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Abstract

This study is concerned with the elastoplastic torsion problem and its standard finite
element approximation using piecewise affine Lagrange finite elements. In the case of a
polytopal convex domain in dimension n ≥ 2 we obtain a H1-error bound of order h for
the solution. For a non convex domain we obtain an order h3/4. This improves the existing
bound of order h1/2.
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1. Introduction

Problems written with weak formulations involving variational inequalities represent
various nonlinear phenomena which occur in mechanics and physics [5, 12]. We focus
on the elastoplastic torsion problem, as presented in, e.g., [8] (see also [3, 9]). In the
aforementioned reference, a direct piecewise linear Lagrange finite element approximation
of the variational inequality is also presented, as well as a convergence result (Theorem 3.3),
and two error estimates in the H1-norm, in dimension one (Theorem 3.4) and in dimension
two (Theorem 3.5). The error estimate in one dimension is optimal (O(h)), whereas it

remained suboptimal in dimension two, as it is of order O(h
1
2
− 1

p ) for a source term in
Lp, p > 2. This bound has not been improved since then, up to our knowledge. Among
the few existing results are weak and strong convergence results [13], and error estimates
of O(h) for the L2-norm of the gradient of the solution and under suitable restrictive
assumptions, for mixed finite element approximations, using P1/P0 finite elements [7] or
Raviart-Thomas finite elements [4].
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In this study we focus on a problem with a positive constant source term. In this
case the variational inequality can be reformulated as an “obstacle” problem where the
constraint involves the distance to the boundary, so the obstacle is nonsmooth and the
usual techniques from the obstacle problem can not be directly applied. We present
a new direct finite element approximation of the variational inequality, that makes use
of piecewise linear, continuous, Lagrange finite elements, and in which the constraint
involving the distance function is imposed at each node. When the domain is convex, the
discretization is conforming and we prove error estimates in any dimension n ≥ 1, with an
optimal error bound of order O(h) for a regular enough continuous solution. In the case of
a non convex domain, an extra term appear due to non conformity, that is challenging to
bound. We manage to derive an error bound of O(h3/4) for a regular enough continuous
solution.

As usual, we denote by Hs(.), s ∈ R, the Sobolev spaces. The usual norm of Hs(D) is
denoted by ‖·‖s,D. The space H1

0 (D) is the subspace of functions in H1(D) with vanishing
trace on ∂D. The letter C stands for a generic constant, independent of the discretization
parameters.

2. The elastoplastic torsion problem

Let Ω ⊂ Rn, n ≥ 1, be an open bounded polytope, connected and with Lipschitz
boundary. We consider the variational inequality modelling the torsion of an infinitely
long elastoplastic cylinder of cross section Ω and plasticity yield r > 0. To simplify we
assume that r = 1. The problem is to find the stress potential u such that

u ∈ K1 : a(u, v − u) ≥ L(v − u), ∀ v ∈ K1, (1)

where a : H1
0 (Ω)×H1

0 (Ω)→ R is the bilinear form given by:

a(u, v) :=

∫
Ω
∇u · ∇v, ∀ u, v ∈ H1

0 (Ω),

and L(v) :=
∫

Ω fv ∀ v ∈ H
1
0 (Ω), f ∈ L2(Ω). The notation K1 represents the nonempty

closed convex set of admissible stress potentials:

K1 :=
{
v ∈ H1

0 (Ω) : |∇v| ≤ 1 a.e. in Ω
}
,

where | · | denotes the euclidian norm in Rn. From Stampacchia’s theorem we deduce that
Problem (1) admits a unique solution (see also, e.g., [5, 8, 9, 12]).

