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Abstract

The clustering task consists in delivering labels to the members of a sample. For
most data sets, some individuals are ambiguous and intrinsically difficult to attribute to
one or another cluster. However, in practical applications, misclassifying individuals is
potentially disastrous. To overcome this difficulty, the idea followed here is to classify only
a part of the sample in order to obtain a small misclassification rate. This approach is well
known in the supervised setting, and referred to as classification with an abstention option.
The purpose of this paper is to revisit this approach in an unsupervised mixture-model
framework. The problem is formalized in terms of controlling the false clustering rate
(FCR) below a prescribed level α, while maximizing the number of classified items. New
procedures are introduced and their behavior is shown to be close to the optimal one by
establishing theoretical results and conducting numerical experiments. An application to
breast cancer data illustrates the benefits of the new approach from a practical viewpoint.

1 Introduction

1.1 Background

Clustering is a standard statistical task that aims at grouping together individuals with sim-
ilar features. However, it is common that data sets include ambiguous individuals that are
inherently difficult to classify, which makes the clustering result potentially unreliable. To il-
lustrate this point, consider a Gaussian mixture model with overlapping mixture components.
Then it is difficult, or even impossible, to assign the correct cluster label to data points that
fall in the overlap of those clusters, see Figure 1. Hence, when the overlap is large (Figure 1
panel (b)), the misclassification rate of a standard clustering method is inevitably elevated.

This issue is critical in applications where misclassifications come with a high cost for
the user and should be avoided. This is for example the case for medical diagnosis, where
an error can have severe consequences on the individual’s health. When there is too much
uncertainty, a solution is to avoid classification for such individuals, and to adopt a wiser
“abstention decision”, that leaves the door open for further medical exams.

In a supervised setting, classification with a reject (or abstention) option is a long-standing
statistical paradigm, that can be traced back to Chow (1970), with more recent works includ-
ing Herbei and Wegkamp (2006); Bartlett and Wegkamp (2008); Wegkamp and Yuan (2011),
among others. In this line of research, rejection is accounted for by adding a term to the risk
that penalizes any rejection (i.e., non classification). However, this approach does not provide
a prescribed control of the classification error among the classified items (those that are not
rejected).

More confidence in the labelling can be brought via conformal prediction, Vovk et al. (1999,
2005), see also Angelopoulos et al. (2021) for a review. This generic technique can be applied
to supervised classification for producing confidence sets for the label vector. However, such
inference does not incorporate the abstention rule. Very recently, Denis and Hebiri (2020)
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proposed a conformal approach with a rejection option. The method consists in minimizing
the probability of misclassification conditionally on the fact that it has been classified, while
controlling the probability of being classified. This brings a safety guarantee on the label
assigned to the classified items.

1.2 Aim and approach

The goal of the present work is to propose a labelling guarantee on the classified items in the
vein of Denis and Hebiri (2020), but in the more challenging unsupervised setting, where no
training set is available and data are assumed to be generated from a finite mixture model.
This is achieved by the possibility to refuse to cluster ambiguous individuals and by using the
false clustering rate (FCR), which is defined as the average proportion of misclassifications
among the classified objects. Our procedures are devised to keep the FCR below some nominal
level α, while classifying a maximum number of items.

It is important to understand the role of the nominal level α in our approach. It is
chosen by the user and depends on their acceptance or tolerance for misclassified objects.
Since the FCR is the misclassification risk that is allowed on the classified objects, the final
interpretation of FCR control at level α is clear: if for instance α is chosen to be 5% and
100 items are finally chosen to be classified by the method, then the number of misclassified
items is expected to be at most 5. This high interpretability is similar to the one of the false
discovery rate (FDR) in multiple testing, which has known a great success in applications
since its introduction by Benjamini and Hochberg (1995). This is a clear advantage of our
approach for practical use compared to the methods with a rejection option that are based
on a penalized risk.

In our framework, a procedure is composed of two intertwined decisions:

• a selection rule deciding which of the items are labelled;

• a clustering method inferring the labels for the selected items.

Both decisions heavily rely on the appropriate quantification of the uncertainty of the cluster
labels. As such, our approach is model-based, and can be viewed as a method that thresholds
the posterior probabilities of the cluster labels with a data-driven choice of the threshold.
The performance of the method will depend on the quality of the estimates of these posterior
probabilities in the mixture model.

The adaptive character of our method is illustrated in Figure 1: when the clusters are well
separated (panel (a)), the new procedure only discards few items and provides a clustering
close to the correct one. However, when the clusters are overlapping (panel (b)), to avoid a
high misclassification error, the procedure discards most of the items and only provides few
labels, for which the uncertainty is low. In both cases, the proportion of misclassified items
among the selected ones is small and in particular close to the target level α (here 10%).
Hence, by adapting the amount of labeled or discarded items, our method always delivers a
reliable clustering result, inspite of the varying intrinsic difficulty of the clustering task.

1.3 Presentation of the results

Let us now describe in more details the main contributions of the paper.

• We introduce three new data-driven procedures that perform simultaneously selection
and clustering: the plug-in procedure (illustrated in Figure 1) and two bootstrap pro-
cedures (parametric and non-parametric), see Section 3.2.
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(a) Separated clusters (b) Ambiguous clusters

Figure 1: Data from Gaussian mixtures with three components (n = 200), in a fairly separated
case (panel (a)) and an ambiguous case (panel (b)). In each panel, the left part displays the
true clustering, while the right part illustrates the new procedure (plug-in procedure at level
α = 10%), that does not cluster all items. The points not classified are depicted by grey
crosses. Points circled in red correspond to erroneous labels.

• We prove that the plug-in procedure controls the FCR at the desired level α, up to
a reminder term which becomes small when the sample size grows. In addition, this
procedure is shown to satisfy the following optimality property: any other procedure
that provides an FCR control necessarily classifies equal or less items than the plug-in
procedure, up to a small remainder term. All results are non-asymptotic in the sample
size (Theorem 6), and it is shown that the reminder terms tend to zero when the sample
size tends to infinity (Corollary 7). We also put forward specific convergence rates
depending on the parameter estimation accuracy (Corollary 8).

• Numerical experiments establish that the bootstrap procedures improve the plug-in pro-
cedure in terms of non-asymptotic FCR control, and thus are more reliable for practical
use, where the sample size may be moderate, see Section 5.1.

• Our analysis also shows that the fixed threshold procedure that only labels items with
a maximum posterior probability larger than 1− α is generally suboptimal for an FCR
control at level α, see Section 5.1. To this extent, our procedures can be seen as more
refined algorithms that classify more individuals while maintaining the FCR control.

• The practical impact of our approach is demonstrated on a real data set, see Section 5.2.

1.4 Relation to previous work

Other clustering guarantees in unsupervised learning While we provide a specific
FCR control guarantee on the clustering, other criteria, not particularly linked to a rejection
option, have been previously proposed in an unsupervised setting. Considering the cluster
labels as fixed parameters, minimizing the misclassification risk has been proposed in Lei and
Rinaldo (2015); Lu and Zhou (2016), among others. When clusters are rather considered as
latent variables generated concomitantly with the observations (as we do here), other criteria
have been investigated: the probability to make a different decision than the Bayes rule
(Azizyan et al., 2013), the probability of exact recovery (Arora and Kannan, 2005; Bickel and
Chen, 2009), or the fact that all clusters are mostly homogeneous with high probability (Najafi
et al., 2020). All these works provide a guarantee only if the setting is favorable enough. By
contrast, providing a rejection option is the key to obtain a guarantee in any setting (in the
worst situation, the procedure will not classify any item).
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Comparison to Denis and Hebiri (2020) and Mary-Huard et al. (2021) We describe
here two recent studies that are related to ours, because they also use a FCR-like criterion.
The first one is the work of Denis and Hebiri (2020), which also relies on a thresholding
of the (estimated) posterior probabilities. However, the control is different, because it does
not provide an FCR control, but rather a type-II error control concerning the probability of
classifying an item. Also, the proposed procedure therein uses an additional labeled sample
(semi-supervised setting), which is forbidden in our case.

The work of Mary-Huard et al. (2021) also proposes a control of the FCR. However, the
analysis therein is solely based on the case where the model parameters are known (thus
corresponding to the oracle case developed in Section 3.1 here). Compared to Mary-Huard
et al. (2021), the present work provides number of new contributions, which are all given in
Section 1.3. Let us also emphasize that we handle the label switching problem in the FCR,
which seems to be overlooked in Mary-Huard et al. (2021).

Relation to false discovery rate The FCR is closely related to the false discovery rate
(FDR), defined as the average proportion of errors among the discoveries, in a multiple testing
context. In fact, we can roughly view the problem of designing an abstention rule as testing,
for each item i, whether the clustering rule correctly classifies item i or not. With this analogy,
our selection rule is based on quantities similar to the local FDR values (Efron et al., 2001), a
key quantity to build optimal FDR controlling procedure in multiple testing mixture models,
see, e.g., Storey (2003); Sun and Cai (2007); Cai et al. (2019); Rebafka et al. (2019). In
particular, our final selection procedure shares similarities with the procedure introduced in
Sun and Cai (2007), also named cumulative `-value procedure Abraham et al. (2021). In
addition, our theoretical analysis is related to the work of Rebafka et al. (2019), although the
nature of the algorithm developed therein is different from here: they use the q-value procedure
of Storey (2003), while our method rather relies on the cumulative `-value procedure.

1.5 Organization of the paper

The paper is organized as follows: Section 2 introduces the model and relevant notation,
namely the FCR criterion, with a particular care of the label switching problem. Section 3
presents the methods: the oracle, plug-in and the bootstrap approaches. Our main theoretical
results are provided in Section 4, after introducing the appropriate assumptions. Section 5
presents numerical experiments and an application to a real data set, while a conclusion is
given in Section 6. Proofs of the results and other technical details are deferred to appendices.

2 Setting

This section presents the notation, model, procedures and criteria that will be used throughout
the manuscript.

2.1 Model

Let X = (X1, . . . , Xn) be an observed random sample of size n. Each Xi is an i.i.d. copy of
a d-dimensional real random vector, which is assumed to follow the standard mixture model:

Z ∼M(π1, . . . , πQ),

X|Z = q ∼ Fφq , 1 ≤ q ≤ Q,

whereM(π1, . . . , πQ) denotes the multinomial distribution of parameter π (equivalently, πq =
P(Z = q) for each q). The model parameters are given by
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• the probability distribution π on {1, . . . , Q} that is assumed to satisfy πq > 0 for all q.
Hence, πq corresponds to the probability of being in class q;

• the parameter φ = (φ1, . . . , φQ) ∈ UQ, where {Fu, u ∈ U} is a collection of distributions
on Rd. We moreover assume that each distribution Fu has a density with respect to the
Lebesgue measure on Rd, that we denote by fu. Also, we assume that the φq’s are all
distinct.

The parameter Q, coding for the number of classes, is assumed to be known and fixed through-
out the manuscript (see Section 6 for a discussion). The overall parameter is thus θ = (π, φ),
the parameter set is denoted by Θ, and the distribution of (Z,X) is denoted by Pθ. The
distribution family {Pθ, θ ∈ Θ} is the considered statistical model. We also assume that Θ is
an open subset of RK for some K ≥ 1 with the corresponding topology.

In this mixture model, the latent vector Z = (Z1, . . . , Zn) encodes a partition of the n
observations into Q classes given by {1 ≤ i ≤ n : Zi = q}, 1 ≤ q ≤ Q. We refer to this
model-based, random partition as the true latent clustering in the sequel.

In what follows, the “true” parameter that generates (Z,X) is assumed to be fixed and is
denoted by θ∗ ∈ Θ.

2.2 Procedure and criteria

Our approach starts with a given clustering rule, that aims at recovering the true latent
clustering. In general, a clustering rule is defined as a (measurable) function of the observation
X returning a vector label Ẑ = (Ẑi)1≤i≤n ∈ {1, . . . , Q}n for which the label q is given to
individual i if and only if Ẑi = q.

