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We study the translational and rotational dynamics of neutrally-buoyant finite-size
spheroids in hydrodynamic turbulence by means of fully resolved numerical simulations.
We examine axisymmetric shapes, from oblate to prolate, and the particle volume
dependences. We show that the accelerations and rotations experienced by non-spherical
inertial-scale particles result from volume filtered fluid forces and torques, similar to
spherical particles. However, the particle orientations carry signatures of preferential
alignments with the surrounding flow structures, which is reflected in distinct axial and
lateral fluctuations for accelerations and rotation rates. The randomization of orientations
does not occur even for particles with volume equivalent diameter size in the inertial
range, here up to 60η at Reλ = 120. Additionally, we demonstrate that the role of
fluid boundary layers around the particles cannot be neglected to reach a quantitative
understanding of particle statistical dynamics, as they affect the intensities of angular
velocities, and the relative importance of tumbling with respect to spinning rotations.
This study brings to the fore the importance of inertial-scale flow structures in homoge-
neous and isotropic turbulence and their impacts on the transport of neutrally-buoyant
bodies with size in the inertial range.
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1. Introduction

The motion of neutrally-buoyant finite-size material particles in a turbulent flow is
typically regarded as the result of turbulent flow fluctuations occurring at the scale of
the particle. In other words, the particles are seen as probes of a coarse-grained turbulent
field. This implies that both the scaling trends in the fluctuations of accelerations and
rotational velocities as a function of the particle size are interpreted in terms of the known
scaling of structure functions of turbulence in the framework of Kolmogorov 1941 (K41)
phenomenological theory (Porta et al. 2001; Voth et al. 2002; Qureshi et al. 2007; Brown
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et al. 2009; Calzavarini et al. 2009; Homann & Bec 2010). Such a picture has even been
extended to the case of non-spherical axisymmetric particles with various aspect ratios
to elucidate the observed different scaling trends in tumbling and spinning rotation rates
(Parsa & Voth 2014; Bordoloi & Variano 2017; Bounoua et al. 2018; Kuperman et al.
2019; Pujara et al. 2019; Oehmke et al. 2021). This interpretation assumes that neutrally-
buoyant material particles are only weakly coupled to the flow, so that the feedback effects
(also referred as two-way coupling) stemming from the formation of boundary layers and
wakes around the particle do not have a significant role, at least in statistical terms.
This line of reasoning is markedly distinct from the one that is used to grasp the dynamics
of small, i.e. sub- or Kolmogorov-scale (η) sized particles, where instead it is crucial to
take into account the local properties of the flow, notably the fluid acceleration and
the velocity gradient and its topological properties along fluid Lagrangian trajectories
(Chong et al. 1990; Benzi et al. 2009) . It is key here to recognize that distinctive flow
structures exist at small scales, such as the filament-like vortices where fluid tracers get
trapped (Biferale et al. 2005; Bentkamp et al. 2019) or from which tiny inertial particles
are ejected (Bec et al. 2007) and to which spheroidal particles align (Pumir & Wilkinson
2011; Gustavsson et al. 2014; Ni et al. 2014). These two pictures, the dissipative and the
inertial-scale ones, are somehow conceptually disconnected, with the only bridging idea
being the call into play of so-called Faxén corrections which account for effects induced by
the local curvature of the flow although at scales where the flow field is smooth, typically
6 10η, hence not yet in the inertial range (Calzavarini et al. 2009) (We note that while
simple for spherical particles the Faxén corrections are more complex for other particle
shapes, see Dolata & Zia (2021)).
In this paper, we aim at ameliorating the above described conceptual models by demon-
strating that the dynamics of neutrally-buoyant inertial-sized particles: i) is affected
by inertial-range coherent flow structures with similar effects as the ones produced by
dissipative-scale turbulent structures on small particles, and ii) is significantly impacted
by the particle feedback on the flow, especially if the considered observable is the angular
rotation. This is here achieved by means of a novel series of numerical experiments.
First, we perform extensive numerical simulations of fully-resolved homogeneous isotropic
turbulence (HIT) seeded with neutrally-buoyant spheroidal particles with sizes ranging
from the upper bound of the dissipative range (∼ 10η) to the far inertial range (60η).
Second, we conduct a sequence of numerical experiments in the same fluid flow setting
but with virtual particles, i.e. particle toy models, where we vary the type or/and level of
coupling between the flow and the particles. As we will show such virtual particles reveals
to be a crucial tool for an original physical interpretation of the statistical properties of
translation and rotation of the real material particles in interaction with the turbulent
flow environment.
The article is organized as follows. In the next section, we will describe in detail the
dynamical governing equations for the model system of particles in turbulence and its
numerical implementation. We will dedicate a section to the description of the numerical
experiments performed both with realistic and virtual particles. We later present the
results on the particle acceleration and rotation rate statistics. In each of these two
parts, we will guide the reader through a physical interpretation of the results that is
mainly done by contrasting the simulations of real particles with virtual ones. Finally,
the conclusions and perspectives opened-up by the study are given.
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N3 η/∆x τη/∆t L/η TL/τη λ/η Reλ
5123 1.5 230 175 47 22 120

Table 1. Parameter of the NSE numerical simulations and relevant turbulence scales. N3:
number of spatial grid points, η = (ν3/ε)1/4: Kolmogorov dissipation length scale in grid space
units ∆x, τη: Kolmogorov time scale in time-step units ∆t, L = u′3/ε: integral scale, TL = L/u′:

large-eddy turnover time, λ = (15νu′/ε)1/2: Taylor micro-scale, Reλ: Taylor-Reynolds number.
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Figure 1. Parameter space of particle shapes and sizes in turbulent scale units at
Reλ = 120. The symbols indicate the numerically simulated particle types. All particles are
axisymmetric of diameter d and length l, aspect ratio α = l/d, with α = 1/2, 1, 2, 4, the

volume-equivalent-diameter is Dv = (ld2)1/3. The lengths are here all expressed in terms
of the dissipative scale η. The Taylor micro-scale λ (dashed lines) and the integral scale L
(dashed-dotted lines) are also reported.

2. Methods

We first describe the basic physical model system and the equation of motion ruling
the dynamics of particles in a fluid flow. The numerical methods adopted and details on
their implementations are very briefly outlined.

