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ABSTRACT

Introduction Detecting safety signals attributed to a drug in scientific literature is
a fundamental issue in pharmacovigilance. The constant increase in the volume
of publications requires the automation of this tedious task, in order to find and
extract relevant articles from the pack. This task is critical, as serious Adverse
Drug Reactions (ADRs) still account for a large number of hospital admissions
each year.
Objectives The aim of this study is to develop an augmented intelligence method-
ology for automatically identifying relevant publications mentioning an estab-
lished link between a Drug and a Serious Adverse Event, according to the Eu-
ropean Medicines Agency (EMA) definition of seriousness.
Methods The proposed pipeline, called LiSA (for Literature Search Application),
is based on three independent deep learning models supporting a precise detec-
tion of safety signals in the biomedical literature. By combining a Bidirectional
Encoder Representations from Transformers (BERT) algorithms and a modular
architecture, the pipeline achieves a precision of 0.81 and a recall of 0.89 at sen-
tences level in articles extracted from PubMed (either abstract or full-text). We
also measured that by using LiSA, a medical reviewer increases by a factor of 2.5
the number of relevant documents it can collect and evaluate compared to a simple
keyword search. In the interest of re-usability, emphasis was placed on building a
modular pipeline allowing the insertion of other NLP modules to enrich the results
provided by the system, and extend it to other use cases. In addition, a lightweight
visualization tool was developed to analyze and monitor safety signal results.
Conclusions Overall, the generic pipeline and the visualization tool proposed in
this article allows for efficient and accurate monitoring of serious adverse drug re-
actions from the literature and can easily be adapted to similar pharmacovigilance
use cases. To facilitate reproducibility and benefit other research studies, we also
shared a first benchmark dataset for Serious Adverse Drug Events detection.

1 Introduction

The development of a drug is a long road that can take several years. This journey involves several
requests for approval with regulatory authorities, whether to start clinical trials, to actually market
the drug or to modify some of the claims. Throughout these approval processes, the regulator, that
carries out a public safety mission, must ensure that no prior safety signal about the drug is known
at the time or after the authorization is granted. This task requires the regulator to review and mon-
itor both biomedical literature and surveillance reports. More specifically, medical reviewers have
to identify portions of text mentioning an explicit association between a drug and a serious ADR.
For example, in the sentence There was one treatment-related death due to myositis in the pem-
brolizumab group., the serious outcome (death) is clearly associated with the drug (pembrolizumab)
through the expression (treatment-related). Conversely, in We observed Rivaroxaban-induced rash
in 60% of the patients, the side effect mentioned cannot be qualified as serious. As such, it would
be regarded as a safety issue by the regulator. Meanwhile, the tremendous increase of publication
volume, and the number of treatments that require authorization in a limited time frame make it



practically impossible for medical reviewers to review all documents exhaustively. Consequently,
critical safety-related information can be missed when applying a human-only process .

Even though many publications have focused on literature review assistance [1, 2, 3] or on the detec-
tion of relationship between drug and ADR [4,5,6,7,8], only two have proposed approaches to tackle
the detection of seriousness [9, 10]. Meanwhile, in the first publication, the targeted documents are
FAERS reports which differ from biomedical literature in terms of syntax and vocabulary. The sec-
ond one, thus tested on biomedical corpus, does not provide any kind of relationship between a drug
and an adverse event.

In this paper, we present LiSA (Literature Search Application), an AI-based system designed to
assist medical reviewers in their market surveillance by automatically screening the biomedical lit-
erature to detect safety signals.

LiSA was designed to enable medical reviewers to monitor the publication of articles related to
potential safety signals on medical treatments or medicines. More specifically, it is able to identify,
filter and rank publications mentioning an established relationship between a specified drug and one
or several serious Adverse Events (SAE), i.e. severe Adverse Drug Reactions (SADR). To meet
these goals, we propose 4 contributions to the problem of pharmacovigilance information retrieval
from open data literature:

1. A deep learning pipeline for the identification of serious adverse events within biomedi-
cal literature based on Pub-Med. The performance achieved is respectively of 81.1% in
precision and 88.6% in recall.

2. A visualization tool designed to allow biomedical expert to review and monitor the results
provided by the pipeline for specific drugs.