The classification error of Ẑ is thus given by ε(Ẑ,Z) =
∑n

i=1 1{Zi 6= Ẑi}. Obviously,
since switching the labels in Z does not change the true latent partition, we should allow for
switching the labels when making the decision Ẑ from the data. The clustering risk of Ẑ is
thus defined by

R(Ẑ) = Eθ∗
(

min
σ∈[Q]

Eθ∗
(
n−1ε(σ(Ẑ),Z) |X

))
, (1)

where [Q] denotes the set of all permutations on {1, . . . , Q}. Above, the minimum over σ is
added to handle the aforementioned label switching problem.

Remark 1. Note that the position of the minimum w.r.t. σ matters in the risk (1): σ is
allowed to depend on X but not on Z. Hence, this risk has to be understood as being computed
up to a data dependent label switching. This definition coincides with the usual definition of
misclassification risk in the situation where the true clustering is deterministic, see Lei and
Rinaldo (2015); Lu and Zhou (2016). Hence, it can be seen as a natural extension of the latter
to a mixture model where the true clustering is random.

Classically, we aim to find a clustering rule Ẑ such that the clustering risk is “small”.
However, as mentioned above, whether this is possible or not depends on the intrinsic difficulty
of the clustering problem and thus of the true parameter θ∗ (see Figure 1). Therefore, the idea
is to provide a selection rule, that is, a (measurable) function of the observation X returning a
subset S ⊂ {1, . . . , n}, such that the clustering risk with restriction to S is small. Throughout
the paper, a procedure refers to a couple C = (Ẑ, S), where Ẑ is a clustering rule and S is a
selection rule.
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Definition 1 (False clustering rate). The false clustering rate (FCR) of a procedure C = (Ẑ, S)
is given by

FCRθ∗(C) = Eθ∗
(

min
σ∈[Q]

Eθ∗
(
εS(σ(Ẑ),Z)

max(|S|, 1)

∣∣∣∣X
))

, (2)

where εS(Ẑ,Z) =
∑

i∈S 1{Zi 6= Ẑi} denotes the misclassification error restricted to the subset
S.

In this work, the aim is to find a procedure C such that the false clustering rate is con-
trolled at a nominal level α, that is, FCRθ∗(C) ≤ α. Obviously, choosing S empty implies
εS(σ(Ẑ),Z) = 0 a.s. for any permutation σ and thus satisfies this control. Hence, while
maintaining the control FCRθ∗(C) ≤ α, we aim to classify as much individuals as possible,
that is, to make Eθ∗ |S| as large as possible.

The FCR (2) involves an expectation of a ratio, which is more difficult to handle that a
ratio of expectations. Hence, the following simpler alternative criterion will also be useful in
our analysis.

Definition 2 (Marginal false clustering rate). The marginal false clustering rate (mFCR) of
a procedure C = (Ẑ, S) is given by

mFCRθ∗(C) =

Eθ∗
(

min
σ∈[Q]

Eθ∗
(
εS(σ(Ẑ),Z)

∣∣∣∣X))
Eθ∗(|S|)

, (3)

with the convention 0/0 = 0.

Note that the mFCR is similar to the criterion introduced in Denis and Hebiri (2020) in
the supervised setting.

2.3 Notation

We will extensively use the following notation: for all q ∈ {1, . . . , Q} and θ = (π, φ) ∈ Θ, we
let

`q(X, θ) = Pθ(Z = q|X) =
πqfφq(X)∑Q
`=1 π`fφ`(X)

; (4)

T (X, θ) = 1− max
q∈{1,...,Q}

`q(X, θ) ∈ [0, 1− 1/Q]. (5)

Hence, `q(X, θ) is the posterior probability of being in class q given the measurement X under
the distribution Pθ. The quantity T (X, θ) is a measure of the risk when classifying X: it is
close to 0 when there exists a class q such that `q(X, θ) is close to 1, that is, when X can be
classified with a large confidence.

3 Methods

In this section, we introduce new methods for controlling the FCR. We start by identifying
an oracle method, in the sense that it uses the true value of the parameter θ∗. Substituting in
that oracle the unknown parameter θ∗ by an estimator provides our first method, called the
plug-in procedure. We then define a refined version of the plug-in procedure, that accounts
for the variability of the estimator and is based on a bootstrap approach.
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3.1 Oracle procedures

MAP clustering Here, we proceed as if an oracle had given us the true value of θ∗

and we introduce an oracle procedure C∗ = (Ẑ∗, S∗) based on this value. As the follow-
ing lemma shows, the best clustering rule is well-known and given by the Bayes clustering
Ẑ∗ = (Ẑ∗1 , . . . , Ẑ

∗
n) which can be written as

Ẑ∗i ∈ argmax
q∈{1,...,Q}

`q(Xi, θ
∗), i ∈ {1, . . . , n}, (6)

where `q(·) is the posterior probability given by (4).

Lemma 1. We have min
Ẑ
R(Ẑ) = R(Ẑ∗) = n−1

∑n
i=1 Eθ∗(T ∗i ), for the Bayes clustering Ẑ∗

defined by (6) and for

T ∗i = T (Xi, θ
∗) = Pθ*(Zi 6= Ẑ∗i |Xi), i ∈ {1, . . . , n}, (7)

where T (·) is given by (5).

In words, Lemma 1 establishes that the oracle statistics T ∗i corresponds to the posterior
misclassification probabilities of the Bayes clustering. To decrease the overall misclassification
risk, it is natural to avoid classification for points with a high value of the test statistic T ∗i .

Thresholding selection rules In this section, we introduce the selection rule, which as-
sesses which items have to be classified. From the above paragraph, it is natural to consider
a thresholding based selection rule S = {i ∈ {1, . . . , n} : T ∗i ≤ t}, for some threshold t to be
suitably chosen. The following result gives insights for choosing such a threshold t.

Lemma 2. For a procedure C = (Ẑ∗, S) with Bayes clustering and an arbitrary selection S,

FCRθ∗(C) = Eθ∗
( ∑

i∈S T
∗
i

max(|S|, 1)

)
. (8)

As a consequence, a first way to build an (oracle) selection is to set

S = {i ∈ {1, . . . , n} : T ∗i ≤ α}.

Since an average of numbers smaller than α is also smaller than α, the corresponding procedure
controls the FCR at level α. This procedure is referred to as the procedure with fixed threshold
in the sequel. It corresponds to the following naive approach: to get a clustering with a risk
of α, we only keep the items that are in their corresponding class with a posterior probability
at least 1− α. By contrast, the selection rule considered here is rather

S = {i ∈ {1, . . . , n} : T ∗i ≤ t(α)},

for a threshold t(α) ≥ α maximizing |S| under the constraint
∑

i∈S T
∗
i ≤ α|S|. It uniformly

improves the procedure with fixed threshold and will in general lead to a (much) broader
selection. This gives rise to the oracle procedure, that can be easily implemented by ordering
the T ∗i ’s, see Algorithm 1.
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Algorithm 1 Oracle procedure
Input: Parameter θ∗, sample (X1, . . . , Xn), level α.
1. Compute the posterior probabilities Pθ*(Zi = q|Xi), 1 ≤ i ≤ n, 1 ≤ q ≤ Q;
2. Compute the Bayes clustering Ẑ∗i , 1 ≤ i ≤ n, given by (6);
3. Compute the probabilities T ∗i , 1 ≤ i ≤ n, given by (7);
4. Order these probabilities in increasing order T ∗(1) ≤ · · · ≤ T

∗
(n);

5. Choose k∗ the maximum of k ∈ {0, . . . , n} such that max(k, 1)−1
∑k

j=1 T
∗
(j)(X) ≤ α;

6. Select S∗α, the index corresponding to the k∗ smallest elements among the T ∗i ’s.
Output: Oracle procedure Cα = (Ẑ∗, S∗α).

Algorithm 2 Plug-in procedure
Input: Sample (X1, . . . , Xn), level α.
1. Compute an estimator θ̂ of θ;
2. Run the oracle procedure given in Algorithm 1 with θ̂ in place of θ∗.
Output: Plug-in procedure Ĉ

PI

α = (ẐPI, ŜPI
α ).

3.2 Empirical procedures

Plug-in procedure The oracle procedure cannot be used in practice since θ∗ is generally
unknown. A natural idea is then to approach θ∗ by an estimator θ̂ and then to plug this
estimate into the oracle procedure. The resulting procedure, denoted Ĉ

PI
= (ẐPI, ŜPI

α ), is
called the plug-in procedure and is implemented in Algorithm 2.

Obviously, the quality of the plug-in procedure relies on the chosen estimator θ̂. In a
mixture model, the maximum likelihood estimator (MLE) is not computable in general. A
standard way to approach the MLE is to use an Expectation Maximization (EM) algorithm
(Dempster et al., 1977). The property of the EM estimator θ̂ in the current framework has
been extensively studied both empirically and theoretically in the literature, see Balakrishnan
et al. (2017) and references therein.

In Section 4, we establish that the plug-in procedure has suitable properties: when n
tends to infinity, provided that the chosen estimator θ̂ behaves well and under mild regularity
assumptions on the model, the FCR of the plug-in procedure is close to the level α while it is
nearly optimal in terms of average selection number.

Bootstrap procedure Despite the favorable theoretical properties shown in Section 4, the
plug-in procedure achieves an FCR that can exceed α in some situations, as we will see in our
numerical experiments (Section 5). This is in particular the case when the estimator θ̂ is too
rough. Indeed, the uncertainty of θ̂ near θ∗ is ignored by the plug-in procedure.

To take into account this effect, we propose to use a bootstrap approach. It is based on
the following result.

Lemma 3. For a given level α ∈ (0, 1), the FCR of the plug-in procedure Ĉ
PI

α is given by

FCR(Ĉ
PI

α ) = EX∼Pθ∗

min
σ∈[Q]

∑n
i=1{1− `σ(ẐPI

i (X))(Xi, θ
∗)}1{i ∈ ŜPI

α (X)}

max(|ŜPI
α (X)|, 1)

 . (9)

The general idea is as follows: since FCR(Ĉ
PI

α ) can exceed α, we choose α′ as large as
possible such that F̂CRα′ ≤ α, for which F̂CRα′ is a bootstrap approximation of FCR(Ĉ

PI

α′)
based on (9).
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Algorithm 3 Bootstrap procedure
Input: Sample (X1, . . . , Xn), level α, number B of bootstrap runs.
1. Choose a grid of increasing level (α(k))1≤k≤K ;

2. Compute F̂CR
B

α(k), 1 ≤ k ≤ K, according to (10);
3. Choose k̃ according to (11).
Output: Bootstrap procedure Ĉ

boot

α = Ĉ
PI

α(k̃).

The bootstrap approximation reads as follows: in the RHS of (9), we replace the true
parameter θ∗ by θ̂ and X ∼ Pθ∗ by X′ ∼ P̂ , where P̂ is an empirical substitute of Pθ∗ .
This empirical distribution P̂ is Pθ̂ for the parametric bootstrap and the uniform distribution
over the Xi’s for the non-parametric bootstrap. This yields the bootstrap approximation of
FCR(Ĉ

PI

α ) given by

F̂CRα = EX′∼P̂

min
σ∈[Q]

∑n
i=1{1− `σ(ẐPI

i (X′))(X
′
i, θ̂(X))}1{i ∈ ŜPI

α (X′)}

max(|ŜPI
α (X′)|, 1)

∣∣∣∣X
 .

Classically, the latter is itself approximated by a Monte Carlo scheme:

F̂CR
B

α =
1

B

B∑
b=1

min
σ∈[Q]

∑n
i=1{1− `σ(ẐPI

i (Xb))(X
b
i , θ̂(X))}1{i ∈ ŜPI

α (Xb)}

max(|ŜPI
α (Xb)|, 1)

, (10)

with X1, . . . ,XB i.i.d. ∼ P̂ corresponding to the bootstrap samples of X.
Let (α(k))1≤k≤K ∈ (0, 1)K a grid of increasing nominal levels (possibly in restriction to

values slightly below the targeted level α). Then, the bootstrap procedure at level α is defined
as Ĉ

boot

α = Ĉ
PI

α(k̃) where

k̃ = max

{
k ∈ {1, . . . ,K} : F̂CR

B

α(k) ≤ α
}
. (11)

This procedure is implemented in Algorithm 3.

