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Abstract 

The use of the 2-of-(H+1) runs-rules and synthetic schemes to improve the performance of the 

currently available �̅� schemes in monitoring the process mean under the combined effect of 

measurement errors and autocorrelation are proposed. To maximize the detection ability of the 2-of-

(H+1) runs-rules and synthetic schemes, we implement the modified side-sensitive (MSS) design 

approach for the charting regions as we show it yields the best possible performance out of all the 

available designs. These new monitoring schemes incorporate the additive model with a constant 

standard deviation and a first-order autoregressive model to the computation of the control limits in 

order to account for measurement errors and autocorrelation, respectively. Moreover, to construct a 

dedicated Markov chain matrix, the abovementioned models and some sampling methods are 

incorporated into the values of probability elements which are then used to derive closed-form 

expressions for the zero- and steady-state run-length distribution. This study is important because the 

majority of research tends to assume that observations are independent and identically distributed 

(i.i.d.) and that none of the measurements taken on the inspected items are contaminated, which is 

not always the case in real-life application. That is, a combined effect autocorrelation and 

measurement errors is a significant factor in quality and reliability statistics – hence an improved 

monitoring scheme for this scenario is discussed here. A real-life example is used to illustrate the 

practical implementation of the proposed schemes. 

 

Keywords: Runs-rules, Measurement errors, First-order autoregressive model, Skip sampling 

strategy, Additive model, Multiple measurements sampling strategy, Zero-state, Steady-state, 

Markov chain. 

 

1. Introduction 

The main objective of statistical process monitoring (SPM) is to improve a monitoring process by 

detecting, identifying and removing any significant causes of variation. This is done by using a 

monitoring scheme (commonly known as control chart) to distinguish between chance causes of 

variation and assignable causes of variation. When only common causes of variation are present, the 

process is said to be in-control (IC). Otherwise, the process is said to be out-of-control (OOC) and 

assignable causes of variation have to be searched for. The most popular and simple monitoring 

schemes are the Shewhart charts, proposed by Walter A. Shewhart in the 1920’s. Despite their 

simplicity and adaptability, the main shortcoming of Shewhart charts is their insensitivity in 
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detecting small to moderate size shifts. Moreover, real life properties like, autocorrelation and 

measurement errors, tend to add more negative effect to the latter mentioned insensitivity in 

detecting small to moderate shifts.  

One of the methods used to enhance the performance of the basic Shewhart scheme is to combine its 

operation with the conforming run-length (CRL) scheme – this yields a class of monitoring schemes 

called synthetic schemes, first proposed by Wu and Spedding (2000) and more recently reviewed by 

Rakitzis et al. (2019). The CRL is defined as the number of samples observed between two 

consecutive nonconforming samples, inclusive of the nonconforming sample at the end, which was 

proposed by Bourke (1991). This scheme gives an OOC signal when the CRL value is significantly 

small, say, CRL ≤ H, where H is a positive integer greater than 0. The main difference between a 

basic Shewhart scheme and a synthetic scheme is that the latter does not issue OOC signal at the first 

sample point that falls on the nonconforming regions. That is, the process waits until a second 

sample point falls on the nonconforming region and if these two nonconforming samples are 

relatively close to each other, then the CRL scheme signals and thus, an OOC signal is triggered. The 

rationale behind the CRL scheme is the following: small CRL values are indicative of less 

conforming items produced between the two successive nonconforming ones. Consequently, this 

may be an indication that the process is operating under some assignable causes of variation. 

Approximately 100 publications on synthetic schemes were reviewed in Rakitzis et al. (2019); here 

are some of the publications that were not covered, and some that are more recent: Khilare and 

Shirke (2010, 2012, 2015), Pawar and Shirke (2010), Ghute and Shirke (2012), Malela-Majika and 

Rapoo (2017), Pawar, Shirke and Khilare (2018), Shongwe and Graham (2019a), Haq (2019), Khaw 

et al. (2019), Shongwe et al. (2019a), Tran et al. (2019), Malela-Majika (2019), Raza, Nawaz and 

Han (2019), Haq and Khoo (2019).  

In the SPM literature, a majority of research works does not account for measurement system errors, 

that is, it is usually assumed that none of the measurements taken on the inspected items are 

contaminated, see for example, Yeong et al. (2017), Sabahno et al. (2019), Tang et al (2019), Tran et 

al. (2019), etc. Maleki et al. (2017) argues that wherever there is a human involvement, an exact 

measurement is a rare phenomenon in any manufacturing and service environment; hence a 

difference between the real quantities and the measured ones will always exist even with highly 

sophisticated advanced measuring instruments. For a more thorough discussion on measurement 

errors, models used to capture the measurement system inaccuracy and the corresponding remedial 

approaches to reduce the negative effect thereof; readers must consult the articles cited in the review 



by Maleki et al. (2017). In this paper, we use the additive model with a constant standard deviation 

which was first proposed by Linna and Woodall (2001) and the m-measurements remedial approach. 

Autocorrelation within a subgroup sample is usually captured by some appropriate time series model. 

Box et al. (2008) outlines a number of these different non- and stationary time series models, e.g. 

autoregressive (AR), moving average (MA), autoregressive moving average (ARMA), 

autoregressive integrated moving average (ARIMA), etc. In this paper, we only consider the well-

known first-order AR model (i.e. AR(1)) as a starting point (other models will be discussed in 

upcoming articles). The AR(1) model is the most commonly used time series model in SPM 

applications due to its simplicity as compared to other stationary time series models. The stationarity 

property of the AR(1) model is used to check whether the process is IC or not. That is, if the process 

remains in equilibrium around the constant mean then it is IC; however, when there is any 

statistically significant difference from the constant mean, it implies that the autocorrelated process is 

OOC. For some other discussions on AR(1) model in a univariate or multivariate SPM context, see 

for example: Claro, Costa and Machado (2008), Kazemzadeh et al. (2010), Costa and Machado 

(2011), Costa and Castagliola (2011), Chang and Wu (2011), Keramatpour et al. (2014), Franco et al. 

(2014a,b), Leoni et al (2015a,b,c), Hu and Sun (2015), Osei-Aning et al. (2017), Garza-Venegas et 

al. (2018), Shongwe et al. (2019a,b), Dargopatil and Ghute (2019), Ahmad et al. (2019), etc. 

The synthetic-type schemes were shown to have four categories in Rakitzis et al. (2019). Shongwe 

and Graham (2018) showed that the 2-of-(H+1) runs-rules schemes also have four categories. These 

are termed non-side-sensitive (NSS), standard side-sensitive (SSS), revised side-sensitive (RSS) and 

modified side-sensitive (MSS) design approaches. These synthetic-type schemes denoted as S1, S2, 

S3 and S4 were first proposed by Wu and Spedding (2000), Davis and Woodall (2002), Machado 

and Costa (2014) and, Shongwe and Graham (2018), respectively. The runs-rules NSS, SSS, RSS 

and MSS were first proposed in Derman and Ross (1997), Klein (2000), adopted from Machado and 

Costa (2014) and, Antzoulakos and Rakitzis (2008) – which are denoted by RR1, RR2, RR3 and 

RR4, respectively. To the authors’ best knowledge, only about five publications currently exist that 

investigate the combined effect of autocorrelation and measurement errors in different univariate 

SPM contexts; and these are: Scagliarini (2002, 2010), Yang and Yang (2005), Xiaohong and 

Zhaojun (2009) and, Costa and Castagliola (2011). Therefore, the main objective of this paper is to 

improve the Shewhart �̅� scheme with a combined effect of measurement errors and autocorrelation 

(discussed in Costa and Castagliola, 2011) by: (i) Integrating its operation with the CRL scheme to 

form a synthetic �̅� scheme, and (ii) Adding supplementary rules to form a 2-of-(H+1) �̅� runs-rules 

schemes. More importantly, in order to gain maximum performance from the synthetic and runs-



rules schemes, we use the MSS design – as it yields the best possible performance out of the all four 

existing designs. Moreover, following on Davis and Woodall (2002) deduction that synthetic 

schemes are the same as the 2-of-(H+1) runs-rules schemes with a head-start feature, this property is 

used to construct a dedicated Markov chain matrix that is used to derive some zero- and steady-state 

closed-form expressions for both the MSS runs-rules and synthetic �̅� schemes. Finally, the additive 

model with a constant standard deviation and the AR(1) model with constant standard deviation are 

used to account for the measurement errors and autocorrelation, respectively. To reduce the 

combined negative effect of measurement errors and autocorrelation, a sampling strategy that allows 

for multiple measurements per item and skipping some successive observations is incorporated in the 

probability values of the dedicated Markov chain matrix. 

The rest of the paper is structured as follows: In Section 2, the properties of Shewhart �̅� schemes 

with the effect of measurement errors and autocorrelation are discussed. The operation, construction 

of the Markov chain matrix and run-length properties of the proposed MSS runs-rules and synthetic 

schemes are discussed in Section 3. Empirical discussion of the proposed scheme and comparisons 

with the existing Shewhart �̅� scheme is done in Section 4, and more specifically, in Section 4.4, the 

four design approaches are empirically compared to show the superiority of the MSS design. The 

practical implementation of the proposed schemes is given in Section 5 and finally, the concluding 

remarks are given in Section 6. 

 

2. Measurement errors and autocorrelation for the Shewhart �̅� scheme 

2.1 Measurement errors  

Assume that the 𝑌𝑡,𝑖 is a sequence of i.i.d. observations from a N(𝜇0, 𝜎0) distribution (where 𝜇0 and 𝜎0 are the nominal IC process mean and standard deviation, respectively) that are not directly 

observable, but can only be assessed from the results {𝑋𝑡,𝑖,𝑗: t ≥1; i = 1,2,…,n;  j = 1,2,…,m}, with 

each element of the latter sequence expressed in terms of the additive model with a constant standard 

deviation, see Linna and Woodall (2001), i.e., 𝑋𝑡,𝑖,𝑗 = 𝐴 + 𝐵𝑌𝑡,𝑖 + 𝑒𝑡,𝑖,𝑗;   (1) 

where 𝑒𝑡,𝑖,𝑗~𝑁(0, 𝜎𝑀) is a random error term due to measurement inaccuracy and 𝜎𝑀 is the standard 

deviation of the measurement system; for a sake of simplicity, in this paper, we will assume that A=0 

and B=1, where 𝐴 and 𝐵 are two constants depending on the measurement system location error. 

Hence, the plotting statistic is the corresponding sample mean, which is given by 



�̅�𝑡 = 1𝑚𝑛∑∑𝑋𝑡,𝑖,𝑗𝑚
𝑗=1

𝑛
𝑖=1 = 1𝑛(∑𝑌𝑡,𝑖𝑛

𝑖=1 + 1𝑚∑∑𝑒𝑡,𝑖,𝑗𝑚
𝑗=1

𝑛
𝑖=1 ). (2) 

That is, at each sampling point, there are m separate measurements, each of size n (i.e. a total of 𝑚 × 𝑛 observations). The standard deviation of the process in Equation (2) at each sampling point is 

given by 

𝜎(�̅�𝑡) = √𝜎02𝑛 + 𝜎𝑀2𝑛𝑚 = 𝜎0√𝑛𝐶1(𝑚, 𝛾) (3) 

where 𝐶1(𝑚, 𝛾) = √ 𝑚𝑚+𝛾2 and 𝛾 = 𝜎𝑀𝜎0  denotes the ratio of the measurement system variability and 

the process variability, see Costa and Castagliola (2011). When �̅�𝑡 is from an imperfect measurement 

system, i.e. 𝛾 > 0, then we assume that multiple measurements (i.e. m-measurement strategy, with m 

> 1) are available for each i.i.d. subgroup sample.  