Next we suppose that f = C is a constant function. In this case and according to [1]
(see also [11]) the problem (1) can be rewritten as follows: find the stress potential u such
that

u ∈ K : a(u, v − u) ≥ C
∫

Ω
(v − u), ∀ v ∈ K, (2)

with
K :=

{
v ∈ H1

0 (Ω) : |v| ≤ d∂Ω a.e. in Ω
}
,

and d∂Ω denotes the (interior) distance function with respect to the boundary ∂Ω:

d∂Ω(x) := inf
y∈∂Ω

|x− y|, ∀ x ∈ Ω.
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Note that (2) still admits a unique solution from Stampacchia’s theorem. To lighten the
discussion we can suppose without loss of generality that C > 0, so problem (2) can be
rewritten as follows: find the stress potential u such that

u ∈ K : a(u, v − u) ≥ C
∫

Ω
(v − u), ∀ v ∈ K, (3)

with
K :=

{
v ∈ H1

0 (Ω) : 0 ≤ v ≤ d∂Ω a.e. in Ω
}
.

Again (3) admits a unique solution from Stampacchia’s theorem. Now we consider problem
(3) which can be seen as a kind of double obstacle problem.

Remark 2.1. In the case where f = C is a positive constant, note that we could write the
same variational inequality as in (1),(2) and (3) but with the convex set

K̃ :=
{
v ∈ H1

0 (Ω) : v ≤ d∂Ω a.e. in Ω
}
.

So the torsion problem can be simply seen as an obstacle problem but with a nonsmooth
obstacle which is the distance function (roughly speaking the distance function does not lie
in H2(Ω)). This implies that the classical finite element error analysis for the obstacle
problem can not be directly applied in the forthcoming analysis.

3. Finite element discretization

Let Vh be a family of Lagrange finite element spaces of degree one indexed by h, and
coming from a family Th of simplicial meshes of the domain Ω (h := maxT∈Th hT where
hT is the diameter of T ). The family of meshes is supposed regular and quasi-uniform.
We define:

Vh := {vh ∈ C (Ω) ∩H1
0 (Ω) : vh|T ∈ P1(T ), ∀ T ∈ Th}.

Let Nh be the set of the nodes of the mesh and set

Kh := {vh ∈ Vh : 0 ≤ vh(a) ≤ d∂Ω(a), ∀a ∈ Nh}.

The discrete problem is as follows (recall that C > 0):

uh ∈ Kh : a(uh, vh − uh) ≥ C
∫

Ω
(vh − uh) ∀ vh ∈ Kh, (4)

and it admits a unique solution.

Remark 3.1. If Ω contains a reentrant corner (take for instance a L-shaped domain when
n = 2), it is easy to check that generally Kh 6⊂ K. Note however that, when Ω is a convex
set in Rn there holds Kh ⊂ K, since the hypograph of d∂Ω is convex [10, Chapter B,
Section 1.3].
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4. A priori error estimate

Our main result is:

Theorem 4.1. Let Ω ∈ Rn be an open bounded polytope, connected and with Lipschitz
boundary.

1. Let Ω be convex, n ≤ 3, u ∈ K ∩H2(Ω) and uh ∈ Kh be the solutions to problems
(3) and (4), respectively. There holds

‖u− uh‖1,Ω ≤ Ch‖u‖2,Ω. (5)

2. Let Ω be non convex, u ∈ K ∩Hα(Ω) (α > max(1, n/2)), ∆u ∈ L2(Ω) and uh ∈ Kh

be the solutions to problems (3) and (4), respectively. There holds

‖u− uh‖1,Ω ≤ Chmin(3/4,α−1)‖u‖α,Ω. (6)

Remark 4.1. 1. In the one dimensional case, since Ω is connected, it is necessarily
convex, so we recover the well known optimal result of order O(h) (see, e.g., [9]).

2. In the convex case, the solution is known to be in W 2,p(Ω) for any 1 < p <∞ [2].
3. In the non convex case we have to add the assumption ∆u ∈ L2(Ω) which is neces-

sary to write Falk’s lemma in its standard form. Otherwise this would lead to additional
technicalities (and changes for the convergence rate of course) which are beyond the scope
of this paper. Note that reference [3] investigates some regularity properties of the solution
to the torsion problem near reentrant corners.