Remark 2 (Parametric versus non parametric bootstrap). The usual difference between para-
metric and non parametric bootstrap also holds in our context: the parametric bootstrap is fully
based on Pθ̂, while the non parametric bootstrap builds an artificial sample (with replacement)
from the original sample, which does not come from a Pθ-type distribution. This gives rise to
different behaviors in practice: when θ̂ is too optimistic (which will be typically the case here
when the estimation error is large), the correction brought by the parametric bootstrap (based
on Pθ̂) is often weaker than that of the non parametric one. By contrast, when θ̂ is close to
the true parameter, the parametric bootstrap approximation is more faithful because it uses the
model, see Section 5.

4 Theoretical guarantees for the plug-in procedure

In this section, we derive theoretical properties for the plug-in procedure: we show that its
FCR and mFCR is close to α while its expected selection number is close to be optimal under
some conditions.
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4.1 Additional notation and assumptions

We make use of an optimality theory for mFCR control, that will be developed in detail in
Section A.1. This approach extensively relies on the following quantities (recall the definition
of T (X, θ) in (5)):

mFCR∗t = Eθ∗ (T (X, θ∗) | T (X, θ∗) < t) ; (12)
t∗(α) = sup {t ∈ [0, 1] : mFCR∗t ≤ α} (13)
αc = inf{mFCR∗t : t ∈ (0, 1],mFCR∗t > 0}; (14)
ᾱ = mFCR∗1 . (15)

In words, mFCR∗t is the mFCR of an oracle procedure that selects the T ∗i smaller than a
threshold t (Lemma 11). Then, t∗(α) is the optimal threshold such that this procedure has a
mFCR controlled at level α. Next, αc and ᾱ are the lower and upper bounds for the level α,
respectively, for which the optimality theory can be applied.

Now, we introduce our main assumption, which will be ubiquitous in our analysis.

Assumption 1. For all θ ∈ Θ, under Pθ∗, the r.v. T (X, θ) given by (5) is continuous, that
is, t 7→ Pθ* (T (X, θ) < t) is continuous on [0, 1]. In addition, it is increasing on (αc, ᾱ).

Assumption 1 is useful to several regards: first, it prohibits ties in the T (Xi, θ)’s, 1 ≤
i ≤ m, so that the selection rule (see Algorithm 1) can be truly formulated as a thresholding
rule. Second, it entails interesting properties for function t 7→ mFCR∗t , see Lemma 11 (this in
particular ensures that the supremum in (13) is a maximum). Also note that the inequality
0 ≤ αc < ᾱ < 1− 1/Q holds under Assumption 1.

The next assumption ensures that the density family {fu, u ∈ U} is smooth, and will be
useful to establish consistency results.

Assumption 2. For Pθ∗-almost all x ∈ Rd, u ∈ U 7→ fu(x) is continuous.

Let us now introduce some additional quantities measuring the regularity of the model
and that will appear in our remainder terms (recall definition (4), (5) and (13) of `q(X, θ),
T (X, θ) and t∗(α), respectively): for ε, δ, v > 0,

W`(ε) = sup

{
Eθ∗

[
max

1≤q≤Q
|`q(X, θ∗)− `q(X, θ)|

]
, ‖θ − θ∗‖2 ≤ ε, θ ∈ Θ

}
; (16)

WT (δ) = sup{|Pθ*(T (X, θ∗) < t′)− Pθ*(T (X, θ∗) < t)| , t, t′ ∈ [0, 1], |t′ − t| ≤ δ}; (17)
Ψ(ε) = inf

δ∈(0,1)
{WT (δ) +W`(ε)/δ} ; (18)

Wt∗,α(v) = sup {|t∗(α+ β)− t∗(α)| , |β| ≤ v} . (19)

Note that Ψ(ε) ≤ WT (W`(ε)
1/2) + W`(ε)

1/2 for ε small enough. The following lemma is
straightforward.

Lemma 4. Under Assumption 1, we have limδ→0WT (δ) = 0, limv→0Wt∗,α(v) = 0. Under
Assumption 2, we have limε→0W`(ε) = 0. Under both assumptions, we have limε→0 Ψ(ε) = 0.

We can derive rates for the convergences in Lemma 4 under the following additional
regularity condition.

Assumption 3. There exists positive constants r = r(θ∗), C1 = C1(θ∗), C2 = C2(θ∗, α), C3 =
C3(θ∗, α) such that
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(i) for Pθ*-almost all x, u ∈ U 7→ fu(x) is continuously differentiable, and

∑
1≤q≤Q

Eθ∗

 sup
θ∈Θ

‖θ−θ∗‖≤r

‖∇θ`q(X, θ)‖

 ≤ C1;

(ii) for all t, t′ ∈ [0, 1], |Pθ*(T (X, θ∗) < t)− Pθ*(T (X, θ∗) < t′)| ≤ C2|t− t′|;

(iii) for all β ∈ [(αc + α)/2, (α+ ᾱ)/2], |t∗(β)− t∗(α)| ≤ C3|β − α|.

Lemma 5. Under Assumption 3, we have W`(ε) ≤ C1ε, WT (δ) ≤ C2δ, Wt∗,α(v) ≤ C3v and
Ψ(ε) ≤ (1 + C2)C

1/2
1 ε1/2 for ε, δ, v small enough.

In Appendix D, it is proved that Assumptions 1, 2 and 3 hold true in the homoscedastic
two-component multivariate Gaussian model, see Lemma 18.

Let us now discuss conditions on the estimator θ̂ on which the plug-in procedure is based.
We start by introducing the following assumption (used in the concentration part of the proof,
see Lemma 14).

Assumption 4. The estimator θ̂ is assumed to be valued in a countable subset D of Θ.

This assumption is a minor restriction, because we can always choose D ⊂ QK (recall
Θ ⊂ RK). Next, we additionally define a quantity measuring the quality of the estimator: for
all ε > 0,

η(ε, θ∗) = Pθ*
(

min
σ∈[Q]

‖θ̂σ − θ∗‖2 ≥ ε
)
. (20)

In the Gaussian case, the quantity η(ε, θ∗) is provided to be small for a constrained MLE, see
Proposition 16.

4.2 A general result

The following theorem is our main theoretical result: it provides non-asymptotical bounds on
the mFCR/FCR of the plug-in procedure and on its average selection number.

Theorem 6. Let Assumption 1 be true. For any α ∈ (αc, ᾱ), for s∗ = s∗(α, θ∗) ∈ (0, 1) and
e∗ = e(α, θ∗) > 0 two constants only depending on α and θ∗, the following holds. Consider
the plug-in procedure Ĉ

PI

α = (ẐPI, ŜPI
α ) introduced in Algorithm 2 and based on an estimator θ̂

satisfying Assumption 4, with η(ε, θ∗) defined by (20). Then for ε ≤ e∗ and n ≥ 4, letting

∆n(ε) = 2 (WT (Wt∗,α(2δn + 8Ψ(ε)/s∗)) + 4Ψ(ε) + 2δn) + 50/n+ 10η(ε, θ∗),

for δn = (2/s∗)
√

(log n)/n and with the quantities WT , W`, Ψ, Wt∗,α defined by (17), (16),
(18), (19), respectively, it holds:

• Ĉ
PI

α controls both the FCR and mFCR at level close to α in the following sense:

max
(

mFCR(Ĉ
PI

α ),FCR(Ĉ
PI

α )
)
≤ α+ ∆n(ε)/s∗;

11



• Ĉ
PI

α is nearly optimal in the following sense: for any other procedure C = (Ẑ, S) that
controls the mFCR at level α, that is, with mFCR(C) ≤ α, we have

n−1 Eθ∗(|ŜPI
α |) ≥ n−1 Eθ∗(|S|)−∆n(ε).

The proof employs techniques that share similarities with the work of Rebafka et al.
(2019) developed in a different context, see Appendix A. Here, a difficulty is to handle the
new statistics T (Xi, θ̂) which is defined as an extremum, see (5).

4.3 Corollaries

In this section, we present two straightforward consequences of the main result. By Lemma 4,
assuming Assumptions 1 and 2, we have that for all ε small enough, the limit of the remainder
term lim supn ∆n(ε) can be bounded by a function of ε that vanishes when ε tends to 0. This
yields the following consistency result.

Corollary 7 (Asymptotic optimality of the plug-in procedure). Consider the setting of The-
orem 6 where, in addition, Assumption 2 is supposed to hold. Then, we have

lim sup
n

FCR(Ĉ
PI

α ) ≤ α, lim sup
n

mFCR(Ĉ
PI

α ) ≤ α,

and for any procedure C = (Ẑ, S) that controls the mFCR at level α, we have

lim inf
n
{n−1 Eθ∗(|ŜPI

α |)− n−1 Eθ∗(|S|)} ≥ 0.

As shown by Lemma 5, by strengthening the assumptions, Theorem 6 delivers in addition
convergence rates.

Corollary 8 (Optimality of the plug-in procedure with rates). Consider the setting of The-
orem 6, where in addition Assumption 3 holds. Then, with constants C1 = C1(α, θ∗) > 0 and
C2 = C2(α, θ∗) > 0, we have for any sequence εn > 0 tending to zero, for n larger than a
constant only depending on α and θ∗,

max((FCR(Ĉ
PI

α ),mFCR(Ĉ
PI

α )) ≤ α+ C1

(
ε1/2n +

√
(log n)/n+ η(εn, θ

∗)
)

(21)

n−1 Eθ∗(|ŜPI
α |)− n−1 Eθ∗(|S|) ≥ −C2

(
ε1/2n +

√
(log n)/n+ η(εn, θ

∗)
)
, (22)

for any procedure C = (Ẑ, S) that controls (non asymptotically) the mFCR at level α.

The assumptions of Corollary 8 are all satisfied in the homoscedastic two-component
multivariate Gaussian model. Applying this result in this case with εn = c

√
(log n)/n (for

some constant c > 0 not depending on n) and with θ̂ being a constrained MLE, Proposition 16
ensures that η(εn, θ

∗) is smaller than 1/n. This indicates that the convergence rates in (21)
and (22) are of order ((log n)/n)1/4 in this case.

5 Experiments

In this section, we evaluate the behavior of the new procedures: plug-in (Algorithm 2), para-
metric bootstrap and non parametric bootstrap (Algorithm 3). For this, we use both synthetic
and real data.
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Figure 2: FCR (left panel) and selection frequency (right panel) as a function of the mean
separation ε. Known mixture proportions and covariances setting with Q = 2, n = 100, d = 2,
α = 0.1.

5.1 Synthetic data set

The performance of our procedures is studied via simulations in different settings with var-
ious difficulties. All of them are gaussian mixture models, with possible restrictions on the
parameter space. For parameter estimation, the classical EM algorithm is applied with 100
iterations and 10 starting points chosen with Kmeans++ (Arthur and Vassilvitskii, 2006). In
the bootstrap procedures B = 1000 bootstrap samples are generated. The performance of
all procedures is assessed via the sample FCR and the proportion of classified data points,
which is referred to as the selection frequency. For every setting and every set of parameters,
depicted results display the mean over 100 simulated datasets. As a baseline, we consider the
fixed threshold procedure in which one selects data points that have a maximum posterior
group membership probability that exceeds 1−α. The oracle procedure (Algorithm 1) is also
considered in our experiments for comparison.

Finally note that some figures are postponed in Appendix E for space reasons.

Known proportions and covariances In the first setting, the true mixture proportions
and covariance matrices are known and used in the EM algorithm. We consider the case
Q = 2, π1 = π2 = 1/2 and Σ1 = Σ2 = Id with Id the (d × d)-identity matrix. For the mean
vectors, we set µ1 = 0 and µ2 = (ε/

√
d, . . . , ε/

√
d). The quantity ε corresponds to the mean

separation, that is, ‖µ1 − µ2‖2 = ε and accounts for the difficulty of the clustering problem.
Figure 2 displays the FCR for nominal level α = 0.1, sample size n = 100, dimension

d = 2 and varying mean separation ε ∈ {1,
√

2, 2, 4}. Globally, our procedures all have an
FCR close to the target level α (excepted for the very well separated case ε = 4 for which the
FCR is much smaller because a large part of the items can be trivially classified). In addition,
the selection rate is always close to the one of the oracle procedure. On the other hand, the
baseline procedure is too conservative: its FCR can be well below the nominal level and it
selects up to 50% less than the other procedures. This is well expected, because unlike our
procedures, the baseline has a fixed threshold and thus does not adapt to the difficulty of the
problem.