2.1. The particles in turbulence model system and its numerical implementation

The fluid flow by which particles are transported is modeled by the incompressible
Navier-Stokes equations (NSE) driven by an external random large-scale statistically
homogeneous and isotropic force with constant in-time global energy input. This reads:

∂tu + u · ∇u = −ρ−1∇p+ ν ∇2u + f, (2.1)

∇ · u = 0, (2.2)
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where u(x, t) denotes the fluid velocity vector field, p(x, t) is the hydrodynamic pressure,
and the parameters are the kinematic viscosity ν and the reference liquid density ρ.
The vector field f refers to the external force sustaining the HIT flow. The particle-
free turbulent flow intensity is here identified by a single dimensionless parameter,
the Reynolds number based on the Taylor microscale, Reλ = λu′/ν, where u′ =√
〈uiui〉v,t/3 is the root-mean-square (r.m.s.) velocity of the turbulent flow (〈. . .〉v,t

denotes here volume and time average), λ =
√

15νu′2/ε is the Taylor length scale and
ε = (ν/2)Σi,j〈(∇iuj +∇jui)2〉v,t is the mean global energy dissipation rate.

The translation and rotation of rigid-body material particle is governed by the Newton-
Euler equations (NEE):

mp
dv

dt
= F + Fc, (2.3)

dIΩ
dt

= T + Tc, (2.4)

where v(t) = dr/dt and Ω(t) are the particle velocity and angular velocity vectors of
a particle at position r(t) with mass mp = ρpVp (ρp the particle density and Vp the
volume) and I the moment of inertia tensor. Note that since we consider neutrally
buoyant and homogeneous particles, ρp = ρ, this allows neglecting the buoyancy force in
the particle equation of motion as well any gravity-induced torque. Hence F and T in
(2.3)-(2.4) denote here the hydrodynamic force and torque acting on the particle, which
are formally written as:

F =

∮
Sp

σ · n dS (2.5)

T =

∮
Sp

(x− r)× (σ · n) dS, (2.6)

where σ = −pI+ρν(∇u+∇uT ) is the fluid stress tensor, x−r the position vector relative
to the particle center and n the outward-pointing normal to the particle surface Sp.
While Fc and Tc are the additional impulsive forces and torques related to the particle-
particle collisions (the so-called four-way interaction).The two-way coupling, meaning
the coupling between the fluid and the particles is provided by the requirement of no-slip
boundary condition on the particle surfaces (see below for its numerical implementation).

For an axisymmetric particle with symmetry axis identified by a unit vector p, as
the ones we consider in this study, the angular velocity Ω can be decomposed into the
tumbling rotation rate, ṗ = Ω × p, the spinning rotation rate, Ωs = (Ω · p)p (Voth &
Soldati 2017). These will be key quantities in our analysis of particle angular dynamics.
Similarly, it will reveal useful in our analysis to distinguish between axial and lateral
accelerations, a = dv/dt, denoted a‖ = (a ·p)p and a⊥ = a×p respectively. The shape
of an axisymmetric spheroid is characterized by the aspect ratio, α = l/d, where l and
d are the sizes of the symmetry axis and of the one perpendicular to it. We will use the
volume equivalent diameter Dv = (d2l)1/3 = d α1/3 as a parameter to compare the size
of particles with different shapes.

On the computational side: the NSE turbulent dynamics is here numerically simulated
by means of a Lattice Boltzmann Method (LBM) code, the ch4-project (Calzavarini
2019) which has been already extensively employed in studies of Lagrangian tracers and
point-like particle dynamics in turbulence (Mathai et al. 2016; Calzavarini et al. 2020;
Jiang et al. 2020, 2021). The code uses a tri-linear scheme for the Lagrangian-Eulerian
frame interpolations. The computational domain is cubic with equispaced grid sizes, 1283
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and 5123, corresponding to Reλ = 32, 120 (see Table 1 for details on numerical accuracy
properties and physical characteristics of the simulated turbulent flow at with largest
Reλ). The NEE are numerically integrated with a second-order Adams-Bashforth time-
stepping scheme. The particle-fluid two-way coupling is implemented by means of the
immersed boundary method (IBM), which has been widely used in particle-laden flows
(Peskin 2002; Mittal & Iaccarino 2005; Uhlmann 2005; Ardekani et al. 2016; Shen et al.
2021) also in combination to LBM e.g. in (Suzuki & Inamuro 2011; Do-Quang et al.
2014). The IBM enforce the no-penetration and no-slip boundary conditions at the fluid-
particle interface by means of a localized feedback force, fp, added to the NSE (2.1). Such
fp term is also denoted as two-way coupling. In order to ensure high-accuracy for the
implementation of the no-slip fluid boundary condition at the particle surface, we adopt
the so-called IBM multi-forcing scheme with 5 step iterations, see (Luo et al. 2007; Wang
et al. 2021). The non-spherical particle-particle interactions are implemented by means
of soft-sphere collision forces (Costa et al. 2015; Ardekani et al. 2016) and lubrication
corrections (Brenner 1961; Cooley & O’Neill 1969; Costa et al. 2015; Ardekani et al. 2016)
In order to limit the effect of the pair interactions on the statistics of particle dynamics,
the concentration of particles is kept very low (the maximal volume fraction is 1%) and
only up to 4 particles are seeded in the simulation for the smallest particle size. All
inter-particle collision events are removed from the data sets employed for the statistical
analysis performed in the present study. To achieve this, the particle acceleration/rotation
data around the collisions are removed by a time window whose width is of the order of
the correlation time of the particle acceleration (i.e. & τη, see also Fig. 10(b)). Thus, the
effect of pair interaction is considered negligible.

Prolate (α = 2, 4), spherical (α = 1), and oblate (α = 0.5) particles are investigated in
the simulations, see Figure 1 for a representation of the explored parameter space. For all
considered cases, the minimal linear size of the particle, either d and l, is > 15∆x (grid
units). Such choice guarantees a reasonable resolution of the particle boundary layers
whose inner (or viscous) thickness is expected to be of order η (although it might become
thinner for particles with Dv � η as pointed out in (Cisse et al. 2013)). The particle
Stokes number, defined as the ratio of the particle viscous response time (τp = D2

v/(12ν))
with respect to the characteristic flow scale at the particle scale (here the turbulent eddy-
turnover time τ` = `2/3/ε1/3), can be expressed as St` = 1

12 (Dv

η )4/3 (Xu & Bodenschatz

2008; Fiabane et al. 2012). It varies in the range 1.8 to 20.9. Finally, for each studied
particle type-case the duration simulation is more than 100 large-eddy turnover times.

