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In this work, we consider a pipe routing problem encountered in the space industry to design waveguides used in telecommunication satellites. The goal is to connect an input configuration to an output configuration by using a pipe composed of a succession of straight sections and bends. The pipe is routed within a 3D continuous space divided into non-regular convex cells in order to take obstacles into account. Our objective is to consider several non-standard features such as dealing with a set of bends restricted to a bend catalog that can contain both orthogonal a nd non-orthogonal bends, or with pipes that have a rectangular section, which makes the pipe orientation important. An approach is introduced to automate the design of such pipe systems and help designers to manage the high number of constraints involved. Basically, this approach formulates the pipe routing problem as a shortest path problem in the space of routing plans, where a routing plan is specified by the parts composing a pipe and by geometrical constraints imposed on these parts. The problem is then solved using weighted A* search combined with a linear program that quickly evaluates the feasibility and the cost of a rouLing plan. The paper shows that the approach obtained has the capacity to solve realistic instances inspired by industrial problems.

Introduction

®

Check for updates

"\,Vaveguide routing plays an impor tant rote during the design phase of a telecommunication satellite. A waveguide can be seen as a pipe with a rectangular section which carries an electromagnetic signal between two components of the satellite payload. 'Itaditionally, waveguide designers define routes manually and build a route as a succession of rigid straight sections and rigid bends using their expertise to select a routing configuration that saves length and bends. The bends that can be used are defined in catalogs provided by waveguide manufacturers. These catalogs can include orthogonal bends (90° bends, when the direction of the pipe before the bend is orthogonal to the direction of the pipe after the bend) but also non orthogonal ones (30° bends, 45° bends, 60° bends, etc.) which are uscful to save length in the very constrained routable space inside a satellite.

Due to the large number of waveguides to be routed and to the large number of constraints to take into account , waveguide routing is usually a highly timeconsuming task. In other industries, research has been conducted to automate the pipe routing process, to save tiine and money during the design phase.

Existing Methods. Historically, the classic pipe routing algorithm is the Maze algorithm introduced by Lee [START_REF] Lee | An a.lgorit hm for path connections and its applications[END_REF]. It considers a discrete routing environment represented as a regular grid where the cells occupied by obstacles are labeled. Then , starting from the source cell, the best route is computed by exploring the cells' neighborhood until the target is reached. Other algorithms were proposed to consume Jess memory space, based on Particle Swarm Optimization [START_REF] Asmara | Automatic piping system in ship[END_REF], Genetie Algorithm 118,211, or Ant Colony Optimization [START_REF] Fan | The ant colony optimization for ship pipe route design in 3D space[END_REF][START_REF] Jia Ng | A co-evolutionary improved multi-ant colony optimization for ship multiple and branch pipe route design[END_REF]. Recently, Belov also introduced a Constraint Programming formulation 1 4, 5]. With regard to non orthogonal bends, Ando proposed to int roduce additional edges in t he cell adjacency gTaph [START_REF] Ando | An automaLic piping algorithm including elbows and bends[END_REF], but this approach does not guarantee to find a feasible solution even if one exists in t he continuous space.

Other methods called Skeleton approaches build a graph of possible route candidates using rules inspired by experience. The pipe rout ing problem is still modeled as a shortest path problem in a discrete graph, but this time the nodes of t he graph are associated wit h continuous positions t hat are not forced to be located on a regular grid. The skeleton approach was tackled using the Dikjstra algorithm [START_REF] Kim | The development of a practical pipe auto-routing system in a shipbuilding CAD environ ment using network optimization[END_REF] or Mixed Linear Integer Programming [13[. A more recent paper also explored Evolut ionary Algorit hms considering mult i-objective routing in a skeleton graph [START_REF] Liu | Multi-objective routing of mult i-terminal rectilinear pipe in 3D space by MOEA/ D and RSMT[END_REF]. Similarly to the cell decomposition strategy, the skeleton approach can lead to sub-opt imal solut ions in the continuous space.

