
HAL Id: hal-03624716
https://hal.science/hal-03624716

Submitted on 30 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specification By Example for Educational Purposes
Isabelle Blasquez, Hervé Leblanc

To cite this version:
Isabelle Blasquez, Hervé Leblanc. Specification By Example for Educational Purposes. ACM Confer-
ence on Innovation and Technology in Computer Science Education (ITiCSE 2017), Jul 2017, Bologna,
Italy. pp. 212-217. �hal-03624716�

https://hal.science/hal-03624716
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/19107

Official URL: https://dl.acm.org/citation.cfm?doid=3059009.3059039

DOI : http://doi.org/10.1145/3059009.3059039

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Blasquez, Isabelle and Leblanc, Hervé
Specification By Example for Educational Purposes. (2017) In:
ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2017), 3 July 2017 - 5 July 2017
(Bologna, Italy).

Specification By Example for Educational Purposes

Isabelle Blasquez
Limoges University

33 rue François Mitterrand
Limoges, France

isabelle.blasquez@unilim.fr

Hervé Leblanc
IRIT

118 Route de Narbonne
Toulouse, France
leblanc@irit.fr

ABSTRACT

The Specification By Example (SBE) is a guideline for build-
ing the right software, a software that meets customer re-
quirements. It is based on seven process patterns and en-
hances communication and collaboration and it usually is
used in agile software development. The connection between
education and agile software development sounds actually as
an emergent topic. In this paper, we propose to structure
a teaching approach in analogy to an agile software devel-
opement by transposing each process pattern of SBE to a
corresponding one in the teaching domain. Moreover, we
show that thanks to the emergence of a collective intelligence
process, the students are more confident and more respon-
sible. Such a course offers the opportunity to learn not only
technical skills, but also some values in a new mindset.

Keywords

Agile Software Development; Specification by Example; Ag-
ile Teaching

1. INTRODUCTION
“Building the product right and building the right prod-

uct are two different things. We need both in order to suc-
ceed”. From this observation, Godjko Adzick builds a col-
lective knowledge by studying over 50 software projects [1].
The related process consists of gathering examples to clarify
requirements, deriving tests and automating them. Specifi-
cation By Example (SBE) is also defined as an approach of
software development based on seven process patterns that
help teams to build the right software product by writing
just enough documentation to facilitate change effectively
in short iterations or in flow-based development [1]. It also
enhances communication and collaboration and it usually is
used in agile software development.

The connection between agile software development and
education sounds actually as an emergent topic. Some trans-

DOI: http://dx.doi.org/10.1145/3059009.3059039

positions are developped concerning agile manifesto1, agile
values2, the Scrum framework3 and more generally agile ap-
proaches4. These propositions suggest the idea that educa-
tion today needs a “refactoring”. While the agile manifesto
proposes to evolve from a traditional plan-driven paradigm
to a value-driven paradigm, the agile school manifesto sug-
gests an evolution from traditional teaching-approaches to
new learning approaches.

We propose a teaching approach in analogy to an agile
software developement by transposing each process pattern
of SBE to a corresponding one in the teaching domain. The
result of the transposition is a guideline usable by teachers
to produce the right course as the agile methodologies are
used to produce the right software.

As example, we use a software product methods course
that we gave to eighty two-year french undergraduates. This
course is a part of French National Pedagogical Program
(PPN), a common program to all technical colleges special-
ized in Computer Technology. The objective of this course is
to present software development processes. We have chosen
to teach agile software development.

This paper presents a transposition of the seven process
patterns of Specification By Example to improve the design
of a course. This is one section per process pattern with
three paragraphs each: an overview of the original pattern in
SBE, the corresponding pattern in teaching-domain, and an
example on the software development processes course. The
next section gives some considerations about the concept of
right course and gives a toolkit of our proposal.

2. BACKGROUND AND CONTEXT
Traditional teaching approach is teacher-centered and of-

ten relies only on lectures and small exercises. Nowadays, we
remark that students become more quickly bored and inat-
tentive due to mismatches between students learning and
teaching styles [8]. To improve the quality of courses and to
help both teacher and students for a better alignment, we
have designed a guideline based on SBE.

A definition of quality in the context of educational game
is suggested in [21] as if it provides a positive learning ef-

fect, motivates students to study and provides a pleasant and

engaging learning experience. We choose to use this defini-
tion to the right course whose the expectations in terms of

1https://www.infoq.com/articles/agile-schools-education
2https://pedagogieagile.com/2012/05/12/les-valeurs
3http://eduscrum.nl/en
4http://approchealpes.info

ness model, agile requirements, user story, Scrum in practice,
tests, and retrospective.