We have validated the numerical results by comparing the translational dynamic of
spheres (α = 1) at Reλ = 32 with a previous reference study (Homann & Bec 2010). This
check validates our acceleration statistics (see Appendix A for details). The rotational
dynamics of the spheroids is instead checked by solving the rotation rate of a prolate
spheroid in a pure shear flow, a condition for which the Jeffery solution (Jeffery 1922)
is available, and by reproducing the numerical experiments in (Suzuki & Inamuro 2011),
which include settling of ellipsoidal particles in a quiescent flow at finite Reynolds
numbers.

2.2. Numerical experiments with real and virtual particles

Taking advantage of the numerical approach, which allows to easily modify the equa-
tions of motions of the advected particles and so to create toy-models, we carry out several
additional numerical experiments. This series of numerical experiments is described in
the following.

The first numerical experiment is the simulation of real particles (RP) which obeys
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Figure 2. Sketches of the six numerical experiments performed: (a) real particles RP, (b) real
particles with fixed locations RPFL, (c) virtual particles VP, (d) virtual particles with fixed
locations VPFL, (e) Jeffery fluid tracers JFT, and (f) volume average of Jeffery fluid tracers VA
. The light blue region denotes the fluid. The black shaded areas in panels (a) and (b) represent
the two-way coupling region. The points in panels (e) and (f) represent the Jeffery fluid tracers.
The tracers marked in black in panel (f) are used to calculate the volume averages.

the model system introduced in the previous section. Their dynamics is governed by the
NSE and NEE with fluid-solid coupling computed by the IBM algorithm, see Tab. 2, as
also sketched in the cartoon of Figure 2a.

The second numerical experiment consists of spheroidal volume averages (VA) of fluid
flow, as shown in Figure 2f. We average the fluid acceleration and vorticity over many
(N) spheroids with the same diameter Dv and aspect ratio α as the ones used for RP.
This reads:

〈a2i 〉V A =
1

N

N∑
n=0

(
1

Vp

∫
Vp

Dui
Dt

d3x

)2

(2.7)

〈Ω2
i 〉V A =

1

N

N∑
n=0

(
1

Vp

∫
Vp

ωi d
3x

)2

(2.8)

where Dui/Dt = ∂tui + uj∂jui is the i-th acceleration component the fluid inside a
spheroid of volume Vp. We note that the orientation and location of VA are fixed.
However, in a statistical homogeneous and isotropic flow, as it is here, this is identical
to performing the averages at locations random-uniformly distributed in space locations
and over randomly oriented spheroids.

In the third numerical experiment, we seed virtual particles (VP) in the HIT and
evolve the trajectory and rotation by solving the NEE, as shown in Figure 2c. For these
particles, the IBM algorithm in not activated and no feedback is implemented on the
flow by the virtual particles (fp = 0). Thus, the translation and rotation of the particles
are driven by the time derivative of the momentum and angular momentum of the fluid
inside the virtual particles, which means the dynamics of VP is controlled by the fluid at
the scale of VP. More explicitly the force, FV P , and torque, TV P , on the virtual particles
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are:

FV P = ρVp

〈
Du

Dt

〉v
≡
∫
Vp

ρ
Du

Dt
d3x (2.9)

TV P = Vp

〈
dL

dt

〉v
≡
∫
Vp

(x− r)× ρDu

Dt
d3x (2.10)

where Du/Dt is the fluid acceleration, L is the angular momentum, and 〈〉v denotes the
average over the fluid volume of the virtual particle.

In the fourth numerical experiment, we adopt real particles with fixed locations
(RPFL). We fix the spatial position of the real particles and only evolve the rotation
by solving the Eq. (2.4). In this case, the IBM is still implemented and the particles are
two-way coupled with the flow, as shown in Figure 2b.

The fifth numerical experiment contains the virtual particles with fixed locations
(VPFL), as shown in Figure 2d. We fixed the location of VP in the turbulence and
only evolve the rotation by solving the Eq. (2.4). No feedback on the flow is imposed and
the rotation of VPFL is driven by the time derivative of the angular momentum of the
fluid inside the virtual particles.

Finally, to better contrast the dynamics of finite-size particles with respect to sub-
Kolmogorov scale particles, we carry out a sixth numerical experiment with point-like
spheroidal tracers, as shown in Figure 2e. The governing equations for the point-like
spheroidal tracers with position, r(t), and orientation, p(t), are given by

ṙ = u(r(t), t), (2.11)

ṗ = Ω × p (2.12)

Ω =
1

2
ω(r(t), t) + Λ p× S(r(t), t)p (2.13)

Here, u(r(t), t) is the fluid velocity at the particle position at time t. The vector
ω(r(t), t) = ∇ × u is the fluid vorticity and S = (∇u + ∇uT )/2 is the strain-rate

matrix of the fluid velocity gradient tensor, ∇u, at the particle position, and Λ = α2−1
α2+1

is the shape parameter of particles. The equations of rotation Eq. (2.12)(2.13), called the
Jeffery angular equations (Jeffery 1922; Byron et al. 2015), have been extensively used for
the study of the dynamics of tiny spheroidal tracers (Parsa et al. 2012; Gustavsson et al.
2014; Calzavarini et al. 2020; Jiang et al. 2021, 2020). The aspect ratios of the point-
like spheroidal tracers (hereafter called Jeffery tracers) are chosen equal to the ones of
RP. For each aspect ratio, we seed 105 Jeffery tracers in the flow to have converged
statistics. The numerical condition of the flow is identical to the simulation of RP. We
use 〈〉tracer to denote the temporal and ensemble average of Jeffery tracers. Note that
the translational dynamics of the particles is the one of perfect Lagrangian tracers, Eq.
(2.11), independently of their geometric aspect ratio (i.e. the drag force is here neglected).
For this reason, we denote the particles as Jeffery fluid tracers (JFT). For better clarity
all the model systems described above are summarized in Table 2.

