such an ε1 cannot be found, then a minimizing sequence which does not
converge to Pn could be constructed, contradicting the hypothesis that the conjecture is valid.

Consider δ > 0 such that K ′′(2δ)
1
2 < ε1/4, with K ′′ from (75). Moreover, suppose that

2δ ≤ δ0 with δ0 from (74). We cover the compact set P ′ \ Ln with at most c2n−4

(
Dmax
δ

)2n−4

balls (Bj)j∈J of radius δ, where c2n−4 is a dimensional constant. Several estimates of c2n−4 are

available, a non optimal one being
(√

2n−4Dmax
2δ

)2n−4
.

Choose one of the balls Bj enumerated above. Take an admissible polygon P ∈ P ′ \ Ln
having coordinates (x2, y2, ..., xn−1, yn−1) in the ball Bj . If such a polygon does not exist, there
is nothing to be done and we move to the next ball. We evaluate |P |λ1(P ) numerically, obtaining
a certified estimate interval of length at most ε1/4. If this certified computation gives

(76) |P |λ1(P ) ≥ l∗n +
ε1

2
,

then P is not optimal and, in view of the choice of the constant δ, no other optimal polygon exists
having coordinates in the same ball. If (76) holds for every ball Bj containing an admissible
polygon then the conjecture is solved.

However, the value of ε1 is not known. For this reason, we start with a value ε1 = 1 and
perform the computations enumerated above. If inequality (76) holds every time there is an
admissible polygon in one of the balls then the proof succeeded and we stop. If for some polygon
the inequality fails, we divide ε1 by 2 and restart the computation, etc. This procedure stops in
a finite number of steps. Note that from practical point of view, this procedure is completely
inefficient, but formally leads to the conclusion. �

Remark 7.6 (Polygonal Saint-Venant inequality). Another variational energy of interest is
torsional rigidity. It is denoted by

(77) T (Ω) =

∫
Ω
wdx, where w verifies

{
−∆w = 1 in Ω,

w = 0 on ∂Ω,

and the problem to consider

(78) max
P∈Pn,|Ω|=π

T (P ).

The Saint-Venant inequality states that the maximum of the torsional rigidity among all sets
of area π is achieved on the disc. Pólya and Szegö have also conjectured in 1951 (see [42, page
158]) the following.

Conjecture. The unique solution to problem (78) is the regular polygon with n sides and area
π.

All the results we have obtained for the eigenvalue transfer similarly to the conjecture above.
However, this conjecture is computationally less challenging than the eigenvalue. In particular,
there is no additional normalization and orthogonality constraints for w and for the associated
material derivatives. The proof of the local maximality goes through the computation of the
Hessian matrix of (77) on the regular polygon. The expression of its coefficients was obtained
by Laurain in [36]. Recalling that the functions ϕi are constructed in (10), one introduces the
functions Ui ∈ H1

0 (P,R2), i = 0, ..., n− 1

(79)

∫
P
DUi∇v =

∫
P
−(∇ϕi ⊗∇w)∇v + 2(∇w �∇v)∇ϕi +

∫
P
v∇ϕi, for every v ∈ H1

0 (P ).

The following result is proved by Laurain in [36, Proposition 14]: the Hessian matrix T ∈ R2n×2n

of the torsional rigidity (77) with respect to the coordinates of the n-gon is given by the following
n× n block matrix

T = (Tij)0≤i,j≤n−1
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where the 2× 2 blocks are given by

Tij =

∫
P
DUiDUT

j +∇ϕi ⊗ SD1 ∇ϕj + SD1 ∇ϕi ⊗∇ϕj

+

∫
P

(
1

2
|∇w|2 − w

)
(2∇ϕi �∇ϕj)

+

∫
P
−(∇ϕj · ∇w)(∇ϕi ⊗∇w)− (∇ϕi · ∇w)(∇w ⊗∇ϕj)− (∇ϕi · ∇ϕj)(∇w ⊗∇w)(80)

where Ui, i = 0, ..., n− 1 are solutions of (79) and SD1 = (−1/2|∇w|2 + w) Id +∇w ⊗∇w.
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Appendix A. Proof of Proposition 4.10

Recall that functions ϕj are associated to a symmetric triangulation Tj , 0 ≤ j ≤ n− 1. The
gradients of ϕj are expressed in (44).
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First diagonal term from the real part:

a(U1
0 ,
n−1∑
j=0

cos(jkθ)U1
0 ◦RTjθ) =

∫
Ω

n−1∑
j=0

cos(jkθ)(∇ϕj · ∇U1
0 )(cos(jθ)∂xu1 + sin(jθ)∂yu1)

+

∫
Ω

n−1∑
j=0

cos(jkθ)(∇ϕj · ∇u1)(cos(jθ)∂xU
1
0 + sin(jθ)∂yU

1
0 )

