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Abstract –We propose a classical analogy to illustrate the up ↔ down flip of a one-half spin
submitted to a static and a rotating magnetic field, in the standard magnetic resonance configura-
tion. Surprising though it may seem, it is possible to design a rather simple device – namely a set
of two coupled pendula – to simulate and visualize the Larmor and Rabi precessions of the latter
spin. In this analogy, the static field is associated with the angular frequency detuning between
both eigenmodes of the two-degree-of-freedom harmonic oscillator constituted by the two pendula,
whereas the rotating field is simulated by means of a parametric modulation of the length of one
of the pendula. Under the circumstances, the up or down spin states are represented by either
eigenmodes, and consequently the spin-flip is put in concrete form by the coupled pendula being
driven from one eigenmode to the other. In the present paper, we experimentally demonstrate
the possibility of triggering such a flip using a mechanical analogy of the so-called rapid adiabatic
passage technique.

Let us consider a one-half spin, say a proton, with an
angular momentum S⃗ = 1

2ℏσ⃗, a gyromagnetic factor γ

and consequently a magnetic dipolar momentum M⃗ = γS⃗.
The density operator ρ of this spin can be expanded on
the {1, σX , σY , σZ} basis made up with the identity 1 and
the three Pauli operators σX , σY and σZ :

ρ =
1

2
(1+mXσX +mY σY +mZσZ) =

1

2
(1+ m⃗ · σ⃗),

where m⃗ = Tr{ρσ⃗}. In presence of a magnetic field B⃗, the

Hamiltonian of the spin is H = − M⃗ · B⃗ = 1
2ℏΩ⃗ · σ⃗, where

Ω⃗ = − γB⃗ is an angular frequency. With these standard
notations [1,2], the Schrödinger equation iℏdρ/dt = [H, ρ]
simply reads, all simplifications carried out,

dm⃗

dt
= Ω⃗ ∧ m⃗. (1)

It is noteworthy that, despite its classical appearance, the
above equation is in fact quantum. It indicates that the
mean value m⃗ of operator σ⃗ moves in space with a constant
modulus |m⃗| and an instantaneous rotation vector Ω⃗. If

the magnetic field is static, say B⃗ = B0e⃗Z , this movement
is the so-called Larmor precession [3], namely m⃗ uniformly

rotates around B⃗0 with the constant angular velocity Ω⃗L =
− γB⃗0.

In pratice, due to various interactions with its sur-
roundings, the spin undergoes an effective magnetic field
B⃗(t) = B⃗0 + b⃗r(t), where b⃗r(t) is (at least partially) ran-
dom. This random interaction results in a relaxation pro-
cess, the Markovian treatment of which involves two relax-
ation times, T1 (longitudinal) and T2 (transverse). Within
this framework, the motion equation (1) takes the form of
the Bloch equation

dm⃗

dt
= Ω⃗L ∧ m⃗− 1

T1
(mZ −mB

Z)e⃗Z − 1

T2
m⃗⊥,

where mZ and m⃗⊥ repectively stand for the longitudinal
(i.e. // e⃗Z) and transverse (i.e. ⊥e⃗Z) components of m⃗,
mB

Z(= − tanh(ℏΩL/2kBT ) at temperature T ) correpond-
ing to the thermic Boltzmann equilibrium value of mZ .
As well known from NMR [3, 5], it is possible to drive

the protons off their thermal equilibrium state (charac-
terized by m⃗eq = mB

Z e⃗Z) thanks to a wealth of radio-
frequency short pulse sequences (by “short” we mean
shorter than the relaxation times). One among them,
widely used in the Magnetic Resonance Imaging (MRI)
techniques [6, 7], is the so-called π-pulse. Let us recall
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quickly what it is all about. In addition to the static
field B0e⃗Z , let us superimpose a rotating magnetic field
b⃗1(t) = b1(cosωt e⃗X +sinωt e⃗Y ). Disregarding relaxation,
the motion equation of the proton reads, allowing for (1),

