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Introduction

In elementary mathematics, a number line is a picture of the graduated straight line that serves as an abstraction to real numbers. Idea of number line was first introduced by John Napier [START_REF] Napier | A description of the admirable table of logarithms[END_REF], and later, John Wallis [START_REF] Wallis | Treatise of Algebra[END_REF] used this graphical representation to explain operations of addition and subtraction in terms of moving backward and forward under the metaphor of a person walking. However, that type of graphical interpretation is not particularly suitable in other contexts of interest. In order to obtain another useful representation of natural numbers, a multiplication tensor or M N -tensor has been recently introduced [START_REF] Jankovic | Multiplication Tensor and Number of Rational Numbers[END_REF]. Idea came from the fundamental theorem of arithmetic [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF].

In this paper, an addition tensor or A N -tensor is going to be introduced. The addition tensor is going to be created from M N -tensor by using analogy and replacing the operation of multiplication with addition. In order to show usefulness of this presentation of natural numbers it is going to be shown, in an elementary way, that famous (strong) Goldbach's conjecture [START_REF] Guy | Unsolved Problems in Number Theory[END_REF] can not hold.

The fundamental theorem of arithmetic states that every integer greater than 1 can be uniquely represented by a product of powers of prime numbers, up to the order of the factors [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]. Having that in mind, an infinite dimensional tensor M N that contains all natural numbers only once, is going to be constructed [START_REF] Jankovic | Multiplication Tensor and Number of Rational Numbers[END_REF]. In order to do that we are going to mark vector that contains all prime numbers with p. 

So, p(1) = 2, p(2) = 3, p(3) = 5,
m i 1 i 2 i 3 ... = p(1) i 1 -1 p (2) i 2 -1 p(3) i 3 -1 ... .
The alternative definition is also possible. Now, the following notation is going to be assumed for some infinite size vectors

2 = [2 0 2 1 2 2 2 3 …], 3 = [3 0 3 1 3 2 3 3 …], 5 = [5 0 5 1 5 2 5 3 …] …
It is simple to be seen that every vector is marked by bold number that is equal to some prime number and that components of the vector are defined as powers of that prime number, including power zero (it can be seen that every vector represents infinite cyclic semi group defined by a primitive that is one of the prime numbers). Now, the M N -tensor can be defined as

M N = 2 ○ 3 ○ 5 ○ 7 ○...,
where ○ stands for outer product.

The tensor M N is of infinite dimension (equal to number of prime numbers) and size, and contains all natural numbers exactly ones. It is easy to understand why it is so, having in mind the fundamental theorem of arithmetic. This type of infinite tensor is called a half infinite tensor [START_REF] Jankovic | Multiplication Tensor and Number of Rational Numbers[END_REF].

The tensor that represents all odd numbers, M NO , contains elements defined as

m i 1 i 2 ... = p( 2) i 1 -1 p(3) i 2 -1 ... , or M NO = 3 ○ 5 ○ 7 ○...,
where ○ stands for outer product. It is simple to be seen that every vector is defined by some prime number and that components of the vector represent all non-negative integer multiples of that prime number. Now, the A N -tensor can be defined as

a i 1 i 2 i 3 ... =(i 1 -1) p(1)+(i 2 -1) p (2)+(i 3 -1) p(3)+...
A N = 2a ○ + 3a ○ + 5a ○ + 7a ○ + ...,
where ○ + stands for outer sum, which is analogous to outer product where operation of interest is addition..

It is interesting to notice that the tensor M N does not contain number 0 that is neutral element for addition, while, on the other hand, the tensor A N does not contain number 1 that is neutral number for multiplication.

Here we will present an additional addition tensor A NO that is created by odd prime numbers, where elements of that tensor are defined as

a i 1 i 2 i 3 ... =(i 1 -1) p( 2)+(i 2 -1) p(3)+(i 3 -1) p(4)+... . or A NO = 3a ○ + 5a ○ + 7a ○ + ...,
where ○ + stands for outer sum.