3. A modular pipeline built on pre-existing and independent open source models (transform-
ers) allowing flexibility of usage for related use-cases in pharmacovigilance. This ap-
proach also provides more explanability compared to a lone neural network algorithm. The
pipeline, instead of creating a new neural network algorithm with very specific outputs,
is composed of independent algorithms providing intermediate outputs. These outputs are
then combined to build an efficient and performing system aiming at qualifying and ex-
tracting the information corresponding to the following questions:

• What are the monitored drugs and indication mentioned in the document?
• What are the sentences that mention an established relationship between a drug and

an AE?
• What are the entities recognized as Drug or Adverse Event?

The identification of relevant documents regarding seriousness drug adverse reaction
signals is then performed on the basis of this information and meta data available in
the data source (Ex: date, journal, type of publication, etc...).

4. A benchmark dataset for seriousness classification task based on PubMed literature sen-
tences.

After a review of related work, we describe the LiSA pipeline architecture and provide a high-level
performance analysis of the proposed solution.

2 Related Work

In most of the papers mentioned in this section, the focus is on Adverse Events (AE) detection
and not on Adverse Drug Reaction (ADR), meaning that there is no specific detection of a drug
associated with an adverse event. For the sake of clarity we will use, only in this part, the terms
Adverse Drug Events (ADR) to indifferently designate AE or ADR.

Adverse Drug Reaction detection plays a key role in drug-safety surveillance and has motivated the
creation of various monitoring systems or databases. The FAERS [11] reporting system and Med-
watch [12], a medical product for safety reporting, are the current official solutions provided by the
FDA. Meanwhile, these tools are only based on declarative reports and not on systematic analysis
of the biomedical literature or any web-based source to identify potential ADRs. Several solutions
have been proposed to perform biomedical literature monitoring in order to identify, filter and rank
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papers related to a specific domain or medical concept. For example, ASE [13] demonstrates the
value of reference management, statistics, natural language summarizing to interactively select key
papers. STELLAR [3] leverages data mining techniques to help researcher to identify, rank and
recommend reference papers for a specific literature review. More recently, Schoot et al. [1] pro-
posed ASReview, an efficient active learning based-tool to perform systematic literature review and
meta-analysis.

As per today, only a small number of literature review systems relate to adverse drug reactions de-
tection. Among them, the PV-OWL tool [2] was built to link different databases to obtain novel
safety indicators (FAERS, PubMed, social media...). The semi-automated pipeline published by
Yeleswarapu et al. [14] supports extracting ADR pairs from adverse events databases using statis-
tical BPCNN algorithm for Natural Language Processing. Among other classical approaches com-
monly used in NLP, distributional semantics based on patterns of ADR co-reporting [15], Hidden
Markov Models [16] or disproportionality analysis (DPA) [17] were already attempted to perform
ADR detection. In 2012, Gurulingappa et al. [18] published an open-source reference dataset and
developed a dictionary-based algorithm for extraction of adverse drug events in PubMed literature
[19,18]. Following the significant advances in natural language processing with deep learning, more
recent publications have exploited these technologies to improve safety signal detection. Several
works perform ADR detection and extraction on social networks (e.g. Twitter) or on drugs review
platforms like Drugs.com using deep learning techniques [4,5,6,7,8].

However, there is a lack of studies aimed at predicting the seriousness of adverse events or any other
type of qualification. The seriousness of an adverse event is nevertheless critical since it will decide
whether or not to trigger actions from the safety surveillance agencies. We only found two publi-
cations related to this specific topic. The first one from Yuwen et al. [9] is based on FAERS report
and does not treat biomedical literature. On the contrary, the second provides a robust approach to
detect, extract and categorize serious adverse events [10]. The study relies on three different deep
learning algorithms for seriousness classification, seriousness categorization and seriousness anno-
tation. Performance is evaluated on three datasets among which one is built on biomedical literature.
Like the latter study from Routray et al. [10], which will also be used as the primary basis for perfor-
mance evaluation, LiSA is capable of qualifying potential severity but differs in its ability to detect
and extract adverse drug reaction entities and classify documents for display in a literature search
tool interface.

3 The LiSA Pipeline description

The architecture described in this section is the final result of a sequence of iterations aimed at
improving the overall performance to maintain a satisfactory balance between precision and recall
(more details are available in Section 4). The objective of the following steps is to identify and
extract relevant information in documents (drug names, Adverse Events, association between drug
and AE, seriousness, ...) to be used for the final ranking and filtering of articles. The document
processing pipeline is described in Figure 1 below.