dm⃗

dt
= (Ω⃗L + ω⃗R(t)) ∧ m⃗, (2)

where ω⃗R(t) = − γb⃗1(t). The above equation can be
solved for m⃗ using a well known trick. Let us indeed
consider a frame rotating around e⃗Z with the angular ve-
locity ω⃗ = ωe⃗Z . In this frame, let us introduce the ba-
sis {e⃗X′ = cosωt e⃗X + sinωt e⃗Y , e⃗Y ′ = − sinωt e⃗X +

cosωt e⃗Y , e⃗Z′ = e⃗Z}. Field b⃗1 is static (as well as B⃗0)

in the rotating frame: b⃗1 = b1e⃗X′ . Denoting (dm⃗/dt)′

the time-derivative of vector m⃗ in the latter frame, and
observing that (dm⃗/dt)′ = (dm⃗/dt) − ω⃗ ∧ m⃗, we are left
with(

dm⃗

dt

)′
= [(ΩL − ω)e⃗Z′ + ωRe⃗X′ ] ∧ m⃗ = Ω⃗eff ∧ m⃗. (3)

Consequently, in the rotating frame, the motion of vector
m⃗ is a Larmor precession with an effective angular velocity
Ω⃗eff = (ΩL − ω)e⃗Z′ + ωRe⃗X′ . This situation is illustrated
in figure 1. Interestingly, if the angular frequency ω of the
rotating field is chosen equal to ΩL, then the spin will pre-
cess around e⃗X′ at the so-called Rabi [8] angular frequency
ωR. As a consequence, a resonant (i.e. ω = ΩL) rotating
field pulse with duration ∆t = π/ωR will flip an initially

thermalized proton magnetic moment from parallel to B⃗0

to antiparallel. Observe that, since ωR is proportional to
the amplitude b1 of the radiofrequency pulse, it is in prin-
ciple always possible to manage to have ∆t ≪ T1, T2, so
that neglecting relaxation during the π-pulse is relevant.
The π-pulse is selective in the sense that, among a bunch

of protons, only the resonant ones (those with ΩL = ω)
will be flipped by the pulse. Should (for any reason) the

static field B⃗0 be inhomogeneous, then only a fraction of
the spins will respond. This feature is turned to account
in medical imaging, for instance to “slice” the tissue to be
imaged and thus reconstruct a 3D representation. Never-
theless, it can also be a drawback in some other situation,
and it could be interesting to obtain an overall nonselec-
tive spin flip. It is possible, by means of a hardly more
complicated pulse sequence, as explained hereafter.
To begin with, let us come back to equation (1) and

consider the case of a slowly varying Ω⃗(t). Let us set

Ω⃗(t) = Ω(t)e⃗(t), with vector e⃗(t) unitary, and ω⃗(t) = e⃗∧ ˙⃗e;

therefore ˙⃗e = ω⃗∧e⃗. Let us now introduce the moving frame
whose instantaneous rotation velocity is ω⃗(t) and denote
(as above) the vector time-derivative in this frame with
a prime (′). Splitting m⃗ in its longitudinal m⃗// (parallel
to e⃗) and transverse m⃗⊥ (orthogonal to e⃗) parts, we have
m⃗ = m⃗// + m⃗⊥ with

m// = m⃗ · e⃗ and m⃗⊥ = e⃗ ∧ (m⃗ ∧ e⃗). (4)

ωR

ΩL – ω
Ωeff

ΩL

eX eY

m(0)

m(t
)

eX'
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eY'
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Fig. 1: The motion of vector m⃗ in the rotating frame
{e⃗X′ , e⃗Y ′ , e⃗Z′} is a Larmor precession with the angular velocity
Ω⃗eff = (ΩL − ω)e⃗Z′ + ωRe⃗X′ . If ω is tuned equal to ΩL, then
this precession occurs around the horizontal axis e⃗X′ at the
Rabi angular frequency ωR: after a rotating field pulse with
a duration ∆t = π/ωR, a magnetic momentum m⃗0 initially
aligned with the static field B⃗0 is turned into its opposite − m⃗0,
i.e. antiparallel to B⃗0. This spin flip is a resonant effect: if
|ΩL − ω| ≫ ωR, Ω⃗eff is roughly parallel to axis e⃗Z′ , and the
pulse does not affect the spin, the state of which remains con-
sequently unchanged.

