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ABSTRACT: 
The aim of this paper is to compare the two largest forest fires that occurred in Greece in 

July 2018 using metrics for burned area and burn severity mapping, derived only from free 

satellite data. Sentinel-2 satellite images of the European Space Agency (ESA) within the 

Copernicus program provide a spatial resolution of 10 m, which facilitates more accurate 

monitoring of environmental phenomena such as forest fires. The processing of the satellite 

images and the calculation of the metrics was performed using SNAP software, which is an 

open-source software developed by ESA. The mapping of the obtained results was 

performed in the QGIS software, which is also an open-source software. The delimitation of 

the burned area and the classification of the severity of both wildfires was performed using 

the Relativized Burn Ratio (RBR) satellite index. These results were contrasted with the 

Copernicus Emergency Management Service (EMS) maps related to these two events. Our 

results obtained in relation to the size of the burned area show smaller affected areas than 

the Copernicus Emergency Management Service maps. This is explained by the different 

methods used in the delimitation of the burned areas. In the case of Mati’s wildfire the EMS 

has created the thematic layer by means of visual interpretation using post-event satellite 

image and in the case of Kineta’s wildfire was applied a semi-automatic approach. 

Moreover, in this study is proposed and evaluated a new burn severity metric, the burned 

vegetation index (BVI) which shows where the most significant changes in healthy 

vegetation occurred. This new index was compared with RBR, dNDVI and dNBR using 

statistical correlation. The results indicate that BVI shows better the burned vegetation and 

its statistical correlation with RBR is significant (R2 = 0.92). 

 

Key words: burned area mapping, burn severity, RBR, BVI. 

1. INTRODUCTION 

Fires are a common phenomenon in Mediterranean forest ecosystems, with regime 

change in the Mediterranean Basin mainly due to changes in land use and climate change 

(Pausas, 1999). According to Spanish statistics (MAPAMA, 2016) recorded from 1970 to 

2010, the total number of forest fires in Spain showed a trend of decline. However, in the 

Euro-Mediterranean area, in recent decades, there has been a growing trend in the 

percentage of burned areas by large forest fires (>500 ha) compared to the total burned area 

per year (San-Miguel-Ayanz & Camia, 2009; Spano et al., 2014).  

Following Keeley (2009), the concept of fire severity refers to the loss of organic 

matter both "on" and "under-soil" caused by the passage of fire, and should be 

differentiated from burn severity, which by including the response of the ecosystem 

(González-De Vega et al., 2015; Regueira et al., 2015; Fontúrbel et al., 2015) is more 
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complex to assess and involves prior knowledge of the existing community before the fire 

and its response to fire (Moya et al., 2009). In general, to estimate fire severity from 

satellite images, standardized methods based on spectral indices are used, such as the 

normalized difference vegetation index (NDVI) and the normalized burn ratio (NBR) 

(Chuvieco, 1999). The effect of fire on the ecosystem is closely linked to the burn severity 

(Vallejo et al., 2012; González et al., 2016), being greater the damage produced in 

vulnerable areas with low site quality, such as arid and semi-arid areas of Mediterranean 

climate (Hedo et al., 2014). This damage linked to the high burn severity can even affect 

instant energy flows (Sánchez et al., 2009) and their resilience (Paula et al., 2009; Tessler et 

al., 2014). Ecosystem resilience, understood as engineering resilience, is the rate of natural 

recovery to pre-disruption balance (Cantarello et al., 2017) and it is necessary to understand 

how certain transient states move from the transition to final stages (Doblas-Miranda et al., 

2017). Knowing this problem is necessary for the correct sustainable management of the 

landscape, especially in areas sensitive to desertification, where the damage of recurrent 

and severe forest fires could lead the ecosystem to irreversible stages, causing the loss of 

ecosystem services (Doblas-Miranda et al., 2015), such as carbon storage capacity (Moya et 

al., 2014). Therefore, correct post-fire management must be based on knowledge of the 

relationships between ecosystem resilience, fire severity and ecosystem recovery (Díaz-

Delgado & Pons, 1999).  