 

2.2 Autocorrelated data using AR(1) model 

Assume that the quality characteristic {𝑌𝑡,𝑖: t ≥ 1; i = 1, 2,…, n} is a sequence of samples from an 

autocorrelated N(𝜇0, 𝜎0) distribution that fits a stationary AR(1) model, given by 𝑌𝑡,𝑖 − 𝜇0 = 𝜙(𝑌𝑡,𝑖−1 − 𝜇0) + 𝜀𝑖;  𝑖 = 1, 2, 3, 4,…, 𝑛; (4) 

i.e. the current observation, 𝑌𝑡,𝑖, of the time series depends on the previous observation, 𝑌𝑡,𝑖−1; with a 

specified parameter 𝜙 (called a level of autocorrelation), where |𝜙| < 1, 𝜀𝑖 are i.i.d. normal (0, 𝜎𝜀) 
random variables; where 𝜇0 and 𝜎0 are the nominal IC mean and standard deviation process 

parameters, respectively, where 𝜎0 = 𝜎𝜀√1−𝜙2, and without loss of generality, assume 𝜎𝜀 = 1;  see 

Alwan and Radson (1992). After the occurrence of assignable causes, the process mean shifts from 𝜇0 to 𝜇1 = 𝜇0 + 𝛿𝜎0, so that 𝛿 = 𝜇1−𝜇0𝜎0 . Sampling techniques that involve skipping some of the 

successive observations (i.e. sampling of non-neighboring observations) have been shown to reduce 

serial dependence in time series data, see for example: Gilbert et al. (1993), Costa and Castagliola 

(2011), Franco et al. (2014b), Hu and Sun (2015), Leoni et al. (2015a), Dargopatil and Ghute (2019), 

Shongwe et al. (2019a,b). Consequently, the corresponding process with s-skipping sampling 

strategy remains an AR(1) process; however, defined as {𝑌𝑡,𝑖: 𝑡 ≥ 1; 𝑖 = 1, s+2, 2s+3, 3s+4,…} with 

parameter 𝜙𝑠+1: 𝑌𝑡,𝑖 − 𝜇0 = 𝜙𝑠+1(𝑌𝑡,𝑖−𝑠−1 − 𝜇0) + 𝜀𝑖′;  𝑖 = 1, s+2, 2s+3, 3s+4, … (5) 



with 𝜀𝑖′ = 𝜀𝑖 + 𝜙𝜀𝑖−1 + 𝜙2𝜀𝑖−2 +⋯+ 𝜙𝑠𝜀𝑖−𝑠. Assuming that �̅�𝑡 = 1𝑛∑ 𝑌𝑡,(𝑠+1)𝑖−𝑠𝑛𝑖=1  is the plotting 

statistic at sampling point t, then the standard deviation of the process in Equation (5) is given by 𝜎(�̅�𝑡) = 𝜎0√𝑛𝐶2(𝑛, 𝑠, 𝜙) ; (6) 

with 𝐶2(𝑛, 𝑠, 𝜙) = √ 𝑛𝑛+2(𝜙(𝑠+1)(𝑛+1)−𝑛𝜙2𝑠+2+(𝑛−1)𝜙𝑠+1(𝜙𝑠+1−1)2 ). 
2.3 Combined effect of autocorrelation and measurement errors 

Next, assume that the autocorrelated 𝑌𝑡,𝑖 (from Equation (5)) are not directly observable, that is, it 

can only be assessed from the results {𝑋𝑡,𝑖,𝑗: 𝑡 ≥1; 𝑖 = 1,2,…,n;  𝑗 = 1,2,…,m} from Equation (1). 

Note though, the 𝑌𝑡,𝑖 observations used in Equation (2) are no longer i.i.d., but are now 

autocorrelated. Moreover, we assume that �̅�𝑡 is from an imperfect measurement system, i.e. 𝛾 > 0, 

which means that there are several measurements available for each of the autocorrelated subgroup 

samples. Thus, the standard deviation of the plotting statistic in Equation (2) for an autocorrelated 

(with s-skip sampling strategy) and imperfect measurement system (with m-measurement sampling 

strategy), denoted hereafter as s&m strategy (with s>0 and m>1) at each sampling point, is given by  𝜎(�̅�𝑡) = 𝜎0√𝑛𝐶3(𝑚, 𝑛, 𝛾, 𝑠, 𝜙) ; (7) 

with 𝐶3(𝑚, 𝑛, 𝛾, 𝑠, 𝜙) = 1 √ 1𝐶12(𝑚,𝛾)+ 1𝐶22(𝑛,𝑠,𝜙)− 1⁄ , where 𝐶1(𝑚, 𝛾) and 𝐶2(𝑛, 𝑠, 𝜙) are as given in 

Equations (3) and (6), respectively. 

 

3. Operation and run-length properties of the MSS runs-rules and synthetic schemes 

3.1 Operation 

Subgroup samples are usually taken at each sampling point to be inspected and then each of these 

samples are classified as either conforming or nonconforming depending on where the charting 

statistic plots on the charting regions shown in Figure 1. Note that a sample plots on a conforming 

region when it is under the influence of common causes of variation only; however, when it plots on 

a nonconforming region, it implies that it has some assignable causes of variation present. For any 

s&m strategy sampling scheme, the charting limits shown in Figure 1, i.e. the upper / lower control 

limit denoted by (𝑈𝐶𝐿/𝐿𝐶𝐿) and the center line (CL), are given by: 𝑈𝐶𝐿/𝐿𝐶𝐿 = 𝜇0 ± 𝑘𝜎(�̅�𝑡) and  𝐶𝐿 = 𝜇0,  (8) 

where 𝑘 > 0 is the design parameter that is related to the distance from the center line to the 𝑈𝐶𝐿/𝐿𝐶𝐿 in terms of the standard deviation, respectively.  



<Insert Figure 1> 

The operational procedure of the MSS runs-rules and synthetic s&m schemes are given in Table 1; 

where CRL
+
 (CRL

-
) is the number of conforming samples that fall in Region B+ (Region B−), which 

are in between the two nonconforming samples that fall in Region A+ (Region A−), including the 

nonconforming sample at the end, respectively. Moreover, the metric average run-length (ARL) is the 

average number of subgroup samples that are required before the first OOC signal is issued by a 

monitoring scheme, and ARL0 denotes the desired nominal ARL. 

<Insert Table 1> 

3.2 Transition probability matrix 

For the MSS runs-rules and synthetic schemes, there are two nonconforming regions (i.e. region A+: 

upper, and region A−: lower) and two conforming regions (i.e. region B+: upper and region B−: 

lower). Assume that 𝑝𝜃 = 𝑃(�̅�𝑖 ∈ 𝜃) denotes the probability that a sample point plots in region 𝜃 ∈ 

{A−, A+, B−, B+}, then given the charting regions in Figure 1, the probability of a charting statistic 

falling in each region is given by  𝑝A+ = 1 − Φ(𝑘 − 𝛿√𝑛𝐶3(𝑚, 𝑛, 𝛾, 𝑠, 𝜙)) 𝑝B+ = Φ(𝑘 − 𝛿√𝑛𝐶3(𝑚, 𝑛, 𝛾, 𝑠, 𝜙)) − Φ(−𝛿√𝑛𝐶3(𝑚, 𝑛, 𝛾, 𝑠, 𝜙)) 𝑝B− = Φ(−𝛿√𝑛𝐶3(𝑚, 𝑛, 𝛾, 𝑠, 𝜙)) − Φ(−𝑘 − 𝛿√𝑛𝐶3(𝑚, 𝑛, 𝛾, 𝑠, 𝜙)) 𝑝A− = Φ(−𝑘 − 𝛿√𝑛𝐶3(𝑚, 𝑛, 𝛾, 𝑠, 𝜙)),  
(9) 

where Φ(∙) denotes the cumulative distribution function (c.d.f.) of the standard normal distribution. 

Let ‘±’ denote a state that a charting statistic at time zero falls in a nonconforming region, that is, the 

charting statistic falls either in region A− or region A+ at the beginning of the monitoring process; 

this assumption is referred to as the “head-start feature” of the synthetic scheme – see Davis and 

Woodall (2002), Knoth (2016), Shongwe and Graham (2018) and Rakitzis et al (2019) for a more 

thorough discussion on this. For instance, ‘±A−’ implies that at time 0, we assume the charting 

statistic plots either in region A− or region A+, and then at sampling time 𝑡 = 1, the charting statistic 

plots in region A−.  

Next, the steps involved in constructing the TPMs of the MSS runs-rules and synthetic s&m scheme 

are as follows for any integer value of H > 0: 

 Step (i) Determine all the absorbing states that lead to an OOC signal; those with and without 

head-start are denoted by Ψ and Λ, respectively.  

 Step (ii) Decompose the states in Step (i) into transient states by removing the last 

nonconforming element, where those with and without head-start are denoted by 𝜓 and 𝜂, 

respectively. 



 Step (iii) The transient state corresponding to the IC regions is defined as 𝜑 = 𝜂𝐻+1.  
 Step (iv) Define the state space, denoted by Ω, which is a union of the states defined in Steps (i) 

to (iii). 

Hence, for illustrative purpose, assume H = 2, then the state space using the steps outlined above is 

constructed as follows:   

 Step (i) yields Λ1={A+A+}, Λ2={A+B+A+}, Λ3={A−A−}, Λ4={A−B−A−} and Ψ1={±A+}, Ψ2={±A−}, Ψ3={±B+A+}, Ψ4={±B−A−}.  

 Step (ii) yields 𝜂1={A+B+}, 𝜂2={A+}, 𝜂4={A−}, 𝜂5={A−B−} and 𝜓1={±}, 𝜓2={±B+}, 𝜓3={±B−}. 

 Step (iii) yields 𝜑 = 𝜂3 ={B−, B+}. 

 Step (iv) yields Ω ≡{𝜂1,𝜂2;𝜑;𝜂4,𝜂5;𝜓1,𝜓2,𝜓3;OOC}. 