Observe that, since (de⃗/dt)′ = 0 by definition, the same
splitting is available too for the time-derivative of m⃗,
with (dm⃗/dt)′// = (dm⃗///dt)

′ and (dm⃗/dt)′⊥ = (dm⃗⊥/dt)
′.

Since (dm⃗/dt)′ = (Ω⃗ − ω⃗) ∧ m⃗, we easily derive

dm//

dt
= − e⃗·(ω⃗∧m⃗⊥),

(
dm⃗⊥

dt

)′
= Ω⃗∧m⃗⊥−(ω⃗∧m⃗)⊥. (5)

The above equation set is exact; it can nevertheless be
simplified if |ω⃗| ≪ |Ω⃗|, i.e. if the direction e⃗ of vector Ω⃗
varies adiabatically (in the Ehrenfest sense). In the latter
case, we can neglect the (ω⃗ ∧ m⃗)⊥ term in the right-hand
side of the second equation (5). The movement of m⃗⊥ can

then be approximated by a rotation of angle
∫ t
Ω(t′)dt′

around axis e⃗. Since this rotation is fast compared to
that of axis e⃗ itself, the (e⃗, ω⃗, m⃗⊥) term brings no secular
contribution to the time-evolution of m// (see the first
equation (5)): m// is an adiabatic invariant of the motion
of m⃗. In other words, m⃗ makes a constant angle ψ with
e⃗. Inter alia, if m⃗ is initially parallel (or antiparallel) to
e⃗, it remains so in the further course of its movement.
This result is a particular case of the so-called “adiabatic
theorem”. It can be turned into account to implement a
nonresonant inversion of the spin population, as explained
below.

Let us come back to the Rabi configuration of the π-
pulse sequence, namely a static field B⃗0 plus a rotating
field b⃗1(t). But now, the angular frequency ω of the lat-
ter is time-dependent: it is deliberately chosen smaller
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than the Larmor angular frequency ΩL at the beginning
of the sequence, then progressively increased so as to end
up at a value larger than ΩL. Notwithstanding this pe-
culiarity, equation (2) is still valid and can be solved for
m⃗ using the rotating frame trick adapted as follows. Set-
ting φ(t) =

∫ t

0
ω(t′)dt′ and introducing the basis {e⃗X′ =

cosφ e⃗X+sinφ e⃗Y , e⃗Y ′ = − sinφ e⃗X+cosφ e⃗Y , e⃗Z′ = e⃗Z},
we recover equation (3) with Ω⃗eff now time-dependent:

Ω⃗eff = (ΩL − ω(t))e⃗Z′ + ωR(t)e⃗X′ . A stylized sequence is
displayed in figure 2. Untill t = tA (point A) the rotat-

ing field’s amplitude b1 is off: ωRA = 0 and Ω⃗eff(tA) =

Ω⃗effA = (ΩL − ωA)e⃗Z′ . Then, from t = tA on, b1 is pro-
gressively increased until t = tB (point B), the angular fre-
quency ω being fixed at a constant value ωA = ωB < ΩL:
Ω⃗eff(tB) = Ω⃗effB = (ΩL − ωB)e⃗Z′ + ωRBe⃗X′ . Next, be-
tween t = tB and t = tC (point C), the angular fre-
quency ω is swept from ωB (= ωA) to ωC > ΩL, while the
Rabi angular frequency ωR is kept constant: ωRB = ωRC

and Ω⃗eff(tC) = Ω⃗effC = (ΩL − ωC)e⃗Z′ + ωRCe⃗X′ . At
last, between t = tC and t = tD (point D), the ampli-
tude of the rotating field is decreased to zero at the con-
stant angular frequency ωC (= ωD); thus, ωRD = 0 and