Numerous severity indices have been developed, highlighting the standardized NBR 

difference (dNBR), the standardized difference of NDVI (dNDVI) and the relative version 

of dNBR (RdNBR); all of them used as independent variables used to deduce the field 

indices of severity at the pixel level. There is a wide range of studies that demonstrate their 

sensitivity to changes in severity classes (Chu & Guo, 2014). Both NDVI and NBR are 

widely validated for severity assessment, although the best results seem to be obtained from 

NBR-based indices (Escuin et al., 2008) as it combines two infrared bands (NIR and 

SWIR) that respond better to fire detection (Vlassova et al., 2014). However, the results are 

discussed given the low reliability in the zoning of soil severity with these methods versus 

those of vegetation (Vega et al., 2013) and the influence of several factors that determine 

the calculation, such as the local conditions, characteristics and conditions of pre- and post-

fire vegetation and the time elapsed in the assessment of severity (Chu & Guo, 2014). 

Consistent with major burn severity mapping efforts (Eidenshink et al., 2007), burn 

severity can be defined as the degree of fire-induced change to vegetation and soils, as 

measured with satellite image metrics (Parks, Dillon & Miller, 2014). The two most 

commonly used satellite image-based metrics of burn severity are the delta normalized burn 

ratio (dNBR) (Key & Benson, 2006) and its relativized form (RdNBR) (Miller & Thode, 

2007), both of which depend on the calculation of normalized burn ratio (NBR). NBR is 

sensitive to the amount of chlorophyll content in plants, moisture, and char or ash in the soil 

(Parks, Dillon & Miller, 2014). All equations for dNBR, RdNBR and RBR use NBR 

derived from pre- and post-fire satellite images to quantify spectral change. All this metrics 

are sensitive to changes commonly caused by fire (Zhu et al., 2006; Hudak et al., 2007; 

Miller et al., 2009). However, the dNBR is an absolute difference which can present 

problems in areas with low pre-fire vegetation cover, where the absolute change between 

pre-fire and post-fire NBR will be small. In such cases the relativized version of burn 

severity (RBR) is advantageous and provides more accurate results (Equation 5) (Parks, 

Dillon & Miller, 2014). Researchers and practitioners commonly classify these continuous 

metrics into categorical maps representing unchanged, low, moderate and high burn 

severity. 
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dNDVI = NDVIprefire − NDVIpostfire 

(1) 

NBR =  (
NIR − SWIR

NIR + SWIR
) = (

Band 8 − Band 12 

Band 8 + Band 12
) 

(2) 

dNBR = NBRprefire − NBRpostfire 

(3) 

RdNBR =  
dNBR

|(NBRprefire)|
0.5 

(4) 

RBR = (
dNBR

(NBRprefire + 1.001)
) = (

NBRprefire − NBRpostfire

(NBRprefire + 1.001)
) 

(5) 

For all this, the demand and need of managers to provide cartographic information on 

the fire severity, as a basis for quantifying and assessing damage on the ecosystem and its 

recovery should incentivize the work of researchers to find the more accurate and reliable 

method of calculation. The objective of this work is (1) to delimit the area and classify the 

burn severity in the case of these two Greek fires using the RBR index, (2) to compare the 

results with the estimates of Copernicus Emergency Management Service; (3) and also to 

present a new severity index for the study of wildfires, the burned vegetation index (BVI) 

that is recommended for the study and calssification of burned vegetation. 

2. STUDY AREA AND DATA 

Two large fires broke out on the central-southern Greece mainland (Attica region) on 

23 July 2018, causing significant casualties, village evacuations, damage to property, while 

burning thousands of hectares of forestry. Regional Greek authorities have declared a state 

of emergency in the eastern and western parts of greater Athens, and the EU Civil 

Protection Mechanism has been activated to request for aerial and ground firefighting 

assests (Copernicus Emergency Management Service, 2018). The two affected localities 

were Kineta and Mati near by the capital city of Athens (Fig. 1). Kineta is a beach town in 

West Attica, situated on the northern coast of the Saronic Gulf, south of the Geraneia 

mountains. Mati is a village located on the east coast of Attica region, lies east of the 

Penteli mountains, on the Marathonas Avenue north of Rafina and south of Nea Makri. The 

resident population of these localities 

was respectively 1,446 and 200 

inhabitants in 2011 (Hellenic Statistical 

Authority, 2011). 