=

∫
Ω

n−1∑
j=0

(2 cos(jkθ) cos(jθ)∂xϕj)∂xu1∂xU
1
0

+

∫
Ω

n−1∑
j=0

(2 cos(jkθ) sin(jθ)∂yϕj)∂yu1∂yU
1
0

+

∫
Ω

n−1∑
j=0

(cos(jkθ) cos(jθ)∂yϕj + cos(jkθ) sin(jθ)∂xϕj)∂yu1∂xU
1
0

+

∫
Ω

n−1∑
j=0

(cos(jkθ) cos(jθ)∂yϕj + cos(jkθ) sin(jθ)∂xϕj)∂xu1∂yU
1
0

=
1

sin θ

n−1∑
j=0

2(cos jkθ cos jθ sin(j + 1)θ − cos(j + 1)kθ cos(j + 1)θ sin jθ)

∫
Tj

∂xu1∂xU
1
0

+
1

sin θ

n−1∑
j=0

2(cos(j + 1)kθ sin(j + 1)θ cos jθ − cos jkθ sin jθ cos(j + 1)θ)

∫
Tj

∂yu1∂yU
1
0

+
1

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ) cos(2j + 1)θ

∫
Tj

(∂xu1∂yU
1
0 + ∂yu1∂xU

1
0 )

=
2

sin θ

n−1∑
j=0

1

2
(sin(2j + 1)θ(cos jkθ − cos(j + 1)kθ) + sin θ(cos jkθ + cos(j + 1)kθ))

∫
Tj

∂xu1∂xU
1
0

+
2

sin θ

n−1∑
j=0

1

2
(sin(2j + 1)θ(cos(j + 1)kθ − cos jkθ) + sin θ(cos jkθ + cos(j + 1)kθ))

∫
Tj

∂yu1∂yU
1
0

+
1

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ) cos(2j + 1)θ

∫
Tj

(∂xu1∂yU
1
0 + ∂yu1∂xU

1
0 )

=

n−1∑
j=0

(cos jkθ + cos(j + 1)kθ)

∫
Tj

∇u1 · ∇U1
0

+
n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇U1

0
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Second diagonal term from the real part:

a(U2
0 ,
n−1∑
j=0

cos(jkθ)U2
0 ◦RTjθ) =

∫
Ω

n−1∑
j=0

cos(jkθ)(∇ϕj · ∇U2
0 )(− sin(jθ)∂xu1 + cos(jθ)∂yu1)

+

∫
Ω

n−1∑
j=0

cos(jkθ)(∇ϕj · ∇u1)(− sin(jθ)∂xU
2
0 + cos(jθ)∂yU

2
0 )

=

∫
Ω

n−1∑
j=0

(−2 cos(jkθ) sin(jθ)∂xϕj)∂xu1∂xU
2
0

+

∫
Ω

n−1∑
j=0

(2 cos(jkθ) cos(jθ)∂yϕj)∂yu1∂yU
2
0

+

∫
Ω

n−1∑
j=0

(− cos(jkθ) sin(jθ)∂yϕj + cos(jkθ) cos(jθ)∂xϕj)∂yu1∂xU
2
0

+

∫
Ω

n−1∑
j=0

(− cos(jkθ) sin(jθ)∂yϕj + cos(jkθ) cos(jθ)∂xϕj)∂xu1∂yU
2
0

=
1

sin θ

n−1∑
j=0

2(cos(j + 1)kθ − cos jkθ) sin(j + 1)θ sin jθ

∫
Tj

∂xu1∂xU
2
0

+
1

sin θ

n−1∑
j=0

2(cos(j + 1)kθ − cos jkθ) cos jθ cos(j + 1)θ

∫
Tj

∂yu1∂yU
2
0

− 1

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ) sin(2j + 1)θ

∫
Tj

(∂xu1∂yU
2
0 + ∂yu1∂xU

2
0 )

=
2

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)
cos θ − cos(2j + 1)θ

2

∫
Tj

∂xu1∂xU
2
0

+
2

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)
cos θ + cos(2j + 1)θ

2

∫
Tj

∂yu∂yU
2
0

− 1

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ) sin(2j + 1)θ

∫
Tj

(∂xu1∂yU
2
0 + ∂yu∂xU

2
0 )

=
cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)

∫
Tj

∇u1 · ∇U2
0

+
n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ − sin(2j + 1)θ
− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇U2

0
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Term on position (1, 2) from the imaginary part:

a(U1
0 ,
n−1∑
j=0

sin(jkθ)U2
0 ◦RTjθ) =

∫
Ω

n−1∑
j=0

sin(jkθ)(∇ϕj · ∇U1
0 )(− sin(jθ)∂xu1 + cos(jθ)∂yu1)