Ω⃗eff(tD) = Ω⃗effD = (ΩL − ωD)e⃗Z′ . As can be seen in the

figure, the tip of vector Ω⃗eff moves on rectangle ABCD. If
each of the three legs AB, BC and CD is travelled through
slowly enough, then the adiabatic theorem is applicable in
the frame (referred to as the rotating frame above) as-
sociated with basis {e⃗X′ , e⃗Y ′ , e⃗Z′}. As a consequence, if
m⃗(tA) = m⃗A is parallel to e⃗Z , then m⃗(tD) = m⃗D = − m⃗A.
Of course the overall duration tD − tA should be shorter
than the relaxation times T1 and T2. Hence the some-
how oxymoric “rapid adiabatic passage” [9, 10] coined to
qualify this sequence.

Now that the stage is set in the NMR framework, let
us come to the very point of the present letter: what does
this quantum behaviour have to do with a classical motion
in general and how the rapid adiabatic passage of a one-
half spin can be simulated by a two-pendulum device in
particular?

To answer this prima facie puzzling question, let us con-
sider a two-degree-of-freedom harmonic oscillator (HO2)
made of two simple pendula (in the small oscillation limit)
coupled by means of a torsion spring. Our experimental
apparatus was chosen by reason of its simplicity and visi-
bility. It is displayed in figure 3. Both pendula can rotate
freely around axis (A). They are made of a massM guided
by a couple of practically massless rods. The length ℓ2 of
pendulum 2 is fixed, say ℓ2 = ℓ0, whereas the length ℓ1(t)
of pendulum 1 can be modulated around its mean value
ℓ0, say ℓ1(t) = ℓ0(1 + ε(t) cosφ(t)) with |ε| ≪ 1: mass M
is held – and can slid along its rods – thanks to a cable
through a grooved pulley, in such a way that no torque
at all is exerted upon pendulum 1 with respect to axis
(A) when the cable is dragged back and forth by an elec-
tric engine. In this sense, modulating length ℓ1 effects a
parametric excitation of the whole HO2.

ΩeffA = (ΩL – ωA)eZ'
(ωRA = 0)

(ωRB = ωRC)

(ωRD = 0)

ΩeffB

ΩeffC
ΩeffD = (ΩL – ωD)eZ'

AB

DC

eZ'

eY'eX'

�

��

��

�
�

�

�

Fig. 2: Stylized sequence of the effective field Ω⃗eff = (ΩL −
ω(t))e⃗Z′ +ωR(t)e⃗X′ in the rotating frame associated with basis
{e⃗X′ , e⃗Y ′ , e⃗Z′}. Leg AB (resp. CD): adiabatic switching on
(resp. off) of the Rabi amplitude ωR at constant angular fre-
quency ωA = ωB (resp. ωD = ωC). Leg BC: adiabatic sweeping
of the rotating field’s angular frequency ω from ωB < ΩL to
ωC > ΩL at constant Rabi amplitude ωRB = ωRC. The overall
sequence ABCD should be shorter than the spin’s relaxation
times.