3.1 Query definition and document collection

Most of the medical publications that mention adverse drug reaction are published and available
through PubMed, a free archive of biomedical and life sciences journal literature and considered
as a reference for biomedical publications. Some publications require a licensed access, but still
provide a free version of the corresponding abstract. Therefore, PubMed was used as the main data
source for literature monitoring to build the system. By construction, documents collection should
be associated to a ”query” which is composed of a combination search terms. A query contains a
main drug, an optional second drug and optional indication. Consequently, LiSA collects all articles
available on PubMed published on the last 6 years associated to a query through the PubMed API.
Only the main drug serves as keyword search to trigger the API. Other query terms (optional drug
and indication) are only searched to tag the document if they are mentioned in it.

Drug and indication could be expressed under various synonyms in biomedical literature. To ensure
the comprehensiveness of data collection, every drug and indication term is conjointly searched with
all its synonyms based on open-source molecule and disease classification. For drug, we used the
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Figure 1: Decision diagram of the document processing pipeline. Green color boxes represent regex-
based algorithms, blue color boxes represent deep learning based algorithms and purple color boxes
fuzzy-matching based algorithms.

Chembl database [20], and for indications the MedDRA [21] hierarchy. Table 1 gives an example
of a query definition.

Drug1 (main) Drug 1 synonyms Drug2 Drug 2 synonyms [20] Indications

DEBIO 1143

AT-406
D-1143

DEBIO-1143
IAP INHIBITOR AT-406

SM-406
Xevinapant

Cisplatin

NSC-131558
Platinol
SM-406

Platinol-AQ

Squamous cell carcinoma of
head and neck

Squamous cell carcinoma of
head and neck metastatic

Table 1: Example of a query definition used as input LiSA
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3.2 Document preprocessing

This section describes the methodology applied to preprocess documents into a suitable format for
deep learning algorithms described in Section 3.3.

3.2.1 Data preparation

To structure the documents, we propose a standard architecture able to accommodate any type of
collected documents or data sources and adapted to natural language processing algorithms. As a
matter of fact, raw documents cannot be processed directly by transformers and achieve a satisfying
performance [22]. They should be split into meaning units of limited number of tokens like sentence
or short paragraphs. This process, called sentence tokenization, is performed with a pre-built algo-
rithm (on common English language) from the package nltk and adapted with specific cases found
in biomedical literature.

Structured data is then formatted into 3 different tables:

Documents table: This table stores all the metadata and the full content of a document. This table
contains one line per document.

Contents table: This table stores only the content of a document but split in different sections or
paragraphs based on the pre-defined structuration already available in the document (e.g.:
abstract, methods, results, conclusions ...). The contents available in figures captions or
tables was not collected.

Meaning units table: This table stores information at sentence level and is built from the contents
table. A section or paragraph is split in different sentences and each sentence represents
one line in this table. During the split, if a sentence is too short (between 4 to 10 words), it
is concatenated with either the previous or the next one (only in case it is less than 20 words
long) to reduce the risk of missing an AE-Drug relationship. These choices were applied
for two reasons:

• Concerning the maximum length of a meaning unit: BERT input size is limited to
512 tokens, which makes it impossible to use a whole article as input for prediction.
Furthermore, it has been shown in the literature that BERT performs better on a limited
number of tokens, therefore sentence as in input will be better than paragraph as in
input.

• Concerning the minimum length of a meaning unit: this decision was motivated by
the empirical observation that in case of very short sentences, one information was
actually present in the adjacent sentence. The threshold number of tokens was selected
empirically and could be optimized in further work.

This generic structure has been designed to fit any type of document and serves as a basis for the
visualisation tool presented in Section 3.5.

3.2.2 Drug and indication search

The first filter applies to all meaning units found in collected documents and is based on a simple key-
word search method. We use the Aho-corasick algorithm [23], an efficient dictionary-matching algo-
rithm, to search for a drug term and associated synonyms in every meaning unit. Aho-corasick was
used for its computation efficiency and because drug names have an invariant spelling in biomedi-
cal literature, there is thus no need to perform fuzzy-matching at this step. This association is then
stored in the meaning units table. This step has a double objective:

• First, to isolate the meaning units associated with the drug of interest (since LiSA is built
to monitor serious adverse events associated with a defined drug).

• Second, to reduce the number of meaning units to be used as input for the downstream deep
learning modules that are more computationally intensive.