As the students were novices, this course’s vision has been
suggested by the teacher. But in another context such as an
advanced course, the course’s vision could be defined collab-
oratively by an open backlog and a collective vote.

4. SPECIFYING COLLABORATIVELY

Original pattern.
Specifying collaboratively enables to harness the knowl-

edge and the experience of the whole team. It also cre-
ates a collective ownership of specifications, making every-
one more engaged in the delivery process [1]. No document
should be written in isolation. To collaborate effectively,
most popular models are introduced: workshops (all-team
or smaller), pair-writing, and even informal conversations.
All-team workshops are useful to discover and learn about
the business model. They are a good way to build a shared
understanding of the requirements and produce a set of ex-
amples that illustrate a feature. The smaller workshops help
to clarify or complete the specification. Pairing to write
specifications allows to mature products by getting several
different perspectives on a example. Mostly, collaboration
needs a preparation phase to be efficient. It is easier to
initiate a collective discussion if some examples have been
prepared before.

Corresponding teaching-domain pattern.
Specifying collaboratively transposes to Teaching collab-

oratively. In SBE, collaboration models are classified ac-
cording to the size of the team. In teaching domain, collab-
oration models will be classified according to the teaching
approach.

We propose two kinds of collaboration models: inductive
and deductive workshops. Induction is a reasoning progres-
sion that proceeds from particulars (observations, measure-
ments, data) to generalities (governing rules, laws, theories).
Deduction proceeds in the opposite direction [8]. Tradi-
tional teaching approach is deductive. The inductive ap-
proach includes problem-based learning, discovery learning,
inquiry learning, or some variation on those themes which
are characterized by [19] as constructivist based approaches.
These approaches impose more responsibility on students
for their own learning. They almost always involve students
discussing questions and solving problems (active learning)
and the work is done in groups (collaborative or cooperative
learning).

The Participatory Action Research (PAR) is a collabo-
rative process of research, education and action explicitly
oriented towards social transformation [12]. To promote the
emergence of a collective intelligence process, we propose to
structure the workshops around a AAA-PAR strategy that
consists in three ordered steps. The first step is the Arrange-
ment time: the preparation phase where teacher prepares
materials provided to the students to start the workshop.
The second step is the Action time: the core of the work-
shop. During this step, the students collaborate to achieve
the required learning goals. The self-organized development

team of an agile software development also transposes to an
autonomous student team. The behavior of the stakeholders
is a crucial factor for the success of these workshop. The
main teacher’s responsibility is to engage students in learn-

learning, collaboration, commitment and happiness to work
are similar. The purpose of the right course is to enhance
the individual student’s capability to participate in and con-
tribute to collaborative learning process based on collective
intelligence process. According to Lévy, Collective Intelli-
gence (CI) is the capacity of human collectives to engage
in intellectual cooperation in order to create, innovate and
invent [15].

The guideline is presented in the table 1. The first column
provides original patterns of SBE. The second column pro-
vides corresponding teaching-domain patterns. And the last
column provides practices used to implement the patterns.
Teachers could design the right course by determining the
right teaching resources as well as posssible. For students,
this guideline gives the opportunity to learn not only tech-
nical skills, but also some values in a new mindset.

Throughout this paper, we propose an analogy between
the agile software development terminology and the teach-
ing terminology. As we have already suggested to translate
product into course, we also suggest to translate Product
Manager into Course designer and requirements into syl-
labus of the course. Examples from SBE will be transposed
to teaching resources.

3. DERIVING SCOPE FROM GOALS

Original pattern.
A best practice for this pattern is to start with a cus-

tomer’s business goal and then to collaborate with the busi-
ness to derive the scope. This pattern also first focuses on
why something is needed and who needs it. For effectively
collaborating, it recommends to ask how something would
be useful before what you need to build it. “Impact Map-
ping” is a technique for deriving scope from goals which pro-
pose to build a minmap around four aspects of the software:
goal (why), actors (who), impacts (how), and deliverables
(what). [2]

Corresponding teaching-domain pattern.
This process pattern focuses on the course’s vision by an-

swering why, who, how, and what. The why helps to define
the objective of the course also called learning goals. The
who depicts actors, usually students. The how identifies im-
pacts to help actors to achieve the objective. The impacts of
the teaching domain are learning outcomes (knowledge and
competencies acquired or improved by students). The what
helps to outline deliverables needed to support the impacts.
For teaching, they are topics which are the transposition
from features.