3. Results

3.1. Particle trajectories and fields visualizations

In Figure 3a a visualization example of the trajectory of a spheroid with α = 2 and
an equivalent diameter Dv = 25η over a relatively short time span, ∼ 40 dissipative
times (τη), obtained from the simulation. The energy dissipation rate field in the fluid,
ε, is represented in colour over planes intersecting the spheroid. Such a quantity that
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n. Numerical Experiments Model Equations

1 Real Particles (RP) NSE + NEE + IBM
2 Volume Averages (VA) NSE
3 Virtual Particles (VP) NSE + NEE
4 Real Particles with Fixed Locations (RPFL) NSE + EE + IBM
5 Virtual Particles with Fixed Locations (VPFL) NSE + EE
6 Jeffery Fluid Tracers (JFT) NSE + tracer eq.+ Jeffery eq.

Table 2. Summary of the six performed numerical experiments with the corresponding involved
dynamical equations: Navier-Stokes equation (NSE) (2.1)-(2.2), Newton-Euler equation (NEE)
(2.3)-(2.4); Euler equation (EE) (2.4) only rotation for particles with fixed location; No-slip
boundary conditions (i.e. two-way coupling) at particle-fluid interface implemented via the
immersed boundary method (IBM); tracer equation (2.11), Jeffery equation (2.12)-(2.13).
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Figure 3. (a) Example of trajectory for a spheroid with an equivalent diameter Dv ≈ 25 η
and aspect ratio α = 2 at Reλ = 120. The slices show the local dissipation rate εx,t, normalized
by ε, at the planes through the spheroid center at time t = 0, 8.7, 17.4, 26.1, 39.1 in τη. (b)
Azimuthally and temporally averaged dissipation rate ε, normalized by ε, around the spheroid
with a diameter Dv ≈ 25 η and aspect ratio α = 2 at Reλ = 120. The black line denotes
the contour line of log10(ε/ε) = 0. (c) Azimuthally and temporally averaged square of u − v,
normalized by the mean square of u, around the spheroid with diameter Dv = 25 η and aspect

ratio α = 2 at Reλ = 120. The black line denotes the contour line of (u− v)2/〈u2〉v,t = 1. xp
and yp represent the coordinates in the particle frame.

depends on the square of velocity gradients allows to foreground the effect the fluid-
particle coupling. We observe that just a thin layer of large dissipation appears around
the particle (see the zoom-in region of the slice at t1 = 8.7τη), while no wakes are observed
at larger distances. This mild effect induced by the particle presence in the flow is better
quantified by computing temporal fluid averages in the vicinity of the particle. This
is numerically performed by seeding the flow with point-like Lagrangian probes whose
positions are fixed in the particle frame of reference. Figure 3b shows the temporally and
azimuthally averaged local dissipation rate around the spheroid (α = 2 and Dv/η = 25).
It appears that the dissipation rate close to the particle is enhanced by one order of
magnitude with respect to the far-field value, furthermore such an increase is uniformly
distributed around the particle. Indeed, the contour line in the figure (black colour)
marking where the particle influence reaches a saturation, indicates that the finite-size
particle modifies the flow over the spheroidal region of about 1.5 times of the linear size
of the particle. Similar results for finite-size spheres have been observed in turbulence
at Reλ = 160 (Cisse et al. 2013). The presence of the particle significantly modifies
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also the kinetic energy around the particle, the kinetic energy of the fluid is null at the
particle interface and increases to the unperturbed value at about twice the particle size
Dv, see Figure 3c. The same figure suggests that the slip velocity of neutrally buoyant
particles is small, in particular |u − v| ∼ urms. This implies that the particle Reynolds
number Rep = 〈|u − v|〉Dv/ν ∼ (Dv/λ)Reλ ∼ O(102). If the flow surrounding the
particle were steady and laminar this would lead to a steady or periodically oscillating
wake. In a turbulent flow, where the direction of motion changes frequently, such an
effect is weakened. For the cases of spherical particles, this agrees with detailed study by
Cisse et al. (2013). Overall the presence of a neutrally-buoyant finite-sized non-spherical
particle has weak feedback on the turbulent flow field. This is certainly very specific to
the case of inclusions with the same density, the situation is very different in the case
of heavy particles (Brändle de Motta et al. 2016) or large bubbles (Mathai et al. 2018).
This suggests that the picture of neutral inertial particles as essentially passive objects
might be sound. We will now address this in more detail by looking at two quantities
that are most sensitive to the fluid-particle one-way coupling, i.e., the fluid acceleration
and later the angular velocity.

3.2. Particle Acceleration statistics:
the VP model explains the size and shape dependencies in RP

We begin discussing the dependency of the particle acceleration intensity of large
spheroids as a function of their shape and size and the physical mechanisms responsible
for the observed dependencies. Figure 4a reports the temporal and ensemble average
(denoted in the following 〈. . .〉) of the single-cartesian-component acceleration variance
〈a2i 〉 of real particles (RP), normalized by the acceleration variance of fluid tracers
〈a2i 〉tracer, as a function of the equivalent diameter in turbulent dissipative scale units
Dv/η. Two observations are here in order. First, the acceleration variance decreases as
the size of the spheroids increases. In the range Dv/η ∈ [10, 63] we measure power-law
∼ (Dv/η)−1.0±0.1 (at Reλ = 120). Second, we remark a good collapse onto a single curve
of all the data points corresponding to different aspect ratios (with α = [1/2, 1, 2, 4]). The
observed scaling behaviour is consistent with the one observed for spherical particles at
similar Reλ values (Volk et al. 2011). Such a scaling deviates from the (Dv/η)−2/3 that
can be guessed on the basis of dimensional reasoning relying on the Kolmogorov (K41)
theory of turbulence (Voth et al. 2002; Qureshi et al. 2007). This reasoning assumes
that the particles are only one-way coupled to the fluid, i.e., they do not affect the fluid
flow significantly through particle-fluid interactions. However, the existence of such a
deviation has been already reported in studies on spherical particles. In particular, it is
known that the scaling exponent has a weak Reynolds number dependence (Voth et al.
2002; Qureshi et al. 2007). At lower Reλ than the one used in this study the observed
exponent is closer to the value −4/3 as observed in Ref. (Bec et al. 2007). The role
of the pressure scaling dependence on Reλ has been conjectured to be responsible for
such a behaviour (Bec et al. 2007). Our results at low Reynolds number, Reλ = 32 (see
Figure 10 in Appendix A) confirms such a dependence. On the other hand, the collapse
of acceleration variance for different particle shapes (Figure 4a) is a novel feature. It is
remarkable because it implies that the hydrodynamical forces involved in the translational
dynamics of spheroids are overall determined by the particle volume.