The data used for this study are four 

Sentinel-2 products. Two data sets of 

pre-fire and post-fire satellite imagery 

were obtained for the study of the Kineta 

fire, and other two for the Mati fire. For 

the Kineta fire two Sentinel-2A Level 

2A tiles (Tile ID: T34SFH) were 

acquired between on July 3, 2018 

Fig. 1. Location of the two main fires, 23 July 2018.  
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(before the main event) and August 19, 2018 (after the main event). In the same way, for 

the Mati fire one Sentinel-2A Level 2A (Title ID: T34SFH) and another one Sentinel-2B 

Level 2B tiles (Tile ID: T34SGH) was acquired between on July 3, 2018 (before the main 

event) and August 4, 2018 (after the main event). 

This four Sentinel-2 scenes have been downloaded free from the official Copernicus 

Open Access Hub website, operated by the European Space Agency (ESA) and the 

Copernicus Programme (Copernicus Open Access Hub, 2018). The first two scenes shown 

below are for Kineta pre-fire state and post-fire state, the last two for Mati pre-fire state and 

post-fire state. 

S2A_MSIL2A_20180703T092031_N0208_R093_T34SFH_20180703T121025 

S2A_MSIL2A_20180819T090551_N0208_R050_T34SFH_20180819T133811 

S2A_MSIL2A_20180703T092031_N0208_R093_T34SFH_20180703T121025 

S2B_MSIL2A_20180804T090549_N0208_R050_T34SGH_20180804T142040 

Mathematical calculations and band combinations were processed with the following 

Sentinel-2 spectral bands: B3 (Green band), B8 (NIR band), B8A (Vegetation Red Edge), 

B11 and B12 (SWIR bands). In addition, two maps provided by Copernicus Emergency 

Management Service and two vector packages (available to open in a GIS interface) 

accompanied by these products have been obtained free (Fig. 2) (Copernicus EMS, 2018). 

With this data it was possible to compare our results related to the size of the burned areas. 

One of the major problems in Remote Sensing is the ability to have good data, which 

is, in particular, recorded at favourable time to highlight the objects or phenomena that are 

sought to be studied (Husson, 1983). In this case it was also essentially important that the 

areas of interest for this study are not covered by clouds in the satellite images. This is what 

primarily determines the selection of the time interval between satellite images. 

3. METHODOLOGY 

3.1. Identification and extraction of burned areas 

Processing satellite data requires a GIS (Geographic Information System) environment. 

For data processing have been used the software SNAP (Sentinel-2 Toolbox), QGIS and 

Excel for subsequent statistical calculations. 

For the Level 2A products that have been used in this study the atmospheric correction 

has already been applied. Solar radiation reflected by the Earth’s surface to satellite sensors 

is affected by its interaction with the atmosphere. The objective of applying an atmospheric 

Fig. 2. Copernicus EMS maps of burned areas: Kineta (left), Mati (right) (Source: Copernicus EMS). 
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correction is to determine true surface (Bottom-Of-Atmosphere, BOA) reflectance values 

from the Top-Of-Atmosphere (TOA) reflectance values, by removing atmospheric effects 

(Mousivand et al., 2015). Atmospheric correction is especially important in cases where 

multi-temporal images are compared and analysed as it is in this case (pre-fire and post-fire 

images). The SNAP software offers the integration of Sen2Cor algorithm for performing 

atmospheric correction. Sen2Cor is a processor for Sentinel-2 Level 2A product generation 

and formatting; it performs the atmospheric, terrain and cirrus correction of Top-Of-

Atmosphere Level 1C input data. Sen2Cor creates Bottom-Of-Atmosphere, optionally 

terrain and cirrus corrected reflectance images; additional, Aerosol Optical Thickness, 

Water Vapour, Scene Classification Maps and Quality Indicators for cloud and snow 

probabilities (Main-Knorn, 2017).  