A proof that (strong) Goldbach's conjecture cannot hold

Goldbach's conjecture (strong version) states that every even natural number bigger than 4 can be expressed as a sum of two odd prime numbers [START_REF] Guy | Unsolved Problems in Number Theory[END_REF]. Here we will show in an elementary way that this conjecture cannot hold. In order to do that we will analyze tensors A NO and M NO contains all odd numbers exactly once, and from that fact it is easy to understand that the number of numbers in the tensor is equal to the number of even numbers. Since the sub-tensor M NO (1:2, 1:2, 1:2, …) together with additional elements that represent squares of odd prime numbers obviously contains smaller number of numbers than the tensor M NO , it can be clearly seen that the number of sums created by two odd prime numbers is smaller than the number of even numbers, which means that (strong) Goldbach's conjecture can not hold. That completes the proof.

Appendix A contains an elementary proof in which it is not necessary to use any reference to tensors. 

.

  The edges of that tensor will contain the following vectors 2a = [0 2 4 6 …], 3a = [0 3 6 9 …], 5a = [0 5 10 15 …] …

NO

  1:2, 1:2, …) are going to be compared. It is clear that those two sub-tensors are of the same size by construction. Those sub-tensors contain all sums and all products that are produced by two different odd prime numbers, respectively (they also contain prime numbers themselves and many additional elements that are composed by primes of power one, but this does not affect the final conclusion). The additional numbers that are composed of two prime numbers are on the positions (3 1 1 1 …) (1 3 1 1 1…), (1 1 3 1 1 1…) and so on, and their number is equal in both tensors -in the case of M NO -tensor those numbers represent squares of odd primes and in the case of A NO -tensor they represent doubles of odd primes. It is known that tensor M

Table 1 .

 1 Simple multiplication table for odd prime numbers

	•	p(2)	p(3)	p(4)	p(5)	...
	p(2)	p(2) 2	p(2)•p(3)	p(2)•p(4)	p(2)•p(5)	...
	p(3)	x	p(3) 2	p(3)•p(4)	p(3)•p(5)	...
	p(4)	x	x	p(4) 2	p(4)•p(5)	...
	p(5)	x	x	x	p(5) 2	...
	...	...	...	...	...	...

Table 2 .

 2 Simple addition table for odd prime numbersIt can be seen that lower triangular part of Table1and Table2is filled with x (we are ignoring them), since it would contain the values already contained in upper triangular part of the tables due to the commutative nature of operations of addition and multiplication. From Table1and Table2we can conclude that both tables contain the same number of elements. From fundamental theorem of arithmetic, it is known that all products in Table1have unique values (that is not the case with sums in the Table2, but it has no influence on the final conclusion). From fundamental theorem of arithmetic it is known that all odd numbers can be uniquely expressed in the following form , … are natural numbers. Having this in mind, it can be seen that the unique products in Table1represent a proper subset of odd natural numbers, which means that their number is smaller than the number of odd natural numbers. It is well know fact that the number of odd natural numbers is equal to the number of even natural numbers. Since the number of sums in the Table2is equal to the number of products in the Table1we can conclude that the number of sums in the Table2is smaller than the number of even numbers and then it is easy to conclude that strong version of Goldbach's conjecture cannot hold. It concludes the proof.

	+	p(2)	p(3)	p(4)	p(5)	...
	p(2)	p(2)+p(2)	p(2)+p(3)	p(2)+p(4)	p(2)+p(5)	...
	p(3)	x	p(3)+p(3)	p(3)+p(4)	p(3)+p(5)	...
	p(4)	x	x	p(4)+p(4)	p(4)+p(5)	...
	p(5)	x	x	x	p(5)+p(5)	...
	...	...	...	...	...	...

Appendix A.

Here, a proof that does not reference to tensors is going to be presented.

In order to prove that strong Goldbach's conjecture cannot hold, we are going to analyze a multiplication (Table 1) and an addition table (Table 2). Since we are going to focus on the number of numbers presented in the tables, tables will not contain numbers themselves. Vector p is previously defined as vector that contains all prime numbers with elements p(1) = 2, p(2) = 3, p(3) = 5, and so on.