In order to further substantiate these findings, we show the results of the numerical
experiment with fluid volume averages (VA) and the so-called virtual particles (VP) in
Figure 4(a and b) (empty symbols). Similar scaling relations of acceleration variances
are observed both for VA and VP in the inertial regime, whereas the magnitudes of
the acceleration variances of VP and VA are not equal. In particular, the amplitude of
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as a function of Dv/η. (b) Normalized componentwise acceleration variance as a function of the
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particles (VP: open symbols). The dashed lines are the fitting lines for spheres of RP. Inset in
(b) shows the ratio of acceleration variance of VP to acceleration variance of RP, 〈a2i 〉V P /〈a2i 〉,
as a function of Dv/η. (c) The ratio of axial variance 〈(a · p)2〉 to lateral variance 〈|a× p|2〉 of
particle acceleration as a function of aspect ratio at Reλ = 120 for RP (triangles), VA (square),
and VP (circles), respectively. The black dash-dot line denotes the results of Jeffery tracers. The
color represents the normalized particle size Dv/η in the logarithmic scale.

accelerations fluctuations of VP particles is closer to the ones of RP particles (see insets in
Figure 4(a and b) where their ratio is plotted). Note that the acceleration variances of VA
and VP represent respectively the volume averaging of the fluid flow acceleration in the
fixed frame (Eulerian perspective) and in an advected frame (Lagrangian perspective).
Therefore, these results stress that the scaling behaviour of the translational dynamics
is dominated by the volume averaging instead of other surface forces such as e.g. the
drag. However, an interesting question is: Why VP are capable to better approximate
the statistics of real particles than VA? This might be due to preferential sampling of fluid
structures along their Lagrangian trajectories, a fact that we tend to exclude because we
know that these particles do not form clusters, or this might come from a preferential
orientation in space (that is dynamical for the RP and VP cases while absent for VA).
This is at odds with the expectations that particles of sizes well into the inertial range,
shall become randomly oriented due to the averaging of turbulent fluid fluctuations that
results from the spatial volume filtering.

In order to understand if any correlation exists between the particle acceleration and
its orientation, we look at the ratio of the particle axial acceleration variance 〈(a ·p)2〉 to
the lateral acceleration variance 〈|a× p|2〉 as a function of their aspect ratio, Figure 4c.
For spherical particles (α = 1), no preferential alignment is expected between a and p,
even for various sizes, due to the full rotational symmetry of the body shape. For the non-
spherical case, a value of the ratio different from 0.5 marks the existence of preferential
orientation.

We find that the oblate particles preferentially align with their acceleration (〈(a ·
p)2〉/〈|a× p|2〉 > 0.5) and the prolate particles are predominantly perpendicular to the
acceleration (〈(a · p)2〉/〈|a × p|2〉 < 0.5). It also turns out that the alignment of large
particles is identical to that of Jeffery fluid tracers (JFT), which indicates that the align-
ment is insensitive to the particle’s size. This is further confirmed by the measurements of
the PDFs of |cos(θa,p)| for various sizes and shapes (see Figure 5), where θap defines the
angle between the acceleration vector a and orientation vector p. The particular trend of
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〈(a ·p)2〉/〈|a×p|2〉 as a function of α can then be understood in terms of the knowledge
of Jeffery fluid tracers. It has been shown experimentally that prolate fluid tracers have
accelerations preferentially perpendicular to the local vorticity (Liberzon et al. 2012).
It has also been theoretically demonstrated that prolate particles preferentially align
with vorticity while oblate particles are preferentially perpendicular to it (Pumir &
Wilkinson 2011). The combination of these two pieces of evidence explain qualitatively
the observed alignment, depending on the aspect ratio, between the particle orientation
and the acceleration. The existence of these alignments indicates that the translation of
finite-size neutrally-buoyant particles in a flow is, in this respect, surprisingly similar to
that of point-like inertialess axisymmetric fluid tracers, or conversely that geometrical
structure of flow at the inertial scale shows a similar structure with the one of the velocity
gradient, which occurs at the dissipation scale.

We now turn the attention to the results for VA and VP. For VA, the values of the
ratio 〈(a · p)2〉/〈|a × p|2〉 are close to 0.5 for all considered sizes and aspect ratios,
which is expected because VA is not aligned with the corresponding acceleration vector.
Remarkably, it is found that the ratio 〈(a·p)2〉/〈|a×p|2〉 of VP shows excellent agreement
with that of RP (Figure 4c). This suggests that the effect induced by the two-way coupling
on the particle preferential alignment, if present, is weak. The similarity between RP and
VP implies that the neutrally-buoyant finite-size particle behaves roughly like a mass of
fluid with the same particle size and shape. Furthermore, the size independence of the
alignment indicate that the Lagrangian behavior of a fluid mass at the inertial scale is
similar to the flow at the dissipative scale. The neutrally-buoyant finite-size particles can
then be regarded as probes of the Lagrangian coarse-grained field of turbulence.