Consequently, the resulting Markov chain TPM is given by 

 𝜂1 𝜂2 𝜑 𝜂4 𝜂5 𝜓1 𝜓2 𝜓3 OOC 𝜂1   𝑝B+ + 𝑝B− 𝑝A−     𝑝A+ 𝜂2 𝑝B+   𝑝B−  𝑝A−     𝑝A+ 𝜑  𝑝A+ 𝑝B+ + 𝑝B− 𝑝A−      𝜂4  𝑝A+ 𝑝B+   𝑝B−     𝑝A− 𝜂5  𝑝A+ 𝑝B+ + 𝑝B−      𝑝A− 𝜓1       𝑝B+  𝑝B−  𝑝A+ + 𝑝A− 𝜓2   𝑝B+ + 𝑝B− 𝑝A−     𝑝A+ 𝜓3  𝑝A+ 𝑝B+ + 𝑝B−      𝑝A− 
OOC         1 

  

Based on the latter TPM, it is apparent that its structure is such that for any positive integer 𝐻>0, it is 

given by a (𝑀 + 1) × (𝑀 + 1) matrix P, defined as 𝐏 = (𝐐𝟎′   𝐫1 ) (10) 

where 𝐐 is the 𝑀 ×𝑀 matrix of transient states (i.e. essential TPM), the 𝑀 × 1 vector 𝐫 is such that 𝐫 = 𝟏 − 𝐐𝟏, i.e. each row sums to 1, with 𝑀 × 1 vectors 𝟏 = (1 1 …  1)′ and 𝟎 = (0 0 …  0)′. 
Moreover, the breakdown of the TPM for H = 2 (and other integer values of H – not shown here), 

indicate that the dimension of the TPMs for any H > 0 is given by 𝑀 = 𝜏 + 𝜅 for the MSS synthetic 

scheme, where 𝜏 = 2𝐻 + 1 and 𝜅 = 2𝐻 − 1. To obtain TPMs with an obvious recursive pattern for 

any H > 0, we define the state space, Ω, as follows, 

Ω = {𝜂1,…, 𝜂(𝜏+1)2 −1, 𝜂(𝜏+1)2 ≡ 𝜑, 𝜂(𝜏+1)2 +1, …, 𝜂𝜏; 𝜓1, …, 𝜓𝜅; OOC}. (11) 



On the contrary, the dimension of the TPMs of the MSS runs-rules schemes, for any H > 0 is given 

by 𝑀 = 𝜏, where 𝜏 = 2𝐻 + 1 and 𝜅 = 0; as the head-start feature elements are not applicable in the 

design of the MSS runs-rules. Consequently, the Ω for the MSS runs-rules scheme is given by, 

Ω = {𝜂1,…, 𝜂(𝜏+1)2 −1, 𝜂(𝜏+1)2 ≡ 𝜑, 𝜂(𝜏+1)2 +1, …, 𝜂𝜏; OOC}. (12) 

Therefore, it follows that the TPM of MSS synthetic scheme is given in Table 2. Moreover, by 

removing the head-start elements, i.e. 𝜓1, …, 𝜓𝜅 in Table 2, then the resulting TPM corresponds to 

that of the MSS runs-rules scheme.  

<Insert Table 2> 

3.3 Some general run-length properties 

Since the TPMs of the MSS runs-rules and synthetic schemes for any possible integer value of H 

have been determined, then important properties of the run-length (RL) can be determined via an 

appropriate Markov chain technique, see Chapter 4 in Fu and Lou (2003). That is, the ARL = E(RL) 

and the standard deviation of the RL (SDRL = 𝜎(RL)) are defined as   

ARL = 𝛏T𝐑 (13) 

SDRL = √2𝛏T(𝐈 − 𝐐)−2𝐐𝟏 − 𝐴𝑅𝐿2 + 𝐴𝑅𝐿, (14) 

where 𝛏 denotes either the 𝑀 × 1 zero- or steady-state initial probability vector; and 𝐑 is a 𝑀 × 1 

vector containing ARL values of being in each of the 𝑀 transient states, and it is given by 𝐑 = (𝐈 − 𝐐)−1𝟏. (15) 

Using the 𝐐 from Table 2, Equation (15) becomes, 𝐑 ≡ 𝐑no HS//𝐑HS. (16) 

where, 𝐑no HS is a 𝜏 × 1 vector containing ARL values of being in each of the states without the head-

start feature, 𝐑HS is a 𝜅 × 1 vector containing ARL values of being in each of the states with the 

head-start feature and ‘//’ denotes the vertical concatenation operator. The components of the ARL 

vector in Equation (16) are given by  



 𝐑no HS =

( 
   
   
   
  

𝜍1𝜍2⋮𝜍𝐻−3𝜍𝐻−2𝜍𝐻−1𝜍𝐻𝜑 = 𝜍𝐻+1𝜍𝐻+2𝜍𝐻+3𝜍𝐻+4𝜍𝐻+5⋮𝜍2𝐻𝜍2𝐻+1 ) 
   
   
   
  
= 1G

( 
   
   
   
   
  
(1 + 𝑝𝐴𝑊𝐵1)(1 + 𝑝𝐷𝑊𝐶0)(1 + 𝑝𝐴𝑊𝐵2)(1 + 𝑝𝐷𝑊𝐶0)⋮(1 + 𝑝𝐴𝑊𝐵𝐻−3)(1 + 𝑝𝐷𝑊𝐶0)(1 + 𝑝𝐴𝑊𝐵𝐻−2)(1 + 𝑝𝐷𝑊𝐶0)(1 + 𝑝𝐴𝑊𝐵𝐻−1)(1 + 𝑝𝐷𝑊𝐶0)1 + 𝑝𝐷𝑊𝐶0(1 + 𝑝𝐴𝑊𝐵0)(1 + 𝑝𝐷𝑊𝐶0)1 + 𝑝𝐴𝑊𝐵0(1 + 𝑝𝐷𝑊𝐶𝐻−1)(1 + 𝑝𝐴𝑊𝐵0)(1 + 𝑝𝐷𝑊𝐶𝐻−2)(1 + 𝑝𝐴𝑊𝐵0)(1 + 𝑝𝐷𝑊𝐶𝐻−3)(1 + 𝑝𝐴𝑊𝐵0)⋮(1 + 𝑝𝐷𝑊𝐶2)(1 + 𝑝𝐴𝑊𝐵0)(1 + 𝑝𝐷𝑊𝐶1)(1 + 𝑝𝐴𝑊𝐵0) ) 

   
   
   
   
  

 (17) 

and 

𝐑HS =
( 
   
   
  
𝜓1 = 𝜍2𝐻+2𝜍2𝐻+3𝜍2𝐻+4𝜍2𝐻+5𝜍2𝐻+6𝜍2𝐻+7𝜍2𝐻+8⋮𝜍4𝐻−3𝜍4𝐻−2𝜍4𝐻−1𝜍4𝐻 ) 

   
   
  
= 1𝐺

( 
   
   
   
 1 − 𝑝𝐴𝑝𝐷𝑊𝐵0𝑊𝐶0(1 + 𝑝𝐴𝑊𝐵𝐻−1)(1 + 𝑝𝐷𝑊𝐶0)(1 + 𝑝𝐷𝑊𝐶𝐻−1)(1 + 𝑝𝐴𝑊𝐵0)(1 + 𝑝𝐴𝑊𝐵𝐻−2)(1 + 𝑝𝐷𝑊𝐶0)(1 + 𝑝𝐷𝑊𝐶𝐻−2)(1 + 𝑝𝐴𝑊𝐵0)(1 + 𝑝𝐴𝑊𝐵𝐻−3)(1 + 𝑝𝐷𝑊𝐶0)(1 + 𝑝𝐷𝑊𝐶𝐻−3)(1 + 𝑝𝐴𝑊𝐵0)⋮(1 + 𝑝𝐴𝑊𝐵2)(1 + 𝑝𝐷𝑊𝐶0)(1 + 𝑝𝐷𝑊𝐵2)(1 + 𝑝𝐴𝑊𝐵0)(1 + 𝑝𝐴𝑊𝐵1)(1 + 𝑝𝐷𝑊𝐶0)(1 + 𝑝𝐷𝑊𝐶1)(1 + 𝑝𝐴𝑊𝐵0) ) 

   
   
   
 

 (18) 

where 𝐺 is given by G = 1 − 𝑝𝐴(𝑝𝐶 + 𝑝𝐷 + 𝑝𝐷𝑝𝐶𝑊𝐶0) − 𝑝𝐵(1 + 𝑝𝐷𝑊𝐶0) − 𝑝𝐶 − 𝑝𝐴𝑝𝐵𝐻(1 + 𝑝𝐷𝑊𝐶0) − 𝑝𝐷𝑝𝐶𝐻 − 𝑝𝐴𝑊𝐵1(𝑝𝐶 + 𝑝𝐷 + 𝑝𝐶𝑝𝐷𝑊𝐶0), 
with 𝑊𝐵𝑟 = 𝑝𝐵𝑟 (1−𝑝𝐵𝐻−𝑟1−𝑝𝐵 ), 𝑊𝐶𝑟 = 𝑝𝐶𝑟 (1−𝑝𝐶𝐻−𝑟1−𝑝𝐶 ), 𝑟 = 0,1,2, … , 𝐻 − 1.  

 

3.4 Zero-state run-length properties for the MSS runs-rules and synthetic schemes 

In order to compute the zero-state run-length properties, the initial probability vector 𝛏T = q
T
 = 

(0,…,0,1,0,…,0) where the unique “1” is located  

 the (𝜏+12 )th
 position of the q

T
 vector, i.e. corresponding to ‘𝜂(𝜏+1)2 ≡ 𝜑’ on the TPM in Table 

2.  

 the (𝜏 + 1)th
 position of the q

T
 vector, i.e. corresponding to ‘𝜓1’ on the TPM in Table 2.  



The zero-state ARL (ZSARL) is given by 𝑍𝑆𝐴𝑅𝐿 = 𝐪T𝐑, with 𝐑 given in Equation (16) which yields 

the following closed-form expressions: 

 for the MSS runs-rules s&m schemes 

𝑍𝑆𝐴𝑅𝐿 = (1 + 𝑝𝐴𝑊𝐵0)(1 + 𝑝𝐷𝑊𝐶0)G = (1 + 𝑝𝐴 (1 − 𝑝𝐵𝐻1 − 𝑝𝐵)) (1 + 𝑝𝐷 (1 − 𝑝𝐶𝐻1 − 𝑝𝐶))G . (19) 

 for the MSS synthetic s&m schemes 

𝑍𝑆𝐴𝑅𝐿 = 1 − 𝑝𝐴𝑝𝐷𝑊𝐵0𝑊𝐶0G = 1 − 𝑝𝐴𝑝𝐷 (1 − 𝑝𝐵𝐻1 − 𝑝𝐵) (1 − 𝑝𝐶𝐻1 − 𝑝𝐶)G . (20) 

 

3.5 Steady-state run-length properties for the MSS runs-rules and synthetic schemes 

In steady-state mode, the effect of a head-start disappears since the process has been running IC for a 

long time and thus, the corresponding components are discarded in the Markov chain matrix in Table 

2, and consequently, the ARL vector in Equation (16) reduces to 𝐑 ≡ 𝐑no HS. 
The steady-state non-zero initial probability vector (i.e. 𝛏T = u

T
) is computed while the process is IC; 

that is, 𝑝𝐴 = 𝑝𝐷 and 𝑝𝐵 = 𝑝𝐶 as 𝛿 = 0. Let 𝑞 = 𝑝𝐴 = 𝑝𝐷 and 𝑝 = 𝑝𝐵 = 𝑝𝐶 when 𝛿 = 0, then using 