Example.
Our objective is to propose an introduction to agile soft-

ware development in an agile mindset: Doing agile and Be-
ing agile with respect to the first levels of Bloom’s taxonomy
suitable to undergradates (knowledge, comprehension and
application) [3]. The actors are students. There are three
learning outcomes relative to agile practices: delivering the
right product, delivering the product right, and delivering
fast and regularly. There is one learning outcome relative to
agile values and principles. The scope is also determined by
higher-level topics which are: introduction to agile software
development, overview of collaborative tools, introduction to
Scrum, from traditional to agile software development, busi-

Table 1: Guideline for delivering the right course
Process Patterns Teaching Patterns Practices
Deriving scope from goals Course’s vision goal, skateholders, skills, main topics
Specifying collaboratively Teaching collaboratively inductive workshop, deductive workshop

structure of the workshop
Illustrating using examples Illustrating with teaching resources learning style

(teaching resources support) teaching style
Refining the specification Refining teaching resources competency, timeboxing, application domain

(teaching resources details) outcome, starter kit
Automating validation Teaching resources management schedule, repetition
without changing specification
Validating frequently Knowledge evaluation process with or without grades, individual or collective

material, frequency, . . .
Evolving a documentation system Evolving a documentation academic access, material, architecture

ing: he becomes the facilitator of the workshop [19]. He must
ensure trust behaviors. Thirteen trust behaviors have been
identified by [5], some of them are: demonstrate respect,
create transparency, listen first, keep commitments, and ex-
tend trust. The third step is the Assertion time: a kind
of workshop review. The teachers also encourages students
to explicitly reflect on the events of the Action time and to
examine the lessons learned about the workshop. An agile
retrospective [6] is well-adapted at this time and the three
following questions could be asked: What did you learn in
this workshop ? What is amazing in this workshop ? Why
will you reuse or not the workshop later ?

Example.
Both inductive and deductive workshops are used in our

course. Inductive workshops was preferred to respect the CI
process and to promote the emergence of agile values. The
teams are composed by six or seven students to respect the
ideal size of an agile team.

5. ILLUSTRATING USING EXAMPLES

Original pattern.
Examples are used to clarify meaning in everyday conver-

sation: they are concrete and less unambiguous. Illustrating
requirements using examples is a way to specify with enough
details that we can be checked by assertion. Using examples
will ensure that the delivery teams focus on the right prod-
uct and that they have a shared understandings of what the
business users expect out of the system [1]. To be used from
requirement analysis to testing, examples should be small,
precise, realistic and easy to understand.

Corresponding teaching-domain pattern.
Illustrating with examples tranposes to illustrating with

teaching resources. We define a teaching resource as an ac-
tivity used by a teacher to engage students in learning to
achieve required learning goals.

Learning is presented as a two-step process involving the
reception and processing of information [8]. The processing
step may involve different learning’s models: simple memo-
rization, inductive or deductive reasoning, reflection, action,
and introspection or interaction with others. As students
learn in many ways and as teaching methods are also vari-
ous, learning styles and teaching styles are identified by [8].
A learning style should consider: perception (sensory or in-
tuitive), input (visual or auditory), organization (inductive
or deductive), processing (active or reactive), and under-
standing (sequential or global). A teaching style should con-

sider: content (concrete or abstract), presentation (visual or
verbal), organization (inductive or deductive), student par-
ticipation (active or passive), and perspective (sequential or
global).

When mismatches exist between learning and teaching
styles, students become bored and inattentive in class, do
poorly on tests, and get discouraged about the courses [8].
To engage students in learning, a best practice is to choose
the right teaching resources support by finding the better
alignment between learning and teaching style. Sometimes,
lectures are necessary to introduce or clarify a concept. For
a better alignment of the right course, we suggest two others
potential teaching resources.

Gamification is the process of using game-based mechan-
ics, aesthetics and game thinking to engage people, motivate
action, promote learning, and solve problems [11]. Game
can also offer some moment of serendipity. The Assertion
time is crucial to have benefits from games. A link be-
tween games, culture, happiness, learning, and productivity
is shown in [16] and studied on an educational game in [20].
Innovation Games [10] or Game storming [9] give usefull ex-
amples of gamification.