θ1 θ2

ℓ2= ℓ0

torsion spring

axis (A)

C

to electric engine

ℓ1(t)

M

M

grooved pulley

Fig. 3: Experimental device. Both pendula can rotate freely
around axis (A) and are coupled by means of a torsion spring
with angular stiffness C. Thanks to a grooved pulley and a
traction wire, the left mass M can be slid along a couple of
rods in such a way that no torque at all is exerted upon (A):
sliding this mass thus implements a pure parametric excitation
of the two-pendula system. Pendulum 1’s length modulation
is ℓ1(t) = ℓ0(1 + ε(t) cosφ(t)) with |ε| ≪ 1.
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Let us begin with considering the free HO2 (no mod-
ulation implemented). Denoting by (θ1, θ2) the angles
the pendula rods make with their (vertical) rest position,

and introducing the column matrix Θ =
(θ1
θ2

)
, the La-

grangian of the system reads, superscript t indicating ma-
tricial transposition,

L0(Θ, Θ̇) =
1

2
(tΘ̇J0Θ̇ − tΘK0Θ), (6)

where J0 = Mℓ20 and K0 =
(Mgℓ0 + C −C

−C Mgℓ0 + C

)
re-

spectively stand for the pendula inertia momentum and
the stiffness matrix, C being the angular stiffness of the
coupling spring. From (6), the Lagrange equations yield
the differential system J0Θ̈ + K0Θ = 0. Although this
system could be handled as it is, it is more convenient
to introduce a few symplifying notations. Let us set
ω2
0 = g

ℓ0
+ C

J0
and κ = C/ω2

0J0. The matrix Ω2
0 = K0/J0

then reads Ω2
0 = ω2

0

( 1 −κ
−κ 1

)
and can be diagonal-

ized by means of the orthogonal basis change matrix

Pe = 1√
2

(
1 1
− 1 1

)
. We consequently have P−1

e Ω0Pe =

Ωe =
(ω+ 0

0 ω−

)
, with the angular eigenfrequencies ω+

and ω− given by ω2
± = (1 ± κ)ω2

0 . Next, let us introduce

the so-called standard dynamic variables Q = Ω
1/2
0 J

1/2
0 Θ.

With P = ∂L0/∂
tΘ̇ standing for the conjugate momenta

of variables Q, the usual Legendre transformation of L0

ends up with the free Hamiltonian

H0(Q,P ) = −L0 +
tPQ̇ =

1

2
(tPΩ0P + tQΩ0Q). (7)

Now, falling into step with R. J. Glauber’s definition in
his quantization of the electromagnetic field [11,12], let us
gather the two sets of real canonic variables (Q,P ) in a

unique set of complex variables A =
(α1

α2

)
= 1√

2ℏ (Q+ iP )

(the quantum constant ℏ is kept here for analogy purposes;
its numerical value will of course play no role in our purely
classical problem). The motion equations derived from
Hamiltonian (7), namely {Q̇ = Ω0P, Ṗ = −Ω0Q} simply

read Ȧ = − iΩ0A. Setting Ae =
(α+

α−

)
= P−1

e A, the latter

equation is diagonalized in Ȧe = − iΩeAe. The eigen-
modes Glauber variables α+ and α− consequently evolve
independently from each other: α± = α±(0) e

−iω±t. Ob-
serve by the way that the free Hamiltonian (7) equally
reads, superscript † indicating transconjugation, H0 =
A†ℏΩ0A = A†

eℏΩeAe = ℏω+|α+|2 + ℏω−|α−|2, and that
the Glauber variables commutation relations are given by
the Poisson brackets {α+, α

∗
+} = {α−, α

∗
−} = 1/iℏ, all

other brackets being zero. In this respect, it is then tempt-
ing to draw one’s inspiration from the Schwinger repre-
sentation of SU(2) [13,14]. Expanding the pseudo density

matrix D =
(α+

α−

)(
α∗
+ α∗

−
)
on the {1, σX , σY , σZ} basis,

we have D = 1
2 (N1+ m⃗ · σ⃗) with

N = Tr (D) = |α+|2 + |α−|2, m⃗ = Tr (Dσ⃗)

⇝ mX = 2Re (α∗
+α−),

mY = 2Im (α∗
+α−),

mZ = |α+|2 − |α−|2,

(8)

where N , which can be regarded as the semiclassical
quanta number, is the norm of vector m⃗ (it is easy to
check that N2 = m2

X +m2
Y +m2

Z). With these notations,
H0 = 1

2Nℏ(ω+ + ω−) +
1
2ℏΩLmZ , where ΩL = ω+ − ω−.