Champ (1992) simplified cyclical steady-state method; the initial probability vector of the MSS runs-

rules or synthetic s&m scheme is given by 𝐮 = (𝟏′𝐳)−1 ∙ 𝐳, where 𝐳 is the (2𝐻 − 1) × 1 vector given 

by 𝐳 = (𝐆 − 𝐐′)−1𝐞𝐻+1, with the (2𝐻 − 1) × (2𝐻 − 1) matrix 𝐆, given by 𝐆 = 𝐪 ∙ 𝟏′ + 𝐈, where 𝐞𝐻+1 = (0  0  0…0  1  0 … 0  0  0), i.e., a (H+1)
th

 unit vector. Thus, using the Markov chain matrix 

in Table 2 (without the head-start elements), then basic algebraic matrix manipulations yield:  

𝐮 =

( 
   
   
   
  
u1u2u3⋮uH−2uH−1uHuH+1uH+2uH+3uH+4⋮u2H−1u2Hu2H+1) 

   
   
   
  
= 1 − 𝑝1 − 𝑝 + 𝑞(1 − 𝑝𝐻)

( 
   
   
   
   
  

𝑞𝑝𝐻−1𝑞𝑝𝐻−2𝑞𝑝𝐻−3⋮𝑞𝑝2𝑞𝑝𝑞1 − 𝑞 (1 − 𝑝𝐻1 − 𝑝 )𝑞𝑞𝑝𝑞𝑝2⋮𝑞𝑝𝐻−3𝑞𝑝𝐻−2𝑞𝑝𝐻−1 ) 
   
   
   
   
  

. (21) 



Thus, it follows that the steady-state ARL (SSARL) of the MSS runs-rules or synthetic s&m scheme is 

given by 

𝑆𝑆𝐴𝑅𝐿 = uH+1ςH+1 +∑u𝑟 × (ς𝑟 + ς(2𝐻+2)−𝑟)𝐻
𝑟=1 , (22) 

with ς𝑟 defined in Equation (17) and u𝑟 defined in Equation (21), for 𝑟 = 1, 2, … , 𝐻.  

 

3.6 Overall performance metrics  

In addition to specific shifts measures, i.e. Equations (19), (20) and (22), a number of researchers in 

the SPM literature (see for example, Reynolds and Lou (2010), Ryu, Wan and Kim (2010), Machado 

and Costa (2014), Tran, Castagliola and Balakrishnan (2017), Malela-Majika and Rapoo (2017), You 

(2017, 2018), Shongwe and Graham (2019b), etc.) have encouraged the use of some overall 

performance metrics, like the expected ARL (EARL) because users tend not to know beforehand what 

exact shift value(s) is targeted. The EARL measures the performance of a monitoring scheme over a 

range of shift values, i.e. 𝛿min to 𝛿max – which are the lower and the upper bound of 𝛿, respectively. 

Note that the shifts within the interval [𝛿min, 𝛿max] usually occur according to a p.m.f. equal to 𝑈(𝛿) 
which is usually unknown. In the absence of any particular information, it is usually assumed that the 

shifts in the process mean happen with equal probability, then 𝑈(𝛿) = 1/(𝛿max − 𝛿min) i.e. a 

uniform U(𝛿min, 𝛿max) distribution. Thus, following a similar design procedure as done by the latter 

authors, the MSS runs-rules and synthetic s&m schemes will be designed based on the optimal 

parameters (𝐻∗, 𝑘∗) that yield the best overall performance for a range of specified shifts and it is 

achieved by using  

(𝐻∗, 𝑘∗) = 𝐸𝑊𝑅𝐿(𝐻,𝑘)  argmin
 

subject to  𝐴𝑅𝐿(𝛿 = 0) = 𝐴𝑅𝐿0 
with 𝐸𝑊𝑅𝐿 = ∫ 𝐴𝑅𝐿(𝛿)𝑈(𝛿)𝑑𝛿𝛿max𝛿min  

(23) 

with 𝐴𝑅𝐿0 being the pre-specified nominal ARL and 𝛿 ∈ [𝛿min, 𝛿max]. That is, to choose the 

parameters that yield the smallest EARL, where 𝐴𝑅𝐿(𝛿) is the ARL as a function of the shift 𝛿 in the 

parameter under surveillance.  

Finally, the performance comparison index (PCI), by Wu et al. (2008), will also be used to measure 

the relative effectiveness of two different schemes, which is given by  

PCI = 𝐸𝐴𝑅𝐿𝑐/𝐸𝐴𝑅𝐿b, (24) 



where 𝐸𝐴𝑅𝐿𝑏 (denominator) is the EARL of the ‘benchmark’ scheme (i.e. the �̅� s&m scheme of 

Costa and Castagliola (2011)) and 𝐸𝐴𝑅𝐿c (numerator) is the EARL of some other ‘competing’ 

scheme. When the 𝑃𝐶𝐼 is equal to 1, greater than 1 or less than 1, it implies that the �̅� s&m scheme 

of Costa and Castagliola (2011) has the same, better or worse performance than the competing 

scheme, respectively. 

 

4. Empirical discussion 

4.1 IC design parameters 

It is important to note that the design parameters do not depend on the level of autocorrelation or 

measurement inaccuracy. That is, the design parameters are the same as those for i.i.d. observations 

discussed in Shongwe and Graham (2018), where ARL0 = 200, 370.4, 500 and 1000. For the MSS 

runs-rules (i.e. RR4) and MSS synthetic (i.e. S4) schemes, as H increases, the values of k converge to 

some specific value no matter how large H gets (see boldfaced values in Table 3). Although not 

shown here (see Shongwe and Graham (2018)), for the NSS, SSS and RSS schemes, as H increases, 

the value of k keeps increasing also, that is, as H gets very large, the value of k approaches 3 at a 

slow rate (i.e. k converges to the �̅� scheme design parameter value of 3). A similar pattern is 

observed for other standard values of ARL0. 

<Insert Table 3> 

4.2 Separate and combined effect of measurement errors and autocorrelation  

In Table 4, we discuss the OOC performance of the basic �̅�, RR4 and S4 schemes under the i.i.d. 

case (no measurement errors or autocorrelation), separate and combined effect of the measurement 

errors and autocorrelation, i.e., (𝜙, 𝛾) ∈{(0,0), (0,0.5), (0.5,0), (0.5,0.5)}, respectively. In each 

separate panel of the four scenarios, the basic �̅� scheme is compared with the RR4 and S4 schemes 

in zero- and steady-state modes. 

In each panel or each pair (𝜙, 𝛾) in Table 4, with respect to ARL, the (zero- and steady-state) RR4 

and (steady-state only) S4 schemes have a better OOC performance than the basic �̅� scheme when 𝛿 ≤ 1; however, for 𝛿 > 1 the converse is true. In zero-state, the S4 scheme has a uniformly better 

OOC ARL performance than the basic �̅� scheme for all considered shift values. The ARL values at 

each shift value tend to increase as each of the parameters in the pair (𝜙, 𝛾) increases. For example, 

when the measurement error increases from 0% to 50%, i.e. the pair (𝜙, 𝛾) is increased from (0,0) to 

(0,0.5), the ZSARL at 𝛿=0.25 for the S4 scheme also increases from 54.9 to 69.9 – indicating a 

deteriorating process. Similarly, when the autocorrelation level is increased from 0% to 50%, i.e. the 

pair (𝜙, 𝛾) is increased from (0,0) to (0.5,0), the ZSARL at 𝛿=0.25 increases from 54.9 to 118.7. 



Moreover, when both the measurement error and autocorrelation are increased from 0 to 50%, i.e. 

the pair (𝜙, 𝛾) is increased from (0,0) to (0.5,0.5), the ZSARL at 𝛿=0.25 increases from 54.9 to 128.9. 

Next, it is observed that for the S4 scheme, in the i.i.d. case, 50% measurement error only, 50% level 

of autocorrelation only and, combined 50% of measurement error and autocorrelation, respectively 

yields the zero-state EARL of 148.9, 155.5, 179.4 and 185.0 – indicative of a deteriorating process as 

the monitoring process is subjected to separately as well as combined measurement errors and 

autocorrelation. 

The main deductions from Table 4 are the following: 

 With respect to EARL, the RR4 and S4 schemes under the separate or combined effect of 

measurement errors and autocorrelation have a better performance than the basic �̅� scheme. 

The latter is further illustrated by the fact that all the PCI values of considered schemes are 

lower than that of the basic �̅� scheme.  

 Separately, autocorrelation has a higher negative effect as compared to the negative effect of 

the measurement errors. Combined, they yield a much higher negative effect.  

 The zero- and steady-state OOC performances of the RR4 schemes have ARL and EARL that 

are respectively very close to each other, this is summarized in Remark 1. This is further 

illustrated by the approximately equal values of the PCIs. 

<Insert Table 4> 

Remark 1: Let the zero- and steady-state EARL be denoted by ZSEARL and SSEARL, respectively; 

then the percentage difference (%Diff) is given by %Diff = 𝑍𝑆𝐸𝐴𝑅𝐿−𝑆𝑆𝐸𝐴𝑅𝐿𝑆𝑆𝐸𝐴𝑅𝐿 × 100%. Since the zero- 

and steady-state OOC performances of the RR4 schemes have the ARLs and EARLs that are 

respectively very close to each other, it is observed that their %Diff are always less than 1%. To 

preserve writing space, only the steady-state performance of the RR4 schemes is presented 

henceforth.  

 

4.3 The MSS runs-rules and synthetic s&m schemes 

To evaluate the effect of implementing the s&m strategy to reduce the combined effect of 

autocorrelation and measurement errors, let the 0&1 strategy denote the no remedial approach to 

reduce the combined effect of autocorrelation and measurement errors. Hence, 3&4 implies that the 

s=3 observations are skipped before sampling to form a rational subgroup and that m=4 

measurements are taken per item.  

<Insert Tables 5 and 6> 



In Tables 5 and 6, the effect of using 3&4 strategy instead of the 0&1 strategy is studied in the case 

of the S4 and (RR4 and S4) in zero- and steady-state modes, respectively. Due to Remark 1, the RR4 

scheme in zero-state is not shown here. The OOC performance illustration is shown 

for H∈{1,2,…,12} as per discussion in Table 3 to observe what happens to the ARL and EARL as k 

approaches the convergence property. Moreover, to investigate what value of H has the optimal 

overall performance gain (OPG) such that increasing H does not yield any further significant OPG. 