At the same time, a second keyword search is applied to identify mentions of therapeutic indications
in historical documents. Unlike drug search, indication search is only performed at document level
and is used to provide a clue of whether the document discusses about a drug aiming at treating a
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specific indication. The detection of an established relationship between a molecule and a disease is
not performed in this pipeline. This task would be part of a possible improvement. The indication
of interest are defined by biomedical reviewers and enriched with associated synonyms using the
MedDRA hierarchy. Meanwhile, unlike drug names, indication terms are frequently composed of
multiple tokens, which are not always expressed with the exact same form in the literature. For
example the MedDRA indication ”B-cell chronic lymphocytic leukaemia” could be found as ”B-
cell lymphocytic leukaemia” or ”lymphocytic leukaemia of B-cell” in published articles. Therefore
a simple expression search will most likely miss some expressions associated to the same indication.
To overcome this problem, we built a fuzzy-matching algorithm allowing permuted and incomplete
expression of an indication to be found in the text, which creates a list of expressions on the basis
of a root indication. This list is composed of all permutations of the tokens contained in the root
indication, with a random suppression of some of them to keep at least 2 tokens. All the expression
of that list are then searched in the document, with the same Aho-corasick algorithm but allowing
the presence of 20 characters between 2 consecutive tokens of the list. For example when searching
for ”B-cell lymphocytic leukaemia”, the expression ”B-cell and C-cell lymphocytic leukaemia” will
be accepted by this algorithm.

3.3 Deep learning

The three main AI modules presented in this section are the core of LiSA. They correspond to 3
different NLP tasks which are computed in parallel for all sentences containing a monitored drug
(as described in part 3.2.2). Once calculated and stored in the database the different information are
used to filter and qualify the hit sentences and relevant documents as depicted in Figure 1. Details
about the different pre-trained algorithms and their respective performance are not provided in this
paper but will be described in a forthcoming publication.

Figure 2: Simplified machine learning architecture of the LiSA pipeline. Unlike other post process-
ing tasks, the serious regex search task described in Section 3.3.4 is performed before deep learning
inference and is not represented on the schema.
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3.3.1 Drug-AE relationship classification

To assess the association between a drug and an AE, we chose to rely on state of the art deep
learning algorithms with attention-based mechanism (BERT). This family of algorithms is trained
on very large corpora to build contextual embeddings and has been shown to perform extremely
well in highly context-dependent prediction tasks, such as AE detection. The presence of a drug-
AE causality relationship within a sentence was predicted with a two class (”has causality”, ”has
no causality”) sentence classifier, as defined in the ADE-Corpus-V2 dataset [19] used for training.
This dataset contains more than 20 000 sentences extracted from PubMed and pre-labelled for drug-
AE causality classification. In particular, the two classes are defined without prior knowledge of
the entities corresponding to drug and ADRs. The ADE-Corpus-V2 dataset was split into training,
validation, and testing sets with the ratio of 8:1:1 and used to fine-tune several pre-trained algorithms
and to select the most accurate one.

In order to further increase prediction performance, we performed manual data augmentation based
on badly predicted observations of ADE-corpus-V2. Typical treated case are sentences including
a negation form, containing an unspecified adverse effect (”AEs”, ”TRAEs”, ”Serious adverse ef-
fects”) or related to specific lexical fields. The score threshold allowing the algorithm to classify a
meaning unit was also calibrated to maximize the balance between recall and precision (we used F1-
score and precision-recall curve for that purpose). In the production version of LiSA, every meaning
units predicted class and score are stored in the meaning units table.

3.3.2 Named Entity Recognition (NER)

LiSA is also supposed to identify the different entities found in a relevant document corresponding
to a drug or an Adverse Drug Reaction. For this task, we used Named Entity Recognition (NER)
pre-trained algorithms within the same family of algorithms built on BERT architecture. Using the
same open source corpus, we fine-tuned and bench-marked several models for the task of identifying
two different entities: drug and ADR.

In the final pipeline, the entity detection is only applied on meaning units that successfully passed
the drug-AE causality prediction with a score higher than the defined threshold. This pre-filtering
step was made to reduce the inference computation time. As for the previous step, detected entities
and associated scores are stored in the meaning units database.

3.3.3 Seriousness score prediction

According to the European Medicines Agency [24], an adverse event can be qualified of serious of
the consecutive reaction to a treatment:

• results in death
• is life-threatening
• requires inpatient hospitalisation or prolongation of existing hospitalisation
• results in persistent or significant disability/incapacity
• is a congenital anomaly/birth defect.