Project Based Learning (PBL) is perceived to be a student-
centered approach to learn [4, 18]. The students need to pro-
duce a solution to solve a problem and an outcome in the
form of a report. PBL focuses on large, open-ended prob-
lems, like many real-world problems [17]. It is based on five
principles: students work together in groups; a real world
problem that affects the life of the students is presented
for investigation; students discuss findings and consult the
teacher for guidance, input, and feedback; the maturity level
of students skills determines the degree of guidance provided
by the teacher; resulting products can be shared with the
community.

Example.
Various teaching resources have been used : traditional

lectures, games (lego-based approaches as Lego4Scrum or
TDDLego[14]), collaborative workshops (story-writing work-
shop and Coding dojo). A PBL approach has also been
adopted including collaborative workshops (product vision
statements, story mapping, impact mapping) and innovation
games (Product Box, Speed Boat). Gamification has been
preferred to introduce concepts whenever possible. Videos
from professionnal conferences have been watched in some
lectures. To introduce the visual management, visual infor-
mation has often been used with pictures, animations and
sketchnotes.

7. AUTOMATING VALIDATION WITHOUT

CHANGING SPECIFICATIONS

Original pattern.
After refining the specification, the examples can be used

as a target for the implementation and the validation of the
software. The tests should often be run during the develop-
ment to ensure quality of the product and to reduce delays
of the feedback. This pattern focuses on automation, as a
solution of a quick feedback. The automation has long-term
benefits: having an objective measurement of when the job
is finished, checking more frequently, and getting a living
documentation [1].

Corresponding teaching-domain pattern.
Thinking about automation is asking about repetition of

a learning resource. The repetition is a well-known best
practice in teaching. By using different types of teaching re-
sources on a same competency, we prevent the disalignment
between teaching and learning styles, we respect the learn-
ing time of each student, and we offer different opportunities
to apply the competency. This pattern focuses on teaching
resources management. It helps to select suitable teaching

resources by considering learning goals, learning styles and
competency. A first sequence of teaching resources can be
scheduled according to the sequence of topics. To ensure rep-
etition of some competencies, new teaching resources can be
introduced. During the course, a sequence can be changed
by the teacher according to the feedback on student behav-
iors and feelings (motivation, comprehension, outcome vali-
dation, . . .). The teacher should also apply some values to
his behavior, as responding to change in his course’s design.

Example.
The course run over a period of 10 weeks with two 2-hours

sessions per week. Lectures, games, collaborative workshops
and PBL have been alternatively used. As students have a
mentored software development project to lead at the same
time, some workshop of PBL have been repeated in this
context to help students to find user-stories from the vision.
These workshops were self-organized by the student teams.

8. VALIDATING FREQUENTLY

Original pattern.
A continuous integration system builds the product and

runs the tests. It ensures that once the product is built right,
it stays right. To satisfy this point, this pattern suggests to
validate executable specifications frequently to keep them
reliable. The best practices insist on reducing unreliability
and on looking for ways to get faster feedback.

Corresponding teaching-domain pattern.
Mostly, the actors build their own knowledge during the

right course. The teacher is responsible for the reliability of
the knowledge. The students are responsible to get faster
feedback. This pattern suggests to determine the knowl-
edge evaluation process. This process must be defined by
considering some questions as: is it an individual or collec-
tive evaluation ? What is the material for the evaluation ?
How often should we evaluate ? Are grades really required
as a measure of academic performance ? and so on.

Example.
An evaluation has been planned at the end of each work-

shop. This evaluation has taken place during the Assertion
time with an oral presentation of the outcomes. No grade is
attributed for this. For each workshop of the PBL, a sum-
mary has been required per team as material for the eval-
uation. This summary was based on a template provided
by the teacher: presentation of the workshop, deliverables,
comments, and retrospective. It allows to detail knowledge,
comprehension, and application of the competency taught.
Such a summary could also be used as a cookbook to apply
easily the competency again. At the end of the course, a
report including a presentation of the PBL project and all
the summaries has been delivered by each team. These re-
ports have been graded by one grade by team to respect the
collective intelligence process.

9. EVOLVING A DOCUMENTATION SYS-

TEM

Original pattern.
Living documentation is an artifact and the end-product

of SBE. It is a reliable and authoritative source of informa-
tion on system functionality, which anyone can easily ac-

6. REFINING THE SPECIFICATION

Original pattern.
This pattern brings further informations about the speci-

fication. To be unambiguous, a good specification should be
precise and testable, and concerns only business functional-
ity. To be useful as long-term documentation, it should be
self-explanatory, focused, and in domain language.