To do so, two metrics are defined as follows, %Diff = 𝐸𝐴𝑅𝐿0&1 − 𝐸𝐴𝑅𝐿3&4𝐸𝐴𝑅𝐿3&4 × 100%, for a given value of H 

OPG(𝐻) = 𝐸𝐴𝑅𝐿𝐻−1 − 𝐸𝐴𝑅𝐿𝐻𝐸𝐴𝑅𝐿𝐻 × 100%, for a specific values of s&m; 
where 𝐸𝐴𝑅𝐿0&1 and 𝐸𝐴𝑅𝐿𝐻 denote the EARL of the 0&1 strategy (with H fixed) and at a specific 

value of H (with s&m fixed), respectively – the others are defined in a similar manner. In Tables 5 

and 6, it is observed that increasing s&m from the 0&1 strategy to 3&4 strategy yields a performance 

gain of at least 20% for all considered values of H when 𝜙=0.5, 𝛾=0.5 and n=5. For example, in 

zero-state, the S4 scheme (in Table 5) shows that when H=1, the percentage gain of using the 3&4 

strategy instead of the 0&1 strategy is 24.9%. Next, the OPG of using H=2 instead of H=1 when 

0&1 and 3&4 sampling strategies are implemented are 5.9% and 4.4%, respectively. In Tables 5 and 

6, it is observed that when H>5, the OPGs of the 0&1 strategy are all less than 1% indicating that 

increasing H greater than 5 do not yield any more significant percentage gains; consequently, when 𝜙=0.5, 𝛾=0.5 and n=5, the most ideal value of H is equal to 5 and 4 for the 0&1 and 3&4 strategy, 

respectively. More importantly, it is observed that as H approaches the values of H where k start to 

converge (see Table 3 for the convergence property, i.e. around H equal to 11 and 12) the OPG 

approaches a percentage value of 0 – indicating that there is no benefit in overall performance, at all, 

by continually increasing the value of H for the RR4 and S4 s&m schemes beyond the converged 

values of k in both zero- and steady-state modes. 

<Insert Tables 7 and 8> 

Furthermore, in Tables 7 and 8, the OPG is further analyzed for a variety of levels of autocorrelation 

and measurement errors. Note though, due to space restriction, only the steady-state analysis of the 

RR4 and S4 s&m schemes when 𝐻=5, 𝑛=5, 𝛿𝑚𝑖𝑛=0, 𝛿𝑚𝑎𝑥=3, m∈{1,2,3,4}, s∈{0,1,2,3} and 𝐴𝑅𝐿0=370.4; where 𝜙=0.5, 𝛾 ∈{0,0.1,0.2,…,0.9} in Table 7 and 𝛾=0.5, 𝜙 ∈{0,0.1,0.2,…,0.9} in 

Table 8.  

Firstly, in Table 7, the following is observed: 



 When 𝛾=0, since there are no measurement errors, the values of the EARL do not change for 

any integer value of m ≥1. Since 𝜙=0.5, as s increases from 0 to 3, the EARL values decrease 

(vertically downwards) indicating some improvement in OOC performance. 

 With s and m fixed, when 𝛾>0, the EARL tends to increase indicating a deteriorating process. 

However, for each given integer value of s, increasing m leads to some minor decrease in the 

EARL value. For instance, when s=1 and 𝛾=0.5, the overall performance gains are 1.9%, 

0.6%, 0.3% when m is increased from (1 to 2), (2 to 3), (3 to 4), respectively. This means that 

there is a 1.9% overall performance gain in taking measurements twice as compared to once. 

Similarly, there are 0.6% and 0.3% overall performance gains in taking measurements three 

and four times instead of two and three times, respectively. 

Next, in Table 8, the following is observed: 

 When 𝜙=0, (i.e. no autocorrelation), the EARL does not change for any integer value of s≥0. 

Moreover, since 𝛾=0.5, as m increases from 1 to 4, the EARL values decrease (vertically 

downwards) indicating an improvement in performance; note though, this improvement is at 

a lower rate than in Table 7. 

 With s and m fixed, when 𝜙>0, the EARL tends to increase indicating a deteriorating process. 

However, for each given integer value of m, increasing s leads to some decrease in the EARL 

values; this improvement is at a slightly higher rate than in Table 7. For instance, when m=1 

and 𝜙=0.5, the overall performance gains are 10.5%, 4.3%, 1.9% when s is increased from (0 

to 1), (1 to 2), (2 to 3), respectively. This means that there is a 10.5% overall performance 

gain in skipping one observation as compared to successive sampling when forming a 

rational subgroup. Similarly, there are 4.3% and 1.9% overall performance gains in skipping 

two and three observations instead of one and two, respectively.  

As similarly deduced in Table 4, an outlook comparison of Tables 7 and 8 indicates: (i) The 

autocorrelation level (with 𝛾 fixed) has a significantly greater negative effect on the RR4 and S4 

s&m schemes performances than the measurement error level, and (ii) The s-skip strategy has a 

greater remedial effect than the m-multiple measurement strategy in improving the performance of 

the RR4 and S4 s&m schemes.  

Therefore, based on the analysis done in this section, the recommended values of H, s and m are 

discussed next. For all different specific shifts values of 𝛿, a value of H that is more or less around 

the neighborhood of 5 is recommended. Note though, for large shifts, H much lower than 5 is 

recommended. For any 𝜙 value, when 𝛾 is approximately around (0, 0.3), (0.3, 0.7) and (0.7, 1) an m 

equal to 1, 2 and 3 are recommended, respectively. For any 𝛾 value, when 𝜙 is approximately around 



(0, 0.3), (0.3, 0.6) and (0.6, 1) an s value equal to 1, 2 and 3, are recommended, respectively. Note 

that values of s and m greater than 3 are not recommended so as to not violate the concept of rational 

subgroup and repeatability & reproducibility (R&R) discussed in Costa and Castagliola (2011). Note 

though, in an unlikely event that a process has a large number of observations and an abundance of 

measurement instruments, then the use of s or m greater than 3 is recommended.  

 

4.4 Comparison with other runs-type and synthetic-type s&m schemes  

Note that in this paper, we focused on the RR4 and S4 s&m monitoring schemes because as it is 

shown in this section that these MSS designs yields a uniformly better performance than the NSS, 

SSS and RSS designs. For the sake of illustration, in Table 9 we assume that H=5, 𝛾=0.7, 𝜙=0.7, 𝑛 ∈{3,10}, 𝑠 ∈{0,3} and 𝑚 ∈{1,4}. Since in steady-state, RR1≡S1, RR2≡S2, RR3≡S3 and 

RR4≡S4 – see Shongwe and Graham (2019a), the corresponding k values such that the actual IC 

ARL is equal to 370.4 are 2.2395, 2.1117, 2.1056 and 1.9168, respectively. Assuming a uniform 

distribution in 𝛿, then the average ratio of ARLs (ARARL) is defined by (see Wu et al., 2008): 

𝐴𝑅𝐴𝑅𝐿 = 1∆ ∑ 𝐴𝑅𝐿𝑐(𝛿)𝐴𝑅𝐿𝑀𝑆𝑆(𝛿)𝛿𝑚𝑎𝑥
𝛿𝑚𝑖𝑛 , 

where ∆ is the number of increment steps from 𝛿𝑚𝑖𝑛 to 𝛿𝑚𝑎𝑥, 𝐴𝑅𝐿𝑀𝑆𝑆(𝛿) is the ARL produced by the 

MSS (i.e. RR4 or S4) scheme for a specific s&m strategy and 𝐴𝑅𝐿𝑐(𝛿) is the ARL of some specified 

competing scheme for the same s&m strategy. If the value of ARARL is larger than one, the 

competing scheme will produce larger OOC ARL over a larger shift range and / or to a larger degree 

compared to the MSS scheme and thus, the competing scheme is relatively less effective. However, 

if the ARARL is smaller than one, the competing scheme will have higher overall effectiveness than 

the MSS scheme. Finally, if the value of ARARL is equal to one, the competing scheme has a similar 

overall performance with the MSS scheme. In Table 9, the following is observed: 

 Separately, for the 0&1 and 3&4 strategy, it is observed that in general, with respect to ARL, 

EARL and ARARL, the performance of these schemes can be sorted as follows - RR1≡S1 < 

RR2≡S2 < RR3≡S3 < RR4≡S4. For example, when 𝑛=10 and 𝛿=0.25, then each of the 

scheme’s 3&4 strategy yields ARL values of 93.8, 65.2, 64.2 and 54.3, respectively. 

Moreover, the corresponding EARL values are 169.1, 157.8, 157.5 and 152.9, respectively. 

The ARARLs of the NSS, SSS and RSS schemes are 26%, 10% and 9% higher than those of 

the MSS schemes for the 0&1 strategy when 𝑛=3; however, for the 3&4 strategy these are 

36%, 14% and 13% higher than those of the MSS schemes, respectively. 



 For each scheme, the implementation of the s&m sampling strategy yields improved 

performance as long as 𝜙>0 and 𝛾>0. For example, when 𝑛=10, the RR1 or S1 scheme 

yields a 36.5% improvement in the process when implementing the 3&4 strategy instead of 

the 0&1 strategy. 

 Increasing the sample size improves the detection ability of all schemes by a similar 

proportion so that the order in the best detection ability is unchanged, i.e. RR1≡S1 < 

RR2≡S2 < RR3≡S3 < RR4≡S4. 

<Insert Table 9> 

Similar (but in a different context) to the deductions made for the i.i.d. case in Shongwe and Graham 

(2018); the RR4 and S4 s&m schemes yield the best OOC performance than the corresponding 

competitors when the process is under the effect of both autocorrelation and measurement errors. 

Although not shown here, a similar conclusion is observed for the individual effect of autocorrelation 

or measurement errors, as well as in the zero-state mode. Moreover, we observed that Remark 1 

holds for the RR1, RR2 and RR3 schemes. 

Therefore, this is the reason why the focus of this paper was mainly on the MSS (i.e. the RR4 and 

S4) schemes only – this is the best possible design for the 2-of-(H+1) runs-rules and synthetic s&m 

schemes in both the zero- and steady-state modes, for all possible integer values of H.   

 

5. Illustrative example 

The yoghurt cup filling process dataset taken from Costa and Castagliola (2011, p.670) is displayed 

on Table 10, which shows the weights of different yoghurt cups taken at different sampling points. 

The dataset has 20 samples (each of size 5 yoghurt cups taken every hour and each weighted m=2 

times) corresponding to a 20-hours sequence of production. The Phase I analysis of this process 

indicated that the weight of a yoghurt cup, 𝑋𝑡,𝑖,𝑗, fits an AR(1) model with parameter 𝜙 = 0.38, an IC 

mean estimate, 𝜇0 = 124.9𝑔 and an IC standard deviation, 𝜎0 = 0.76𝑔. Moreover, an R&R study 

indicates that the measurement system standard deviation, 𝜎𝑀 = 0.24𝑔, so that 𝛾=0.316. For 

illustration purpose, assume the data in Table 10 is a full dataset and here we show how to 

implement the s&m sampling strategy to form rational subgroups of size n=3. In the last two 

columns, the corresponding plotting statistics at each sampling point for the 0&1 and 1&2 strategy 

are shown.  

<Insert Table 10> 

For instance, when 𝑡=1, these are calculated as follows: �̅�1 = 11×3 (𝑋1,1,1 + 𝑋1,2,1 + 𝑋1,3,1) = 125.33 – for the 0&1 strategy, 



�̅�1 = 12×3 (𝑋1,1,1 + 𝑋1,1,2 + 𝑋1,3,1 + 𝑋1,3,2 + 𝑋1,5,1 + 𝑋1,5,2) = 124.82 – for the 1&2 strategy. 

The control limits parameters are calculated in Table 11 using Equation (7) for the steady-state RR4 

or S4 s&m scheme and the corresponding monitoring schemes are constructed in Figure 2 when 

s∈{0,1}, m∈{1,2} and these are compared to the basic �̅� s&m scheme.     