In the next section, we will check if the similarity between real and virtual particles
still holds when the rotational properties of particles are considered.
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3.3. Particle rotation statistics:
the VP model fails to describe the shape dependence in RP

As already mentioned in Sec. 1, the rotations of tiny, Dv . η, neutrally-buoyant
particles in turbulent flows are determined by the evolution of the fluid velocity gradient
along the Lagrangian particle trajectories. The Jeffery equation (2.12)- (2.13) well cap-
tures the angular dynamics of such particles. This has been recently proven in a series
of combined experimental and numerical studies (Parsa et al. 2012; Byron et al. 2015;
Calzavarini et al. 2020; Jiang et al. 2021). When it comes to larger particles, in particular
to inertial scale particles, the physics is more complicated due to: i) the non-smooth
character of the flow field at the particle scale, ii) the spatio-temporal filtering of flow
fluctuations associated with the particle size and inertia and iii) the two-way coupling
with the fluid flow. This means that not only the shape (parametrized by α) but also
the particle sizes become relevant parameters of the problem. This is easily grasped in
Figure 6, where we show the mean square angular velocity, normalized by the value of the
mean square angular velocity of point-like Jeffery fluid tracers (JFT) with corresponding
aspect ratio, as a function of the normalized diameter Dv/η for RP (solid symbols).
As the size increases, we observe that the mean square angular velocity decreases and
scales approximately as 〈ΩiΩi〉 ∼ (Dv/η)−4/3 for Dv > 10η. Since the angular velocity
of JFT is nearly constant at changing the aspect ratio (Byron et al. 2015), the decrease
of angular velocity is exclusively an inertial term. Even if an offset between spherical and
non-spherical particles is observed, the good collapse for prolate and oblate spheroids with
different shapes substantiates the equivalent diameter Dv as the relevant characteristic
scale also for the rotational dynamics. We recall that the scaling exponent -4/3 can be
dimensionally deduced using the relations of the K41 turbulence theory. Specifically by
assuming that the rotation rate is related to the eddy turnover time at the particle scale,
as confirmed in experiments with long slender fibers (Parsa & Voth 2014; Bounoua et al.
2018) and large cylinders (Bordoloi & Variano 2017; Pujara et al. 2018).

The VA and VP numerical experiments exhibit also a similar behaviour as RP, i.e. a
decreasing trend with Dv consistent with the −4/3 power-law. However, the magnitude
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of the mean squared angular velocity is larger for VA and VP than that of RP (see again
Figure 6(a,b)). This suggests that rotational dynamics of finite-size neutrally-buoyant
spheroids (RP) is also dominated by the volume filtering effect, as proven by its scaling-
behavior with respect to Dv, while its amplitude must be affected by other physical effects
(to be discussed later). From the insets of Figure 6, we note that the angular velocity
variance discrepancy between VA and RP and VP and RP is larger than the discrepancy
of acceleration variances. In conclusion, as far as angular velocity is concerned we can
not say that VPs are a good approximation of RP particles. This discrepancy is even
more important when one looks at the ratio between the intensity of axial as compared
to lateral rotational components, that is to say, tumbling and spinning, as we will discuss
in the following.

In Figure 7a, we show the ratio 〈ΩsiΩsi 〉/〈ṗiṗi〉 as a function of aspect ratio α for
particles of different sizes. We first discuss the behaviour of sub-Kolomogorov scale
particles, whose dynamics is well described by the Jeffery equation. In this case, if the
particle orientation vector were uncorrelated with the fluid velocity gradients, and p is
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an isotropic vector, upon time and ensemble averaging Eq. (2.13), one obtains:

〈ΩsiΩsi 〉
〈ṗiṗi〉

=
1
12 〈ω

2〉
1
6 〈ω2〉+ 1

5Λ
2〈S : S〉

=
5

10 + 6Λ2
. (3.1)

Note that the last equality follows from the statistical properties of the HIT flow, where
1
2 〈ω

2〉 = 2〈S : S〉 = ε/ν (Parsa et al. 2012; Byron et al. 2015). This would produce
only a mild variation of the spinning to tumbling ratio across the whole range of aspect
ratios, as it is shown in Figure 7a (blue solid curve). However, it is known that small
particles develop strong correlations with velocity gradients that are responsible for a
sharp deviation from this prediction. The present Jeffery’ models simulations clearly
show this behaviour in Figure 7a (spheres symbols). Incidentally, we note that our results
at Reλ = 120 agree with previous numerical study (dashed line) at Reλ = 433 (Byron
et al. 2015), underlying the weak Reλ dependence of this phenomenon. For spheres, the
angular velocity is isotropic and the ratio 〈ΩsiΩsi 〉/〈ṗiṗi〉 stays around 0.5 for all cases.
A marked asymmetry exists between oblate and prolate particles, while the first tumble
intensely the seconds are spin dominated, as they tend to align with the vorticity vector
(Voth & Soldati 2017; Parsa et al. 2012). Futhermore, a saturation of these behaviours
is observed in both cases for extreme aspect ratios, i.e. α . 1/4 and α & 1/4.

What happens when particles have a finite size? A naive K41-based prediction would
suggest that the tumbling scales with the length 〈ṗiṗi〉 ∼ l−4/3 and that the spinning
scale with the 〈ΩsiΩsi 〉 ∼ 0.5d−4/3 (where the 0.5 factor comes for the matching with the
spherical case) so that

〈ΩsiΩsi 〉
〈ṗiṗi〉

∼ α4/3

2
. (3.2)

However, this prediction falls largely off the result of the simulations, where we see a
marked decreasing Dv dependence of the ratio of the mean square spinning to tumbling
rate (see Figure 7a and b). Larger particles in proportion spin less and tumble more.
This is indeed true for all aspect ratios except for spheres (see Figure 7 d). It has been
pointed out by (Oehmke et al. 2021), that these types of dimensional reasoning ignore
the decorrelation of the velocity field along the particle surface. The rotation rates stem
from the integral of the velocity gradients along with the particles and as such e.g.
the spinning rate can be much attenuated in long fibers (α � 1). This integral effect is
possibly more important when both the diameter and the length are much larger than the
dissipation scale. As a consequence, the scaling behaviors of the spinning and tumbling
rate can deviate from K41-based scalings as another length scale is involved, and the
ratio 〈ΩsiΩsi 〉/〈ṗiṗi〉 becomes to be a function of the particle size.

The experiments by Oehmke et al. (2021), the only to date to have measured both the
spinning and tumbling of finite-size particles, find that for prolate fibers the variance of
the spinning rate is always larger than the variance of the tumbling rate. These authors
comment that the observed behaviour “surprisingly resembles that observed previously
for sub-Kolmogorov fibers”. These observations are fully confirmed by our simulations
(see Appendix B for a more detailed comparison). However, we additionally observe a
new feature:

The ratio 〈ΩsiΩsi 〉/〈ṗiṗi〉 for oblate and prolate spheroids shows systematic decreasing
trends as the particle equivalent size increases, and this for both Reλ = 32 and Reλ = 120.