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Band stack, Kineta. 
 

Atmospheric correction using Sen2Cor algorithm is a computationally heavy process 

and takes several time to be completed depending on the machine. However, since April 

2017 the Level-2A products have already been generated and are available to download for 

acquisitions over Europe (such as this case). 

To identify the newly burned areas, the following combination of bands has been 

established: Red: B12, Green: B11, Blue: B8A. It is possible to identify burned areas in true 

(natural) colours too but for distinguishing the burned areas it is better to use the Near 

InfraRed (NIR) and Short Wave InfraRed (SWIR) bands as these provide the best 

separability (Fig. 3). Likewise, newly burned areas can be well identified with the NDVI 

index (Equation 6) (Fig. 4, 5). 

 

NDVI =
NIR−RED

NIR+RED
=

Band8−Band4

Band8−Band4
                                                          (6) 
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Fig. 4. Pre- and post-fire NDVI, Mati. 

                                                                               
Fig. 5. Pre- and post-fire NDVI, Kineta. 
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The Sentinel-2 L2-A product conveniently contains vector and cirrus cloud masks, 

which are created as a product of the atmospheric correction. However, applying the mask 

on all bands and the entire scene may take some time. A subset could have been done with 

the product, but the vector products are lost by that operation. So, in this case, to preserve 

the information a new band was created containing a cloud mask (Fig. 6). Currently, this is 

not possible to do using the Batch Processing tool in SNAP, so it has been necessary to add 

the cloud mask band to each product separately.  

 

To identify pixels that contain clouds, the masks  

scl_cloud_medium_proba, scl_cloud_high_proba, and scl_thin_cirrus  

have been used with the following expression in Band Maths:  

if (scl_cloud_medium_proba + scl_cloud_high_proba + scl_thin_cirrus) <255 then 0 else 1. 

 

The calculation results in a single mask band that contains all clouds. 

 

As mentioned above, the Batch Processing tool available in SNAP allows the user to 

process all images at the same time, thus saving time with repetitive calculations. To use 

this tool, it was first necessary to define all the steps of the process that were to be 

executed. The process steps have been set with the GraphBuilder tool in SNAP. The 

advantage of the GraphBuilder tool is that no intermediate product will be physically saved, 

only the final product.  

The input products contain 13 spectral bands in 3 different spatial resolutions (10 m, 20 

m, 60 m). The SWIR band (B12) that is a component of the NBR index calculation has a 

spatial resolution of 20 m. Many operators do not support products with bands of different 

sizes so it was necessary to resample the bands to the equal resolution of 10 m. The 

reference band for resampling was Band 2 (Blue) which has 10 m resolution (Fig. 6). The 

resampling method that was used is the bilinear interpolation method (Lyons et al., 2018). 

In the Subset tab the bands B3 (Green), B8 (NIR), B12 (SWIR) and the cloud mask band 

were selected. Only these bands are required for the following calculations of NBR and 

RBR.  

The most commonly used metrics for burned area and burn severity mapping, derived 

from satellite data, is the normalized burn ratio (NBR) (Equation 2). Healthy vegetation has 

very high near-infrared reflectance and low reflectance in the shortwave infrared portion of 

the spectrum. Burned areas on the other hand have relatively low reflectance in the near-

infrared and high reflectance in the shortwave infrared band. A high NBR value generally 

indicates healthy vegetation while a low value indicates bare ground and recently burned 

areas.  

After the calculation of NBR pre- and post-fire it was appropriate to merge all the pre- 

and post-fire bands and products into a single database (Collocation) (Fig. 6). With this 

merged database of the pre-processed products were calculated the changes in the pre- and 

post-fire NBR values. 