We also note that the FCR of the plug-in approach is slightly inflated for a weak separation
(ε = 1). This comes from the parameter estimation, which is difficult in that case. This also
illustrates the interest of the bootstrap methods, that allow to recover the correct level in
that case, by appropriately correcting the plug-in approach.
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Figure 3: Same as Figure 2 in the diagonal covariance setting.

Figure 4: FCR (left panel) and selection frequency (right panel) as a function of the sample
size n. Diagonal covariances setting with Q = 2, d = 2, ε =

√
2, α = 10%.

Diagonal covariances In this setting, the true parameters are the same as in previous
paragraph, but the true mixture proportions and covariance matrices are unknown and not
used in the EM algorithm. However, to help the estimation, the diagonal structure of Σ1 and
Σ2 is used in this algorithm.

Figure 3 displays the FCR and the selection frequency in function of the separation ε for
this case. The conclusion is qualitatively the same as in the previous case, but with larger FCR
values for a weak separation. Overall, it shows that the plug-in procedure is anti-conservative
and that the bootstrap corrections are able to recover an FCR/selection frequency close to the
one of the oracle. However, for a weak separation ε = 1, note that the parametric bootstrap
correction is not enough and that the latter procedure still overshoots the level α. Indeed, in
our simulations, it appears that Pθ̂ is typically a distribution that is more favorable than Pθ∗
from a statistical point of view (for instance, with more separated clusters). Note that these
conclusions also hold when making the FCR/selection frequency vary with n, see Figure 4.

Figure 5 displays the FCR and the selection frequency for varying nominal level α, with ε =√
2 and n ∈ {200, 1000}. The plug-in is still anti-conservative while the bootstrap procedures

have an FCR that is close to α for both sample sizes and uniformly on the considered α range.
Moreover, we note that for all our procedures (including the plug-in), the gap between the
FCR and the nominal level is roughly constant with α: this illustrates the adaptive aspect
of our procedures. This is in contrast with the baseline procedure, for which this gap highly
depends on α, and which may be either anti-conservative or sub-optimal depending on the α
value.
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(a) n = 200

(b) n = 1000

Figure 5: FCR (left panel) and selection frequency (right panel) as a function of the nominal
level α. Diagonal covariances setting with Q = 2, d = 2, ε =

√
2, n ∈ {200, 1000}.
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Other settings We also consider the following settings:

• Larger dimension (Figure 9). Same as in the previous paragraph but for d = 20.

• Three components (Figure 10): Same as in the previous paragraph but for Q = 3,
π1 = π2 = π3 = 1/3, Σ1 = Σ2 = Σ3 = I2, µ1 = 0, µ2 = (ε/

√
2, ε/
√

2), µ3 = (0,
√
ε) (so

that µ3 is at equal L2-distances from µ1 and µ2).

• Unconstrained model (Figure 11): In this case, the EM algorithm is agnostic in the
sense that does not use any knowledge, whatsoever, of the structure or values of the
parameters. The true parameters are the same as the previous paragraph.

• An additional “typical” setting (Figure 6): an unconstrained model with three compo-
nents Q = 3, dimension d = 4 and a separation ε = 2.

In the three first settings, the difficulty of the estimation problem is increased with respect to
the previous section. Hence, the behaviors the aforementioned procedures is deteriorated. In
particular, it puts forward that the non parametric bootstrap can be anti-conservative (resp.
over-conservative) in some cases when n is too large (resp. small). Finally, the last setting
is intended to be a faithful summary of the procedure behaviors in a “typical” situation. For
a fairly large sample size n = 1000, the new bootstrap procedures are correctly mimicking
the oracle. The more challenging case of a small sample size n = 100 is handled differently
by these two corrections: the parametric one is anti-conservative while the non-parametric is
very conservative.

In conclusion, in our experiments, the parametric bootstrap procedure shows overall the
more “stable” behavior: it uniformly improves the plug-in procedure across all the explored
parameter ranges. In addition, it gets an FCR and a selection frequency close to the one
of the oracle when the sample size n is fairly large. For more challenging cases where the
sample size is small and we seek for a stricter FCR control, the non-parametric bootstrap is
an interesting alternative.

5.2 Real data set

We consider the Wisconsin Breast Cancer Diagnosis (WCBD) dataset from the UCI ML
repository. The data consists of features computed from a digitalized image of a fine needle
aspirate (FNA) of a breast mass, on a total of 569 patients (each corresponds to one FNA
sample) of which 212 are diagnosed as Benign and 357 as Malignant. Ten real-valued measures
were computed for each cell nucleus present in any one image (e.g. radius, perimeter, texture,
etc.). Then, the mean, standard error and mean of the three largest values of these measures
were computed for each image, resulting in a total of 30 features. Here, we restrict the analysis
to the variables that correspond to the mean of these measures.

We choose to model the data as a mixture of Students as proposed in Peel and McLachlan
(2000). Student mixtures are appropriate for data containing observations with longer than
normal tails or atypical observations leading to overlapping clusters. Compared to Gaus-
sian mixtures, Students are less concentrated and thus produce estimates of the posterior
probabilities of class memberships that are less extreme, which is favorable for our selection
procedures. In our study, the degree of freedom of each component is set to 4, and no con-
straints are put on the rest of the parameters. The t-mixture is fit via the EM algorithm
provided by the Python package studenttmixture (Peel and McLachlan, 2000).

For illustration, Figure 7 (panel (a)) displays the first two variables of the dataset, the mean
radius and the mean texture of the images. Different colors indicate the ground truth labels
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(a) n = 200

(b) n = 1000

Figure 6: Same as Figure 5 with dimension Q = 3, d = 4, ε = 2, for an unconstrained model.
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(a) Ground truth labels (b) MAP clustering (c) Clustering with bootstrap se-
lection for α = 5%

Figure 7: Comparison of the clustering result with t-mixture modelling with ground truth
labels on the WCBD dataset, restricted to the variables radius and texture, with and without
selection. With the parametric bootstrap procedure applied at α = 5%, the FCR w.r.t. the
ground truth labels is of 3% versus 14% without selection.

(this information is not used in the clustering). One can see that the Student approximation
is fairly good for each of the groups, and there is some overlap between them. Figure 7 (panel
(b)) displays the MAP clustering result for the t-mixture model without any selection. The
FCR is computed with respect to the ground truth labels and amounts to 14 %. Finally,
Figure 7 (panel (c)) provides the result of our parametric bootstrap procedure with nominal
level α = 5%. The procedure does not classify points that are at the intersection of the
clusters and the FCR equals 3%, which is below the targeted level.

Figure 8 (panel (a)) provides a comparison of all our procedures and the baseline for
varying nominal level α. The new procedures yield quite similar results. In particular, we see
that the false clustering rate is always close to the nominal level, which illustrates once again
the adaptive behavior of our procedures. By contrast, the false clustering rate of the baseline
procedure is significantly below the nominal level and selects far less data points than our
procedures, especially for large values of α. In addition, Figure 8 (panel (b)) displays results
for the dataset where seven variables (d = 7) are analyzed and the conclusions are qualitatively
the same.

6 Conclusion and discussion

We have presented new data-driven methods providing both clustering and selection that en-
sure an FCR control guarantee in a mixture model. The plug-in approach was shown to be
theoretically valid both when the parameter estimation is accurate and the sample size is large
enough. When this is not necessarily the case, we proposed two second-order bootstrap cor-
rections that have been shown to increase the FCR control ability on numerical experiments.
Finally, applying our unsupervised methods to a supervised data set, our approach has been
qualitatively validated by considering the attached labels as revealing the true clusters: our
approach produces a selection/clustering close to what one would have done by observing the
labels with some misclassification error range.

We would like to underline that the cluster number Q is assumed to be fixed and known
throughout the study. In practice, it can be fitted from the data by using the standard AIC
or BIC criteria. In addition, if several values of Q make sense from a practical viewpoint, we
recommend to provide to the practitioner the collection of the corresponding outputs.

Concerning the pure task of controlling the FCR in the mixture model, our methods
provide a correct FCR control in some area of the parameter space, leaving other less favorable

18



(a) Variables: radius, texture

(b) Variables: radius, texture, smoothness, compactness, concavity, symmetry, fractal dimension

Figure 8: FCR and selection frequency as a function of the nominal level α.
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parameter configurations with a slight inflation in the FCR level. This phenomenon is well
known for FDR control in the two group mixture multiple testing model (Sun and Cai,
2007; Roquain and Verzelen, 2019), and facing a similar problem in our framework is well
expected. On the one hand, in some cases, this problem can certainly be solved by improving
on parameter estimation: here the EM algorithm seems to over-estimate the extreme posterior
probabilities, which makes the plug-in procedure too anti-conservative. On the other hand, it
could be hopeless to expect a robust FCR control uniformly valid over all configurations, while
being optimal in the favorable cases. To illustrate that point, we refer to the work Roquain
and Verzelen (2019) that shows that such a procedure does not exist in the FDR controlling
case, when the null distribution is Gaussian with an unknown scaling parameter (which is
a framework sharing similarities with the one considered here). Investigating such a “lower
bound” result in the current setting would provide better guidelines for the practitioner and is
therefore an interesting direction for future research. In addition, in these unfavorable cases,
adding labeled samples and considering a semi-supervised framework can be an appropriate
alternative for practical use. This new sample is likely to considerably improve the inference.
Studying the FCR control in that setting is another promising avenue.
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A Proof of our main result

A.1 An optimal procedure

We consider in this section the procedure that serves as an optimal procedure in our theory.
For t ∈ [0, 1], let C∗t = (Ẑ∗, S∗t ) be the procedure using the Bayes clustering Ẑ∗ (6) and the
selection rule S∗t = {i ∈ {1, . . . , n} : T ∗i < t}. Let us consider the map t ∈ [0, 1] 7→ mFCR(C∗t )
and note that mFCR(C∗t ) = mFCR∗t as defined by (12). Lemma 11 below provides the key
properties for this function.

Definition 3. The optimal procedure at level α is defined by C∗t∗(α) where t∗(α) is defined by
(13).

22



Note that the optimal procedure is not the same as the oracle procedure defined in Sec-
tion 3.1, although these two procedures are expected to behave roughly in the same way (at
least for a large n).

Under Assumption 1, Lemma 11 entails that, for α > αc, mFCR(C∗t∗(α)) ≤ α. Hence,
C∗t∗(α) controls the mFCR at level α. In addition, it is optimal in the following sense: any
other mFCR controlling procedure should select less items than C∗t∗(α).

Lemma 9 (Optimality of C∗t∗(α)). Let Assumption 1 be true and choose α ∈ (αc, ᾱ]. Then
the oracle procedure C∗t∗(α) = (Ẑ∗, S∗t∗(α)) satisfies the following:

(i) mFCR(C∗t∗(α)) = α;

(ii) for any procedure C = (Ẑ, S) such that mFCR(C) ≤ α, we have Eθ∗(|S|) ≤ Eθ∗(|S∗t∗(α)|).

A.2 Preliminary steps for proving Theorem 6

To keep the main proof concise, we need to define several additional notation. Let for t ∈ [0, 1]
and θ ∈ Θ (recall (5))

L̂0(θ, t) =
1

n

n∑
i=1

T (Xi, θ)1T (Xi,θ)<t;

L̂1(θ, t) =
1

n

n∑
i=1

1T (Xi,θ)<t.

Denote L̂ = L̂0/L̂1, L0 = Eθ∗ L̂0, L1 = Eθ∗ L̂1, L = L0/L1 (with the convention 0/0 = 0).
Note that for any α > αc, the mFCR of the optimal procedure C∗t∗(α) defined in Section A.1
is given by mFCR(C∗t∗(α)) = L(θ∗, t∗(α)) = α.