This definition clearly underlines the fact that the seriousness of an ADR is measured according
to the outcome that it produces, whose expression in a document, is here again, highly context-
dependent. BERT-like architecture based on contextual embeddings is once more a very promising
solution. The same training framework applied in the two previous NLP tasks was applied here.
We fine-tuned several pre-trained models on a sentence classification task. Unlike common ADR
detection, we did not found an open access dataset to train the seriousness detection algorithm. This
problem was overcome by labelling 7776 sentences extracted from PubMed in three categories: ”se-
rious”, ”important medical event”, ”none” (a ”serious” sentence being an ”important medical event”
sentence with a serious outcome). The labelling process was performed by medical reviewers. The
third class ”important medical event” was only added to have a more detailed labelled dataset for
possible additional application in ADR detection. 917 sentences were used as a testing test and
allowed to reach a performance at the state of the art after adjusting the score threshold. More con-
cretely, this models yields a class and a score and is only calculated on meaning units that contains
at least one drug entity and one ADR entity from the NER module.
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3.3.4 Post-processing for performance improvement

Although the performances obtained by the previous pipeline on average matches the level reached
in recent publications [18, 10] (more details in Section [results], it appeared that some specific
cases were relatively badly predicted. A typical encountered issue was a random detection of non
specific adverse events corresponding to expressions like ”AE”, ”adverse effects”, ”TRAEs”, ... To
address those issues, different strategies were implemented in addition to the improvement of the
three previous deep learning algorithms by data augmentation.

The first strategy implemented was the use of regular expressions that by themselves indi-
cate the presence of an adverse event in sentence. A few example of these are ”side/adverse
event(s)/effect(s)/reaction(s)” or ”(TR)AE(s)”. The same method is applied to the case
of non specific serious adverse events with regular expressions such as ”serious adverse
event(s)/effet(s)/reaction(s)”, ”grade 4/5 reaction(s)” or ”SAE(s)”. This double search is applied
on all meaning units containing an drug of interest since they are computationally light.

The second strategy used is specifically designed to catch serious adverse outcomes based on a list
of terms built together with biomedical experts. That list contains expressions of diseases or reac-
tions that are always associated with a serious outcome (death, hospitalization, infirmity, congenital,
life-threatening). This is for example the case for ”pneumonia”, ”ventricular fibrillation”, ”intracra-
nial bleeding”,”teratogenic effects”. The same fuzzy-matching approaches as the one described in
Section 3.2.2 is applied in this case, since we are considering multiple-tokens expressions. Unlike
regular expressions search, the fuzzy-matching is only applied to meaning units that were rejected
by the seriousness score algorithm to optimize the computation time.

3.4 Document filtering and ranking

LiSA is built to provide a curated list of documents to the user, as well as the sentences where
safety signals (called ”hits”) are detected, and the recognized entities (drug and ADR). The decision
process depicted in Figure 1 is used to select and filter the documents to be finally displayed to
the final user. It can appear counter-intuitive that the AE-drug relationship classification results are
used before the entity recognition. This order showed the best performance and was selected after
different experiments that are not detailed in this paper.

A rule-based system was also implemented to calculate a ranking score based on some information
extracted from documents (sentence hit scores, number of hits per document, ...). This score is then
used by the user to rank the relevant papers in the visualisation interface.

3.5 Visualisation interface

Visualizing and exploring the results is key to ensure user adoption. Depending of the query def-
inition, the pipeline can return a relatively large number of documents (volume of some example
queries are provided on Figure 5) indeed. In order to prevent users from being overwhelmed by a
mass of articles to review, and in order for them to monitor results over time, we propose a sim-
ple exploration interface built with PowerBI, a powerful and cost-effective data visualisation tool.
Captures of the two main interfaces are presented on Figure 3, 4. First the QUERY DEFINITION
interface allows a user to create or join search queries containing one or several search criteria, as
defined in Section 3.1. Second, the RESULTS interface displays documents found in the literature,
with at least one hit mentioning a serious drug adverse reaction. On the left side, a series of filtering
options (publication date, indication found, AR Frequency, Route of administration, etc...) are avail-
able to help the user refine displayed results. These filters are fed by information already extracted
by the pipeline, and by results from keyword searches performed by powerQuery (PowerBI’s data
preparation engine). The results can be explored at a document/sentence level (high level results)
showing only information down to the sentence and document, and at a more detailed level (detailed
results) which includes ADR entities detected in the text.
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Figure 3: Screenshot of the ”QUERY DEFINITION” tab of the interface. (1) Drug and indication
dictionaries drop-down lists (2) Query preview (3) Summary of previously-created queries

4 Results and discussion

The following part is dedicated to:

• Describe the obtained results and justify the need for the use of a new benchmark dataset
for evaluating the task of serious ADR detection.

• Discuss the limits of the current pipeline and pave the way for future work.