+

∫
Ω

n−1∑
j=0

sin(jkθ)(∇ϕj · ∇u1)(− sin(jθ)∂xU
1
0 + cos(jθ)∂yU

1
1 )

=

∫
Ω

n−1∑
j=0

(−2 sin(jkθ) sin(jθ)∂xϕj)∂xu1∂xU
1
0

+

∫
Ω

n−1∑
j=0

(2 sin(jkθ) cos(jθ)∂yϕj)∂yu1∂yU
1
0

+

∫
Ω

n−1∑
j=0

(− sin(jkθ) sin(jθ)∂yϕj + sin(jkθ) cos(jθ)∂xϕj)∂yu1∂xU
1
0

+

∫
Ω

n−1∑
j=0

(− sin(jkθ) sin(jθ)∂yϕj + sin(jkθ) cos(jθ)∂xϕj)∂xu1∂yU
1
0

=
1

sin θ

n−1∑
j=0

2(sin(j + 1)kθ − sin jkθ) sin(j + 1)θ sin jθ

∫
Tj

∂xu1∂xU
1
0

+
1

sin θ

n−1∑
j=0

2(sin(j + 1)kθ − sin jkθ) cos jθ cos(j + 1)θ

∫
Tj

∂yu1∂yU
1
0

− 1

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ) sin(2j + 1)θ

∫
Tj

(∂xu1∂yU
1
0 + ∂yu1∂xU

1
0 )

=
1

sin θ

n−1∑
j=0

2(sin(j + 1)kθ − sin jkθ)
cos θ − cos(2j + 1)θ

2

∫
Tj

∂xu1∂xU
1
0

+
1

sin θ

n−1∑
j=0

2(sin(j + 1)kθ − sin jkθ)
cos θ + cos(2j + 1)θ

2

∫
Tj

∂yu1∂yU
1
0

− 1

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ) sin(2j + 1)θ

∫
Tj

(∂xu1∂yU
1
1 + ∂yu1∂xU

1
0 )

=
cos θ

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ)

∫
Tj

∇u1∇U1
0

+
n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ − sin(2j + 1)θ
− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇U1

0 .
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Term on position (2, 1) form imaginary part:

a(U2
0 ,
n−1∑
j=0

sin(jkθ)U1
0 ◦RTjθ) =

∫
Ω

n−1∑
j=0

sin(jkθ)(∇ϕj · ∇U2
0 )(cos(jθ)∂xu1 + sin(jθ)∂yu1)

+

∫
Ω

n−1∑
j=0

sin(jkθ)(∇ϕj · ∇u)(cos(jθ)∂xU
2
0 + sin(jθ)∂yU

2
0 )

=

∫
Ω

n−1∑
j=0

(2 sin(jkθ) cos(jθ)∂xϕj)∂xu1∂xU
2
0

+

∫
Ω

n−1∑
j=0

(2 sin(jkθ) sin(jθ)∂yϕj)∂yu1∂yU
2
0

+

∫
Ω

n−1∑
j=0

(sin(jkθ) cos(jθ)∂yϕj + sin(jkθ) sin(jθ)∂xϕj)∂yu1∂xU
2
0

+

∫
Ω

n−1∑
j=0

(sin(jkθ) cos(jθ)∂yϕj + sin(jkθ) sin(jθ)∂xϕj)∂xu1∂yU
2
0

=
1

sin θ

n−1∑
j=0

2(sin jkθ cos jθ sin(j + 1)θ − sin(j + 1)kθ cos(j + 1)θ sin jθ)

∫
Tj

∂xu1∂xU
2
0

+
1

sin θ

n−1∑
j=0

2(sin(j + 1)kθ sin(j + 1)θ cos jθ − sin jkθ sin jθ cos(j + 1)θ)

∫
Tj

∂yu1∂yU
2
0

+
1

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ) cos(2j + 1)θ

∫
Tj

(∂xu1∂yU
2
0 + ∂yu1∂xU

2
0 )

=
1

sin θ

n−1∑
j=0

[(sin jkθ + sin(j + 1)kθ) sin θ + sin(2j + 1)θ(sin jkθ − sin(j + 1)kθ)]

∫
Tj

∂xu1∂xU
2
0

+
1

sin θ

n−1∑
j=0

[(sin jkθ + sin(j + 1)kθ) sin θ + sin(2j + 1)θ(− sin jkθ + sin(j + 1)kθ)]

∫
Tj

∂yu1∂yU
2
0

+
1

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ) cos(2j + 1)θ

∫
Tj

(∂xu1∂yU
2
0 + ∂yu1∂xU

2
0 )

=
n−1∑
j=0

(sin jkθ + sin(j + 1)kθ)

∫
Tj

∇u1∇U2
0

+
n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇U2

0
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