Also, we denote from now on `∗i,q = Pθ*(Zi = q|Xi) for short and introduce for any
parameter θ ∈ Θ (recall (4) and (5))

q̄(Xi, θ) ∈ argmax
q∈{1,...,Q}

`q(Xi, θ), 1 ≤ i ≤ n; (23)

U(Xi, θ) = 1− `∗i,q̄(Xi,θ), 1 ≤ i ≤ n; (24)

M̂0(θ, t) =
1

n

n∑
i=1

U(Xi, θ)1T (Xi,θ)<t, t ∈ [0, 1], (25)

Note that M̂0(θ∗, t) = L̂0(θ∗, t) but in general M̂0(θ, t) is different from L̂0(θ, t). We denote
M̂ = M̂0/L̂1, M0 = Eθ∗ M̂0 and M = M0/L1 (with the convention 0/0 = 0).

When α ∈ (αc, ᾱ] (recall (14) and (15)), we also let

s∗ = s∗(α, θ∗) = n−1 Eθ∗
(
|S∗
t∗(α+αc

2
)
|
)

= L1(θ∗, t∗((α+ αc)/2)) > 0. (26)

We easily see that the latter is positive: if it was zero then S∗t∗((α+αc)/2)) would be empty
which would entails that mFCR(C∗t∗((α+αc)/2)) is zero. This is excluded by definition (14) of
αc because (α+ αc)/2 > αc.

Also, we are going to extensively use the event

Ωε =

{
min
σ∈[Q]

‖θ̂σ − θ∗‖2 < ε

}
.
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On this event, we fix any permutation σ ∈ [Q] (possibly depending on X) such that ‖θ̂σ −
θ∗‖2 < ε. Now using Lemma 12, the plug-in selection rule can be rewritten as ŜPI

α = {i ∈
{1, . . . , n} : T̂i < t̂(α)} (denoted by Ŝ in the sequel for short), where

t̂(α) = sup{t ∈ [0, 1] : L̂(θ̂, t) ≤ α}. (27)

With the above notation, we can upper bound what is inside the brackets of FCR(Ĉ
PI

)

and mFCR(Ĉ
PI

) as follows.

Lemma 10. For the permutation σ in Ωε realizing ‖θ̂σ − θ∗‖2 < ε, we have on the event Ωε

the following relations:

|Ŝ| = L̂1(θ̂σ, t̂(α));

min
σ′∈[Q]

Eθ∗
(
ε
Ŝ

(σ′(Ẑ),Z)

∣∣∣∣X) ≤ M̂0(θ̂σ, t̂(α));

min
σ′∈[Q]

Eθ∗
(
ε
Ŝ

(σ′(Ẑ),Z)

max(|Ŝ|, 1)

∣∣∣∣X
)
≤ M̂(θ̂σ, t̂(α)).

Finally, we make use of the concentration of the empirical processes L̂0(θ, t), L̂1(θ, t), and
M̂0(θ, t), uniformly with respect to θ ∈ D (where D is defined in Assumption 4). Thus, we
define the following events, for δ, ε > 0 (recall s∗ defined by (26)):

Γ0,δ,t =

{
sup
θ∈D

∣∣∣L̂0(θ, t)− L0(θ, t)
∣∣∣ ≤ δ} ;

Γ1,δ,t =

{
sup
θ∈D

∣∣∣L̂1(θ, t)− L1(θ, t)
∣∣∣ ≤ δ} ;

Γδ,t =

 sup
θ∈D,

L1(θ,t)≥s∗

∣∣∣L̂(θ, t)− L(θ, t)
∣∣∣ ≤ δ

 ;

Υ0,δ,t =

{
sup
θ∈D

∣∣∣M̂0(θ, t)−M0(θ, t)
∣∣∣ ≤ δ} .

Note that the following holds:

Γ0,δs∗/2,t ∩ Γ1,δs∗/2,t ⊂ Γδ,t. (28)

Indeed, on the event Γ0,δs∗/2,t ∩ Γ1,δs∗/2,t, provided that L1(θ, t) ≥ s∗, we have∣∣∣∣∣ L̂0(θ, t)

L̂1(θ, t)
− L0(θ, t)

L1(θ, t)

∣∣∣∣∣
≤

∣∣∣∣∣L0(θ, t)− L̂0(θ, t)

L1(θ, t)

∣∣∣∣∣+ L̂0(θ, t)

∣∣∣∣∣ 1

L̂1(θ, t)
− 1

L1(θ, t)

∣∣∣∣∣
≤ (δs∗/2)/s∗ + (δs∗/2)/s∗ = δ,

because L̂0(θ, t) ≤ L̂1(θ, t). This proves the desired inclusion.

A.3 Proof of Theorem 6

Let us now provide a proof for Theorem 6.
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Step 1: bounding t̂(α) w.r.t. t∗(α) Recall (13), (27) and (26). In this part, we only
consider realizations on the event Ωε. Let β ∈ [2α+αc

3 , α+ᾱ
2 ]. By Lemma 13, we have

L1(θ̂σ, t∗(β)) ≥ L1(θ∗, t∗(β))−Ψ(‖θ̂σ − θ∗‖2) ≥ L1(θ∗, t∗((2α+ αc)/3))−Ψ(ε),

because t∗(β) ≥ t∗(2α+αc
3 ) since t∗(·) is non decreasing by Lemma 11. Hence L1(θ̂σ, t∗(β)) ≥

s∗ for ε smaller than a threshold only depending on θ∗ and α. Hence, we have on Γδ,t∗(β) that

L(θ̂σ, t∗(β))− δ ≤ L̂(θ̂σ, t∗(β)) ≤ δ + L(θ̂σ, t∗(β)).

By using again Lemma 13, we have

L(θ∗, t∗(β))− 3Ψ(ε)/s∗ ≤ L(θ̂σ, t∗(β)) ≤ L(θ∗, t∗(β)) + 3Ψ(ε)/s∗.

Given that L(θ∗, t∗(β)) = mFCR(C∗t∗(β)) = β (see Lemma 9 (i)), it follows that for γ =

γ(ε, δ) = δ + 4Ψ(ε)/s∗, on the event Γδ,t∗(α−γ) ∩ Γδ,t∗(α+γ),

L̂(θ̂σ, t∗(α− γ)) ≤ α, L̂(θ̂σ, t∗(α+ γ)) > α,

where we indeed check that α − γ ≥ 2α+αc
3 and α + γ ≤ α+ᾱ

2 for δ and ε smaller than some
threshold only depending on θ∗ and α. In a nutshell, we have established

Γδ,t∗(α−γ) ∩ Γδ,t∗(α+γ) ∩ Ωε ⊂
{
t∗(α− γ) ≤ t̂(α) ≤ t∗(α+ γ)

}
. (29)

Step 2: upper-bounding the FCR Let us consider the event

Λα,δ,ε := Γ0,δs∗/2,t∗(α−γ) ∩ Γ1,δs∗/2,t∗(α−γ) ∩ Γ0,δs∗/2,t∗(α+γ) ∩ Γ1,δs∗/2,t∗(α+γ) ∩Υ0,δ,t∗(α+γ) ∩Ωε,

where the different events have been defined in the previous section.
Let us prove (21). By using Lemma 10 and (29),

FCR(Ĉ) ≤ Eθ∗ [M̂(θ̂σ, t̂(α))1Λα,δ,ε ] + P((Λα,δ,ε)
c)

≤ Eθ∗
[
M̂0(θ̂σ, t∗(α+ γ))

L̂1(θ̂σ, t∗(α− γ))
1Λα,δ,ε

]
+ P((Λα,δ,ε)

c).

Now using a concentration argument on the event Λα,δ,ε ⊂ Γ1,δ,t∗(α−γ) ∩Υ0,δ,t∗(α+γ), we have

FCR(Ĉ) ≤ Eθ∗
[
M0(θ̂σ, t∗(α+ γ)) + δ

L1(θ̂σ, t∗(α− γ))− δ
1Λα,δ,ε

]
+ P((Λα,δ,ε)

c)

≤ M0(θ∗, t∗(α+ γ)) + 3Ψ(ε) + δ

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ
+ P((Λα,δ,ε)

c)

=
L0(θ∗, t∗(α+ γ)) + 3Ψ(ε) + δ

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ
+ P((Λα,δ,ε)

c), (30)

by using Lemma 13 and that M0(θ∗, t) = L0(θ∗, t) for all t by definition. Now, using again
Lemma 13, we have

L0(θ∗, t∗(α+ γ)) ≤ L0(θ∗, t∗(α− γ)) +WT (t∗(α+ γ)− t∗(α− γ))

≤ L0(θ∗, t∗(α− γ)) +WT (Wt∗,α(2γ))
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This entails

FCR(Ĉ) ≤ L0(θ∗, t∗(α− γ)) +WT (Wt∗,α(2γ)) + 3Ψ(ε) + δ

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ
+ P((Λα,δ,ε)

c)

≤ L0(θ∗, t∗(α− γ))

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ
+ (s∗/2)−1 (WT (Wt∗,α(2γ)) + 3Ψ(ε) + δ) + P((Λα,δ,ε)

c),

by choosing ε, δ smaller than a threshold (only depending on θ∗ and α) so that L1(θ∗, t∗(α−
γ))−Ψ(ε)− δ ≥ s∗/2. Now using L0(θ∗, t∗(α− γ)) = (α− γ)L1(θ∗, t∗(α− γ)), we have

L0(θ∗, t∗(α− γ))

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ
= (α− γ)

(
1 +

Ψ(ε) + δ

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ

)
≤ α

(
1 + (s∗/2)−1(Ψ(ε) + δ)

)
.

This leads to

FCR(Ĉ) ≤ α+ (2/s∗) (WT (Wt∗,α(2δ + 8Ψ(ε)/s∗)) + 4Ψ(ε) + 2δ) + P((Λα,δ,ε)
c),

which holds true for δ, ε smaller than a threshold only depending on θ∗ and α.

Step 3: upper-bounding the mFCR We apply a similar technique as for step 2. By
using Lemma 10 and (29),

mFCR(Ĉ) ≤
Eθ∗ [M̂0(θ̂σ, t̂(α))1Λα,δ,ε ] + P((Λα,δ,ε)

c)

Eθ∗ [L̂1(θ̂σ, t̂(α))1Λα,δ,ε ]

≤
Eθ∗ [M̂0(θ̂σ, t∗(α+ γ))1Λα,δ,ε ] + P((Λα,δ,ε)

c)

Eθ∗ [L̂1(θ̂σ, t∗(α− γ))1Λα,δ,ε ]
.

Now using a concentration argument on Λα,δ,ε ⊂ Γ1,δ,t∗(α−γ) ∩Υ0,δ,t∗(α+γ), we have

mFCR(Ĉ) ≤
Eθ∗ [(M0(θ̂σ, t∗(α+ γ)) + δ)1Λα,δ,ε ] + P((Λα,δ,ε)

c)

Eθ∗ [(L1(θ̂σ, t∗(α− γ))− δ)1Λα,δ,ε ]

≤
M0(θ∗, t∗(α+ γ)) + 3Ψ(ε) + δ + P((Λα,δ,ε)

c)

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ − P((Λα,δ,ε)c)

=
L0(θ∗, t∗(α+ γ)) + 3Ψ(ε) + δ + P((Λα,δ,ε)

c)

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ − P((Λα,δ,ε)c)
,

by using Lemma 13 and that M0(θ∗, t) = L0(θ∗, t) by definition. Letting x = L0(θ∗, t∗(α +
γ)) + 3Ψ(ε) + δ, y = L1(θ∗, t∗(α− γ))−Ψ(ε)− δ and u = P((Λα,δ,ε)

c), we have obtained the
bound (x + u)/(y − u), which has to be compared with the FCR bound (30), which reads
x/y + u. Now, when y ∈ [0, 1], x ≥ 0, x/y ≤ 2, u/y ≤ 1/2, y − u ≥ s∗/2, we have

(x+ u)/(y − u) ≤ x/y

1− u/y
+ (2/s∗)u ≤ x/y(1 + 2u/y) + (2/s∗)u ≤ x/y + (10/s∗)u.