To improve the quality of t he solutions, some authors proposed a two-stage approach t hat first searches for a globa l routing channel, and t hen details the routes inside each cell of this channel [START_REF] Zhu | Pipe routing-path planning (with many constraints)[END_REF], sometimes using patterns [START_REF] Park | P ipe-routing algorithm development: case study of a ship engine room design[END_REF].

To avoid discretizing the routing space, other methods discretize the set of possible physical pipe components and build pipes by adding components one by one from a catalog containing bends and straight sections of fixed length [START_REF] Furuholmen | Evolutionary approaches to the t hree-dimensional multi-pipe routing problem: a comparative study using direct encodings[END_REF].

Again, this method can fail to find feasible solutions due to the discretization.

Another way to route pipes in a continuous environment is the Escape Algorithm or Line Search Algorithm. This technique introduced by Hightower [START_REF] Hightower | A solution to line-routing problems on the cont inuous plane[END_REF] extends lines from t he origin point using a set of directions and repeats this extension each time a line intersects an obstacle, until t he destination is reached. This approach allows dealing wit h non orthogonal bends but it does not take into account the orientation of the pipe sections, which is required in the case of waveguide rout ing. Indeed, the waveguide must reach t he destination with t he right orientation, t hat is to say with the right angular position of the section around t he neutral fibre followed by t he barycentre of t he section along the pipe. Last, parametric models were also proposed using adaptable pipe patterns with parameters such as the length of straight sections. The pipe route can then be optimized using Mathematical Programming 125, 28] or Genetie Algorithms Il 7], but existing models do not consider non orthogonal bends.

Contribution. Most of the previous methods rely on the classical assumptions t hat the pipe has a circular section, has axis-parallel segments and/ or uses orthogonal bends only, but these hypotheses are not acceptable for waveguides. For these reasons, no method from the literature can be reused to solve the waveguide routing problem. This article introduces a new pipe routing technique that addresses the t hree following challenges: optimize pipe cost in a 3D cont inuous routing space, use non orthogonal bends from a catalog and take into account unsymmetrical pipe sections. We consider the routing of a single pipe only. In an industrial context, such a routing problem must be solved in few seconds in order to ensure quick iterations during the design phase. The extended problem which deals with several pipes is left for future work.

T he rest of t he article is organized as follows. Section 2 introduces a formai definition of t he pipe routing problem considered. Section 3 describes t he notion of routing plan and presents a linear program t hat evaluates the feasibility and cost of a plan. Section 4 formulates the pipe routing problem as a shor test path problem in t he space of routing plans and defines heuristics for estimat ing t he cost required to reach the goal configuration from the current routing plan. Section 5 provides experimental results obtained with the weighted A* search, and Sect. 6 gives future work perspectives.

Problem Definition

Routing Space

T he routing space W Ç IR 3 describes t he physical space that the pipe neutral fibre can cross. The structure of a t elecommunication satellite is made of several panels on which waveguides must be fixed. T hus, the mutable space is naturally split into several cells that correspond to the close environment of each panel. As about one hundred obstacles can be fixed on a panel, these cells are divided into sub-cells that avoid obstacles, using a Delauüay constrained triangulation. This way, we mode! the routing space W as a set of cells C where each cell c E C is a convex polyhedron Pc (see Fig. 1).

Two cells c, d E C that overlap are called adjacent, and t heir interface i is t he non-empty polyhedron Pi = Pc n Pc'. We denote by I the set of rout ing interfaces between cells, and by I (c) the set of interfaces involving cell c. We assume here that each interface is a surface, even if the techniques defined can be extended to the case where interfaces are volumes. From t hese definitions, the routing space can be represented as a graph containing one node per routing cell and one edge per routing interface between two cells. In the following, t his graph is assumed to be connected .

Input a nd Output Configurations

In pipe routing, the goal is to connect an input configuration with an output configuration . Mathematically speaking, a configuration 0 is a pair (Po, o 0 ) where 0,r ,2 0 dest. ,4 = ,r Fig. 1. Pipe in a simple routing space containing three cells (interfaces between cells are depicted in blue, straight sections in orange and bends in green) (Color figure online)

Pois a point in JR 3 and oo is an orientation defined by three vectors (~, ... , e;,j) that form an or thonormal basis of R 3 with ~ normal to the pipe section.