Water bodies may show a similar NBR difference in certain circumstances, therefore 

they needed to be masked. It was also important to mask the clouds that occur in any of the 

input images. For this purpose, a single combined mask of water and clouds has been 

created. 
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The Normalized Difference Water Index (NDWI) has been used to detect water bodies. 

The NDWI proposed by McFeeters is designed to maximize the reflectance of the water 

body in the green band and to minimize the reflectance of water body in the NIR band. 

McFeeters’s NDWI is calculated as (Du et al., 2016): 

NDWI =
Green − NIR

Green + NIR
=

B3 − B8

B3 + B8
 

(7) 

The water and cloud mask was calculated with the following expression in Band Maths: 

if (cloud_mask_pre-fire > 0 or cloud_mask_post-fire > 0 or ((B3_pre-fire – B8_pre-fire)/ 

(B3_pre-fire + B8_pre-fire))>= 0.0) then 1 else 0. 

To identify recently burned areas and differentiate them from bare soil and other non-

vegetated areas we used the Relativized Burn Ratio (RBR) (Equation 5). The RBR is the 

dNBR divided by a simple adjustment to the pre-fire NBR. Adding 1.001 to the 

denominator ensures that the denominator will never be zero, thereby preventing the 

equation from reaching infinity and failing (Parks, Dillon & Miller, 2014). With the 

calculation of the RBR it has also been applied the cloud and water mask. The RBR was 

calculated with the following expression in Band Maths: if cloud_water_mask == 0 then 

((NBR_pre-fire – NBR_post-fire)/(NBR_pre-fire + 1.001)) else NaN. 

To extract only the burned area, another band has been created by establishing a 

threshold for pixel to be classified as burned to > 0.27 (Keeley, 2009; UN-SPYDER 

Knowledge Portal). Only those pixels where RBR is larger than 0.27 have been selected. 

This value of 0.27 corresponds to moderate burn severity areas. Therefore, only areas 

classified as moderate burn or higher have been selected. To extract this pixels the 

following expression was introduced in BandMaths: if RBR > 0.27 then RBR else NaN. 

After exporting the burned area in GeoTIFF (*.tif, *.tiff) format, burn severity has been 

interpreted in QGIS according to the following table (Table 1). This values are proposed by 

The United States Geological Survey (USGS) to interpret the burn severity (dNBR). 

Table 1.  

Burn severity levels obtained calculating dNBR, proposed by USGS  
(Source: Keeley, 2009; UN-SPYDER Knowledge Portal) 

Severity Level dNBR range (scaled by 103)  dNBR (not scaled) 

Enhanced Regrowth, hight -500 to -251  -0.500 to -0.251 

Enhanced Regrowth, low -250 to -101  -0.250 to -0.101 

Unburned -100 to +99  -0.100 to 0.099 

Low Severity +100 to +269  0.100 to 0.269 

Moderate-low Severity +270 to +439  0.270 to 0.439 

Moderate-high Severity +440 to +659  0.440 to 0.659 

High Severity +660 to +1300  0.660 to 1.300 

In order to calculate the size of the burned area, the obtained raster has been 

polygonized. The vectorization process was done in QGIS, with the Reclassify values 

(simple) (SAGA GIS) and Polygonize (raster to vector) (GDAL) tools. In the process of 

reclassifying the values, only the values belonging to categories Low Severity, Moderate-

low Severity, Moderate-high Severity and High Severity have been reclassified, assigning 

to these categories the numbers 0, 1, 2, 3, respectively. After the reclassification, these burn 

severity categories have been polygonized. Obtaining the burned area in a vector format has 

allowed to calculate the size of the area affected by fire; and also by reclassifying the values 
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has allowed to calculate the area of the different severity categories, thus obtaining greater 

detail of the fire. In the QGIS attribute table has calculated the size of the areas of the 

different severity categories in square meters and hectares. With the help of Excel, the size 

of the total affected area and the size of the different severity classes were calculated. 