4.1 Results

Performance assessment was performed with two strategies:

• Evaluate the results based on a train/test approach on different datasets for different tasks.
Detailed benchmarks and result analysis are not described in this article, only the perfor-
mance of the selected models is displayed in Table 2.

• Evaluate the performance of LiSA from the perspective of medical reviewers (end users).

For individual NLP tasks evaluation, we used a specific test dataset for each task. This test set was
created by selecting 10% of available labeled data that remained unseen by the algorithm. For AE-
drug relationship classification as well as NER, we used the ADE-corpus-v2 dataset. For seriousness
classification, the test set was carved out of the manually labelled dataset mentioned in subsection
3.3.3.

However, good performance of each independent algorithm does not necessary imply a good perfor-
mance of the whole pipeline. This could especially be the case if the decision process that narrows
down the scope of relevant sentences with successive filters becomes too restrictive. In addition to
that, the performance of each independent algorithm is calculated at the meaning units level and
not at the document level, which is a more representative metric for the intended use-case of LiSA.
Nonetheless, performance evaluation at document level is difficult since it requires to find a sample
corpus of relevant publications in the literature. That sample should have the same ratio of relevant
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Figure 4: Screenshot of the ”RESULTS” tab of the visualisation interface. (1) Query browser to
select a set of results (2) Filtering tab to refine query results (3) High-level results table containing
general information about results associated to the selected queries (4) Detailed results which pro-
vide additional information for every article selected in the high-level results table (5) Histogram of
results volume of publication by year for the selected queries

Model Recall Precision F1-score
AE-drug relationship detection UMLSBERT 0.91 0.94 0.92
IMP/AE entities recognition* PubMedBERT 0.96 0.98 0.97

Seriousness detection PubMedBERT 0.95 0.92 0.97

Table 2: Measured performances of the three NLP tasks implemented in the pipeline on testing sets.
For the drug/AE entity recognition task, the displayed metrics only concern the AE class.

and irrelevant documents available in PubMed. However it is almost impossible to estimate that
ratio unless going through hundreds of articles for every single drug.

Instead, we propose two methods to measure the global performance of the pipeline. First, we cal-
culate the precision and recall at sentence level only, with a sample dataset extracted from PubMed.
Second, we propose to evaluate LiSA with a simple keyword search-based method to perform safety
monitoring literature review.

4.1.1 Dataset-based performance evaluation

Sentence level evaluation of LiSA

To assess the performance at sentence level, we chose to use the classic performance metric for
binary classification: precision, recall and f1-score. To calculate those metrics, we retrieved all
documents associated with a list of drugs and synonyms, as described in Section 3.1 (the list of
drugs is available in appendix). All documents were then fed into the LiSA pipeline to detect all
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positives sentences (hits) and their parent articles. The volume of documents and meaning units
after every successive filter is available in Figure 5.

In the absence of a benchmark dataset to evaluate the performance of serious ADR detection, we
created the SADR dataset with the help of medical reviewers with the following procedure. We
first collected all documents freely available on Pubmed that contains a drug in the list available in
appendix , and only kept the sentences that explicitly contains one of the drugs (since its absence
would inevitably make the sentence irrelevant). These sentences were passed to the pipeline to get
a prediction regarding the presence of a serious ADR. Then we asked medical experts to review the
sentences and check whether the prediction was correct or not. In total, 1231 sentences from 988
unique documents were analyzed. In that sample, LiSA reached a performance of 88.6 % in recall,
81.1 % in precision and 84,7% in F1-score.

The achieved performance makes LiSA a state of the art system in terms of safety signal detection for
the use-case considered in as much as it is closed to the performance obtained in 10. Meanwhile, the
task evaluated in this paper differs from the case of LiSA. Especially, there is no mention of a drug-
AE relationship classification task. In addition there is no code available neither benchmark dataset
from 10 that could have been used for direct comparison. For benchmark purpose, we provide the
test dataset used to assess LiSA’s performance at sentence level, in supplementary materials.

The performance is higher for recall than for precision. This was designed on purpose, since there
is a stronger need to not miss safety signals publication than achieving a higher precision. This opti-
mization towards recall was especially enabled by the additional post processing modules described
in Section 3.3.4.

As far as the total number of collected documents and meaning units is concerned, as displayed in
Figure 5, LiSA is able to perform a very imbalanced prediction task with a high precision. Indeed
with more than 53k documents and 3.8 millions meaning units to filter, there are only 0.2% of
meaning units that should be considered as relevant, for about 10% of all collected documents.