The origin point is located in a convex polyhedron pori. included in an origin cell cari . E C and the destination point is located in a convex polyhedron pde s i. included in a destination cell cde st • E C. Using polyhedrons pori. and pde s t • instead of fixed origin and destination points allows keeping some flexibility in early design phases. For instance, if a straight pipe section can connect an origin and a destination configuration up to a sma.!l position error, it can be relevant to slightly move the origin or destination point instead of defining a pipe that contains a loop to compensate for the position error.

Additionally, the (unique) origin orientation oori. can be set as the reference orientation, and there exists a set of possible destination orientat ions CJdeSi., either because the destination orientation is still flexible, or because some orientations are equivalent from the pipe section point of view.

Straight Sections and Bends

To connect input and ouput configurations, engineers use catalogs of parts referred to as straight sections and bends. In our modeling, these parts are approximated as functions that transform a configuration 0 = ( P 0 , o 0 ) into another configuration 0' = (P 0 ,, 00, ) .

A straight section u of length Lu E JR+ is modeled as an application that transforms a configuration 0

= (P 0 , o 0 ) into a configuration 0' = u (0) = (PO', 00' )
where point P0' is obtained by a translation of P 0 along direction ~ (P0' = Po+Lu ~) and where the orientation is unchanged (o 0 , = o 0 ). In the following, a translation of length L is referred to as t L, t herefore u ( 0) = t L u ( 0).

The modeling of bends is a bit more complex. Basically, a bend b bas a certain length and changes the direction of the pipe according to a given bend radius. lt is approximated as a pipe section composed of a straight section of length Lb E JR+ called the half-length of the bend, an orientation change defined by a rotation matrix Mb, and another straight section of length Lb again (see Fig. 1). More formally, a bend b is modeled as a fonction that tranforms a configuration 0 = (Po,00) into a configuration tLb orMb otLb (0) obtained by applying (1) a translation tL1, of length Lb, (2) a rotation r M b defined by matrix Mb , and (3) a second translation tLb of length Lb. For a given bend, the intermediate configuration r M1, o t L1, ( 0) is called the transition configuration. It corresponds to the configuration obtained just after the break point of the bend.

In the following, we consider a restricted set of bends B called the catalog of bends. It can contain only 90° bends for instance, or 90° and 45° bends, or any other combination of bend types and angles. Using a catalog of bends can seem counter-intuitive at first since bend suppliers often propose a continuous choice of bend angle radius, and since complex bends could be obtained through 3Dprinting. However, using a catalog of bends allows reusing bends and ordering numerous bends of the same type, which reduces the costs.

Pipe and Polyline Approximation

Given the catalog of bends B , a pipe 1r of length N"' > 0 is t hen a pair 1r = ( 0~ri. , a"') composed of an initial configuration 0~ri. and a composition alternating between straight sections Urr ,i , for i E [1, Nrr] , and bends brr,i E B, for i E [1, Nrrl ] (see Fig. 1).

As straight sections and bends apply translation and rotation operations on the initial configuration, the neutral fibre of pipe 1r describes a polyline [A, ... , PNr.+il in JR. 3 whose points correspond to the transition configurations of the bends ( except for the first and last points). The i th point of this polyline is P1r ,i, and the i th segment is [Prr,i, P1r,i+il • vVe also denote by e1r,i the length of the i th segment of pipe 1r, and by 01r,i = (Prr,i, 01r,i) the i th transition configuration of 1r, for i E [1, N"' + 1] (with the convention that 0rr,l = 0~••i. , and that 01r ,Ndl is the configuration obtained at the end of the pipe).

Constraints

vVe now list the constraints that must be satisfied by a pipe 1r .