Corresponding teaching-domain pattern.
This pattern focuses on teaching resources details. It helps

the teacher to refine the teaching resources and to improve
it. A teaching resource should be focused about a specific
competency and be well time-boxed to respect the dura-
tion of the workshop. To be precise, the application domain
must be carefully chosen to promote the commitment of stu-
dents. To be testable, an outcome must be defined. An out-
come describes a way to verify and validate that the required
learning goals are well-achieved. The tests in software de-
velopment transposes to the outcome in teaching domain.
Collective discussions induced by the teaching resource will
be efficient only if everyone has a common understanding of
it. A starter kit could prevent misunderstanding and pro-
mote self-organization of the activities.

Example.
Each teaching resource has been focused on a specific com-

petency and time-boxed to respect the duration of a session.
Each student team has choosen by collective vote his own
application domain for the project used for the PBL work-
shops. At least, two major benefits can be highlighted with
this kind of project. First, the product manager (a student)
is always avalaible. Then most of students feel involved be-
cause they could be quickly become the users of this appli-
cation. A starter kit has been provided for each new teach-
ing resources. It includes a roadmap, a brief summary of
the concept taught, a description of required deliverable, a
glossary, and bibliographical references. The outcome have
been various as oral feedback, photos, and specific artifact
or summary.

Figure 1: Frequency diagram of answers with respect to the feedback on learning.

cess [1]. Best practices dedicated to living documentation
are: easy to access, easy to understand, and each change in
the system needs to be reflected.

Corresponding teaching-domain pattern.
System documentation transposes to academic documen-

tation in teaching domain. To easily access to the documen-
tation, material courses (lectures, exercices, tutorials, refer-
ences) can be deposit in repositories managed by a version
control system. Each stakeholder (teacher and students) can
consult or tell about changes to update material courses.
The role of the teacher is to encourage students to share
and update the materials to have more understable course
notes. The documentation can be alive by setting up an au-
tomatic notification system to alert all the stakeholder when
a new document is added or updated.

Example.
Github is used to share on-line public material courses5. It

provides collaboration features such as pull request or wikis.
A Slack6 team has been created for this course to facilitate
discussions between skateholders. The web-service IFTTT7

connects Github with Slack to automatically notify all the
stakeholder when a change in the documentation is pushed.

10. VALIDATION
We focus now on the evaluation of the quality (as defined

in section 2) of the agile software project management course
presented as the example. This course has been designed in
2015 and delivered in the fall 2015 and 2016.

The validation has been adapted from a specific frame-
work [20] which is based on two questionnaries related to
Bloom’s taxonomy of educational objectives [3] and Kirk-
patrick’s levels of evaluation [13]. It has already been ap-
plied for educational games and coding dojo session [7, 21].
We adapted the terminology from game to course and we
deleted some items from original questionnaires to only fo-
cus a set of teaching resources. Moreover, the evaluation
is concerned by student perception in terms of motivation,
user experience, and learning process. Questionnaries are
given to the 80 students at the end of the course.

Results of the first questionnaire are presented in Fig. 1. It
is based on [3] and evaluates the perception of the evolution
of learning in the competencies taught before and after the

5https://github.com/iblasquez
6https://slack.com: a cloud-based team collaboration tool
7https://ifttt.com: If This Then That

course. It focuses on the learning goals (doing agile and
being agile) with respect to the perceived impacts rated on
a scale from 1 to 5. The perception of the Agile Software
Development (the heart of the course) was multiplied by
more than two. It is the same for the being agile posture
that students can reused for other courses.

Results of the second questionnaire are presented in Fig. 2.
It is based on [13] consists in 21 items asking motivation,
user experience, and learning on a Likert scale with response
alternatives ranging from strongly disagree (-2) to strongly
agree (2). The majority of the students agreed strongly that
the course promotes moments of cooperation. They also
confirmed that they had fun while interacting with other
students. The social interaction has also been the highest
rated dimension. Overall, results are positive in terms of
fun, challenge, and social interactions.

