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Abstract—Currently, a major trend in artificial intelligence is
to implement neural networks at the edge, within circuits with
limited memory capacity. To reach this goal, the in-memory or
near-memory implementation of low precision neural networks
such as Binarized Neural Networks (BNNs) constitutes an appeal-
ing solution. However, the configurability of these approaches is a
major challenge: in neural networks, the number of neurons per
layer vary tremendously depending on the application, limiting
the column-wise or row-wise mapping of neurons in memory
arrays. To tackle this issue, we propose, for the first time, a
Configurable Analog auto-compensate Pop-Count (CAPC) circuit
compatible with column-wise neuron mapping. Our circuit has
the advantage of featuring a very natural configurability through
analog switch connections. We demonstrate that our solution
saves 18% of area compared to non configurable conventional
digital solution. Moreover, through extensive Monte-Carlo sim-
ulations, we show that the overall error probability remains
low, and we highlight, at network level, the resilience of our
configurable solution, with very limited accuracy degradation of
0.15% on the MNIST task, and 2.84% on the CIFAR-10 task.

Index Terms—BNN, Analog Pop-Count, Near-Memory

I. INTRODUCTION

Current applications, such as sensor fusion coupled with
data analysis [1], emphasize the need for Artificial Intelligence
(AI) treatment at the edge. However, the deployment of neural
networks on microcontroller units is still limited, on one hand
by the high power consumption of computation and data
movement from and to embedded memory, and on the other
hand by the embedded memory capacity [2]. For this reason,
considerable research investigates dedicated AI architectures
where logic and memory are closely integrated, following
the principles of in-memory or near-memory computation. In
this context, Binarized Neural Network (BNN), or the closely
related XNOR-NETs, are particularly attractive as, in these
networks, both synaptic weights and neural activations are
coded during inference with a single binary value [3], [4].

BNNs function with an arithmetic considerably simplified
with regards to conventional neural networks. The main equa-
tion in conventional neural networks is the computation of
the neuronal activation Aj = f (

∑
iWjiXi) , where Aj ,

the synaptic weights Wji, and input neuronal activations Xi

assume real values, and f is a non-linear activation function.
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Fig. 1. Schematic overview of the CAPC circuits connection at the bottom
of a column-wise NMC memory array, with equivalent neuron model for k=2

This equation becomes, in the case of BNNs, since Aj , and
Wji are binary values meaning +1 and −1

Aj = sign (POPCOUNTi (XNOR (Wji, Xi))− Tj) , (1)

where sign is the sign function, Tj is an integer threshold
associated with the neuron, and the POPCOUNT operation
counts the number of ones in a series. The low memory
requirements and simple arithmetic of BNNs make them
particularly adapted to near-memory computation (NMC) us-
ing static RAM [5], [6], or emerging non-volatile memory
technologies such as resistive RAMs, memristors, or magnetic
RAM [7], [8].

In an NMC context, neurons can be mapped either column-
wise or row-wise, each configuration having a similar through-
put. In a column-wise configuration, the activation is per-
formed through a sequential read of each memory row for all
the columns (neuron) in parallel, and the pop-count operation
is performed for each column at the bottom of the memory
array. For simplifying logic, the XNOR operation is sometimes
embedded within the memory sense amplifier [7], [8]. By con-
trast, in a row-wise configuration, the activation is performed
sequentially one row at a time. The pop-count operation is
performed through all column with each row activation, with
dedicated digital or mixed-signal circuits [5], [6].



A significant challenge is that layers of neural networks of-
ten feature more neurons than the number of rows or columns
of memory arrays, and the number of neurons per layer varies
tremendously depending on applications. Therefore, a strict
column-wise or row-wise system has limited applicability,
and some reconfigurability is needed. In this context, several
studies have been proposed to optimize memory mapping and
data-flow at the system level [9]–[11] in dedicated neural
network accelerator. However, the configurability has a high
circuit overhead cost, and is often ignored in NMC works at
the circuit level.

In this work, we propose, for the first time, a Configurable
Analog Pop-Count circuit (CAPC), which has the advantage
of featuring a very natural configurability, based on capacitor
discharge and sum. Moreover, the circuit auto-compensates
discharge non-linearity in applying the same counting process
to the pop-count value and the threshold value. Each CAPC
circuit is located at the bottom of a column of the memory
array. The configurability is ensured by a simple connection
through analog switches between adjacent column. When this
connection is activated, the different columns act as a single
one, without needing any other change to the system.

An alternative to our approach is constituted by in-memory
computing (IMC) solutions, which exploits Ohm’s and Kirch-
hoff’s laws to perform neural network arithmetics, and may
present excellent performances when targeting non-volatile
memory technologies such as resistive RAMs. However these
approaches, require significant overhead circuitry, in particular
analog-to-digital converters [10]–[15]. Beyond its configura-
bility, our approach avoids the use of such circuit entirely.