-The initial and final configurations of 1r must be consistent with t he required input and output configurations, that means respectively Prr,l E pari. and P1r,Nr. +l E pdeSl. , but also O,r, l = o 0 '"i. and Orr,Nr.+1 E odeSl ..

-The polyline defined by the pipe must contain at most Nmax segments. This limits the number of break points, which is particularly useful when the pipe conveys a flow whose quality is impacted by such break points.

-Every bend used in 1r must be long to catalog B .

-Ali segments of the polyline traversed by the neutral fibre of t he pipe must be contained within the routing space, that is [Prr,i, P1r,i+il C W for every i E [l , N"]. For computational reasons, the constraints enforcing that a pipe section must not cross other pipe sections are omitted. They can be checked afterwards, and in case of violation, a manual modification of t he pipe design is required. -For stability reasons, the pipe must be attached to floors or walls of the structure within which it is routed. As a result, there is a set of orientations Oc allowed within each cell c E C. Typically, for a rectangular pipe section we impose that the orientation o of each pipe segment passing through a cell c must be orthogonal to a facet of c called a wall. If Tl denotes the normal of t his wall, we must ensure that either e,;;. Tl = 0 or ~. Tl = 0 (possibility to attach a bracket to one of the si des of the rectangular section). -Every straight section of the pipe must have a minimum length Lmin E JR+.

This specification cornes from constraints imposed by suppliers.

Objective Function

The objective in the pipe routing problem is to minimize the overall cost of the pipe, given that each bend b bas a cost Cb E JR+ and each straight section of length e bas a cost e µ where µ E JR+ is a linear cost. The objective is then to minimize t he global cost C,r of the pipe defined by:

Nr. N r. -1 c" = µ L e" ,i + L cbr. ,i i = l i = 1

Routing Plan

In order to route a pipe, we propose to iteratively build its neutral fibre starting from the origin configuration, by making at each step decisions such as the addition of a new bend at the end of the pipe or the crossing of an interface between two adjacent cells. To formalize the approach, the concept of routing plan is introduced to represent the decisions made so far on the pipe components .

Definition

A routing plan s describes, in an abstract way, a neutral fibre composed of N 8 successive segments with for each segment i:

-the bend bs,i E B applied at the end point of segment i, for i E [l , Ns -l ] ;

-the sequence of interfaces Is ,i Ç I crossed by segment i, for i E [l, Ns]-Moreover, a routing plan can be terminated or not. "\i\/hen a routing plan is terminated, the neutral fibre has to reach the pipe destination. The set of routing plans is denoted by S. Severa! data ca.n be derived from the basic definition of a routing plan, including:

-the orientation Os ,i E O of segment i, for i E [l , N 8 ]; this orientation can be computed from the origin orientation and from the list of bends applied; -the cell Cs,i E C to which the end point of segment i belongs, for i E [l , N 5 ] ;

this cell can be computed from the last interface crossed by segment i .

.2 Feasibility and Cost

A routing plan s E S is feasible if it is possible to create a neutral fibre following the choices made in s and satisfying the pipe routing constraints introduced in Sect. 2.5. This feasibility problem can be formulated as a linear program, referred to as LP 8 , that contains four kinds of variables:

-length variables ef such that, for i E [1, Ns], the real variable ef is the length of the i th segment of the ncutral fi bre;

-position variables pf = (Pf,x, Pi,y,P't,,z) such that, for i E [1, N 8 + 1], the real variable Pf,x (respectively Pf, y and Pf,J is the x-coordinate (respectively y-coordinate and z-coordinate) of the i th point of the neutral fibre;