3.2. Calculation of the Burned Vegetation Index (BVI) 

To present an alternative metric in the study of fire severity, the Burned Vegetation 

Index (BVI) has been developed which combines the Normalized Difference Vegetation 

Index (NDVI) and the Normalized Burn Ratio (RBR) for the study of the severity of burned 

vegetation. The BVI is defined as a difference between NDVI pre-fire and NBR post-fire: 

BVI = (
NIRprefire − Redprefire

NIRprefire + Redprefire

) − (
NIRpostfire − SWIRpostfire

NIRpostfire + SWIRpostfire

) 

 

BVI = NDVIprefire − NBRpostfire                                     (8) 

The BVI first identifies the healthy vegetation reflected in the red and near-infrared 

bands, and then subtracts from this the pixels identified as burned areas reflected in near-

infrared and shortwave infrared bands. Vegetation in good condition has high near-infrared 

reflectance and low reflectance in the shortwave infrared portion of the spectrum. 

Otherwise, burned areas have low reflectance in the near-infrared and high reflectance in 

the shortwave infrared band. Therefore, the pre-fire NDVI gives larger values where 

vegetation was healthier, while the post-fire NBR gives negative values for surfaces 

identified as recently burned. As a result of the subtraction, the BVI shows smaller values 

where vegetation remains healthy and larger values where vegetation suffered fire 

disturbance. The following classification table is proposed to interpret the BVI (Table 2). 

The values were classified into five severity categories by equal intervals. The interval 

values shown in the table were obtained by calculating the mean of the category values in 

the case of the two fires. 
Table 2.  

Burned vegetation severity levels obtained calculating BVI (Source: the author). 

Severity Level BVI 

Highly healthy vegetation <= 0.124 

Healthy vegetation 0.125 to 0.286 

Bare soil 0.287 to 0.449 

Moderately burned vegetation 0.450 to 0.612 

Highly burned vegetation >= 0.613 

3.3. Analysis of the relationship between BVI and RBR, dNDVI, dNBR 

For the statistical analysis of the relationship between satellite indices, first has been 

calculated the number of pixels that exist in each study area (N, population size) with the 

Zonal Statistics tool in QGIS. Having the total number of pixels in the study area, the size 

of a sample was calculated with a confidence level of 95% and with a margin of error of 

5%, using the following formula (Israel, 1992): 

                                                              𝑛 =
𝑛0

1+
(𝑛0−1)

𝑁

                                                        (9) 

where n is the sample size, N is the population size, and n0 is calculated as follows: 
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                                                               𝑛0 =
𝑍2𝑝𝑞

𝑒2                                                            (10) 

where n0 is the sample size, Z2 is the abscissa of the normal curve that cuts off an area α at 

the tails (1 - α equals the desired confidence level, e.g., 95%), e2 is the desired level of 

precision, p is the estimated proportion of an attribute that is present in the population, and 

q is 1-p. The value for Z is found in statistical tables which contain the area under the 

normal curve. With the help of the Random points in layer bounds tool in QGIS, the 

required number of points of the calculated sample has been generated. In QGIS there is 

another tool that allows to extract the pixel value using a vector layer that contains the 

sampling points and the raster layers with field/bands to get values from. Thus, with the 

Point Sampling tool, the pixel values that were taken in the sample were extracted for 

correlation analysis between satellite indices. The intensity of linear relationship between 

satellite indices was determined using by Pearson correlation coefficient (r). The Pearson 

correlation coefficient (r) of two variables, xi and yi, was calculated on the basis of the 

following equation (Lee & Wong, 2001): 

                                                
SxSy

YX
n

xiyi

r

n

i 



 1

                                                (11)        

where, X  and Y  represent the mean of x and y, and Sx  and Sy represent standard 

deviation of x and y, calculated with the formulas: 

21

2

X
n

x
Sx

n

n 
  21

2

Y
n

y
Sy

n

n 
 

 
Pearson's correlation coefficient was validated with a t-test. The object of the t-test of a 

correlation coefficient is to investigate whether the difference between the sample 

correlation coefficient and zero is statistically significant. It is assumed that the x and y 

values originate from a bivariate normal distribution, and that the relationship is linear 

(Kanji, 2006). To test the null hypothesis that the population value of r is zero, the follow 

test statistic has been calculated: 

                                                        𝑡 =
𝑟

√1−𝑟2
∗  √𝑛 − 2                                                    (12) 

This t-test follows Student’s t-distribution with n − 2 degrees of freedom and in this case 

was two-tailed. 