The contributions of this paper are as follows:
• We introduce, for the first time, a CAPC circuit based

on auto-compensate capacitor discharge, compliant with
column-wise NMC solutions. (sec. II.A).

• We validate our CAPC solution through extensive Monte-
Carlo simulations to extract pop-count/comparison errors
for various configurations (sec. II.B).

• We carry simulations at the neural network level to show
the impact of configuration choice on the MNIST and
CIFAR-10 tasks, and evidence the error resilience of our
approach (sec. III).

II. CONFIGURABLE ANALOG POP-COUNT (CAPC)
CIRCUIT

Fig. 1 presents our memory architecture with m rows and n
columns. The configurability factor k (in the Figure, k = 2),
allows configuring the number of neurons to n/k and the
number of synapses in the memory array to m×k per neuron.
Each column of the memory array features a CAPC circuit,
following the column sense amplifier and the XNOR gate
(both potentially co-integrated [7], [8]).

A. CAPC description

The CAPC architecture, presented schematically in
Fig. 2(a), is mainly composed of five functional blocks:
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Fig. 2. (a) Schematic of the analog pop-count circuit applied to XNOR and
Threshold pop-count. (b) Layout view of the CAPC with an area footprint of
355 µm2

• two identical analog counting blocks, one for the XNOR
pop-count and one for the threshold pop-count,

• two identical analog switches to configure the connection
to the next right CAPC block, here also one for the
XNOR pop-count and one for the threshold pop-count,

• a strongARM comparator [16].

Moreover, a constant current source IREF is shared between
all CAPC blocks (see Fig. 3).

The analog counting block, at the core of the CAPC, relies
on the discharge of a MOS capacitor with a constant current
IREF . The discharge step only occurs when the input signal
of the CAPC (XNOR respectively TH) exhibits a 1. Since
the capacitance discharge is similar for the XNOR popcount
value and for the threshold popcount value, the CAPC auto-
compensate the discharge non-linearity. To keep the current
mirror transistors in the saturation region and to maximize
the voltage capacitor swing (1.8V down to 0.6V), we set the
supply voltage VDD to 1.8V, which remains close to safe
operation regime (the nominal VDD is 1.2V for the 130 nm
technology used to benchmark the proposed solution).

The fully laid out CAPC block (Fig. 2(b)) exhibits an
area of 355µm2. As a benchmark, we synthesized a non-
configurable digital solution with the same technology node,
using the Synopsys Design Vision tool. The benchmark digital
solution is based on a down-counter and a comparator to 0.
The popcount process starts with a pre-charge of the down-
counter to the threshold value. During the pop-count process,
the down-counter value decreases with each XNOR value
equal to 1. At the end of the pop-count process, the down-
counter value is compared to 0 to activate the neuron. We
found the area of the non-configurable digital benchmark to
be 18% higher than our CAPC circuit.

In addition to its area efficiency, the major advantage of the
CAPC circuit is its reconfigurability. The configuration prin-
ciple is based on connecting k CAPCs together by activating
analog switches between neighbor CAPCs, as illustrated in
Fig. 3 for k = 2. Doing so, the capacitors are connected in
parallel, thus adding the capacitance value shared between k
columns, for the XNOR pop-count part on one side and for
the threshold pop-count part on the other side. After doing so,
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Fig. 3. Schematic of the connection of two by two CAPC blocks (k=2), to illustrate the parallel connection of the adjacent capacitances
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Fig. 4. Results of functional simulation of the CAPC circuit, with m=64,
k=1, with VTH > VPC meaning that the threshold value is lower than the
pop-count value (green region), thus activation value (OUT) is set to one,
followed by VTH < VPC meaning that the threshold value is larger than the
pop-count value (red region), thus activation value (OUT) is set to zero

a single comparator is used to deliver the activation output.
With this technique, the counting capability of the solution

is multiplied by k, keeping the same voltage discharge full
range (1.8V down to 0.6V) with a voltage step divided by
k and the same reference current IREF for each block. The
advantage of the solution is to keep the auto-compensation ca-
pability whatever the number k of CAPCs connected together.

The working scheme of our solution, is divided into three
successive phases, illustrated in Fig. 4 for two different cases
(XNOR pop-count value above and below threshold pop-
count value). First, a reset phase occurs grounding the RST
signal, and thus charging all capacitors to VDD. Then, the
RST signal is inactivated (RST signal tied to VDD) and
the discharge process starts for both pop-count and threshold
block, sequenced by the system clock in m × k steps. The
threshold bit stream has to be divided between the different
CAPC blocks to fit the m × k steps. After m × k steps, the
comparison occurs by activating the comparator of one block
from the k blocks in parallel, generating the binary activation
output value.