-interface variables qf,j = (qt,j ,x> qf,J,Y' qf,j,z) such that, for i E [1, Ns] and j E Is ,i, the real variable qf,j,x (respectively qtj,y and Q J,j,J is the x-coordinate (respectively y-coordinate and z-coordinate) of the intersection between t he i th segment of the neutral fibre and an interface j it has to cross; -interface distance variables af,j such t hat, for i E [1, N 5 ] and j E Is,i, the real variable aL is the distance between the i t h point of the neutral fibre and the intersection q'f,j wit h the interface j it bas to cross. 
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Constraint 2 states that t he neutral fibre must start from the origin cell. Such an inclusion constraint wit hin a convex polyhedron can be expressed as a set of linear constraints. Const raint 3 imposes that if plan s is terminated, the neutral fib re must reach the destination cell. In the same way, Constraints 4 force the successive break points of the neutral fibre to belong t o the cell to which they are allocated given plan s. Constraints 5 impose a m inimal length on the segments. For the i th segment, this minimum length is obtained from the minimal length Lmin of straight sections and from t he respective contributions Lb. _ ,_, and Lb,., of the previous and next bends (see Fig. 2). By convention, we assume that Lbs,o = 0 and Lbs,Ns = 0, since the first and last segments do not have a previous or a next bend respectively. Constraints 6 define the coordinates of the ( i + 1 ) th point of the neutral fibre from t he coordinates of t he i th point, the orientation of t he i th segment as specified by routing plan s, and the length of this segment . Constraints 7-9 im pose that the intersection between the i th segment and an interface j it has to cross must belong both to the interface and to the segment. If LPs does not have a solution, then routing plan s is not feasible and, by convention, its cost is infinite. On t he cont rary, when there is a solution, routing plan s is feasible. In this case, t he optimum value g (s) of LP 5 is a lower bound on the cost of any pipe t hat satisfies t he constraints defined by routing plan s. Furthermore, the straight sections of t he pipe can be rebuilt from the optimal lengths found for t he pipe segments, while the bends are already defined by s.

Shortest Path Problem Formulation

Based on the routing plan presented above, the pipe routing problem can be seen as a shortest path problem in a graph whose nodes correspond to routing plans and whose arcs represent the basic updates that can be made on routing plans: bend addition, interface crossing, or pipe termination. The goal is then to explore the space of routing plans S from an empty routing plan starting at the origin cell c or i . with the origin orientation o 0 ''i. , in order to reach a feasible and terminated plan, ending at destination cell cde st • with a destination orientation in o de st • . T hus, the pipe routing problem can be solved using an A *-like algorithm after formally defining the possible successors of a routing plan in the search space (see Sect. 4.2) and a path-finding heuristic (see Sect. 4.3).

Search Algorithms

Various heuristic search schemes can be considered to solve shortest path problems. Severa! of them were compared in [START_REF] Wilt | A comparison of greedy search algorithms[END_REF], showing that hill climbing methods can provide fast results [START_REF] Hoffmann | Extending FF Lo numerical state variables[END_REF][START_REF] Koenig | Comparing real-t ime and incremental heuristic search for realtime situated agents[END_REF], while best-first search [1, 8, llj and beam search [START_REF] Bisiani | Bearn sea rch[END_REF][START_REF] Furcy | Limited discrepancy beam search[END_REF]30] often offer a better trade-off between solution quality and computation time. Also, comparecl to beam search, best-first search is more suitable for state spaces in which destination states cannot be reached from some states.

We focus here on best-first search techniques, that clevelop at each step the search node t hat seems the more promising among ail search nodes created so far.

Among the best-first search algorithms, the Weighted A* approach [START_REF] Pohl | First results on the effect of error in heuristic search[END_REF] provides competitive results in many fields. Basically, in the A* algorithm [START_REF] Hart | A formai basis for t he heuristic determination of minimum cost paths[END_REF], t he evaluation of a state s is given as f ( s) = g ( s) + h ( s) where g ( s) stands for the minimal cost to reach s from t he initial state and h ( s) stands for the heuristic evaluation of the minimum cost to reach a goal stat e starting from s. In Weighted A* (denoted WA *), this evaluation is replaced by f (s) = g (s) + E • h (s) where E > 1 gives a higher weight to the heuristic evaluation, so as t o favor the expansion of search nodes corresponding to configurations t hat seem t o be close to the destination. ln our case, g ( s) is obtained from the value of an optimal solution to LPs, while three possible versions of h ( s) are presented in Sect. 4.3.