4. RESULTS AND DISCUSSIONS 

The delimitation and extraction of the two areas affected by forest fires with the 

calculation of the RBR index gave different results compared to Copernicus EMS maps. 

The size of the burned area according to the calculation process of this study in the case of 

Kineta is 3511 hectares, presenting the following distribution of burn severity: Low 

Severity: 493 ha (14%), Moderate-low Severity: 1483 ha (42%), Moderate-high Severity: 

1370 ha (39%), High Severity: 164 ha (5%) (Fig. 7). On the other hand, the size of the 

affected area in the case of Mati is 942 hectares, presenting the following distribution of 

burn severity: Low Severity: 76 ha (8%), Moderate-low Severity: 369 ha (39%), Moderate-

high Severity: 271 ha (29%), High Severity: 226 (24%) (Fig. 8). EMS data (emergency 

maps and vector packages) estimates the size of the burned area in Kineta at 5613 hectares 

and in Mati at 1275 hectares (Copernicus EMS, 2018). 
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These differences in the size of the areas affected by the same fire are explained by the 

different methods used in the delimitation of the burned areas. In the case of Mati the EMS 

thematic layer has been derived from post-event satellite image, using by means of visual 

interpretation. The estimated geometric accuracy is 5 m CE 90 or better, from native 

positional accuracy of the background satellite image. Data sources they used are very high 

resolution Pléiades pre- and post-fire satellite images. The pre-event image is a Pléiades-

1A/B, distributed by Airbus DS, acquired on 07/03/2018, with a ground sampling distance 

(GSD) of 0.5 m, approximately 0% cloud coverage. The post-event image is a Pléiades-1B 

acquired on 25/07/2018, with a ground sampling distance (GSD) of 0.5 m, approximately 

2.3% cloud coverage. In the case of Kineta the EMS thematic layer has been derived from 

post-event satellite image using a semi-automatic approach. The pre-event image in this 

case was a SPOT6/7, distributed by Airbus DS acquired on 06/12/2017, with a ground 

sampling distance (GSD) of 1.5 m, approximately 0% cloud coverage. The post-event 

image was also a SPOT6/7, acquired on 30/07/2018, with a ground sampling distance 

(GSD) of 1.5 m, approximately 5.6% cloud coverage (Copernicus EMS, 2018).  

Both visual interpretation and semi-automatic classification of land cover are methods 

often used in Remote Sensing (Cigna et al, 2011; Cigna et al., 2012; Raspini et al., 2018; 

Jiang et al., 2012), but in the case of the study and mapping burned areas they give very 

different results. Firstly, because the methodology for the delimitation and interpretation of 

the results always depends on the researcher and the purpose of the study for which it is 

done; and secondly, because the study of the change of land cover in Remote Sensing 

depends a lot on the date and time when the satellite images were taken, the season of the 

year in which they were taken, the atmospheric conditions and the time interval between the 

images. 

The Burned Vegetation Index (BVI) in the study and mapping burned areas is focused 

on represent fire-altered vegetation (Fig. 9, Fig. 10). It captures changes in vegetation using 

the Red, NIR and SWIR bands of the electromagnetic spectrum. The correlation analysis 

between BVI and different fire severity metrics (RBR, dNDVI, dNBR) has shown that the 

BVI corresponds very well with other satellite indices used in the study and mapping 

burned areas (Fig. 11). In the study area of Kineta there were 1 169 238 pixels, of which a 

sample of 384 points was taken with the values associated with its pixels. The study area of 

Mati contained 249 468 pixels, of which a sample of 384 points was taken with the values 

associated with its pixels. In the case of the relationship between BVI and RBR, the 