11. CONCLUSION
This paper presents a guideline for delivering a right course

by structuring a teaching approach as an agile software de-
velopment. We defend a new teaching way based on collec-
tive intelligence process which aims to align a course with the
needs of students by designing the right teaching resources.
The role of the teacher as a facilitator has also been pre-
sented as a key of success. By maintaining trust behaviors
and by encouraging the communication, he helps students
to collaborate efficiently and to be more commitment, more
creative and more responsible. In agile software develop-
ment, the most popular methodologies used are: Scrum and
eXtreme Programming. We showed that SBE can be trans-
posed to specify teaching resources. Scrum has already been
transposed to manage learning experience where the respon-
sibility for the learning process is delegated to students. No
transposition has already been proposed for eXtreme Pro-
gramming. We plan to study their principles, especially the
transposition from a user story to a teaching story.

12. ACKNOWLEDGMENTS
This same transposition was used for a specific course

during 3 days on agile requirements at the University of
Toulouse for a professional Bachelor dedicated to Develop-
ment and Software Quality.

Figure 2: Frequency diagram of answers with respect to the sub-component user experience.

13. REFERENCES

[1] G. Adzic. Specification by Example: How Successful

Teams Deliver the Right Software. Manning
Publications Co., Greenwich, CT, USA, 2011.

[2] G. Adzic and M. Bisset. Impact Mapping. Provoking
Thoughts, 2012.

[3] B. S. Bloom, M. B. Engelhart, E. J. Furst, W. H. Hill,
and D. R. Krathwohl. Taxonomy of educational

objectives. The classification of educational goals.

Longmans Green, 1956.

[4] S. Chandrasekaran, A. Stojcevski, G. Littlefair, and
M. Joordens. Learning through projects in engineering
education. In Proceedings of SEFI Conference, 2012.

[5] S. Covey and R. Merrill. The SPEED of Trust: The

One Thing that Changes Everything. Free Press, 2008.

[6] E. Derby and D. Larsen. Agile Retrospectives: Making

Good Teams Great. Pragmatic Bookshelf, 2006.

[7] B. Estácio, N. Valentim, L. Rivero, T. Conte, and
R. Prikladnicki. Evaluating the use of pair
programming and coding dojo in teaching mockups
development: An empirical study. In HICSS, pages
5084–5093. IEEE Computer Society, 2015.

[8] R. M. Felder and L. K. Silverman. Learning and
teaching styles in engineering education. engineering
education, 78(7):674–681, 1988.

[9] D. Gray, S. Brown, and J. Macanufo. Gamestorming:

A Playbook for Innovators, Rulebreakers, and

Changemakers. O’Reilly Media, 2010.

[10] L. Hohmann. Innovation Games. Pearson Education,
2006.

[11] K. Kapp. The Gamification of Learning and

Instruction: Game-based Methods and Strategies for

Training and Education. Wiley, 2012.

[12] S. Kindon, R. Pain, and M. Kesby. Participatory
Action Research Approaches and Methods: Connecting

People, Participation and Place. Routledge Studies in
Human Geography. Taylor & Francis, 2007.

[13] D. L. Kirkpatrick and J. D. Kirkpatrick. Evaluating
training programs : the four levels. Berrett-Koehler
Publishers, 2006.

[14] S. Kurkovsky. A lego-based approach to introducing
test-driven development. In ACM Conference on

ITiCSE, pages 246–247, New York, NY, USA, 2016.

[15] P. Lévy. From social computing to reflexive collective
intelligence: The ieml research program. Information

Sciences, 180(1):71–94, 2010.

[16] D. Mezick. The Culture Game: Tools for the Agile

Manager. FreeStanding Press, 2012.

[17] E. D. Ragan, S. Frezza, and J. Cannell. Product-based
learning in software engineering education. In IEEE

Frontiers in Education Conference, pages 1–6, 2009.

[18] J. R. Savery. Overview of problem-based learning:
definition and distinctions, the interdisciplinary.
Journal of Problem-based Learning, pages 9–20, 2006.

[19] K. Smith, S. Sheppard, D. Johnson, and R. Johnson.
Pedagogies of engagement: Classroom-based practices.
Journal of Engineering Education, 94(1):87–100, 2005.

[20] C. G. von Wangenheim, R. Savi, and A. F. Borgatto.
Deliver! - an educational game for teaching earned
value management in computing courses. Inf. Softw.
Technol., 54(3):286–298, 2012.

[21] C. G. von Wangenheim, R. Savi, and A. F. Borgatto.
Scrumia : An educational game for teaching scrum in
computing courses. Journal of Systems and Software,
86(10):2675–2687, 2013.