.2 Neighborhood

By definition, a terminated routing plan cannot be expanded. On the contrary, if routing plan s E S is not terminated, it can be expanded by adding new routing decisions, as clefined below. During plan expansions, only the feasible plans are considered as successors. lndeed, if LPs is not feasible and if plan s' E S extends s, t hen LP 8 , is not feasible either because LP 8 is a subproblem of LP 8 ,.

Bend Addition. Let b be a bend of catalog B. If Ns < Nmax and if the orientation rMb ( Os ,N. ) obtainecl after a pplying bend b from t he current last orientation Os,N.

is acceptable in the current last cell Cs ,N, (rMb (os ,N. ) E Oc.,N.) , then bend b can be adcled to routing plan s. This adds a new segment to the neutral fibre and definitively allocates the end point of the N 5 t h segment to cell cs,N • . Formally, t he resulting routing plan s' is defined as follows:

b.s' ,i == bs,i bs',N 5 , -l = b I s, ,i = Is,i Is',N 8 , = [] Vi E [l , N 5 , -2] Vi E [1,Ns' -1] ( 13 
) ( 14 
) ( 15 
) (16) ( 17 
)
Interface Crossing. Let j be a neighbor interface of the current cell, t hat is j E I ( C8 , N.) . Let nj be the normal to the interface that is oriented towarcls the current ce!!. If the scalar product between the current orientation Os ,N . and ni is negative and if Os ,N. satisfies the orientation constraints of t he cell Cj located on the other side of the interface (os ,N . E Oc; ), then interface j can be crossed. We also limit ourselves to the destination cells that have not becn visitcd before, meaning that Cj =/= Cs ,i for i E [l , Nsll -Formally, the resulting plan s' is defined as follows:

N_., = N_.

bs' ,i = bs,i Is' ,i = Is ,i

I , N = I N U [1"] .'; , s 1 8 , s 1 Vi E [l, N 5 , -l ll (18) (19) ( 20 
)
Pipe Termination. Last, if the destination cell and the destination orientation have been reached, meaning that Cs ,N s = cdeSl. and Os ,N s E odeSl.' then routing plan s can be terminated. The resulting plan s' is the same as plan s but it is terminated and it has to reach the destination position (see Constraint 3).

Trail Heuristic

ln order to choose a routing plan s to expand at each step, one key component is the heuristic evaluation of s , that must give an estimation of t he minimum cost required to extend s and reach a feasible and terminated routing plan. This section proposes three heuristic evaluations.

Distance as the Orow Flies.

A first naive heuristic evaluation is the distance as the crow flies from the end point of the routing plan to the destination position, referred to as ha.c.f .. However, this heuristic does not take into account the routing space constraints. The introduced method with this heuristic and E = 1 is used as baseline because of the Jack of a usable approach from the literature.

Trail Space. To get more accurate estimations of the distance to the destination, we introduce two other heuristics based on a graph G (M, V) defining so-called candidate trails between some specific points of the routing space. Formally, a trait for a routing plan s E S is a polyline inside the routing space that connects the end point PÎv, + l of sas provided by LP 8 to the destination polyhedron pde 5 l.. ln a trail, t he constraints expressing that each orientation change of the polyline must correspond to a bend of the catalog are ignored, the goal being only to estimate the quality of a routing plan. Furthermore, the sequence of interfaces crossed by a trail is called a channel.

We propose to discretize the trail space during a preprocessing step by sampling a set of points M (i) on each interface i E I using Bridson's algorithm [START_REF] Bridson | Fast Poisson disk sampling in arbitrary dimensions[END_REF].

It is a maximum Poisson disk sampling method which ensures that sampled points are separated by a sampling radius p E JR+ , such that when p decreases, the density of sampled points increases. Then, for two distinct interfaces i, i' involving a common cell c (i, i' E I(c)), each point in M (i) is connected to ail the points in M ( i'). Last, a set of points M ( pde s l•) is generated in the destination polyhedron pde st •. The points in M (pde st. ) are connected to points on the interfaces of cde st. . The graph obtained is denoted G (M , V).