B. CAPC - Validation

Fig. 4 shows the simulation of the CAPC circuit in typ-
ical situations and validates its functionality. Additionally,

(a)
k (# value) 1 2 4

Synapses per neuron (# value) 64 128 256
Full range mean activation error (%) 2.87 3.04 2.82
σ of XNOR pop-count (# value) 1.5 3 6

(b)

Fig. 5. Estimated error range and error probability extracted from Monte-
Carlo simulation of the proposed CAPC circuit for k ranging from 1 to 4.

we performed extensive Monte-Carlo simulations (500 runs,
with global and local variations at three sigmas, including
mismatch) for different scenarios. The simulated scenarios
cover the full range of the XNOR popcount values, compared
to the full range of the threshold popcount values, for recon-
figurability factors k = 1, 2, and 4, with m = 64. Fig. 5(a)
presents the error extraction process in different cases where
the threshold value is set to the middle of the popcount value
range, for k = 1, 2, and 4. A similar extraction procedure
was performed in all the considered scenarios, and Fig. 5(b)
summarizes the obtained results. As expected, the standard
deviation of the XNOR popcount values leading to error is
doubled when k is doubled. The voltage step corresponding
to one popcount, is indeed divided by k.

The maximum error is reached when the XNOR popcount
value and threshold popcount values are close: the error
probability as a function of XNOR popcount value follows
a Gaussian function centered around the threshold popcount
value. The standard deviation of this Gaussian function is very
low: 1.5, 3 and 6 popcount values for respectively k = 1, 2
and 4 (and thus 64, 128 and 256 synapses per neuron). Out
of the three-sigma range of the Gaussian function, the CAPC
is error free, whatever was the configuration. This result also



shows that the corresponding voltage range remains constant,
whatever was the configuration, since the ratio between ca-
pacitance value and discharge current remains constant.

III. NETWORK LEVEL ESTIMATIONS

We now use the errors distributions extracted for all sce-
narios as input for neural network simulation. More precisely,
to assess the impact of the errors on BNN accuracy during
inference, we perform simulations of a fully-connected ar-
chitecture for the handwritten digit recognition (MNIST) task
and of a convolutional architecture for an object classification
(CIFAR-10) task. We train the networks in an ideal setting and
only introduce the errors during inference. The probability of
error in the comparison of XNOR popcount and threshold is
modeled as to follow a Gaussian function with a zero mean and
a standard deviation proportional to the number of neurons,
extracted from the results of the Monte Carlo simulations
shown in Fig. 5(a).

The fully-connected network employed for the MNIST task
had a single hidden layer with 3,000 neurons, and it showed,
due to the errors, a very small mean accuracy degradation
of 0.15% on the test dataset. For the more difficult CIFAR-
10 task, six convolutional layers followed by three fully-
connected layers are used, as is common for convolutional
neural networks. The erroneous thresholding was not used for
the first layer, as the input to a BNN is not typically binarized,
and thus we cannot use such circuits. We tested the impact
of CAPC errors on the fully-connected layers, as they are
the most memory intensive and the ones for which CAPC
is the most adapted. This task showed a small mean accuracy
degradation of 2.84%. Without errors, the network is trained
to have an accuracy of 90.09%. When errors are included,
this accuracy degrades to 87.25%, on average, with a standard
deviation of 0.13%.

Fig. 6 shows the detailed impact of the errors on the CIFAR-
10 task: to see the impact of the errors on individual fully-
connected layers, we remove the erroneous comparison for
each of those layers successively. The results suggest that the
first fully-connected layer of the network is the most sensitive
to errors.

IV. CONCLUSION

In this work, we propose, for the first time, a Configurable
Analog Pop-Count circuit, suitable for Near-Memory Comput-
ing solutions where neuron mapping is performed in a column-
wise fashion. The proposed circuit has been laid out, showing
an area reduction of 18% when compared to non configurable
classical digital pop-count implementation. The CAPC circuit
has been simulated to assess the auto-compensation of capaci-
tance discharge non-linearity between XNOR pop-count value
and threshold pop-count value. Simulation results, accounting
for global as well as local variability (500 MC runs), show low
overall activation error probability. From the error probabilities
extracted at the circuit level, neural network simulations has
been carried out. The simulations results, with less than 3
percentage points reduction in inference accuracy, confirm the
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Fig. 6. Influence of the error introduced because of the analog pop-count on
the CIFAR-10 image classification task. The inference accuracy for analog
pop-count in no layer (black), all fully-connected (FC) layers (red), and when
excluded in various FC layers (blue).

resilience of the approach. These results open the way to
improve neural network mapping on various memory array
sizes, through configurability at the circuit level.
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