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This study is concerned with the elastoplastic torsion problem and its standard finite element approximation using piecewise affine Lagrange finite elements. In the case of a polytopal convex domain in dimension n = 1, 2, 3 we obtain an H 1 -error bound of order h for the solution. For a nonconvex domain, we obtain also an error estimate.

Introduction

Problems written with weak formulations involving variational inequalities represent various nonlinear phenomena which occur in mechanics and physics [START_REF] Duvaut | Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF]. We focus on the elastoplastic torsion problem, as presented in, e.g., [START_REF] Glowinski | Lectures on numerical methods for nonlinear variational problems[END_REF] (see also [START_REF] Caffarelli | The free boundary for elastic-plastic torsion problems[END_REF][START_REF] Glowinski | Numerical analysis of variational inequalities[END_REF]). In the aforementioned reference, a direct piecewise affine Lagrange finite element approximation of the variational inequality is also presented, as well as a convergence result (Theorem 3.3), and two error estimates in the H 1 -norm, in dimension one (Theorem 3.4) and in dimension two (Theorem 3.5). The error estimate in one dimension is optimal (O(h)), whereas it remained suboptimal in dimension two, as it is of order O(h 1 2 -1 p ) for a source term in L p , p > 2. This bound has not been improved since then, up to our knowledge. Among the few existing results are weak and strong convergence results [START_REF] Mouallif | Approximation du problème de la torsion élasto-plastique d'une barre cylindrique par régularisation et discrétisation d'un problème inf-sup sur H 1 0 (Ω)×L ∞ + (Ω)[END_REF], and error estimates of O(h) for the L 2 -norm of the gradient of the solution and under suitable restrictive assumptions, for mixed finite element approximations, using P 1 /P 0 finite elements [START_REF] Falk | Error estimates for elasto-plastic problems[END_REF] or Raviart-Thomas finite elements [START_REF] Bermúdez De Castro López | A mixed method for the elastoplastic torsion problem[END_REF].

In this study we focus on a problem with a positive constant source term. In this case the variational inequality can be reformulated as an "obstacle" problem where the constraint involves the distance to the boundary, so the obstacle is nonsmooth and the usual techniques from the obstacle problem cannot be directly applied. We present a new direct finite element approximation of the variational inequality, that makes use of piecewise affine, continuous, Lagrange finite elements, and in which the constraint involving the distance function is imposed at each node. When the domain is convex, the discretization is conforming and we prove error estimates in any dimension n = 1, 2, 3, with an optimal error bound: O(h), for a regular enough continuous solution. In the case of a nonconvex domain, an extra term appears due to the nonconformity, that is challenging to bound. We manage to derive an error bound of O(h 3/4 ) for a solution of Sobolev regularity H α , α ≥ 7/4.

As usual, we denote by H s (.), s ∈ R, the Sobolev spaces. For an open subset D of R n , the usual norm of H s (D) is denoted by • s,D . The space H 1 0 (D) is the subspace of functions in H 1 (D) with vanishing trace on ∂D. The letter C stands for a generic constant, independent of the discretization parameters.

The elastoplastic torsion problem

Let Ω ⊂ R n , n ≥ 1, be an open bounded polytope, connected and with Lipschitz boundary. We consider the variational inequality modelling the torsion of an infinitely long elastoplastic cylinder of cross section Ω and plasticity yield r > 0. To simplify we assume that r = 1. The problem is to find the stress potential u such that

u ∈ K 1 : a(u, v -u) ≥ L(v -u), ∀ v ∈ K 1 , (1) 
where a : H 1 0 (Ω) × H 1 0 (Ω) → R is the bilinear form given by:

a(u, v) := Ω ∇u • ∇v, ∀ u, v ∈ H 1 0 (Ω),
and

L(v) := Ω f v, ∀ v ∈ H 1 0 (Ω), f ∈ L 2 (Ω).
The notation K 1 represents the nonempty closed convex set of admissible stress potentials:

K 1 := v ∈ H 1 0 (Ω) : |∇v| ≤ 1 a.e. in Ω ,
where | • | denotes the euclidian norm in R n . From Stampacchia's theorem we deduce that Problem (1) admits a unique solution (see also, e.g., [START_REF] Duvaut | Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Glowinski | Lectures on numerical methods for nonlinear variational problems[END_REF][START_REF] Glowinski | Numerical analysis of variational inequalities[END_REF][START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF]).