Trail Length Heuristic. During a preprocessing step, the distance LM from each point M E M to the destination cell as well as the corresponding shortest trail is computed using a Dijkstra procedure. Then, the remaining cost to the destination for a routing plan s E S can be evaluated based on the length of the shortest trails in G (M , V) (see Fig. 3). The estimation is further improved by using the shortest trail for an extended routing plans E S that can be computed by crossing as many interfaces as possible in the channel of t he shortest trail from plan s without adding any bends. The feasibility of the extended plans is evaluated using the linear programs, whose solutions can be reused when the extended plans are expanded in turn. Finally, this heuristic is defined by: ( Trail Cost Heuristic. Previous heuristics only estimate the lineic contribution to the cost of a pipe. However, the polyline [M 1 , ... , Mg] of the shortest trail for extended plan s can also be used to estimate the cost of the remaining bends that will be added to the pipe to reach the destination. T his approach is described in Algorithm 1, that returns a heuristic evaluation referred to as h cost • This algorithm analyzes the successive orientation changes on the trail and tries to reproduce these changes with the bends of the catalog. lt estimates the bend cost using a fonction u that takes as an input the orientation o of the pipe ------t--+ and a vector u , and that returns as an output a quantity u( o, u ) = e 0 ,3 • 11 t, 11 estimating through a scalar product the angular proximity between the main direction~ of orientation o and the direction defined by û . The doser u (o, Û) is to 1, the doser ois from direction û. Note that with such an approach, we ignore t he orientation of the pipe section around the neutral fibre. Last, from the last orientation o reached when following the trail, Algorithm Admissibility. It is important to note that heuristic fonctions htength and hcost are not necessarily admissible, as they can overestimate t he real cost required to reach the goal configuration. Additionally, even with the distance as the crow flies, the state evaluations are not monotonie, meaning that for a statc s' extending s, we might have f (s') < f (s) (proof omitted for space reasons, but basically it is possible to define an example in which the intermediate end point implicit ly chosen when solving LPs does not belong to an optimal path). These remarks imply that the first feasible and terminated routing plan reached by A *-like algorithms with these heuristics is not necessarily optimal in our case.

-t ~ -

Experiments

T he shortest path formulation presented in Sect. 4 for t he pipe routing problem can be solved using a Weighted A* (WA *) search hybridized with a linear program which evaluates the cost of routing plans. This hybrid approach has been implemented using the Java language and t he simplex solver from Apache Gommons Math 3. 6 .1 (but other LP solvers might be faster). It has been tested on four routing problems of increasing complexity, with t he three proposed heuristics ha.c. f. , hiength and h cost• Experiments were conducted on an Intel 2.70 GHz processor with 16 GB of RAM. In absence of a reusable approach from the literature, the baseline is the proposed method with ha.c.f. and E = 1.

1 Test Cases

In practice, the proposed method is used by adding conflicting obstacles iteratively into the cell decomposition. Thus, it is possible to reduce industrial cases to simple setups like the one presented on Fig. 4. T he dimensions of this routing space are 380 by 120 by 120. Instances 1, 2, 3 and 4 split this routing space into respectively 8, 34, 62 and 78 cells after adding respectively 0, 18, 42 and 58 obstacles into the cell clecomposition. Ail instances aim at connecting configuration 0s to configuration 0d using a maximum number of 100 bends (that defines the maximum number of segments). The bend catalog contains 90° and 45° bends that have a common cost Cb = 100. The linear cost is set to 1. In the inclustry, such instances have to be solvecl many times, so a solution must be found quickly. For this purpose, t he runtime has been limited to 3 min here, and the search is stopped when the first solution is found.

0.

Fig. 4. Configurations of the instances, with the routing space and the solution of instance 2 found using WA * search and heuristic hcost with E = 1.2 and p = 5.