For oblate spheroids (α = 0.5), the ratio becomes vanishingly small at increasing
their size, which indicates that the oblate spheroids hardly spin when their size is large
compared to the dissipation scale. Similarly, prolate spheroids of large size reduce their
spinning to the point that it becomes smaller than tumbling ( Figure 7a).
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Figure 8. Mean squared angular velocity, normalized by the results of tracers with
corresponding aspect ratio, as a function of Dv/η for the numerical experiments of (a) RPFL and
(b) VPFL, compared with the results of RP. Insets show the ratio of the mean squared angular
velocity of the numerical experiments to the results of RP as a function of Dv/η. The ratio of the
mean spinning rate squared to the mean tumbling rate squared, 〈ΩsiΩsi 〉/〈ṗiṗi〉, as a function
of aspect ratio α for the numerical experiments of (c) RPFL and (d) VPFL, respectively. The
color bar represents the normalized particle size Dv/η in the logarithmic scale.

Figure 7b shows the ratio 〈ΩsiΩsi 〉/〈ṗiṗi〉 as a function of the equivalent particle size
Dv/η. It is found that the ratio 〈ΩsiΩsi 〉/〈ṗiṗi〉 ∼ (Dv/η)−0.6 for all considered shapes.
We remark that the existence of the observed scaling behavior of the ratio 〈ΩsiΩsi 〉/〈ṗiṗi〉
is not certain. However, this emphasizes that the scaling exponents of the mean square
tumbling rate and spinning rate can not be both equal to -4/3. To our knowledge, no
presently available model accounts for the observed behaviour.

In summary, the main feature connected to the finite size is that larger particles tend
to tumble much more than spinning (see cartoon Figure 7c). Further, we observe that the
VA and VP measurements do not have this property. While VA nearly keeps the value
of the Jeffery randomly oriented prediction, VPs do not sensibly vary the relative weight
of spinning with respect to tumbling and apparently approximately follow the simplistic
K41 prediction, eq (3.2), and (red line) 7d.

In order to find out the leading physical mechanism responsible for the decrease of
〈ΩsiΩsi 〉/〈ṗiṗi〉, we carry out the numerical experiments with particles whose location is
fixed, either with the solid-fluid interface or without it, denoted respectively as RPFL
and VPFL, as shown in Figure 8. The rationale behind fixing the position is to rule
out the role of preferential sampling of the flow position (Squires & Eaton 1991; Maxey
1987; Calzavarini et al. 2008). Indeed, even if this has never been observed, for finite-



16 L. Jiang and other

sized spherical particles Fiabane et al. (2012), we can in principle not exclude it for
non-spherical large particles. On the other hand, a direct measurement of preferential
concentration in the present simulations is not an easy task due to the limited number
of particles that we could place in the domain.

We find that the mean normalized rotation rate variance of RPFL scales similarly RP
and have a similar amplitude (see Figure 8a). Furthermore, 〈ΩsiΩsi 〉/〈ṗiṗi〉 decreases as
the particle size increases (see Figure 8c), which is consistent with RP. These results
indicate that the possible preferential sampling is not responsible for the decrease of
〈ΩsiΩsi 〉/〈ṗiṗi〉. To further confirm this point, we show the rotational dynamics of VPFL
in Figure 8(b and d). Similar scaling behavior of mean rotation rate square as a function
of particle size is observed. And 〈ΩsiΩsi 〉/〈ṗiṗi〉 remains constant at the value of the fixed
tracers for the corresponding aspect ratio. Since VP do not have a solid interface and do
not affect the flow, the results of these two additional numerical experiments suggest that
the two-way coupling between the particles and the flow is responsible for the decrease
of the ratio 〈ΩsiΩsi 〉/〈ṗiṗi〉.

3.3.1. The role of particle boundary layers

At this point, given the fact that fully resolved simulations allow virtually to measure
any fluid quantity, one may wonder if it is possible to better characterize the effect of
the particle feedback on the flow. With this in mind, we measure the fluid vorticity ω
and the rate of strain tensor S in the boundary layers surrounding the particles. We then
compare the relative importance of their intensities. This is performed by computing
the variance ratio 1

4ω
2/S : S, where the average is performed over time, ensemble i.e.

multiple trajectories, and over the azimuthal direction in order to improve the statistical
convergence. We note that the ratio must have the value 1 in the particle-free HIT flow.

Figure 9(a-c) shows three typical fields of the considered ratio around the particle up
to the size of 1.5Dv It is found that 1

4ω
2/S : S ' 1.1 (vorticity dominated) in a thin

shell around the particle, while at immediately larger distances a wider region displays
1
4ω

2/ S : S < 1 (strain dominated), finally beyond ∼ 1.5Dv any effect has vanished.

The quantity 〈 14ω2〉|1.5Dv
/〈S : S〉|1.5Dv

, where 〈. . .〉1.5Dv
is a volume average over shells

up to 1.5Dv, for different aspect ratios and particle sizes is reported in Figure 9(d). We
can observe that the overall effect in the region affected by the particle presence is to
decrease the importance of vorticity with respect to strain. This points to the fact that
spinning is possibly reduced as a consequence of the reduction of vorticity in the flow
surrounding a particle, in qualitative agreement with previous observations. However, we
think that more sensitive tests remain to be performed in order to soundly quantify the
effect of feedback on the flow.

4. Conclusions

In summary, some statistical properties of the translational and rotational dynamics
of neutrally buoyant finite-size spheroids in HIT have been investigated by means of
interface-resolved direct numerical simulations. Besides, the simulation of the real system,
several extra numerical experiments have been carried out in order to enhance our
insight on the essential features of the coupling of the particles with the flow. It is found
that non-spherical inertial-scale particles experience spatially volume filtered turbulent
fluctuations, similarly to spherical particles, even if the presence of finite-size particle
sensibly influences the flow around the particle over a region that has similar aspect-
ratio as the particle and approximately doubled Dv. The variance of the acceleration of
spheroids with different shapes collapses on a single line when plotted as a function of the
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equivalent diameter Dv, and at Reλ = 120 a power-law scaling D−1v is observed. It turns
out that the acceleration variance versus particle size of virtual particles and fluid volume
averages shows a similar scaling behavior, which proves that the scaling behavior of the
acceleration intensity is dominated by the volume averaging of the acceleration of the
flow field. Furthermore, the orientation of particles with size in the inertial range shows
preferential alignments with flow structures. This is a novel result in the context of large
particles, because it has been previously observed only for particles in the dissipative scale
range of turbulence. We find that the preferential alignment of the particle acceleration
shows a negligible size dependence, which suggests a similarity of flow coherent structures
from the dissipative to inertial scales.