<Insert Table 11> 

It is observed in Figure 2 that the RR4 or S4 scheme issues an OOC signal one sampling point earlier 

than each of the corresponding �̅� scheme. That is, in Figure 2(a), the RR4 or S4 0&1 scheme issues 

an OOC signal for the first time at sampling point 13, whereas the �̅� 0&1 scheme does so at 

sampling point 14. Similarly, in Figure 2(b), the RR4 or S4 1&2 scheme issues an OOC signal for 

the first time at sampling point 12, whereas the �̅� 1&2 scheme does so at sampling point 13. This 

example illustrates the significance of increasing s and m to counteract the negative effect of 

autocorrelation and measurement errors. Visually, in Figure 2, it is observed that increasing s and m 

tend to have an improved detection rate because each of the monitoring schemes yields control limits 

that become narrower as s and m increase. 

<Insert Figure 2> 

6. Conclusion remarks 

Since serial correlation and measurement inaccuracy are often encountered in real-life applications of 

SPM; then in this paper, the four design approaches of the 2-of-(H+1) runs-rules and synthetic 

schemes are considered in an effort to improve the classical Shewhart �̅� scheme in the presence of 

both autocorrelation and measurement errors; however, focus is paid to the MSS design as it is 

shown to be the best performing design out of the other three. The first-order autoregressive model 

with s-skip sampling strategy and the additive model with m-multiple measurements sampling 

strategy are incorporated to the Markov chain matrix of the MSS runs-rules and synthetic schemes to 

reduce the negative effect of autocorrelation and measurement errors and are used to derive the zero- 

and steady-state run-length properties. Empirical analysis indicated that the zero-state MSS synthetic 

s&m scheme uniformly outperforms the �̅� s&m scheme. However, the zero- and steady-state MSS 

runs-rules s&m scheme (as well as the steady-state MSS synthetic s&m scheme) outperforms the �̅� 

s&m scheme for small to moderate shifts, the converse is true for large process shifts. Note though, 

using the EARL metric, both the MSS runs-rules and synthetic s&m schemes always yield a better 

zero- and steady-state performances than the �̅� s&m scheme in all the corresponding cases.  

Moreover, it has been observed that the autocorrelation level has a relatively higher negative effect 

than the level of measurement errors. A drawback of these new schemes is that, they require more 

observations (as some will be skipped during inspection) and more effort (multiple measurements on 



each item are taken during inspection) as compared to the no remedy approach. Finally, we 

recommend that quality practitioners should implement any of the two proposed MSS schemes 

instead of the currently existing Shewhart �̅� scheme when monitoring the process mean under the 

combined effect of measurement errors and autocorrelation. 
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Figure 1: Charting regions and limits for the �̅� sub-chart  

 

 

 

 

 

 

 

 

 

 

 



 

(a) s=0 & m=1 

 
(b) s=1 & m=2 

Figure 2: The weight of the yoghurt cups example using the RR4 / S4 and the basic �̅� 

schemes with s&m sampling strategy 
 

 

Table 1: Operation of the MSS runs-rules and synthetic s&m schemes 

Step Methodology 

1 
Specify H, 𝜙, 𝛾, n, m, s and ARL0. Numerically search for the corresponding value of 𝑘 such that the attained IC ARL 

(expression derived in Section 3.3) is equal to ARL0.     

2 Compute UCL / CL / LCL using Equations (7) and (8). 

3 At each inspection point, implement the s&m sampling strategy to collect a sample of size n and calculate �̅�𝑡.  

4 If �̅�𝑡 ∈ Region B+ or B−, return to Step 3; otherwise, go to Step 5.   

5 If �̅�𝑡 ∈ Region A+, go to Step 6a; otherwise, if �̅�𝑡 ∈ A−, go to Step 6b.   

6 
(a) Calculate CRL

+
 and if CRL

+
 ≤ 𝐻 go to Step 7; otherwise return to Step 3.    

(b) Calculate CRL
-
 and if CRL

-
 ≤ 𝐻 go to Step 7; otherwise return to Step 3. 

7 Issue an OOC signal. Take necessary corrective action to find and remove the assignable causes and return to Step 3. 

 



 

Table 2: General form of the TPM for the MSS synthetic scheme (and MSS runs-rules scheme - by removing the head-start feature elements) 
 𝜂1 𝜂2 ⋯ 𝜂𝑙−3 𝜂𝑙−2 𝜂𝑙−1 𝜑 𝜂𝑙+1 𝜂𝑙+2 𝜂𝑙+3 ⋯ 𝜂𝜏−2 𝜂𝜏−1 𝜂𝜏 𝝍𝟏 𝝍𝟐 𝝍𝟑 𝝍𝟒 𝝍𝟓 ⋯ 𝝍𝜿−𝟑 𝝍𝜿−𝟐 𝝍𝜿−𝟏 𝝍𝜿 OOC 𝜂1       𝑝B+ + 𝑝B−  𝑝A−                 𝑝A+ 𝜂2 𝑝B+      𝑝B− 𝑝A−                 𝑝A+ 𝜂3  𝑝B+     𝑝B− 𝑝A−                  𝑝A+ ⋮   ⋱    ⋮ ⋮                 ⋮ 𝜂𝑙−2    𝑝B+   𝑝B− 𝑝A−                  𝑝A+ 𝜂𝑙−1     𝑝B+  𝑝B− 𝑝A−                 𝑝A+ 𝜑      𝑝A+ 𝑝B+ + 𝑝B−  𝑝A−                  𝜂𝑙+1      𝑝A+ 𝑝B+  𝑝B−                𝑝A− 𝜂𝑙+2      𝑝A+ 𝑝B+   𝑝B−               𝑝A− ⋮      ⋮ ⋮    ⋱              ⋮ 𝜂𝜏−3      𝑝A+ 𝑝B+     𝑝B−             𝑝A− 𝜂𝜏−2      𝑝A+ 𝑝B+      𝑝B−            𝑝A− 𝜂𝜏−1      𝑝A+ 𝑝B+       𝑝B−            𝑝A− 𝜂𝜏      𝑝A+ 𝑝B+ + 𝑝B−                   𝑝A− 𝝍𝟏                𝑝B+ 𝑝B−         𝑝A+ + 𝑝A− 𝝍𝟐       𝑝B− 𝑝A−          𝑝B+       𝑝A+ 𝝍𝟑      𝑝A+ 𝑝B+            𝑝B−       𝑝A− ⋮      ⋮ ⋮              ⋱     ⋮ 𝝍𝜿−𝟓       𝑝B− 𝑝A−             𝑝B+    𝑝A+ 𝝍𝜿−𝟒      𝑝A+ 𝑝B+               𝑝B−   𝑝A− 𝝍𝜿−𝟑       𝑝B− 𝑝A−               𝑝B+  𝑝A+ 𝝍𝜿−𝟐      𝑝A+ 𝑝B+                 𝑝B−  𝑝A− 𝝍𝜿−𝟏       𝑝B+ + 𝑝B−  𝑝A−                 𝑝A+ 𝝍𝜿      𝑝A+ 𝑝B+ + 𝑝B−                   𝑝A− 

OOC                         1 
 

 

 

 

 



 

Table 3: The zero- and steady-state design parameters H and k of the RR4 and S4 schemes 

for H ∈{1,2,3,…,20,50,100} for ARL0=370.4 

 Zero-state Steady-state 

H RR4 S4 RR4 & S4 

1 1.7814 1.7982 1.7820 

2 1.8664 1.8862 1.8671 

3 1.8969 1.9181 1.8978 

4 1.9099 1.9318 1.9109 

5 1.9158 1.9380 1.9168 

6 1.9186 1.9409 1.9197 

7 1.9199 1.9422 1.9210 

8 1.9205 1.9429 1.9216 

9 1.9208 1.9432 1.9219 

10 1.9209 1.9433 1.9220 

11 1.9210 1.9434 1.9221 

12 1.9210 1.9435 1.9221 

13 1.9210 1.9435 1.9221 

14 1.9210 1.9435 1.9221 

15 1.9210 1.9435 1.9221 

16 1.9210 1.9435 1.9221 

17 1.9210 1.9435 1.9221 

18 1.9210 1.9435 1.9221 

19 1.9210 1.9435 1.9221 

20 1.9210 1.9435 1.9221 ⋮ ⋮ ⋮ ⋮ 
50 1.9210 1.9435 1.9221 ⋮ ⋮ ⋮ ⋮ 
100 1.9210 1.9435 1.9221 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 4: The zero-state (ZS) and steady-state (SS) ARL, EARL and PCI when 𝜙 ∈{0,0.5}, 𝛾 ∈{0,0.5}, H=7, n=5, s=0, m=1, 𝛿𝑚𝑖𝑛=0, 𝛿𝑚𝑎𝑥= 3 and ARL0=370.4 for 

the basic �̅�, RR4 and S4 schemes 

 (𝜙, 𝛾)  (0,0)   (0,0.5)   (0.5,0)   (0.5,0.5)  

 Mode  SS ZS ZS  SS ZS ZS  SS ZS ZS  SS ZS ZS 

 Scheme �̅� RR4&S4 RR4 S4 �̅� RR4&S4 RR4 S4 �̅� RR4&S4 RR4 S4 �̅� RR4&S4 RR4 S4 

 0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 

 0.25 133.2 62.7 63.0 54.9 155.2 78.0 78.3 69.9 212.8 126.7 127.1 118.7 223.0 136.9 137.2 128.9 

 0.5 33.4 12.7 12.8 8.5 43.9 16.6 16.8 11.7 81.3 33.0 33.3 26.5 89.8 37.3 37.6 30.5 

 0.75 10.8 5.2 5.3 2.9 15.0 6.5 6.6 3.8 32.9 12.5 12.7 8.3 37.6 14.2 14.4 9.7 

 1 4.5 3.2 3.2 1.7 6.3 3.8 3.8 2.0 15.0 6.5 6.6 3.8 17.5 7.3 7.4 4.3 

 1.25 2.4 2.4 2.5 1.2 3.2 2.7 2.8 1.4 7.7 4.2 4.3 2.3 9.0 4.6 4.7 2.5 𝛿 1.5 1.6 2.1 2.2 1.1 2.0 2.3 2.3 1.2 4.4 3.1 3.2 1.6 5.2 3.4 3.5 1.8 

 1.75 1.2 2.0 2.0 1.0 1.5 2.1 2.1 1.1 2.8 2.6 2.6 1.3 3.3 2.7 2.8 1.4 

 2 1.1 2.0 2.0 1.0 1.2 2.0 2.0 1.0 2.0 2.3 2.3 1.2 2.3 2.4 2.4 1.2 

 2.25 1.0 2.0 2.0 1.0 1.1 2.0 2.0 1.0 1.6 2.1 2.2 1.1 1.7 2.2 2.2 1.1 

 2.5 1.0 2.0 2.0 1.0 1.0 2.0 2.0 1.0 1.3 2.0 2.1 1.0 1.4 2.1 2.1 1.1 

 2.75 1.0 2.0 2.0 1.0 1.0 2.0 2.0 1.0 1.2 2.0 2.0 1.0 1.2 2.0 2.0 1.0 

 3 1.0 2.0 2.0 1.0 1.0 2.0 2.0 1.0 1.1 2.0 2.0 1.0 1.1 2.0 2.0 1.0 

 EARL 187.5 156.9 157.1 148.9 200.9 164.1 164.4 155.5 244.8 189.8 190.3 179.4 254.5 195.8 196.2 185.0 

PCI 1.00 0.84 0.84 0.79 1.00 0.82 0.82 0.77 1.00 0.78 0.78 0.73 1.00 0.77 0.77 0.73 

 