Observing at last that the dynamic variables (N, m⃗) obey
the commutation relations

{N, m⃗} = 0, {mX ,mY } =
2

ℏ
mZ and cyclic shift, (9)

the Hamilton equations of motion read

dN

dt
= {N,H0} = 0,

dm⃗

dt
= ΩLe⃗Z ∧ m⃗. (10)

In the above equations, we have considered the variables
mX , mY and mZ as the three components of some vector
m⃗ = mX e⃗X +mY e⃗Y +mZ e⃗Z , where {e⃗X , e⃗Y , e⃗Z} should
be regarded as a (direct) orthormal basis in a 3-dimension
R

3-isomorphous Euclidean space that we shall henceforth
refer to as the “Larmor space”. It is noteworthy that,
contrary to our everyday-life R3 space in which the true
NMR processes recalled in the beginning of this letter take
place, the Larmor space is fictitious. Notwithstanding the
latter remark, equation (10) shows that the free motion
of our HO2 can be represented as a Larmor precession of
vector m⃗ with angular velocity ΩLe⃗Z .
So far, we have been able to simulate the Larmor

precession of a one-half spin in a static magnetic field
B⃗0 = B0e⃗Z . How could we simulate a time-dependent
field b⃗1(t) rotating around e⃗Z? To take up this chal-
lenge, let us slightly modulate pendulum 1’s length as
indicated above in the description of figure 3: its iner-
tia momentum with respect to axis (A) now reads J1(t) =
Mℓ21(t) ≃ J0(1+2ε(t) cosφ(t)) so that, in Lagrangian (6),
the scalar J0 and the stiffness matrix K0 should be substi-
tuted by the time-dependent inertia and stiffness matrices
J(t) = J01 + δJ(t) and K(t) = K0 + δK(t) with, at the
first order in ε (assumed |ε| ≪ 1),

δJ(t) = 2ε(t) cosφ(t) J0

(
1 0
0 0

)
,

δK(t) = 2ε(t) cosφ(t)Mgℓ0

(
1 0
0 0

)
.

(11)

Next, substituting variables Q = Ω
1/2
0 J

1/2
0 Θ for Θ (as

in the free case) in the completed Lagrangian and per-
forming the usual Legendre transformation, we obtain
H(t) = H0 + δH(t). In the free eigenmodes (+,−) rep-
resentation, H0 reads A†

eℏΩ0Ae (as already mentioned)

p-4



Rapid adiabatic passage with two coupled pendula

whereas perturbation δH(t) is quadratic in Glauber vari-
ables (Ae, A

∗
e). From now on, let us focus on the quasi-

degeneracy limit, assuming that our pendula are weakly
coupled: κ≪ 1⇝ ω± ≃

(
1± κ

2

)
ω0 (whence ΩL ≃ κω0 ≪

ω0) with ω
2
0 ≃ g/ℓ0.

In our experimental implementation, the measured
angular frequencies were: ω0 = 0.623 rad/s, ω+ =
0.637 rad/s and ω− = 0.608 rad/s, hence ΩL =
0.029 rad/s and κ = 0.047 ≪ 1. We are clearly in the
quasidegeneracy framework. Within this framework, the
Hamilton equations of motion simplify in

Ȧe = − iΩeAe+
iω0

4
ε(t) cosφ(t)

(
1 1
1 1

)
(Ae−3A∗

e). (12)