Document level evaluation of LiSA

As mentioned before, evaluating the performance at document level is quite challenging. We can
calculate the precision using the benchmark dataset available in appendix. Over the 988 documents
contained in the benchmark dataset, we found a precision of 78.5%.

Meanwhile, we are not in capacity to provide a good estimation of LiSA document recall. For that
purpose, we should be able to measure to which extent the system is able to avoid missing relevant
articles in the literature, which would require to label a corpus of at least a few thousand documents
(which corresponds to about 80 000 sentences in total). This is an extremely time consuming task
and is not immune to potential bias during the document selection phase to build the sample corpus.

4.1.2 User-based performance evaluation

To further assess the ability of LiSA to perform an efficient and comprehensive literature review on
safety issues, we compare the results obtained by an expert medical reviewer using LiSA and using
a simple keyword based search on PubMed. This type of evaluation is common in other systems for
assisted literature [25].

For that purpose, we selected one drug, chosen for its relatively low number of associated papers
found in the literature, making an exhaustive safety survey difficult. The goal is to compare the
number of relevant articles that a manual search would yield to a LiSA-assisted search. On the one
hand, a medical reviewer was asked to perform keyword search on PubMed with the expression
”drug” + ”serious adverse events” to review as much papers as possible within 2 hours and retrieve
the relevant papers and sentence hits only relatively to the presence of a serious adverse event.
On the other hand, a second medical reviewer was asked to do the same literature review based
on LiSA interface, within the same time frame. We also performed the same work for a drug
notoriously known for its serious adverse drug effects: Azetolizumab. Due to the large number
of papers mentioning serious ADRs in the literature (a few hundreds), the comparative performance
between LiSA and a manual search is not significant.

For a survey based on the drugs ”Emtricitabine” and ”Aflibercept, the results achieved were as
follows:
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Figure 5: Volume of documents (Ndocs) and meaning units (Nmu) after all decision steps in the
LiSA pipeline. The volume corresponds to the documents collected with the drug list available in
appendix.

Emtricitabine:
7 articles were found with the keyword-based search
18 articles were found with the LiSA-assisted search.

Aflibercept:
8 articles were found with the keyword-based search
17 articles were found with the LiSA-assisted search.

The use of LiSA therefore makes it possible to largely increase the volume of relevant papers found
during a defined search time (by a factor 2.5), especially when serious ADRs mentions are rare in
the literature.

4.2 Discussion

4.2.1 Comparison with state of the art models

The lack of extensive work on seriousness detection of Adverse Drug Reactions in the literature
makes the comparison difficult to perform. In addition to that, the only publication [10] that tackles
the problem does not provide any code implementation. Thus, apart from re-implementing the so-
lution, there is no possibility to compare our algorithm with the one of this publication. Meanwhile,
on a corpus extracted from Medical Literature, our pipeline reached a higher performance up to 0.81
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in precision and 0.88 in recall (respectively compared to 0.83 and 0.82 [10]. Even if the dataset are
not strictly comparable, we can conclude that our pipeline reached a state of the art performance
on the specific task of seriousness classification. To perform a wider comparison with the existing
models, additional work is needed and will be described in a forthcoming publication.

Besides, the calculated overall performance of the pipeline at document level relies on a reduced
number of documents (988). The statistical significance of the conclusion might be arguable since
we cannot cover all the variety of semantic fields available in PubMed. Meanwhile, we believe that
the global performance remains valid, especially since it is added to the already good performance
achieved at sentence level, and calculated over a larger volume of examples.

4.2.2 Pipeline flexibility and portability

One important objective of the study was to build a system with a flexible architecture to enable the
use of the pipeline on related use cases. For example, we could replace the seriousness classification
by seriousness categorization (Death, Hospitalization, IME, Disability, Congenital anomaly [10]) or
adverse events grade classification (Grade 1 to 5). This adjustment would of course require to train a
new algorithm (for seriousness categories or adverse events grades classification) but with no impact
of the 2 other modules. This is made possible by the independence of the three algorithms, them not
being chained. They can then perform inference on the same type of input (a sentence containing at
least one monitored drug). This approach is likely to introduce an overlap between the 3 NLP tasks
that could be criticized, but allows a full flexibility in the combination of their outputs to build the
required decision process.