 

 

 

 

 

 

 

 



 

 

Table 5: The zero-state ARL and EARL of the S4 scheme when 𝜙=0.5, 𝛾=0.5, n=5, H∈{1,2,3,…,11,12}, s&m∈{0&1, 3&4}, 𝛿𝑚𝑖𝑛=0, 𝛿𝑚𝑎𝑥=3 and ARL0=370.4 

 
 

H 

  1 2 3 4 5 6 7 8 9 10 11 12 

 
 

0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 

𝜹 

0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 

0.25 169.2 97.5 151.9 83.1 142.4 75.5 136.5 71.0 132.8 68.1 130.4 66.2 128.9 65.1 128.1 64.3 127.5 63.8 127.2 63.5 127.0 63.4 126.9 63.2 

0.5 51.7 20.1 42.0 15.5 37.2 13.4 34.3 12.2 32.5 11.4 31.3 10.9 30.5 10.6 30.1 10.4 29.7 10.3 29.5 10.2 29.4 10.1 29.3 10.1 

0.75 18.5 6.2 14.2 4.7 12.3 4.1 11.1 3.8 10.5 3.6 10.0 3.5 9.7 3.5 9.6 3.4 9.4 3.4 9.4 3.4 9.3 3.4 9.3 3.4 

1 8.0 2.7 6.1 2.2 5.2 2.0 4.8 1.9 4.6 1.9 4.4 1.9 4.3 1.9 4.3 1.9 4.2 1.9 4.2 1.9 4.2 1.9 4.2 1.9 

1.25 4.1 1.6 3.2 1.4 2.8 1.4 2.7 1.4 2.6 1.4 2.6 1.4 2.5 1.4 2.5 1.4 2.5 1.4 2.5 1.4 2.5 1.4 2.5 1.4 

1.5 2.5 1.2 2.0 1.1 1.9 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 

1.75 1.8 1.1 1.5 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.4 1.0 

2 1.4 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 

2.25 1.2 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 

2.5 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 

2.75 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

EARL 210.6 168.6 198.9 161.5 193.0 158.0 189.5 155.9 187.3 154.6 185.9 153.8 185.0 153.3 184.5 153.0 184.1 152.8 183.9 152.6 183.8 152.6 183.7 152.5 

%Diff 24.9% 23.2% 22.2% 21.5% 21.1% 20.9% 20.6% 20.6%  20.5%  20.5%  20.5% 20.5% 

OPG(H) N/A N/A 5.9% 4.4% 3.1% 2.2% 1.9% 1.3% 1.1% 0.8% 0.8% 0.5% 0.5% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 

 

 
Table 6: The steady-state ARL and EARL of the RR4 and S4 schemes when 𝜙=0.5, 𝛾=0.5, n=5, H∈{1,2,3,…,11,12}, s&m∈{0&1, 3&4}, 𝛿𝑚𝑖𝑛=0, 𝛿𝑚𝑎𝑥=3 and ARL0=370.4 

 
 

H 
  1 2 3 4 5 6 7 8 9 10 11 12 

 
 

0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 0&1 3&4 

𝜹 

0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 

0.25 173.6 102.4 157.7 89.3 149.1 82.5 143.8 78.4 140.3 75.8 138.2 74.1 136.9 73.1 136.1 72.4 135.6 71.9 135.2 71.6 135.1 71.5 134.9 71.3 

0.5 56.2 23.6 47.6 19.5 43.3 17.7 40.7 16.6 39.1 16.0 38.0 15.6 37.4 15.3 36.9 15.1 36.6 15.0 36.4 14.9 36.2 14.8 36.2 14.8 

0.75 21.9 8.3 18.1 7.1 16.4 6.6 15.5 6.3 14.9 6.2 14.5 6.1 14.2 6.0 14.0 6.0 13.9 6.0 13.9 6.0 13.8 6.0 13.8 6.0 

1 10.4 4.2 8.8 3.8 8.1 3.6 7.7 3.6 7.5 3.6 7.4 3.6 7.3 3.6 7.2 3.6 7.2 3.6 7.2 3.6 7.2 3.6 7.2 3.6 

1.25 6.0 2.8 5.2 2.6 4.9 2.6 4.8 2.6 4.7 2.6 4.7 2.6 4.6 2.6 4.6 2.6 4.6 2.6 4.6 2.6 4.6 2.6 4.6 2.6 

1.5 4.0 2.3 3.6 2.2 3.5 2.2 3.4 2.2 3.4 2.2 3.4 2.2 3.4 2.2 3.4 2.2 3.4 2.2 3.4 2.2 3.4 2.2 3.4 2.2 

1.75 3.0 2.1 2.8 2.0 2.7 2.0 2.7 2.0 2.7 2.0 2.7 2.0 2.7 2.0 2.7 2.0 2.7 2.0 2.7 2.0 2.7 2.0 2.7 2.0 

2 2.5 2.0 2.4 2.0 2.4 2.0 2.4 2.0 2.4 2.0 2.4 2.0 2.4 2.0 2.4 2.0 2.4 2.0 2.4 2.0 2.4 2.0 2.4 2.0 

2.25 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 

2.5 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 

2.75 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

EARL 218.8 175.4 208.3 169.0 203.0 165.9 199.9 164.0 197.9 162.9 196.7 162.2 195.9 161.7 195.3 161.4 195.0 161.2 194.8 161.1 194.7 161.0 194.6 161.0 

%Diff 24.7% 23.3% 22.4% 21.9% 21.5% 21.2% 21.1% 21.0% 21.0% 20.9% 20.9% 20.9% 

OPG(H) N/A N/A 5.0% 3.8% 2.6% 1.9% 1.6% 1.1% 1.0% 0.7% 0.6% 0.5% 0.4% 0.3% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 

 

 

 



Table 7: The steady-state EARL (and OPG - in brackets) of the RR4 and S4 s&m schemes when 𝐻=5, 𝜙=0.5, 𝑛=5, 𝛿𝑚𝑖𝑛=0, 𝛿𝑚𝑎𝑥=3, 𝑚 ∈{1,2,3,4}, s∈{0,1,2,3}, 𝛾 ∈{0,0.1,0.2,…,0.9} and 𝐴𝑅𝐿0=370.4 

  

        𝛾           

 

m 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

  1 191.8 192.0 192.7 193.9 195.7 197.9 200.5 203.6 207.0 210.8 

s=0 2 191.8 (0%) 191.9 (0.1%) 192.3 (0.2%) 192.9 (0.6%) 193.7 (1.0%) 194.9 (1.5%) 196.2 (2.2%) 197.8 (2.9%) 199.6 (3.7%) 201.6 (4.6%) 

  3 191.8 (0%) 191.9 (0.0%) 192.1 (0.1%) 192.5 (0.2%) 193.0 (0.3%) 193.8 (0.6%) 194.8 (0.7%) 195.7 (1.1%) 197.0 (1.3%) 198.4 (1.6%) 

  4 191.8 (0%) 191.9 (0.0%) 192.0 (0.1%) 192.3 (0.1%) 192.7 (0.2%) 193.3 (0.2%) 193.9 (0.4%) 194.8 (0.5%) 195.7 (0.7%) 196.8 (0.8%) 

  1 172.2 172.6 173.3 174.8 176.7 179.1 182.1 185.5 189.3 193.6 

s=1 2 172.2 (0%) 172.4 (0.1%) 172.8 (0.3%) 173.5 (0.7%) 174.5 (1.2%) 175.7 (1.9%) 177.2 (2.7%) 179.0 (3.7%) 181.0 (4.6%) 183.3 (5.6%) 

  3 172.2 (0%) 172.3 (0.0%) 172.6 (0.1%) 173.1 (0.3%) 173.7 (0.5%) 174.6 (0.6%) 175.6 (0.9%) 176.8 (1.2%) 178.1 (1.6%) 179.7 (2.0%) 

  4 172.2 (0%) 172.3 (0.0%) 172.6 (0.0%) 172.9 (0.1%) 173.3 (0.2%) 174.0 (0.3%) 174.8 (0.5%) 175.7 (0.6%) 176.7 (0.8%) 177.9 (1.0%) 

  1 164.5 164.8 165.7 167.1 169.1 171.7 174.8 178.3 182.3 186.8 

s=2 2 164.5 (0%) 164.7 (0.1%) 165.1 (0.3%) 165.8 (0.8%) 166.8 (1.4%) 168.1 (2.1%) 169.7 (3.0%) 171.6 (3.9%) 173.6 (5.0%) 176.0 (6.1%) 

  3 164.5 (0%) 164.6 (0.0%) 164.9 (0.1%) 165.4 (0.2%) 166.1 (0.5%) 166.9 (0.7%) 167.9 (1.1%) 169.2 (1.4%) 170.7 (1.7%) 172.3 (2.2%) 

  4 164.5 (0%) 164.6 (0.0%) 164.8 (0.1%) 165.2 (0.1%) 165.7 (0.2%) 166.4 (0.3%) 167.1 (0.5%) 168.1 (0.7%) 169.1 (0.9%) 170.3 (1.2%) 

  1 161.0 161.4 162.3 163.7 165.8 168.4 171.6 175.2 179.3 183.8 

s=3 2 161.0 (0%) 161.2 (0.1%) 161.7 (0.4%) 162.4 (0.8%) 163.4 (1.4%) 164.8 (2.2%) 166.4 (3.1%) 168.3 (4.1%) 170.4 (5.2%) 172.8 (6.3%) 

  3 161.0 (0%) 161.2 (0.0%) 161.5 (0.1%) 162.0 (0.3%) 162.6 (0.5%) 163.5 (0.8%) 164.7 (1.1%) 165.9 (1.4%) 167.3 (1.8%) 169.0 (2.3%) 

  4 161.0 (0%) 161.1 (0.0%) 161.4 (0.1%) 161.8 (0.1%) 162.3 (0.2%) 162.9 (0.3%) 163.7 (0.6%) 164.7 (0.7%) 165.8 (0.9%) 167.0 (1.2%) 

 

Table 8: The steady-state EARL (and OPG - in brackets) of the RR4 and S4 s&m schemes when H=5, 𝛾=0.5, n=5, 𝛿𝑚𝑖𝑛=0, 𝛿𝑚𝑎𝑥=3, m∈{1,2,3,4}, s∈{0,1,2,3}, 𝜙 ∈{0,0.1,0.2,…,0.9} and 𝐴𝑅𝐿0=370.4 

  

        𝜙           

 

s 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

  0 165.4 170.3 176.0 182.4 189.7 197.9 207.0 217.2 228.5 240.7 

m=1 1 165.4 (0%) 165.9 (2.7%) 167.3 (5.2%) 169.8 (7.4%) 173.6 (9.3%) 179.1 (10.5%) 186.7 (10.9%) 197.1 (10.2%) 211.0 (8.3%) 229.7 (4.8%) 