Assuming in addition that angle φ(t) varies slowly com-
pared to ω0t (φ̇ = ω(t) being of order ΩL ≪ ω0), we
can tackle the above equations (12) in a perturbative way.
At order zero, Ae(t) = e−iΩetAe(0) oscillates roughly as
e−iω0t. As a consequence, the A∗

e term in the right-hand
side varies as e+iω0t and brings no secular contribution to
the time-evolution of Ae, so it can be neglected (Secular
Approximation). It is then noteworthy that the remain-
ing equation can be derived from the “secularized” Hamil-

tonian Hsec(t) = A†
eℏ
[
Ωe − 1

4ε(t) cosφ(t)ω0

(1 1
1 1

)]
Ae,

which can in turn be expressed in terms of variables
(N, m⃗), resulting in the motion equations in the Larmor
space:

dN

dt
= 0,

dm⃗

dt
= {m⃗,Hsec(t)} = Ω⃗(t) ∧ m⃗,

with Ω⃗(t) = ΩLe⃗Z − 1

2
ε(t) cosφ(t)ω0e⃗X .

(13)

Observe that the time-dependent part of Ω⃗(t) is polar-
ized along axis e⃗X , which prima facie does not match the
expected rotating field ω⃗R(t) in equation (2). In fact, it
nearly does, provided that the modulation depth ε should
be chosen smaller than the dimensionless coupling con-
stant κ, as explained below. To begin with, let us write

cosφ e⃗X =
1

2
(cosφ e⃗X +sinφ e⃗Y )+

1

2
(cosφ e⃗X − sinφ e⃗Y ),

(14)
i.e. regard the linearly polarized term cosφ e⃗X as the sum
of two counter-rotating terms. Setting e⃗X′ = cosφ e⃗X +
sinφ e⃗Y and ωR(t) = ε(t)ω0/4, we can write the precession
equation (13) in the frame with basis {e⃗X′ , e⃗Y ′ , e⃗Z′ = e⃗Z}
rotating around e⃗Z at the angular frequency ω(t) = φ̇ and
get(

dm⃗

dt

)′
= [(Ω⃗L− ω⃗(t))e⃗Z′ +ωR(t)e⃗X′ +δω⃗R(t)]∧m⃗, (15)

where δω⃗R(t) = ωR(cos 2φ e⃗X′ −sin 2φ e⃗Y ′) rotates around
e⃗Z′ at the angular velocity − 2ω(t). Now, in the rapid
adiabatic passage sequence, |ω(t)| is close to ΩL = κω0

and |Ω⃗eff| =
√
(ΩL − ω)2 + ω2

R is consequently of the or-
der of ωR, as well as |δω⃗R|. If ωR ≪ ω ≃ ΩL (i.e.

eX

Ω(t)m(
t)

eY

�
�

�
� eZ

�
ψ

Fig. 4: Illustration of the adiabatic theorem. Vector m̂ pre-
cesses with the angular velocity Ω⃗(t) = Ω(t)e⃗(t) = ω0(κe⃗Z −
1
2
ε(t)e⃗X), as explained in the text. If direction e⃗(t) varies slowly

enough, the angle ψ it makes with m̂ keeps a constant value
over time (adiabatic invariant).

ε ≪ κ), then it can be shown that equation (3) is still

available with the effective field Ω⃗eff simply changed in

Ω⃗ ′
eff =

(
ΩL +

ω2
R

4ω − ω
)
e⃗Z′ + ωRe⃗X′ , where

ω2
R

4ω is the so-
called Bloch-Siegert shift [15] of the resonance. Neglecting
this shift is known as the Rotating Wave Approximation
(RWA). It is equivalent to dropping the second (counter-
rotating) term in the right-hand side of equation (14). We
shall henceforth make the RWA: save for the latter ap-
proximation, our experimental mechanical simulation ful-
fils the validity conditions of equation (3).