As a result, for ε, δ small enough, and P((Λα,δ,ε)
c) ≤ s∗/4, we obtain the same bound as for

the FCR, with P((Λα,δ,ε)
c) replaced by (10/s∗)P((Λα,δ,ε)

c).
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Step 4: lower-bounding the selection rate In Step 3, when bounding the mFCR, we
derived a lower bound for the denominator of the mFCR, that is, Eθ∗(|Ŝ|). It reads

n−1 Eθ∗(|Ŝ|) ≥ L1(θ∗, t∗(α− γ))−Ψ(ε)− δ − P((Λα,δ,ε)
c)

≥ L1(θ∗, t∗(α))−WT (t∗(α)− t∗(α− γ))−Ψ(ε)− δ − P((Λα,δ,ε)
c)

≥ n−1 Eθ∗(|S∗t∗(α)|)−WT (Wt∗,α(γ))−Ψ(ε)− δ − P((Λα,δ,ε)
c),

by using (17) and (19). Now consider another procedure C = (Ẑ, S) that controls the mFCR
at level α, that is, mFCR(C) ≤ α. By Lemma 9, we then have Eθ∗(|S∗t∗(α)|) ≥ Eθ∗(|S|).

Step 5: concentration Finally, we bound P((Λα,δ,ε)
c) by using Lemma 14 with u =√

(log n)/n and x = 2
√

(log n)/n. This gives for δ = 2x/s∗, and n such that log(n) ≥ 1,

P((Λα,δ,ε)
c) ≤ 5/n+ P(Ωc

ε).

B Proofs of lemmas

Proof of Lemma 1 The clustering risk of Ẑ is given by

R(Ẑ) = Eθ∗
(

min
σ∈[Q]

Eθ∗
(
n−1

n∑
i=1

1{Zi 6= σ(Ẑi)}
∣∣∣∣X
))

= Eθ∗
(

min
σ∈[Q]

n−1
n∑
i=1

Pθ*(Zi 6= σ(Ẑi) |X)

)

≥ Eθ∗
(

min
Ẑ

n−1
n∑
i=1

Pθ*(Zi 6= Ẑi |X)

)
,

where, by independence, the minimum in the lower bound is achieved for the Bayes clustering.
Thus, R(Ẑ) ≥ n−1

∑n
i=1 Eθ∗(T ∗i ). Moreover, n−1

∑n
i=1 Eθ∗(T ∗i ) ≥ R(Ẑ∗), since

R(Ẑ∗) = Eθ∗
(

min
σ∈[Q]

n−1
n∑
i=1

Pθ*(Zi 6= σ(Ẑ∗i ) |X)

)
≤ Eθ∗

(
n−1

n∑
i=1

Pθ*(Zi 6= Ẑ∗i |X)

)
.

Thus, min
Ẑ
R(Ẑ) = R(Ẑ∗) and the proof is completed.

Proof of Lemma 2 Following the reasoning of the proof of Lemma 1 that, we have

FCRθ∗(C) = Eθ∗
(

min
σ∈[Q]

Eθ∗
(∑

i∈S 1{Zi 6= σ(Ẑ∗i )}
max(|S|, 1)

∣∣∣∣X
))

= Eθ∗
( ∑

i∈S T
∗
i

max(|S|, 1)

)
.

Proof of Lemma 3 By definition, we have

FCR(Ĉ
PI

α ) = Eθ∗

min
σ∈[Q]

Eθ∗

∑n
i=1 1Zi 6=σ(ẐPI

i (X))1{i ∈ Ŝ
PI(X)}

max(|ŜPI(X)|, 1)

∣∣∣∣X


so that (9) follows by a direct integration w.r.t. the latent variable Z.
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Proof of Lemma 4 The only non-trivial fact is forWt∗,α(v). Assumption 1 and Lemma 11
provide that t 7→ mFCR∗t is a one-to-one continuous increasing map from (t∗(αc), t

∗(ᾱ)) to
(αc, ᾱ). Hence, for α ∈ (αc, ᾱ), β 7→ t∗(α+ β) is continuous in 0 and limv→0Wt∗,α(v) = 0.

Proof of Lemma 9 By Lemma 11, we have that mFCR(C∗t ) is monotonous in t and con-
tinuous w.r.t. t on (t∗(αc), 1], thus for α ∈ (αc, ᾱ], mFCR(C∗t∗(α)) = α which gives (i). For
(ii), let C = (Ẑ, S) be a procedure such that mFCR(C) ≤ α. Let us consider the procedure
C′ with the Bayes clustering Ẑ∗ and the same selection rule S. Since C′ is based on a Bayes
clustering, by the same reasoning leading to R(Ẑ∗) ≤ R(Ẑ) in Section 3.1, we have that
mFCR(C′) ≤ mFCR(C) ≤ α with

mFCR(C′) =
Eθ∗

(∑
i∈S T

∗
i

)
Eθ∗(|S|)

.

Hence,

Eθ∗
(∑
i∈S

T ∗i

)
≤ αEθ∗(|S|). (31)

Now we use an argument similar to the proof of Theorem 1 in Cai et al. (2019). By definition
of S∗t∗(α), we have that

n∑
i=1

(
1i∈S∗

t∗(α)(X) − 1i∈S(X)

)
(T ∗i − t∗(α)) ≤ 0

which we can rewrite as
n∑
i=1

(
1i∈S∗

t∗(α)(X) − 1i∈S(X)

)
(T ∗i − t∗(α) + α− α) ≤ 0

and so

Eθ∗
(

n∑
i=1

(
1i∈S∗

t∗(α)(X) − 1i∈S(X)

)
(T ∗i − α)

)
≤ (t∗(α)− α)Eθ∗

(
n∑
i=1

(
1i∈S∗

t∗(α)(X) − 1i∈S(X)

))
= (t∗(α)− α)(Eθ∗(|S∗t∗(α)|)− Eθ∗(|S|)).

On the other hand, mFCR(C∗t∗(α)) = α together with (31) implies that

Eθ∗
(

n∑
i=1

(
1i∈S∗

t∗(α)(X) − 1i∈S(X)

)
(T ∗i − α)

)

= Eθ∗

 ∑
i∈S∗

t∗(α)

T ∗i − α|S∗t∗(α)| −
∑
i∈S

T ∗i + α|S|

 ≥ 0.

Combining, the relations above provides

(t∗(α)− α)(Eθ∗(|S∗t∗(α)|)− Eθ∗(|S|)) ≥ 0.

Finally, noting that t∗(α) − α > 0 since α = mFCR(C∗t∗(α)) < t∗(α) by (ii) Lemma 11, this
gives Eθ∗(|S∗t∗(α)|)− Eθ∗(|S|) ≥ 0 and concludes the proof.
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Proof of Lemma 10 First, we have by definition `q(Xi, θ
σ) = `σ(q)(Xi, θ) and thus T (Xi, θ̂) =

T (Xi, θ̂
σ) by taking the maximum over q. This gives Ŝσ = Ŝ and yields the first equality.

Next, we have on Ωε,

min
σ′∈[Q]

Eθ∗
(
ε
Ŝ

(σ′(Ẑ),Z)

∣∣∣∣X) ≤ Eθ∗
(
ε
Ŝ

(σ(Ẑ),Z)

∣∣∣∣X)
≤ Eθ∗

(
ε
Ŝσ

(σ(Ẑ),Z)

∣∣∣∣X) ,
still because Ŝσ = Ŝ. Now observe that,

Eθ∗
(
ε
Ŝσ

(σ(Ẑ),Z)

∣∣∣∣X) =
1

n

n∑
i=1

Pθ*(Zi 6= σ(q̄(Xi, θ̂))
∣∣X)1T (Xi,θ̂σ)<t̂(α)

=
1

n

n∑
i=1

(1− `∗
i,σ(q̄(Xi,θ̂))

)1T (Xi,θ̂σ)<t̂(α)

= M̂0(θ̂σ, t̂(α)),

because σ(q̄(Xi, θ̂)) = q̄(Xi, θ̂
σ). This proves the result.

C Auxiliary results

Lemma 11. Let us consider the procedure C∗t defined in Section A.1 and the functional mFCR∗t
defined by (12). Then we have

mFCR(C∗t ) =
Eθ∗

(∑n
i=1 T

∗
i 1T

∗
i <t

)
Eθ∗

(∑n
i=1 1T

∗
i <t

) = mFCR∗t , t ∈ [0, 1]. (32)

Moreover, the following properties for the function t ∈ [0, 1] 7→ mFCR(C∗t ):

(i) mFCR(C∗t ) is non-decreasing in t ∈ [0, 1] and, under Assumption 1, it is increasing in
t ∈ (t∗(αc), t

∗(ᾱ));

(ii) mFCR(C∗t ) < t for t ∈ (0, 1];

(iii) Under Assumption 1, mFCR(C∗t ) is continuous w.r.t. t on (t∗(αc), 1], where t∗(αc) is
given by (14).

Proof. First, (32) is obtained similarly than (8). For proving (i), let t1, t2 ∈ [0, 1] such that
t1 < t2. We show that mFCR(C∗t1) ≤ mFCR(C∗t2). Remember here the convention 0/0 = 0
and that mFCR(C∗t ) = Eθ∗ (T (X, θ∗) | T (X, θ∗) < t). First, if Pθ* (T (X, θ∗) < t1) = 0 then
the result is immediate. Otherwise, we have that

mFCR(C∗t1)−mFCR(C∗t2)

= (Pθ* (T (X, θ∗) < t1))−1 Eθ∗
(
T (X, θ∗)

{
1T (X,θ∗)<t1 −

Pθ* (T (X, θ∗) < t1)

Pθ* (T (X, θ∗) < t2)
1T (X,θ∗)<t2

})
where, given that t1 < t2, the quantity in the brackets is positive when T (X, θ∗) < t1 and is
negative or zero otherwise. Hence,

T (X, θ∗)

{
1T (X,θ∗)<t1 −

Pθ* (T (X, θ∗) < t1)

Pθ* (T (X, θ∗) < t2)
1T (X,θ∗)<t2

}
≤ t1

{
1T (X,θ∗)<t1 −

Pθ* (T (X, θ∗) < t1)

Pθ* (T (X, θ∗) < t2)
1T (X,θ∗)<t2

}
.
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Taking the expectation makes the right-hand-side equal to zero, from which the result follows.
Now, to show the increasingness, if mFCR(C∗t1) = mFCR(C∗t2) for t∗(αc) < t1 < t2 < t∗(ᾱ),
then the above reasoning shows that

(T (X, θ∗)− t1)

{
1T (X,θ∗)<t1 −

Pθ* (T (X, θ∗) < t1)

Pθ* (T (X, θ∗) < t2)
1T (X,θ∗)<t2

}
≤ 0

and has an expectation equal to 0. Hence, given that T (X, θ∗) is continuous, we derive that
almost surely

Pθ* (T (X, θ∗) < t2)1T (X,θ∗)<t1 = Pθ* (T (X, θ∗) < t1)1T (X,θ∗)<t2 ,

that is, Pθ*(t1 ≤ T ∗i < t2) = 0, which is excluded by Assumption 1. This entails mFCR(C∗t1) <
mFCR(C∗t2).

For proving (ii), let t > 0. If Pθ* (T (X, θ∗) < t) = 0 then the result is immediate. Other-
wise, we have that mFCR(C∗t )−t = (Pθ* (T (X, θ∗) < t))−1 Eθ∗((T (X, θ∗)−t)1{T (X, θ∗) < t}).
The latter is clearly not positive, and is moreover negative because (T (X, θ∗)−t)1{T (X, θ∗) <
t} ≤ 0 and Pθ*(T (X, θ∗) = t) = 0 by Assumption 1.

For proving (iii), let ψ0(t) = Eθ∗(T (X, θ∗)1{T (X, θ∗) < t}) and ψ1(t) = Pθ*(T (X, θ∗) < t),
the numerator and denominator of mFCR(C∗t ) = mFCR∗t , respectively. ψ1(t) is non-decreasing
in t, with ψ1(0) = 0 and ψ1(1) > 0. Moreover, ψ0 and ψ1 are both continuous under
Assumption 1. Then denote by tc the largest t s.t. ψ1(t) = 0. ψ1 is zero on [0, tc] then strictly
positive and non-decreasing on (tc, 1], and we have that tc = t∗(αc). Hence, mFCR(C∗t ) is
zero on [0, tc] then strictly positive and continuous on (tc, 1].

Remark 3. With the notation of the above proof, t 7→ mFCR(C∗t ) may have a discontinuity
point at tc since for tn →

tn>tc
tc, as ψ1(tn)→ 0, one does not necessarily have that mFCR(C∗t )→

0.