4.2.3 Relation extraction

The proposed pipeline does not predict a direct relationship between an adverse event and a drug as
defined, for example, in relation extraction tasks in NLP. As a matter of fact, the AE-drug relation-
ship classifier is only trained to categorize meaning units into 2 categories ”states a relationship”
or ”does not state a relationship”. Therefore, if two AEs and two drugs are coexisting in the same
meaning unit, the pipeline is not able to separate and identify the possible multiple AE-drug rela-
tionships. Meanwhile, due to the relatively reduced length of meaning units (25 tokens on average
and max 80-100 tokens) this situation remains very rare and has low impact on the performance.

4.2.4 Recall assessment

One of the main difficulty in assessing the performance of such systems lies in evaluating the pro-
portion of documents existing in the literature, that are actually missed by the system. As mentioned
during the results presentation, this would require the extraction of a test sample with the same distri-
bution of relevant documents available in the literature. Unfortunately, except with a comprehensive
work consisting of reviewing hundreds of articles and a strict control of bias during article selection,
it is very difficult to get a correct and unbiased estimation of the recall. Instead, we chose to evaluate
the recall only within relevant documents at sentence level.

5 Conclusion

In this paper, we presented the LiSA approach, a deep learning based pipeline for Adverse Drug
Reaction monitoring in the biomedical literature. To our knowledge, our work is the first one to
rely on a modular architecture of open-source fine-tuned models and providing access to multilevel
outputs (AE/Drug relationship, AE and Drug entities, ADR Seriousness monitoring). We evaluated
the performance of the system at two levels a) predictive performance based on a benchmark dataset
labeled by medical reviewer and made available for future research and b) user-based performance
where ADR monitoring with LiSA is compared with a semi-manual work based on keyword search
on PubMed search engine. We have shown that based on LiSA user interface, a medical reviewer is
able to retrieve 2.5 times more relevant documents than with a simple semi-manual search. Assisted
literature monitoring with deep learning has proved to be a viable an extremely efficient approach to
address the current challenges in pharmacovigilance. Future research could move towards assessing
relationships beyond the boundaries of single meaning units, trying to combine the advantages of
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Deep Learning described here with traditional language models enlarging the applicable areas of the
here described pipeline for other pharmacovigilance tasks.
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Appendix
A List of queries used to create the benchmark dataset

preferred name synonyms used when available
Fluticasone

Fluticasone furoate FLUTICASONE FUROATE/ GSK 685 698/
GSK685968/ GSK-685968/ GW685698X/
GW-685698X

PEMBROLIZUMAB KEYLYNK-010 COMPONENT PEMBROLIZUMAB/
LAMBROLIZUMAB/ MK-3475/ PEMBROLIZUMAB/
PEMBROLIZUMAB COMPONENT OF
KEYLYNK-010/ SCH-900475

BAY2327949
NIVOLUMAB NIVOLUMAB/ ONO-4538/ MDX-1106/ BMS-986298/

BMS-936558
IPILIMUMAB BMS-734016/ MDX-CTLA-4/ MDX-101/

MDX-CTLA4/ MDX-010
METAMIZOLE SODIUM DIPYRONE/ METAMIZOLE SODIUM/

METAMIZOLE SODIUM MONOHYDRATE/
METHAMPYRONE/ NORAMIDOPYRINE
METHANESULFONATE SODIUM/ NSC-73205/
SULPYRINE/ SULPYRINE HYDRATE

IFOSFAMIDE IFOSFAMIDE/ MJF 9325/ MJF-9325/ NSC-109724/
Z4942/ Z-4942/ Ifex/ Ifsofamide/ MITOXANA

MK-8931
Darboepoetin alfa
EPOETIN ALFA

INGENOL MEBUTATE AGN 204332/ INGENOL MEBUTATE/ PEP005/
PEP-005

Cisplatin NSC-131558/ TRANSPLATIN/ Cisplatin/ Platinol/
Platinol-AQ

DEBIO 1143 DEBIO 1143/ AT-406/ D-1143/ DEBIO-1143/ IAP
INHIBITOR AT-406/ SM-406/ XEVINAPANT

REMDESIVIR GS 5734/ GS-5734/ REMDESIVIR
RIVAROXABAN BAY 59-7939/ BAY-59-7939/ JNJ39039039/

JNJ-39039039/ RIVAROXABAN
Atezolizumab ATEZOLIZUMAB/ Anti-PDL1/ Anti-PD-L1/

MPDL3280A/ MPDL-3280A/ RG7446/ RG-7446/
TECENTRIQ

FINGOLIMOD Fingolimod/ FINGOLIMOD/ FTY-720/ FINGOLIMOD
HYDROCHLORIDE/ FTY720/ FTY-720
HYDROCHLORIDE/ TY720 HYDROCHLORIDE
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