In a couple of foregoing papers, the free Larmor [16]
and the Rabi [17] precessions mechanical simluations with
two coupled pendula have been described and discussed
at some length. In the present letter, we will not resume
those discussions but rather focus on the new experimen-
tal results obtained concerning the adiabatic theorem and
the rapid abiadatic passage. The angles θ1(t) and θ2(t)
being acquired thanks to a (frictionless) optical detection
device, the Glauber variables (α1, α2) are determined (see
(7) and below). Then we derive the eigenmodes Glauber
variables (α+, α−) using the change of basis matrix Pe and
we calculate the dynamic variables (N, m⃗) as displayed in
(8) (ℏ taken equal to unity in these calculations). Despite
the high (> 1000) quality factor of our HO2 which com-
monly allows 20 minutes long free oscillations, |m⃗|(= N)
decreases in the course of time during our experimenta-
tion. To (artificially) get rid of this decay, we normalize
m⃗ by N , so that the tip of the vector m̂ = m⃗/N always
moves on a sphere with radius unity, the exact analog of
the so-called Bloch sphere. Figures 4 and 5 display (in
blue) the trajectory of the latter tip on the Bloch sphere
in the Larmor space.

Figure 4 illustrates the free Larmor precession of m̂
around a slowly varying field: Ω⃗(t) = ω0(κe⃗Z − 1

2ε(t)e⃗X),
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Fig. 5: Illustration of the rapid adiabatic passage. The two-
pendulum system is initially prepared in its symmetric eigen-
mode (−): vector m̂ then points towards the south pole of the
Bloch sphere. Due to the slow switchings (on and off) of the
modulation ε(t) and to the slow sweeping of the instantaneous
angular velocity ω(t) = φ̇(t), it spirals on the Bloch sphere so
as to end up at its north pole, which corresponds to the anti-
symmetric eigenmode (+) of the two-pendulum system.

where the κe⃗Z and the − 1
2ε(t)e⃗X terms respectively corre-

spond to the coupling between the two pendula and to the
detuning of their proper angular frequencies when pendu-
lum 1’s length is modulated (ℓ1 = (1 + ε)ℓ0, ℓ2 = ℓ0). In
this experiment, the modulation depth ε was varied from
−0.051 to +0.051. As recalled above, m̂ moves on a cone,
hence the circular trajectory of its tip. When ℓ1 is mod-
ulated, the axis of the cone moves in the (e⃗X , e⃗Z) plane
and the latter circle “slips” on the Bloch sphere. If the
modulation is slow enough to fulfil the adiabatic criterion,
the angle ψ between m̂ and Ω⃗ is constant, and so is the
radius of the circle, as observed in figure 4.

Figure 5 displays a full spinflip process. Vector m̂ is ini-
tially pointing towards the south pole of the Bloch sphere.
Then a modulation sequence as described in figure 2 is
applied and m̂’s tip progressively winds round the sphere
(hence its spiral trajectory) so as to end up at the north
pole. The experiment is particulary visual: the initial
south pole corresponds to the lower angular frequency
(ω−) mode for which both pendula oscillate in phase; the
final north pole corresponds to the higher angular fre-
quency (ω+) mode for which both pendula are 180° out
of phase. The spinflip is thus illustrated by a continuous
transition of the two-pendulum system from its symmetric
eigenmode (−) to its antisymmetric eigenmode (+).

In our experiment, the full duration of the spinflip se-
quence was 800 s and the maximum value of the depth
modulation ε (corresponding to leg BC of rectangle ABCD
in figure 2) was compatible with our using the RWA.

In conclusion, we have presented a mechanical analogy
of a long known technique used in the NMR domain to

perform an overall population inversion (spin flip) on a
bunch of one-half spins immersed in a nonhomogeneous
magnetic field, in conditions where the standard Rabi π-
pulse sequence is not available. By the way, we have illus-
trated the so-called adiabatic theorem. It is noteworthy
that, although generally regarded as a quantum object,
our simulated one-half spin is utterly classical and that,
contrary to the heavy true NMR experimental device, our
illustration setup is remarkably simple.

∗ ∗ ∗

We are indebted to Oune-Saysavanh Souramasing and
Laurent Réa for their technical help in manufacturing the
experimental device.
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