Lemma 12 (Expression of plug-in procedure as a thresholding rule). For any α ∈ (0, 1),
let us consider the plug-in procedure Ĉ

PI

α = (ẐPI, ŜPI
α ) defined by Algorithm 2 and denote

K = |ŜPI
α | the maximum of the k ∈ {0, . . . , n} such that max(k, 1)−1

∑k
j=1 T̂(j) ≤ α for

T̂i = 1−maxq `q(Xi, θ̂), 1 ≤ i ≤ n. Consider also t̂(α) defined by (27). Let Assumption 1 be
true and consider an estimator θ̂ satisfying Assumption 4. Then it holds that t̂(α) = T̂(K+1)

and

ŜPI
α = {i ∈ {1, . . . , n} : T̂i < t̂(α)}.

Proof. If T̂(K) < T̂(K+1) then the result is immediate. Thus it suffices to show that T̂(K) =

T̂(K+1) occurs with probability 0. From Assumption 4 (with the countable set D defined
therein), we have

Pθ*(T̂(K) = T̂(K+1)) ≤ Pθ*

⋃
i 6=j
{T̂i = T̂j}

 ≤ Pθ*

⋃
θ∈D

⋃
i 6=j
{T (Xi, θ) = T (Xj , θ)}

 .

Now, the right term is a countable union of events which are all of null probability under
Assumption 1. The result follows.
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Lemma 13. We have for all θ ∈ Θ,

sup
t∈[0,1]

|L1(θ, t)− L1(θ∗, t)| ≤ Ψ(‖θ∗ − θ‖); (33)

sup
t∈[0,1]

|L0(θ, t)− L0(θ∗, t)| ≤ 2Ψ(‖θ∗ − θ‖); (34)

sup
t∈[t∗((α+αc)/2),1]

|L(θ, t)− L(θ∗, t)| ≤ 3Ψ(‖θ∗ − θ‖)/s∗; (35)

sup
t∈[0,1]

|M0(θ, t)−M0(θ∗, t)| ≤ 3Ψ(‖θ∗ − θ‖); (36)

sup
t∈[t∗((α+αc)/2),1]

|M(θ, t)−M(θ∗, t)| ≤ 4Ψ(‖θ∗ − θ‖)/s∗; (37)

where α ∈ (αc, ᾱ] and s∗ > 0 is given by (26). In addition, for all θ ∈ Θ and t, t′ ∈ [0, 1],

|L0(θ, t)− L0(θ, t′)| ≤ 4Ψ(‖θ∗ − θ‖) +WT (|t− t′|). (38)

Proof. Fix θ ∈ Θ and t ∈ [0, 1]. We have for any δ > 0,

|Pθ*(T (X, θ) < t)− Pθ*(T (X, θ∗) < t)|
≤ (Pθ*(T (X, θ∗) < t+ δ)− Pθ*(T (X, θ∗) < t)) ∨ (Pθ*(T (X, θ∗) < t)− Pθ*(T (X, θ∗) < t− δ))

+ Pθ*(|T (X, θ∗)− T (X, θ)| > δ)

≤ WT (δ) + Eθ∗(|T (X, θ∗)− T (X, θ)|)/δ.

In addition, by definition (5),

|T (X, θ∗)− T (X, θ)| ≤ | max
1≤q≤Q

`q(X, θ
∗)− max

1≤q≤Q
`q(X, θ)|

≤ max
1≤q≤Q

|`q(X, θ∗)− `q(X, θ)|.

Hence,

|Pθ*(T (X, θ) < t)− Pθ*(T (X, θ∗) < t)| ≤ inf
δ∈(0,1)

{WT (δ) +W`(‖θ∗ − θ‖)/δ} = Ψ(‖θ∗ − θ‖),

which establishes (33).
Next, we have

L0(θ, t)− L0(θ∗, t)

= Eθ∗ [T (X, θ)(1T (X,θ)<t − 1T (X,θ∗)<t) + 1T (X,θ∗)<t(T (X, θ)− T (X, θ∗))]

≤ t|Pθ*(T (X, θ) < t)− Pθ*(T (X, θ∗) < t)|+ |Eθ∗ [1T (X,θ∗)<t(T (X, θ)− T (X, θ∗))]|
≤ |Pθ*(T (X, θ) < t)− Pθ*(T (X, θ∗) < t)|+ Eθ∗ |T (X, θ)− T (X, θ∗)| ≤ 2Ψ(‖θ∗ − θ‖)

By exchanging the role of θ and θ∗ in the above reasoning, the same bound holds for L0(θ∗, t)−
L0(θ, t), which gives (34). To prove (35), we use for any t ∈ [t∗(α+αc

2 ), 1],∣∣∣∣L0(θ, t)

L1(θ, t)
− L0(θ∗, t)

L1(θ∗, t)

∣∣∣∣
≤
∣∣∣∣L0(θ, t)− L0(θ∗, t)

L1(θ∗, t)

∣∣∣∣+ L0(θ, t)

∣∣∣∣ 1

L1(θ∗, t)
− 1

L1(θ, t)

∣∣∣∣
≤ 2Ψ(‖θ∗ − θ‖)/s∗ +

1

L1(θ∗, t)

L0(θ, t)

L1(θ, t)
|Pθ*(T (X, θ∗) < t)− Pθ*(T (X, θ) < t)|

≤ 3Ψ(‖θ∗ − θ‖)/s∗,
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because L0(θ, t) ≤ L1(θ, t) and L1(θ∗, t) ≥ s∗ by monotonicity. Similarly to the bound on L0,
we derive

|M0(θ, t)−M0(θ∗, t)|
≤ |Pθ*(T (X, θ) < t)− Pθ*(T (X, θ∗) < t)|+ Eθ∗ |U(X, θ)− U(X, θ∗)|.

Define q̄(X, θ) ∈ argmax
q∈{1,...,Q}

`q(X, θ). Now, since U(X, θ∗) ≤ U(X, θ) by definition (24), we have

Eθ∗ |U(X, θ)− U(X, θ∗)| = Eθ∗ [U(X, θ)− U(X, θ∗)]

= Eθ∗ [`q̄(X,θ)(X, θ∗)− `q̄(X,θ∗)(X, θ∗)]
= Eθ∗ [`q̄(X,θ)(X, θ∗)− `q̄(X,θ)(X, θ) + `q̄(X,θ)(X, θ)− `q̄(X,θ∗)(X, θ∗)]
≤ Eθ∗ [ max

1≤q≤Q
|`q(X, θ∗)− `q(X, θ)|] + Eθ∗ [ max

1≤q≤Q
`q(X, θ)− max

1≤q≤Q
`q(X, θ

∗)]

≤ 2Eθ∗ [ max
1≤q≤Q

|`q(X, θ∗)− `q(X, θ)|] ≤ 2Ψ(‖θ∗ − θ‖).

This proves (36) and leads to (37) by following the reasoning that provided (35).

Next, we have for 0 ≤ t′ ≤ t ≤ 1, by (34),

|L0(θ, t)− L0(θ, t′)| ≤ |L0(θ∗, t)− L0(θ∗, t′)|+ 4Ψ(‖θ∗ − θ‖).

Moreover,

|L0(θ∗, t)− L0(θ∗, t′)| = L0(θ∗, t)− L0(θ∗, t′) = Eθ∗ [T (X, θ∗)1t′≤T (X,θ∗)<t]

≤ Eθ∗ [1t′≤T (X,θ∗)<t] = Pθ*(T (X, θ∗) < t)− Pθ*(T (X, θ∗) < t′),

which is below WT (t− t′) by (17). This leads to (38).

Lemma 14 (Concentration of L̂0, L̂1, and M̂0). For all n ≥ 1, x > 0, t ∈]0, 1],

Pθ*
(

sup
θ∈D

∣∣∣L̂0(θ, t)− L0(θ, t)
∣∣∣ > x

)
≤ e−nu2 ; (39)

Pθ*
(

sup
θ∈D

∣∣∣L̂1(θ, t)− L1(θ, t)
∣∣∣ > x

)
≤ e−nu2 ; (40)

Pθ*
(

sup
θ∈D

∣∣∣M̂0(θ, t)−M0(θ, t)
∣∣∣ > x

)
≤ e−nu2 , (41)

where u > 0 is s.t. x ≥ 2√
n

+ u.

Proof. The concentration of each is a direct application of Talagrand’s inequality. To be more
precise, Theorem 5.3. in (Massart, 2007)) states the following. Let ξ1, . . . , ξn independent
r.v., F a countable class of measurable functions s.t. a ≤ f ≤ b for every f ∈ F for some real
numbers a, b, and W = supf∈F |

∑n
i=1 f(ξi)− E(f(ξi))|. Then, for any x > 0,

P(W − E(W ) ≥ x) ≤ e−
2x2

n2(b−a)2 .

The result then follows by applying Lemma 15, which bounds the expectation term E(W ) in
each case by 2

√
n.

32



Lemma 15. Let ξ1, ..., ξn be independent r.v. and F be a countable set of measurable functions
s.t. ‖f‖∞ ≤ 1 for f ∈ F . Then, one has

E

(
sup
f∈F

∣∣∣∣∣
n∑
i=1

f(ξi)− E(f(ξi))

∣∣∣∣∣
)
≤ 2
√
n.

Proof. We have that

E

(
sup
f∈F

∣∣∣∣∣
n∑
i=1

f(ξi)− E

(
n∑
i=1

f(ξi)

)∣∣∣∣∣
)
≤ E

(
sup
f∈F

∣∣∣∣∣
n∑
i=1

f(ξi)− f(ξ′i)

∣∣∣∣∣
)
,

where the ξ′is are independent r.v. with the same distribution as the ξis. Let (εi)1≤i≤n be
independent Rademacher variables. Then, we have

n∑
i=1

f(ξi)− f(ξ′i)
D
=

n∑
i=1

εi(f(ξi)− f(ξ′i))

and

n∑
i=1

f(ξi)− f(ξ′i) = E

(∣∣∣∣∣
n∑
i=1

εi(f(ξi)− f(ξi))

∣∣∣∣∣
∣∣∣∣ξ1, . . . , ξn, ξ

′
1, . . . , ξ

′
n

)
.

Thus,

E

(
sup
f∈F

∣∣∣∣∣
n∑
i=1

f(ξi)− E

(
n∑
i=1

f(ξi)

)∣∣∣∣∣
)
≤ 2sup

f∈F
E

(∣∣∣∣∣
n∑
i=1

εif(ξi)

∣∣∣∣∣ ∣∣ξ1, . . . , ξn

)

≤ 2sup
f∈F

√√√√V

(
n∑
i=1

εif(ξi)
∣∣ξ1, . . . , ξn

)

= 2sup
f∈F

√√√√ n∑
i=1

(f(ξi))2

≤ 2
√
n.

where the second inequality is due to Jensen’s inequality.

D Auxiliary results for the Gaussian case

D.1 Convergence rate

The likelihood of Gaussian mixture models is unbounded in general (Chen, 2017). Thus, the
convergence of MLEs has been studied over a constrained subspace of the parameter space
that may expand as the sample size increases, which is often referred to as a sieve MLE.

Proposition 16. Consider the mixture model (Section 2.1) in the d-multivariate Gaussian
case where φq = (πq,Σq) ∈ U with constrained parameter space defined as follows: U =
[−an, an]d×{Σ ∈ S++

d , λ ≤ λ1(Σ) ≤ λ1(Σ) ≤ λ̄} where an ≤ L(log n)γ for some L, γ > 0, S++
d

denotes the space of positive definite matrices, with λ, λ̄ some strictly positive constants. Then
the (constrained) MLE is such that the corresponding quantity η(·, θ∗) defined by (20) satisfies
η(δn, θ

∗) ≤ 1/n for n large enough, where δn is a sufficiently large multiple of
√

log n/n.
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Proof. In the considered model, any mixture can be defined in terms of {fu, u ∈ U} and a dis-
crete mixing measure G =

∑Q
q=1 πqδφq with Q support points, as

∑Q
q=1 πqfφq =

∫
fu(x)dG(u).