Remark 2.1. We recall some regularity results for (1): if Ω ⊂ R n is open, bounded and convex, with Lipschitz boundary, and for

f ∈ L p (Ω) with n < p < +∞, then u ∈ W 2,p (Ω) ∩ C 1,α (Ω), where α = 1 -n/p [4]
. When the domain is non convex the W 2,p (Ω) regularity can be obtained but the boundary needs to be more regular (C 1,1 more precisely, see [START_REF] Gerhardt | Regularity of solutions of nonlinear variational inequalities with a gradient bound as constraint[END_REF]) so reentrant corners of polytopes are not allowed. When reentrant corners of polytopes are considered, the loss of W 2,p -regularity is only located near these corners [START_REF] Caffarelli | The free boundary for elastic-plastic torsion problems[END_REF].

Next we suppose that f = C is a constant function. In this case and according to [START_REF] Brézis | Équivalence de deux inéquations variationnelles et applications[END_REF] (see also [START_REF] Idone | Variational inequalities and the elastic-plastic torsion problem[END_REF]) the problem (1) can be rewritten as follows: find the stress potential u such that u ∈ K :

a(u, v -u) ≥ C Ω (v -u), ∀ v ∈ K, (2) 
with

K := v ∈ H 1 0 (Ω) : |v| ≤ d ∂Ω a.e.
in Ω , and d ∂Ω denotes the (interior) distance function with respect to the boundary ∂Ω:

d ∂Ω (x) := inf y∈∂Ω |x -y|, ∀ x ∈ Ω.
Note that (2) still admits a unique solution from Stampacchia's theorem. To lighten the discussion we can suppose without loss of generality that C > 0, so problem (2) can be rewritten as follows: find the stress potential u such that

u ∈ K : a(u, v -u) ≥ C Ω (v -u), ∀ v ∈ K, (3) 
with

K := v ∈ H 1 0 (Ω) : 0 ≤ v ≤ d ∂Ω a.e.
in Ω . Again (3) admits a unique solution from Stampacchia's theorem.

Remark 2.2. We explain why we can consider without loss of generality that C > 0. We see that (2) can be rewritten: find the stress potential u such that

u ∈ K : a(-u, -v -(-u)) ≥ -C Ω (-v -(-u)), ∀ v ∈ K. (4) 
Since K = -K and denoting by u(C) the solution of (2) with source term C, we deduce from (4) that u(-C) = -u(C).

We justify below equivalence between Problem (2) and Problem (3), when C > 0:

Proposition 2.1. When C > 0, Problem (2) and Problem (3) share the same unique solution u ∈ K.

Proof. We consider both problems (2) and (3) as minimization problems over their respective sets. Since K ⊂ K, these problems are equivalent if the minimizer of a(•, •)/2 -L(•) over K lies in fact in K. Let u ∈ K be the solution to (2), and write u = u + -u -, with u + = max(0, u) and u -= -min(0, u) the positive and negative parts of u, respectively, that both belong to H 1 0 (Ω) [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF]Lemma 1.1]. We choose v = u + ∈ K in (2) and get:

-∇u - 2 0,Ω ≥ C Ω u -.
Since C > 0, we deduce that u -= 0 a.e. in Ω, this means that in fact u lies in K and is also the unique solution to Problem (3). Now we consider problem (3) which can be seen as a kind of double obstacle problem.