Next, we studied the rotational dynamics of the particles as their size is increased.
The mean square angular velocity of spheroids with different shapes show a clear scaling

behavior with an exponent D
−4/3
v , which agrees with predictions based on the K41

theory and with the available experiments (Parsa & Voth 2014; Bordoloi & Variano 2017;
Oehmke et al. 2021). However, it turns out that the ratio of the mean square spinning
rate to the mean square tumbling rate shows a systematic decrease as the particle size
increases, and this is for all considered aspect ratios. To our knowledge, this new feature
has never been observed before, and it calls for future experimental verifications. On the
basis of the analysis of virtual particles, we interpret this phenomenon as due to the
particle feedback on the flow. That is to say to the formation of boundary layers around
the particles. In such layers the fluid strain-rate is overall increased in comparison to the
vorticity, and this favors the tumbling with respect to the spinning.

The present findings improve the understanding of translational and rotational dy-
namics for neutrally-buoyant finite-size spheroids in turbulence. The results also shed
light on a connection between the flow structures at the dissipative scales and inertial
scales, which might open a new perspective for the investigation of turbulent flow. We
expect that a similar approach as the one followed in this study will also reaveal useful
understanding of the dynamics of particles heavier/lighter than the carrying turbulent
fluid flow.
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Figure 10. a). Normalized single cartesian component of the acceleration variance
〈a2i 〉/〈a2i 〉tracer as a function of the normalized particle size d/η at Reλ = 32. Squares denote the
results in Ref. (Homann & Bec 2010) at the same Reλ. The dashed-dot line denotes the Faxén
correction (Calzavarini et al. 2012). The inset shows the PDFs of acceleration at different sizes.
b). Normalized correlation time of acceleration, TI/τη, as a function of the normalized particle
size Dv/η. Squares denote the correlation time in Ref. (Homann & Bec 2010) at the same Reλ.
The inset shows the autocorrelation function of a single cartesian acceleration component.

Appendix A. Particle acceleration statistics at Reλ = 32

In order to validate the numerical results, we carried out simulations at Reλ = 32 for
spheres, in the same condition as in a previous study (Homann & Bec 2010). Figure 10a
shows the single-cartesian-component acceleration variance, 〈a2i 〉, normalized by the
acceleration variance of tracers, 〈a2i 〉tracer, as a function of normalized particle diameter
d/η (d is the diameter of spheres). Our simulation results show good agreement with the
previous study(Homann & Bec 2010) and scale as (d/η)−4/3. At low Reλ, the scaling
exponent is smaller than -2/3 which is the exponent value expected in HIT with high
Reλ. The dashed-dot line represents the prediction of the Faxén correction based on
point-particle simulation under the same Reλ. When the particle is small (d/η < 4), the
acceleration variance is captured by the Faxén corrections. However, the Faxén correction
can not account for the scaling behavior acceleration variance when d/η > 7. The inset
shows the PDFs of the acceleration component for the variant size of spheres. The effect
of particle size on the PDF of acceleration is not significant, which is consistent with
previous studies(Xu et al. 2007; Brown et al. 2009; Homann & Bec 2010). Figure 10b
shows the normalized integral time of the temporal correlation function for particle
acceleration, TI/τη, as a function d/η. The integral time TI is defined as the integral
of the autocorrelation function from time zero to its first zero-crossing time T0

TI ≡
∫ T0

0

C(τ)dτ, C(τ) ≡ 〈ai(t+ τ)ai(t)〉
〈(ai(t))2〉

(A 1)

Our results are consistent with the correlation time in Ref. (Homann & Bec 2010) and
show the power-law behaviour TI ∼ (d)2/3. The inset shows the autocorrelation functions
for various sizes of spheres, illustrating the increasing autocorrelation time as the size
of the sphere increases. In conclusion, our translational statistics of simulation show
good agreement with the previous study(Homann & Bec 2010), which validates our
simulations.
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Figure 11. Ratio of spinning rate variance over tumbling rate variance: comparison of present
DNS results at Reλ = 120 with the experimental measurements by Oehmke et al. (2021) at
Reλ ∈ [90, 630]. (a) Particle rotation ratio as a function of aspect ratio, here the color code

maps the particle size in equivalent radius units;(b) Rotations ratio compensated by α4/3 as a
function of the particle length (i.e. the symmetry axis) l normalized by the Taylor microscale λ
(same as figure 5(b) in Oehmke et al. PRF 2021).

Appendix B. Comparison with Oehmke et al.(2021) experiments

We provide here a side-by-side comparison of the present simulations with the experi-
ments by Oehmke et al. (2021), which are the only to date to have measured both spinning
and tumbling rates of particles. The experimental conditions of developed turbulence at
Reλ ∈ [90, 630] and particle aspect ratios α = 5.4, 7.5, 10.8 are relatively close to the
ones explored in the present study. Figure 11(a) shows the ratio of spinning rate variance
over tumbling rate variance as a function of the aspect ratio. There is agreement on the
dominance of spinning compared to tumbling for prolate (α > 1) particles (note that
the isotropic value for spheres is 0.5). However, the decreasing trend at increasing the
particle size Dv which is clearly observed in the simulations is only partially consistent
with the experiments. Figure 11(b) represents the same measurements in a compensated
form: the ratio of rotation rate variances is normalized by the α4/3 scaling as in the K41-
based prediction Eq. (3.2) and plotted against the length of the particle symmetry axis
l in λ units. This choice of representation is adapted from figure 5(b) in Oehmke et al.
(2021). We observe here an excellent agreement for the behaviour of all prolate particles.
However, the decreasing behaviour observed both for prolate and oblate particles stresses
further the failure of the (3.2) prediction.
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