As shown by Ho and Nguyen (2016), the convergence of mixture model parameters can
be measured in terms of a Wasserstein distance on the space of mixing measures. Let
G1 =

∑Q
q=1 π

1
qδφ1q and G2 =

∑Q
q=1 π

2
qδφ2q be two discrete probability measures on some param-

eter space, which is equipped with metric ‖.‖. The Wasserstein distance of order 1 between
G1 and G2 is given by

W1(G1, G2) = inf
p

∑
q,l

pq,l‖φ1
q − φ2

l ‖

where the infimum is over all couplings (pq,l)1≤q,l≤Q ∈ [0, 1]Q×Q such that
∑

l pq,l = π1
q

and
∑

q pq,l = π2
l . Let G∗, Ĝn denote the true mixing measure and the mixing measure

that corresponds to the restricted MLE considered here, respectively. Theorem 4.2. in Ho
and Nguyen (2016) implies that, with the notation of Ho and Nguyen (2016), for any εn ≥
(
√
C1/c)δn, and δn ≤ C

√
log n/n, we have Pθ*(W1(Ĝn, G

∗) ≥ (c/C1)εn) ≤ ce−nε2n . We apply
this relation for εn = max((

√
C1/c)δn,

√
log(cn)/n). In that case, we have still εn of order√

log n/n and the upper-bound is at most 1/n. On the other hand, if we have a convergence
rate in terms of W1, then we have convergence of the mixture model parameters in terms of
‖.‖ at the same rate, see Lemma 17. This concludes the proof.

Lemma 17. Let Gn =
∑Q

q=1 π
n
q δφnq be a sequence of discrete probability measures on U ,

and let G∗,W1 be defined as in the proof of Proposition 16. There exists a constant C only
depending on G∗ such that if W1(Gn, G

∗)→ 0, then for sufficiently large n,

W1(Gn, G
∗) ≥ C min

σ∈[Q]
‖θσn − θ∗‖.

Proof. In what follows, we let {pnq,l} denote the corresponding probabilities of the optimal
coupling for the pair (Gn, G

∗). We start by showing that (φnq )q → (φ∗q)q in ‖.‖ up to a
permutation of the labels. Let σn the permutation of the labels such that ‖φnq − φ∗l ‖ ≥
‖φnσn(l) − φ

∗
l ‖ for all q, l ∈ {1, ..., Q}. Then, by definition,

W1(Gn, G
∗) ≥

∑
1≤q,l≤Q

pnq,l‖φnσ(l) − φ
∗
l ‖

=
∑
l

π∗l ‖φnσn(l) − φ
∗
l ‖.

It follows that each ‖φnσn(l) − φ∗l ‖ must converge to zero. Since (φnq )q → (φ∗q)q up to a
permutation of the labels, without loss of generality we can assume that φnq → φ∗q for all q.
Let ∆φnq := φnq − φ∗q and ∆πnq := πnq − π∗q . Write W1(Gn, G

∗) as

W1(Gn, G
∗) =

∑
q

pnqq‖∆φnq ‖+
∑
q 6=l

pnql‖φnq − φ∗l ‖

Define Cql = ‖φ∗q − φ∗l ‖ and C = minq 6=l Cql > 0. It follows from the convergence of φn

that for q 6= l, ‖φnq − φ∗l ‖ ≥ C/2 for sufficiently large n. Thus,

W1(Gn, G
∗) ≥ C

2

∑
q 6=l

pnql

We deduce that
∑

q 6=l p
n
ql → 0. As a result, pnqq = π∗q −

∑
l 6=q p

n
lq → π∗q , and so, pnqq ≥

(1/2)π∗min := minl π
∗
l for sufficiently large n. On the other hand,

∑
q 6=l p

n
ql =

∑
q π

n
q − pnqq =
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∑
q π
∗
q−pnqq where pnqq ≤ min(πnq , π

∗
q ). Thus,

∑
q 6=l p

n
ql ≥

∑
q π

n
q −min(πnq , π

∗
q ) =

∑
q,πnq≥π∗q π

n
q −

π∗q =
∑

q,πnq≥π∗q |π
n
q −π∗q | and similarly we have that

∑
q 6=l p

n
ql ≥

∑
q,π∗q≥πnq |π

n
q −π∗q |. It follows

that 2
∑

q 6=l p
n
ql ≥

∑
q |πnq − π∗q |. Therefore, for sufficiently large n,

W1(Gn, G
∗) ≥ 1

2
π∗min

∑
q

‖∆φnq ‖+
C

4

∑
q

|∆πnq |.

This gives the result.

D.2 Gaussian computations

The following lemma holds.

Lemma 18. Let us consider the multivariate Gaussian case where φq = (µq,Σq), 1 ≤ q ≤ Q,
with Q = 2, Σ1 = Σ2 is an invertible covariance matrix and µ1 and µ2 are two different
vectors of Rd. Then Assumptions 1, 2 and 3 hold true for αc = 0 and for a level α ∈ (0, ᾱ)\E
for E a set of Lebesgue measure 0.

Proof. Let us first prove that T (X, θ) is a continuous random variable under Pθ* (this is
established below without assuming Σ1 = Σ2 for the sake of generality). We have

Pθ* (T (X, θ) = t) = Pθ*

(
1− max

1≤q≤Q

{
πqfφq(X)∑Q
`=1 π`fφ`(X)

}
= t

)

= Pθ*

(
max

1≤q≤Q

{
πqfφq(X)

}
= (1− t)

Q∑
`=1

π`fφ`(X)

)

≤
Q∑
q=1

Pθ*

(
πqfφq(X) = (1− t)

Q∑
`=1

π`fφ`(X)

)
.

Since Q = 2, the latter probability is (for say q = 1), equal to

Pθ* (π1fφ1(X) = (1/t− 1)π2fφ2(X))

= Pθ* (fφ1(X)/fφ2(X) = (1/t− 1)π2/π1)

= Pθ*
(
(X − µ1)tΣ−1

1 (X − µ1)− (X − µ2)tΣ−1
2 (X − µ2) = −2 log ((1/t− 1)π2/π1)− log(|Σ1|/|Σ2|)

)
.

Now,

(X − µ1)tΣ−1
1 (X − µ1)− (X − µ2)tΣ−1

2 (X − µ2)

= (X − µ1)tΣ−1
1 (X − µ1)− (X − µ1)tΣ−1

2 (X − µ2)− (µ1 − µ2)tΣ−1
2 (X − µ2)

= (X − µ1)t(Σ−1
1 − Σ−1

2 )(X − µ1)− (X − µ1)tΣ−1
2 (µ1 − µ2)− (µ1 − µ2)tΣ−1

2 (X − µ2)

= (X − µ1)t(Σ−1
1 − Σ−1

2 )(X − µ1)− (µ1 − µ2)tΣ−1
2 (2X − µ2 − µ1).

Since the real matrix Σ−1
1 − Σ−1

2 is symmetric, we can diagonalize it and we end up with a
subset of Rd of the form y ∈ Rd :

d∑
j=1

(
αjy

2
j + βjyj

)
+ γ = 0

 ,

for some real parameters αj , βj , γ. The result follows because this set has a Lebesgue measure
equal to 0 in any case.
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Now, since Σ1 = Σ2 = Σ, we have for all t ∈ (0, 1),

{T (X, θ) > t} =

{
∀q ∈ {1, . . . , Q}, πqfφq(X) < (1− t)

Q∑
`=1

π`fφ`(X)

}
= {π1fφ1(X) < (1/t− 1)π2fφ2(X)} ∩ {π2fφ2(X) < (1/t− 1)π1fφ1(X)}

=

{
(1/t− 1)−1 <

π1fφ1(X)

π2fφ2(X)
< (1/t− 1)

}
.

Applying 2 log(·) on each part of the relation, we obtain

{T (X, θ) > t} =
{
−2 log(1/t− 1) < atX + b < 2 log(1/t− 1)

}
,

for

a = a(θ) = 2Σ−1(µ1 − µ2) ∈ Rd\{0}
b = b(θ) = −(µ1 − µ2)tΣ−1(µ1 + µ2) + 2 log(π1/π2) ∈ Rd.

Since under Pθ∗ we have X ∼ π∗1N (µ∗1,Σ
∗) + π∗2N (µ∗2,Σ

∗), we have atX + b ∼ π∗1N (atµ∗1 +
b, atΣ∗a) + π∗2N (atµ∗2 + b, atΣ∗a). This yields for all t ∈ (0, 1),

Pθ∗(T (X, θ) > t) =π1

[
Φ

(
2 log(1/t− 1)− atµ∗1 − b

(atΣ∗a)1/2

)
− Φ

(
−2 log(1/t− 1)− atµ∗1 − b

(atΣ∗a)1/2

)]
+ π2

[
Φ

(
2 log(1/t− 1)− atµ∗2 − b

(atΣ∗a)1/2

)
− Φ

(
−2 log(1/t− 1)− atµ∗2 − b

(atΣ∗a)1/2

)]
.

(42)

A direct consequence is that for all t ∈ (0, 1), we have Pθ∗(T (X, θ) > t) < 1, that is,
Pθ∗(T (X, θ) ≤ t) = Pθ∗(T (X, θ) < t) > 0. Hence, αc defined in (14) is equal to zero.
Moreover, from (42), we clearly have that t ∈ (0, 1) 7→ Pθ∗(T (X, θ) > t) is decreasing, so that
t ∈ (0, 1) 7→ Pθ∗(T (X, θ) ≤ t) is increasing. This proves that Assumption 1 holds in that case.

Let us now check Assumptions 2 and 3. Assumptions 2 and 3 (i) follow from Result 2.1
in Melnykov (2013).
As for Assumption 3 (ii), from (42), we only have to show that the function t ∈ (0, 1) 7→
∂
∂tΦ

(
log(1/t−1)−α∗

β∗

)
is uniformly bounded by some constant C = C(α∗, β∗), for any α∗ ∈ R

and β∗ > 0. A straightforward calculation leads to the following: for all t ∈ (0, 1),∣∣∣∣ ∂∂tΦ
(

log(1/t− 1)− α∗

β∗

)∣∣∣∣ =
e
−(

log(1/t−1)−α∗
β∗ )2/2

β∗
√

2π

1

t(1− t)
. (43)

Consider now t0 = t0(α∗, β∗) ∈ (0, 1/2) such that ( log(1/t−1)−α∗
β∗ )2 ≥ 2 log(1/t) for all t ∈

(0, t0). It is clear that the right-hand-side of (43) is upper-bounded by 1
β∗
√

2π(1−t0)
on

t ∈ (0, t0). Similarly, let t1 = t1(α∗, β∗) ∈ (1/2, 1) such that ( log(1/t−1)−α∗
β∗ )2 ≥ 2 log(1/(1− t))

for all t ∈ (t1, 1). It is clear that the right-hand-side of (43) is upper-bounded by 1
β∗
√

2πt1
on

t ∈ (t1, 1). Finally, for t ∈ [t0, t1], the upper-bound 1
β∗
√

2πt0(1−t1)
is valid. This proves that

Assumption 3 (ii) holds.

Let us now finally turn to Assumption 3 (iii). Lemma 11 ensures that t ∈ (0, t∗(ᾱ)) 7→
mFCR∗t is continuous increasing. Hence, t∗ : β ∈ (0, ᾱ) 7→ t∗(β) defined in (13) is the inverse of
this function and is also continuous increasing. It is therefore differentiable almost everywhere
in (0, ᾱ), so everywhere in (0, ᾱ)\E where E is a set of Lebesgue measure 0. By taking α in
(0, ᾱ)\E , this ensures that t∗ is differentiable in α and thus that Assumption 3 (iii) holds.
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(a) n = 200

(b) n = 1000

Figure 9: Same as Figure 5 with dimension d = 20.

E Further experiments
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(a) n = 200

(b) n = 1000

Figure 10: FCR and selection frequency as a function of the nominal level α. Three-component
model Q = 3, π1 = π2 = π3 = 1/3, Σ1 = Σ2 = Σ3 = I2, µ1 = 0, µ2 = (ε/

√
2, ε/
√

2),
µ3 = (0, 2ε/

√
2).
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(a) n = 200

(b) n = 1000

Figure 11: FCR and selection frequency as a function of the nominal level α. Unconstrained
model with Q = 2, d = 2, ε =

√
2, n ∈ {200, 1000}.
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