Pearson correlation coefficient (r) gave the value r=0.96 (Kineta) and r=0.94 (Mati). The 

relationship between BVI and dNDVI was r=0.93 (Kineta) and r=0.90 (Mati). The 

relationship is also strong in the case of BVI and dNBR giving r=0.96 (Kineta) and r=0.94 

(Mati). The coefficient of determination (R2) using linear regression in the case of BVI and 

RBR is R2=0.92 (Kineta) and R2=0.89 (Mati). In the case of BVI and dNDVI the 

coefficient of determination is R2=0.87 (Kineta) and R2=0.82 (Mati). The coefficient of 

determination is also high between BVI and dNBR: R2=0.92 (Kineta) and R2=0.88 (Mati) 

(Table 3). The t-test of the correlation coefficient validated that the difference between the 

correlation coefficient and zero is statistically significant in all cases between BVI and 

RBR, dNDVI, dNBR. With this it can be affirmed that there is a statistically significant 

relationship between BVI and RBR, dNDVI, dNBR. The t-test was taken with a confidence 

level of 95% (CL), margin of error 5% (α) and with the probability of tα/2 = 0.975. 

Establishing this, the critical value of the T-Student table according to the degree of 

freedom (df = n-2) in all cases is 1.96 (df= 381 in the case of Kineta and df= 364 in the case 

of Mati). Between BVI and RBR, dNDVI, dNBR the T-test value (T-stat) is greater than 
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the critical value (T-critical), stating that there is statistically significant relationship 

between the variables (Table 3). 

In the study of forest fires, it is not sufficient to assess and delimit the affected areas 

after the event. From a socio-economic perspective it is important to develop vulnerability 

models to wildfires. Further studies underline the need to find optimal ways of evacuating 

the population in cases of forest fires (Hasnat et al., 2018; Nicoară & Haidu, 2014). In 

addition, the study of burned areas with Remote sensing methods in other studies is 

complemented by meteorological indicators (Furtună & Holobâcă, 2013). Mateescu (2006) 

in its study on post-fire assessment introduces the dedicated BAS2 tool for wildfires. From 

a hydrological perspective, Sever's study (2019) reveals the impact of mega-fires on 

watersheds. 
Table 3.  

The degree of dependence between BVI and RBR, dNDVI, dNBR. 

Relationship/Fire r R2 T-stat T-critical df 

BVI & RBR (Kineta) 0.96 0.92 67.8 1.96 381 

BVI & RBR (Mati) 0.94 0.89 54.2 1.96 364 

BVI & dNDVI (Kineta) 0.93 0.87 49.7 1.96 381 

BVI & dNDVI (Mati) 0.90 0.82 40.2 1.96 364 

BVI & dNBR (Kineta) 0.96 0.92 67.6 1.96 381 

BVI & dNBR (Mati) 0.94 0.88 52.4 1.96 364 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Burned area size and burn severity levels, Kineta. 
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Fig. 8. Burned area size and burn severity levels, Mati. 

 

Fig. 9. BVI severity levels, Kineta. 
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Fig. 10. BVI severity levels, Mati. 

 

5. CONCLUSIONS 

Sentinel-2 satellite images available for free are a good source of data for analyzing 

and interpreting burn severity of forest fires because they have a relatively high spatial 

resolution of 10 m. However, Copernicus EMS data have shown that the delimitation of the 

area affected by fire is based on criteria defined by the researcher and also depends on the 

purposes of the investigation. In this study, the affected areas have been delimited with the 

calculation of the RBR index and according to the USGS proposition to interpret burn 

severity, setting a threshold of RBR > 0.27 to extract only the areas that were burned. EMS 

maps are developed to handle emergencies, therefore reflect situations almost immediately 

after the events (a few days after the event). Moreover, the study of the relationship 

between BVI and RBR, dNDVI, dNBR demonstrated that BVI is a good alternative for the 

study of wildfires, specially adapted for fire-altered vegetation research. 
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Fig. 11. Graphs correlating BVI and RBR, dNDVI, dNBR. 
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