Proof: From standard Falk’s Lemma (see, e.g., [9]), since ∆u ∈ L2(Ω) and since Ihu ∈ Kh,
where Ih is the Lagrange interpolation operator mapping onto Vh, we get

‖u− uh‖21,Ω ≤ C
[

inf
vh∈Kh

(‖u− vh‖21,Ω + ‖u− vh‖0,Ω) + inf
v∈K
‖v − uh‖0,Ω

]
≤ C

[
‖u− Ihu‖21,Ω + ‖u− Ihu‖0,Ω + inf

v∈K
‖v − uh‖0,Ω

]
, (7)

where the constant C depends on ‖∆u‖L2(Ω).
1. In the first case (i.e., Ω is convex and u ∈ K ∩H2(Ω)) the first two terms in (7) are

bounded by Ch2 and the second infimum disappears according to Remark 3.1. So bound
(5) holds.

2. Let Ω be non convex, u ∈ K ∩Hα(Ω) with max(1, n/2) < α ≤ 2 and ∆u ∈ L2(Ω).
From standard approximation bounds the first two terms in (7) are bounded by Ch2(α−1).
To bound the infimum on K, we set v := min(uh, d∂Ω). Clearly v ∈ H1(Ω). Indeed for Ω a
bounded polytope there holds d∂Ω ∈ H1(Ω), and the minimum of two functions in H1(Ω)
remains in H1(Ω) [14, Lemma 1.1]. Moreover we have v = 0 on ∂Ω and 0 ≤ v ≤ d∂Ω,
which guarantees that v ∈ K.

Now set 1h := {x ∈ Ω, d∂Ω(x) < uh(x)}. This set is generally nonempty since Kh 6⊂ K.
If x /∈ 1h, then v(x) = uh(x) by definition. So

‖v − uh‖20,Ω =

∫
Ω

(v − uh)2 =

∫
1h

(d∂Ω − uh)2.
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Since uh ∈ Kh we have uh(a) ≤ d∂Ω(a) = Ihd∂Ω(a), ∀a ∈ Nh. So Ihd∂Ω − uh ≥ 0 in Ω.
Let x ∈ 1h, then we bound:

0 < |(uh − d∂Ω)(x)| = (uh − d∂Ω)(x)

= (uh − Ihd∂Ω)(x) + (Ihd∂Ω − d∂Ω)(x)

≤ (Ihd∂Ω − d∂Ω)(x).

Therefore

‖v − uh‖20,Ω =

∫
1h

(d∂Ω − uh)2 ≤
∫

1h

(Ihd∂Ω − d∂Ω)2 ≤ ‖d∂Ω − Ihd∂Ω‖20,Ω.

Note that since Ω is a polytope, then d∂Ω − Ihd∂Ω = 0 on all the simplices T of the mesh
excepted those which intersect the regions where d∂Ω is not differentiable (since d∂Ω is
affine on these simplices). These regions where d∂Ω is not differentiable are straight line
segments when n = 2 and bounded plane polygons when n = 3. The measure (in Rn−1)
of these regions is finite and only depends on the geometry of Ω. Since the mesh is regular
and quasi-uniform, there are at most C/hn−1 simplices T where d∂Ω − Ihd∂Ω 6= 0. We
consider such a simplex T , and using the interpolation estimate ‖d∂Ω − Ihd∂Ω‖L∞(T ) ≤
ChT ‖∇d∂Ω‖L∞(T ) [6, Theorem 1.103], we bound as follows:

‖d∂Ω − Ihd∂Ω‖20,T ≤ hnT ‖d∂Ω − Ihd∂Ω‖2L∞(T ) ≤ Ch
n+2
T .

Since there are at most C/hn−1 simplices T concerned by the above estimate, we get
‖d∂Ω − Ihd∂Ω‖20,Ω ≤ Ch3. As a result we obtain infv∈K ‖v − uh‖0,Ω ≤ Ch3/2 and the final
bound

‖u− uh‖1,Ω ≤ Chmin(3/4,α−1)

follows. �
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