R esults a nd Discussion

Our approach has been tested with the WA * search using E values set to 1 (corresponding to A*) , 1.2, 1.5, 2, 3 and 5. For the trail heuristics, the sampling radius p is set to 5. F igure 5 shows the performances and the number of visitecl plans for t he different heuristics. For clarity reasons, only the best values of E are shown for each heuristic. As expectecl, heuristic ha.c.f. which uses the distance as the crow flies cloes not succeed to solve clifficult instances and visits many more rout ing plans than other heuristics. In the same way, the trail length heuristic htcngth requires a high value of E = 5 to be able to solve more complex instances, and it does not manage to solve Instance 4 within an acceptable runtime. Nevertheless, when heuristics ha.c. f. and h1ength succeed, they provide goocl solutions. In comparison, heuristic hcost outperforms the previous ones when the number of cells increases, that is when there are more obstacles to avoid. Indeed, it solves a il instances wit hin reasonable runtimes, even with smaller values of E, and the solutions obtained on the smallest instances are competitive wit h ha.c. f . and htength• Difficult cases are solved after about one minute and the pipes found are acceptable by a human designer, as shown on Fig. 4. ln a second experiment, heuristic hcost has been tested using p values of 1, 5, 10, 25 and 50 to evaluate the impact of the sampling radius on the performances. The results are shown on Fig. 6. vVA * -search tends to visit more routing plans when t he sampling radius p decreases, meaning t hat more points are sampled on each interface. Consequently, t he resolution of the routing instances takes more t ime. However, increasing the sampling density seems to improve the cost of the solutions. This trend must be confirmed on more test cases, but the adj ustment of t he sampling radius would be a trade-off between the runtime and the quality of the solutions. On our instances, the best complete tuning uses é = 2 and p = 5, which provides the solut ion given in F ig. 4.

Obviously, the regularity of the solutions depends on the bend cost. The instances used in this paper strongly penalize t he bends in comparison with the linear cost, which favors t he regularity of the pipes. Bend costs closer to the lineic cost would lead to less regular optimal pipes and t he approach would provide solutions t hat might be rejected by designers because of a high number of bends.

Last, real test cases have confirmed that linear program LP 8 does not prevent a pipe from colliding with itself. It particularly happens to correct an infinitesimal gap on one axis between the origin and destination positions. This case can be fixed using a tolerance on positions, but the phenomenon also occurs when ...
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::, 103 the pipe orientation has to change in a small space. The automated management of self interfering constraints is a future work direction.

Conclusion

This paper presented an algorithm for routing a single pipe in a continuous 3D routing space divided into convex cells, using both orthogonal and nonorthogonal bends. The approach is able to take into account the orientation of the pipe section, which is particularly useful for rectangular pipes. It is based on a combination between weighted A* search in the discrete space of routing plans and linear programming for evalua ting the feasibility and the cost of a routing plan in the continuons routing space. Severa! heuristics were proposed and compared on realistic instances. The best one, based on a quick estimation of t he remaining trail to reach the destination, provides acceptable solutions within reasonable runtimes and can be used on industrial cases. For future work, the performance of the proposed approach could be improved by adding to t he routing plan the definition of the next interface that should be crossed. The underlying idea is that t he linear program could exploit such a specification to generate a better intermediate end point. F\.irthermore, the linear program LP 8 is solved from scratch at each iteration, but it could be warm-started using the solution formed for the prior routing plan. Additionally, instead of A* or weighted A*, a full Mixed Integer Linear Programming (MILP) mode) could be tested, even if experiments performed on obstacle-free routing spaces showed that getting results within a few seconds can be challenging for MILP. Last, the method must be extended to the multiple pipe routing problem using an high level approach like in [5j.

Linear program LP 8 2 :
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Fig. 2 .

 2 Fig. 2. Portion of a pipe between two successive break points of the neutral fibre (the straight section with variable le ngth is d epicted in orange). (Color figu re online)

Fig. 3 .

 3 Fig. 3. Trail heuristic on a simple routing case (trails are depicted in green). (Color figure online)

Fig. 5 .

 5 Fig. 5. Results of the three heuristics wiih p = 5 on the four test case instances.
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