  2 165.4 (0%) 165.4 (0.3%) 165.7 (0.9%) 166.6 (1.9%) 168.5 (3.1%) 171.7 (4.3%) 177.0 (5.5%) 185.5 (6.3%) 199.0 (6.0%) 220.4 (4.2%) 

  3 165.4 (0%) 165.4 (0.0%) 165.5 (0.2%) 165.7 (0.5%) 166.6 (1.1%) 168.4 (1.9%) 171.9 (2.9%) 178.5 (3.9%) 190.5 (4.5%) 212.6 (3.7%) 

  0 161.7 166.7 172.6 179.1 186.5 194.9 204.1 214.5 225.9 238.4 

m=2 1 161.7 (0%) 162.1 (2.8%) 163.6 (5.5%) 166.3 (7.7%) 170.1 (9.6%) 175.7 (10.9%) 183.4 (11.3%) 193.9 (10.6%) 208.2 (8.5%) 227.2 (4.9%) 

  2 161.7 (0%) 161.8 (0.2%) 162.1 (0.9%) 163.0 (2.0%) 164.9 (3.2%) 168.1 (4.5%) 173.5 (5.7%) 182.2 (6.5%) 195.8 (6.3%) 217.7 (4.4%) 

  3 161.7 (0%) 161.7 (0.0%) 161.8 (0.2%) 162.1 (0.6%) 162.9 (1.2%) 164.8 (2.0%) 168.4 (3.0%) 175.1 (4.1%) 187.3 (4.6%) 209.9 (3.7%) 

  0 160.5 165.6 171.3 178.0 185.4 193.8 203.2 213.6 225.2 237.6 

m=3 1 160.5 (0%) 160.9 (2.9%) 162.4 (5.5%) 165.1 (7.8%) 168.9 (9.8%) 174.6 (11.0%) 182.3 (11.4%) 192.9 (10.7%) 207.3 (8.6%) 226.3 (5.0%) 

  2 160.5 (0%) 160.5 (0.3%) 160.8 (1.0%) 161.8 (2.0%) 163.6 (3.3%) 166.9 (4.6%) 172.4 (5.8%) 181.1 (6.6%) 194.9 (6.3%) 216.8 (4.4%) 

  3 160.5 (0%) 160.5 (0.0%) 160.5 (0.2%) 160.8 (0.6%) 161.7 (1.2%) 163.5 (2.1%) 167.1 (3.1%) 173.9 (4.1%) 186.2 (4.7%) 208.9 (3.8%) 

  0 159.8 164.9 170.8 177.4 184.9 193.3 202.7 213.2 224.7 237.2 

m=4 1 159.8 (0%) 160.3 (2.9%) 161.8 (5.5%) 164.4 (7.9%) 168.3 (9.8%) 174.0 (11.1%) 181.8 (11.5%) 192.5 (10.8%) 206.8 (8.7%) 225.8 (5.0%) 

  2 159.8 (0%) 159.8 (0.3%) 160.2 (1.0%) 161.1 (2.0%) 163.0 (3.3%) 166.4 (4.6%) 171.7 (5.8%) 180.5 (6.6%) 194.3 (6.4%) 216.4 (4.4%) 

  3 159.8 (0%) 159.8 (0.0%) 159.9 (0.2%) 160.2 (0.5%) 161.0 (1.2%) 162.9 (2.1%) 166.6 (3.1%) 173.3 (4.1%) 185.6 (4.7%) 208.5 (3.8%) 

 

 



Table 9: The steady-state ARL, EARL and ARARL of the (NSS, SSS, RSS, MSS) runs-rules 

and synthetic schemes with the 0&1 strategy (and 3&4 strategy – in brackets) when 𝛿𝑚𝑖𝑛= 0, 𝛿𝑚𝑎𝑥= 3, 𝜙=0.7, 𝛾=0.7, 𝑛 ∈ {3,10} and ARL0=370.4 
n 𝜹 NSS: RR1,S1 SSS: RR2,S2 RSS: RR3,S3 MSS: RR4,S4 

 0 370.4 (370.4) 370.4 (370.4) 370.4 (370.4) 370.4 (370.4) 

 0.25 264.8 (206.8) 217.2 (156.6) 215.3 (154.7) 201.4 (140.1) 

 0.5 124.7 (68.5) 87.6 (47.7) 86.3 (47.0) 74.5 (39.0) 

 0.75 55.0 (25.1) 38.7 (18.6) 38.1 (18.4) 31.2 (14.8) 

 1 26.6 (11.5) 19.6 (9.2) 19.4 (9.1) 15.6 (7.5) 

 1.25 14.5 (6.5) 11.4 (5.5)  11.2 (5.5) 9.1 (4.7) 

3 1.5 8.9 (4.3) 7.4 (3.9) 7.3 (3.8) 6.1 (3.4) 

 1.75 6.1 (3.2) 5.2 (3.0) 5.2 (3.0) 4.4 (2.7) 

 2 4.5 (2.6) 4.0 (2.5) 4.0 (2.5) 3.5 (2.4) 

 2.25 3.5 (2.3) 3.3 (2.2) 3.3 (2.2) 3.0 (2.2)  

 2.5 3.0 (2.1) 2.8 (2.1) 2.8 (2.1) 2.6 (2.1) 

 2.75 2.6 (2.0) 2.5 (2.0) 2.5 (2.0) 2.4 (2.0) 

 3 2.3 (2.0) 2.3 (2.0) 2.3 (2.0) 2.2 (2.0) 

 EARL 295.6 (235.8) 257.5 (208.6) 256.0 (207.6) 242.1 (197.8) 

 %Diff 25.4% 23.4% 23.3% 22.4% 

 ARARL 1.36 (1.26) 1.14 (1.10) 1.13 (1.09) 1.00 (1.00) 

 0 370.4 (370.4) 370.4 (370.4) 370.4 (370.4) 370.4 (370.4) 

 0.25 200.4 (93.8) 150.7 (65.2) 148.8 (64.2) 134.2 (54.3) 

 0.5 64.0 (17.3) 44.7 (13.3) 44.0 (13.2) 36.4 (10.7) 

 0.75 23.1 (6.0) 17.3 (5.2) 17.1 (5.2) 13.8 (4.4) 

 1 10.6 (3.3) 8.6 (3.1) 8.5 (3.1) 7.0 (2.8) 

 1.25 6.0 (2.4) 5.2 (2.3) 5.2 (2.3) 4.4 (2.2) 

10 1.5 4.0 (2.1) 3.7 (2.0) 3.6 (2.0) 3.2 (2.0) 

 1.75 3.0 (2.0) 2.9 (2.0) 2.9 (2.0) 2.6 (2.0) 

 2 2.5 (2.0) 2.4 (2.0) 2.4 (2.0) 2.3 (2.0) 

 2.25 2.2 (2.0) 2.2 (2.0) 2.2 (2.0) 2.1 (2.0) 

 2.5 2.1 (2.0) 2.0 (2.0) 2.0 (2.0) 2.0 (2.0) 

 2.75 2.0 (2.0) 2.0 (2.0) 2.0 (2.0) 2.0 (2.0) 

 3 2.0 (2.0) 2.0 (2.0) 2.0 (2.0) 2.0 (2.0) 

 EARL 230.8 (169.1) 204.7 (157.8) 203.7 (157.5) 194.1 (152.9) 

 %Diff 36.5% 29.7% 29.4% 26.9% 

 ARARL 1.26 (1.16) 1.11 (1.06) 1.10 (1.06) 1.00 (1.00) 

 

 

 

 

 

 

 

 

 

 

 



Table 10: The yoghurt filling cup process dataset 
            0&1 1&2 

  
𝑋𝑡,1,1 𝑋𝑡,1,2 𝑋𝑡,2,1 𝑋𝑡,2,2 𝑋𝑡,3,1 𝑋𝑡,3,2 𝑋𝑡,4,1 𝑋𝑡,4,2 𝑋𝑡,5,1 𝑋𝑡,5,2 �̅�𝑡 �̅�𝑡 

 

1 124.9 124.8 125.9 125.9 125.2 124.8 124.6 124.1 124.8 124.4 125.33 124.82 

 

2 124.9 125.2 125.5 125.0 124.1 123.9 125.2 125.2 125.0 125.6 124.83 124.78 

 

3 125.1 125.1 125.2 124.8 125.4 125.3 122.9 122.4 125.4 125.4 125.23 125.28 

 

4 126.1 125.9 124.6 124.8 125.7 125.5 126.4 126.5 124.9 125.7 125.47 125.63 

 

5 125.8 125.7 122.6 122.6 124.1 123.5 126.1 126.3 124.9 125.0 124.17 124.83 

 

6 125.0 125.2 125.5 124.8 124.8 125.0 124.9 124.8 124.8 124.2 125.10 124.83 

 

7 124.2 124.6 125.8 125.3 125.4 125.5 126.4 126.2 125.1 125.2 125.13 125.00 

 

8 124.9 124.9 123.8 123.2 125.1 125.3 124.0 124.5 124.4 124.2 124.60 124.80 𝑡 9 125.9 125.8 124.4 124.8 126.3 125.7 124.9 125.2 125.2 125.1 125.53 125.67 

 

10 124.2 124.3 126.2 125.5 125.6 125.0 124.4 124.4 124.1 124.3 125.33 124.58 

 

11 123.7 123.6 123.4 123.3 124.7 124.8 123.1 123.1 123.1 122.8 123.93 123.78 

 

12 124.0 124.1 122.6 122.4 123.6 123.6 124.4 124.5 123.6 123.1 123.40 123.67 

 

13 122.0 122.5 123.9 124.0 123.7 124.1 124.3 124.4 121.9 122.9 123.20 122.85 

 

14 122.4 123.0 122.8 123.1 123.7 124.2 123.7 124.1 122.8 123.1 122.97 123.20 

 

15 123.9 123.6 124.1 124.5 123.4 122.9 123.1 123.1 124.5 125.1 123.80 123.90 

 

16 121.9 122.3 123.4 123.3 123.5 123.3 125.3 125.5 123.3 123.6 122.93 122.98 

 

17 123.3 122.9 123.6 123.5 124.2 123.8 123.4 123.6 123.5 123.4 123.70 123.52 

 

18 122.0 122.2 123.6 123.4 124.7 125.0 122.6 122.5 124.5 123.9 123.43 123.72 

 

19 124.0 123.9 123.1 123.4 123.9 124.5 122.6 122.8 124.2 123.5 123.67 124.00 

 

20 125.5 124.9 122.2 122.3 123.2 123.2 123.2 123.3 123.2 123.2 123.63 123.87 

 

 

Table 11: The RR4 or S4 s&m scheme using the yoghurt filling cup example in steady-state 

mode when 𝛾=0.316, 𝜙=0.38, H=1, n=3, m∈{1,2} and s∈{0,1} 

 s 0 1 

m 1 2 𝐶1(𝑚, 𝛾) 0.9536 0.9760 𝐶2(𝑛, 𝜙, 𝑠) 0.7898 0.9104 𝐶3(𝑚, 𝑛, 𝛾, 𝜙, 𝑠) 0.7664 0.8922 

RR4 or S4 
UCL 125.92 125.78 

LCL 123.88 124.02 �̅� 
UCL 126.62 126.38 

LCL 123.18 123.43 

 