Remark 2.3. In the case where f = C is a positive constant, note that we could write the same variational inequality as in ( 1),( 2) and (3) but with the convex set

K := v ∈ H 1 0 (Ω) : v ≤ d ∂Ω a.e.
in Ω . So the torsion problem can be simply seen as an obstacle problem but with a nonsmooth obstacle which is the distance function (roughly speaking the distance function does not lie in H 2 (Ω)). This implies that the classical finite element error analysis for the obstacle problem can not be directly applied in the forthcoming analysis.

Proof: From standard Falk's Lemma (see, e.g., [START_REF] Glowinski | Numerical analysis of variational inequalities[END_REF]), since ∆u ∈ L 2 (Ω) and since I h u ∈ K h , where I h is the Lagrange interpolation operator mapping onto V h , we get

u -u h 2 1,Ω ≤ C inf v h ∈K h ( u -v h 2 1,Ω + u -v h 0,Ω ) + inf v∈K v -u h 0,Ω ≤ C u -I h u 2 1,Ω + u -I h u 0,Ω + inf v∈K v -u h 0,Ω , (8) 
where the constant C depends on ∆u L 2 (Ω) .

1. In the first case (i.e., Ω is convex and u ∈ K ∩ H 2 (Ω)) the first two terms in ( 8) are bounded by Ch 2 and the second infimum disappears according to Remark 3.1. So bound (6) holds.

2. Let Ω be nonconvex, u ∈ K ∩ H α (Ω) with max(1, n/2) < α ≤ 2 and ∆u ∈ L 2 (Ω). From standard approximation bounds, the first two terms in (8) are bounded by Ch 2(α-1) . To bound the infimum on K, we set v := min(u h , d ∂Ω ). Clearly v ∈ H 1 (Ω). Indeed for Ω a bounded polytope there holds d ∂Ω ∈ H 1 (Ω), and the minimum of two functions in H 1 (Ω) remains in H 1 (Ω) [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF]Lemma 1.1]. Moreover we have v = 0 on ∂Ω and 0

≤ v ≤ d ∂Ω , which guarantees that v ∈ K. Now set S h := {x ∈ Ω, d ∂Ω (x) < u h (x)}. This set is generally nonempty since K h ⊂ K. If x / ∈ S h , then v(x) = u h (x) by definition. So v -u h 2 0,Ω = Ω (v -u h ) 2 = S h (d ∂Ω -u h ) 2 . Since u h ∈ K h we have u h (a) ≤ d ∂Ω (a) = I h d ∂Ω (a), ∀a ∈ N h . So I h d ∂Ω -u h ≥ 0 in Ω.
Let x ∈ S h , then we bound:

0 < |(u h -d ∂Ω )(x)| = (u h -d ∂Ω )(x) = (u h -I h d ∂Ω )(x) + (I h d ∂Ω -d ∂Ω )(x) ≤ (I h d ∂Ω -d ∂Ω )(x). Therefore v -u h 2 0,Ω = S h (d ∂Ω -u h ) 2 ≤ S h (I h d ∂Ω -d ∂Ω ) 2 ≤ d ∂Ω -I h d ∂Ω 2 0,Ω .
We now consider two different regions of Ω. First, the medial axis which is, for a polytope, the set of its points which have more than one closest point on the boundary (see, e.g., [START_REF] Lee | Medial axis transformation of a planar shape[END_REF]Fig. 4] for an example in two dimensions). On the medial axis, the distance function to the boundary is generally not regular [2, Section 2.3]. The medial axis for a polytope in R n is composed of a finite number of n-1 dimensional sets (possibly not straight or planar if the polytope is nonconvex) of finite measure in R n-1 (see, e.g., [START_REF] Attali | Stability and computation of medial axes: a state-of-theart report[END_REF][START_REF] Chazal | Stability and finiteness properties of medial axis and skeleton[END_REF][START_REF] Mérigot | Détection de structure géométrique dans les nuages de points[END_REF]). Since the mesh is regular and quasi-uniform, there are at most C/h n-1 simplices T M intersecting the medial axis. We consider such a simplex T M , and using the interpolation estimate d ∂Ω -I h d ∂Ω L ∞ (T M ) ≤ Ch T ∇d ∂Ω L ∞ (T M ) [9, Theorem 1.103], we bound as follows:

d ∂Ω -I h d ∂Ω 2 0,T M ≤ h n T d ∂Ω -I h d ∂Ω 2 L ∞ (T M ) ≤ Ch n+2 T M .
Since there are at most C/h n-1 simplices T M concerned by the above estimate, we get d ∂Ω -I h d ∂Ω 2 0,Ω M ≤ Ch 3 where Ω M stands for the set of simplices intersecting the medial axis.

Consider now the elements T R which do not intersect the medial axis. In this case the distance function is C 1,1 (see, e.g., [START_REF] Birbrair | Medial axis and singularities[END_REF][START_REF] Caffarelli | The free boundary for elastic-plastic torsion problems[END_REF][START_REF] Mérigot | Détection de structure géométrique dans les nuages de points[END_REF]), so its gradient is Lipschitz and almost everywhere differentiable. Then we can bound

d ∂Ω -I h d ∂Ω 0,T R ≤ Ch 2 T R |d ∂Ω | H 2 (T R ) .
By summation, we get d ∂Ω -I h d ∂Ω 2 0,Ω\Ω M ≤ Ch 4 . As a result we obtain inf v∈K vu h 0,Ω ≤ Ch 3/2 and the final bound u -u h 1,Ω ≤ Ch min (3/4,α-1) follows.
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Finite element discretization

Let T h be a family of simplicial meshes of the domain Ω (h := max T ∈T h h T where h T is the diameter of T ). The family of meshes is supposed regular and quasi-uniform. Let V h be a family of Lagrange finite element spaces of degree one indexed by h, and defined precisely as:

Let N h be the set of the nodes of the mesh and set

The discrete problem is as follows (recall that C > 0):

and it admits a unique solution.

Remark 3.1. If Ω contains a reentrant corner (take for instance a L-shaped domain when n = 2), it is easy to check that generally

for n = 2, and choose a mesh T h of Ω that contains an edge E between nodes a 1 = (-0.3-α, -0.3+α) and a 2 = (-0.3+α, -0.3-α) with α small enough (so that (0, 0) is their closest boundary point). Take

Then, by linear interpolation on E, there holds

3)) and we deduce that v h / ∈ K. Note however that, when Ω is a convex set in R n there holds K h ⊂ K, since the hypograph of d ∂Ω is convex [14, Chapter B, Section 1.3].

A priori error estimate

Our main result is:

be an open bounded polytope, connected and with Lipschitz boundary.

1. Let Ω be convex, u ∈ K ∩ H 2 (Ω) and u h ∈ K h be the solutions to problems (3) and ( 5), respectively. There holds

(Ω) and u h ∈ K h be the solutions to problems (3) and ( 5), respectively. There holds

Remark 4.1. 1. In the one dimensional case, since Ω is connected, it is necessarily convex, so we recover the well known optimal result of order O(h) (see, e.g., [START_REF] Glowinski | Numerical analysis of variational inequalities[END_REF]).

2. In the convex case, the solution is known to be in W 2,p (Ω) for any 1 < p < ∞ [4].

3. In the nonconvex case we have to add the assumption ∆u ∈ L 2 (Ω) which is necessary to write Falk's lemma in its standard form. Otherwise this would lead to additional technicalities (and changes for the convergence rate of course) which are beyond the scope of this paper. Note that reference [START_REF] Caffarelli | The free boundary for elastic-plastic torsion problems[END_REF] investigates some regularity properties of the solution to the torsion problem near reentrant corners.